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Abstract
This article aims to classify the Einstein-type metrics on Kenmotsu and almost Ken-
motsu manifolds. In Kenmotsu case, we find that it is T -Einstein. Also, if the manifold
is complete and the scalar curvature remains invariant along the Reeb vector field,
then either, it is isometric to the hyperbolic space H

2n+1(1) or, the warped prod-
uct ˜M ×γ R, provided ζψ �= ψ . Next, we investigate non-Kenmotsu (κ, μ)′-almost
Kenmotsu manifolds obeying the Einstein-type metrics and give some classification.
Finally, we establish that if (ψ, g) is a non-trivial solution of Einstein-typemetricswith
smooth function ψ which is constant along the Reeb vector field on almost Kenmotsu
3-H-manifold, then either, it is locally isometric to the hyperbolic spaceH3(1) or, the
Riemannian productH2(4) ×R. Finally, we construct several non-trivial examples to
verify our main results.

Keywords Static space · Kenmotsu manifold · Hyperbolic space · Warped product ·
Einstein-type metrics

Mathematics Subject Classification 53C15 · 53C25 · 53D15

1 Introduction and Preliminaries

In general relativity, obtaining the global solutions to Einstein’s field equations, is an
important topic for both mathematics and physics. One such special solution is the
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static space-time which is closely connected to the general relativity’s cosmic no-hair
conjecture (see [7]). Recently, the authors in (cf. [18, 25, 27]) studied a generalized
version of static space-time that contains severalwell circulated critical point equations
that occur as solutions of the Euler-Lagrange equations on a compact manifold for
curvature functionals.

Definition 1.1 [25] A smooth Riemannian manifold (Mn, g) is named an Einstein-
type manifold if ψ : Mn → R solves

ψRic = ∇2ψ + σ g, (1.1)

where ψ is a non-constant smooth function. Here, σ , Ric and ∇2ψ indicate a smooth
function, the Ricci tensor and the Hessian of ψ , respectively. Moreover, taking the
trace of (1.1) yields

rψ = �ψ + nσ, (1.2)

�ψ being the Laplacian of ψ and r denotes the scalar curvature.

As highlighted by the authors (cf. [18, 25]), the above stated two equations gener-
alize numerous fascinating geometric equations such as static perfect fluid equation
(cf. [11, 19, 20]), Miao–Tam equation (cf. [3, 21, 22]) and critical point equation (cf.
[2, 27]), Einstein equation [13] and static vacuum equation [1] with null and non-null
cosmological constant.

The interesting idea of Einstein-type manifolds is characterized in many papers
(cf. [8, 18]). Leandro [18] classified Einstein-type manifold under the assumptions of
zero-radial Weyl curvature and harmonic Weyl curvature. As a physical application,
Leandro proved that,

There are no multiple black holes in static vacuum Einstein equation with null
cosmological constant having zero radial Weyl curvature and divergence free
Weyl tensor of order four.

Catino et al. [8] investigated it under Bach-flat condition. The critical point equa-
tion, Miao–Tam equation and Fischer–Marsden equation on Kenmotsu and almost
Kenmotsu manifold (briefly, akm) were studied by many authors in [9, 33]. Kumara
et al. [17] characterized the static perfect fluid space-time metrics on akm.

Tanno’s classification theoremwas used to classify almost contact metric manifolds
with constant sectional curvature k of a plane section containing the Reeb vector field
ζ . According to Tano’s classification, if k is positive, the manifold is a homogeneous
Sasakian manifold. If k is zero, the manifold is a global Riemannian product of a
line or, a circle with a Kahler manifold of constant holomorphic sectional curvature.
If k is negative, the manifold is a warped product space R × f C2n , known as a
Kenmotsu manifold. Kenmotsu manifolds have important geometrical properties and
almost Kenmotsu manifolds are an extension of Kenmotsu manifolds. These two
structures namely Kenmotsu and almost Kenmotsu are totally different from Sasakian
and K-contact structures. Sasakian and K-contact structures are equivalent on three
dimensional Riemannian manifolds, but these two structures (Kenmotsu and almost
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Kenmotsu) are not equivalent to Sasakian and K-contact structures. Recently, Patra
and Ghosh [25] considered the Einstein-type equation within the context of contact
manifolds.

Motivatedby the above studieswe examineKenmotsu andakmmanifolds admitting
a smooth non-trivial function ψ satisfying the Einstein-type equation (1.1) and we
acquire totally different results from the results as obtained by the authors in [25].

This article is organized as follows:
In Sect. 3, we show that if a complete Kenmotsu manifold whose Reeb vector field

leaves the scalar curvature invariant and admits a non-trivial function ψ satisfying the
Eq. (1.1), then either, it is isometric to the hyperbolic spaceH2n+1(1) or, to the warped
product ˜M ×γ R, provided ζψ �= ψ . Section 4 is concerned with the investigation of
akm. Firstly, we obtain classification of (κ, μ)′-akm with h′ �= 0 admitting non-trivial
ψ satisfying the Eq. (1.1). Thenwe prove that ifM3(F, ζ, T , g) is an almost Kenmotsu
3-H-manifold with h′ �= 0 and (ψ, g) is a non-trivial solution of the Eq. (1.1) with
smooth function ψ which is constant along the Reeb vector field, then it is locally
isometric to a non-unimodular Lie group with a left invariant akm.

1.1 Almost KenmotsuManifolds

According to Blair [4], an almost contact manifold is a smooth manifoldM2n+1 with a
1-form T which is known as contact form, a unit vector field ζ with T (ζ ) = 1, named
the Reeb vector field and a skew-symmetric (1, 1)-tensor field F of rank 2n satisfying
the following relations:

F2Z1 = −Z1 + T (Z1)ζ, T ◦ F = 0, (1.3)

for all vector field Z1 on M2n+1. The smooth manifold M2n+1 together with the
almost contact structure (T , ζ, F) is known as an almost contact manifold. If the
global 1-form T is such that T ∧ (dT )n �= 0 everywhere on M2n+1, then it is called
contact. The metric g is a Riemannian metric, also called associated metric of T , that
is, T (Z1) = g(Z1, ζ ), for Z1 on M2n+1 and M2n+1(T , ζ, F, g) is named an almost
contact metric manifold. Also, from (1.3) we see that

g(FZ1, FZ2) = g(Z1, Z2) − T (Z1)T (Z2), F(ζ ) = 0, (1.4)

for all Z1, Z2 onM2n+1. OnM2n+1, two self-adjoint operators h and l are defined by
h = 1

2Lζ F and l = K (·, ζ )ζ on M2n+1 obeying hζ = h′ζ = 0, Tr .h = Tr .h′ =
0, hH = −Fh where h′ = h · F and K is the Riemannian curvature tensor of g.

If the manifold M2n+1 obeys dT = 0 and d� = 2T ∧ �, where the fundamental
2-form � of the manifold is defined by �(Z1, Z2) = g(Z1, FZ2) for any Z1, Z2 on
M2n+1, thenM2n+1(T , ζ, F, g) is called an akm (see [14]).

Further, on an akm the subsequent formula holds [12]:

∇Z1ζ = −F2Z1 − FhZ1, (1.5)

for any Z1 on M2n+1.
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A normal akm is called a Kenmotsu manifold (see [16]). Moreover, an akm is a
Kenmotsu manifold if and only if

(∇Z1F)Z2 = g(FZ1, Z2)ζ − T (Z2)FZ1,

for any Z1, Z2 onM2n+1 [14, Theorem 2.1]. AKenmotsumanifold is locally a warped
product (briefly,WP) I×cet N 2n of open interval I andKählerianmanifold N 2n , where
t is the coordinate of I and c is some positive constant (see [16]). On a Kenmotsu
manifold, the following relations are true [16]:

∇Z1ζ = Z1 − T (Z1)ζ, (1.6)

K (Z1, Z2)ζ = T (Z1)Z2 − T (Z2)Z1, (1.7)

Lζ = −2nζ, (1.8)

for any Z1, Z2 onM2n+1. Here L is the Ricci operator associated with the (0, 2)-type
Ricci tensor Ric written by Ric(Z1, Z2) = g(LZ1, Z2) for all Z1, Z2 on M2n+1. In
akm the distributionD = ker(T ) is integrable and its integral submanifold is an almost
Kähler manifold. M2n+1 is called a Kenmotsu manifold if the integral submanifolds
of D are Kähler. Therefore, a 3-dimensional akm is Kenmotsu if and only if h = 0.

Generalizing the concept of κ-nullity distribution on almost contactmetricmanifold
M2n+1, Blair et al. [6] presented (κ, μ)-nullity distribution, which is given for each p
onM2n+1 and κ, μ ∈ R by

Np(κ, μ) = {Z3 ∈ TpM
2n+1|K (Z1, Z2)Z3 = κ(g(Z2, Z3)Z1

− g(Z1, Z3)Z2) + μ(g(Z2, Z3)hZ1 − g(Z1, Z3)hZ2)}.

Dileo and Pastore [12] classified akm obeying (κ, μ)-nullity condition and a modified
form of nullity condition, named (κ, μ)′-nullity condition. An akmM2n+1(F, ζ, T , g)
is called (κ, μ)′-akm if ζ belongs to the (κ, μ)′-nullity distribution, that is,

K (Z1, Z2)ζ = κ[T (Z2)Z1 − T (Z1)Z2] + μ[T (Z2)h
′Z1 − T (Z1)h

′Z2], (1.9)

for all Z1, Z2 onM2n+1 and κ, μ ∈ R. Moreover, if both κ andμ are smooth functions
in (1.9), thenM2n+1 is named a generalized (κ, μ)′-akm (see [12, 24, 32]). On (κ, μ)′-
akm, it was proved that κ ≤ −1 [12]. Moreover, if κ = −1, then h′ = 0. On
generalized (κ, μ)′-akm with h �= 0, the subsequent relations hold [24, Proposition
3.1]:

h2 = (1 + κ)F2, h′2 = (1 + κ)F2, (1.10)

Lζ = 2nκζ. (1.11)

Wang and Liu [32] showed that for (κ, μ)′-akm, the Ricci operator L of M2n+1 can
be written as

LZ1 = −2nZ1 + 2n(1 + κ)T (Z1)ζ − 2nh′Z1, (1.12)
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for any Z1 on M2n+1. Moreover, we have r = 2n(κ − 2n) and μ = −2.
Also, we recall the results obtained by Kanai [15].

Lemma 1.2 [15] Suppose that (M, g) is a complete Riemannianmanifold of dimension
n(≥ 2) and that k < 0. Then there is a non-trivial function f on M with a critical
point which satisfies

Hessf + kfg = 0

if and only if (M, g) is the simply connected complete Riemannian manifold
(Hn,−(1/k)g0) of constant curvature k, where g0 is the canonical metric on the
hyperbolic space of constant curvature −1.

Lemma 1.3 [15] Let (M, g) and k be as Lemma 1.2. Then there is a function f on M
without critical points which satisfies

Hessf + kfg = 0

if and only if (M, g) is thewarped product ( ˜M, g̃)ξ ×(R, g0) of a complete Riemannian
manifold ( ˜M, g̃) and the real line (R, g0) warped by a function ξ : R → R such that
ξ̈ + kξ = 0, ξ > 0, where g0 denotes the canonical metric on R; g0 = dt2.

2 KenmotsuManifolds Satisfying Einstein-Type Equations

Before proceeding to themain result, we construct an example of aKenmotsumanifold
admitting a non-trivial smooth function ψ which is the solution of the Eq. (1.1).

Example Let (N 2n, J , g0) be a Kähler manifold and (M2n+1, g) = (R ×σ̄ N , dt2 +
σ̄ 2g0) be the WP. If we set T = dt, ζ = ∂

∂t and the tensor field F is defined on
R×σ̄ N by FZ1 = J Z1 for any Z1 on N and FZ1 = 0 if Z1 is tangent to R, then the
WP R ×σ̄ N , σ̄ 2 = ce2t with the structure (F, ζ, T , g) is a Kenmotsu manifold [16].
Specifically, if we set N = CH

2n , then N is Einstein and the Ricci tensor of M2n+1

becomes Ric = −2ng. Further, we set a smooth function as ψ(t) = ket , k > 0.
Hence, it is very easy to verify that ψ(t) solves the Eq. (1.1) for σ = −(2n + 1)ket .

Definition 2.1 An almost contact metric manifold M2n+1 is said to be T -Einstein
manifold [29] if the Ricci tensor of M2n+1 satisfies

LZ = αZ + βT (Z)ζ,

for the vector field Z on M2n+1. Here, α and β are smooth functions on M2n+1.

Next, we establish the following:

Theorem 2.2 If (g, ψ) is a non-trivial solution of Eq. (1.1) in a Kenmotsu manifold
(M2n+1, F, ζ, T , g), then it is T -Einstein manifold, provided ζψ �= ψ . Moreover, if
M2n+1 is complete and the Reeb vector field leaves the scalar curvature invariant,
then we have
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1. Ifψ has a critical point which satisfies (1.1), then M is isometric to the hyperbolic
space H2n+1(1).

2. If ψ is without critical points which satisfies (1.1), then M is isometric to the
warped product ˜M ×γ R of a complete Riemannian manifold ˜M2n and the real
line R with warped function γ : R → R such that γ̈ − γ = 0, γ > 0.

Proof Executing the covariant derivative of (1.1) along Z2, we obtain

∇Z2∇Z1Dψ = (Z2ψ)LZ1 + ψ(∇Z2L)Z1 − (Z2σ)Z1. (2.1)

In consequence of (2.1), we get the curvature tensor as follows:

K (Z1, Z2)Dψ = (Z1ψ)LZ2 − (Z2ψ)LZ1 + ψ{(∇Z1L)Z2

− (∇Z2L)Z1} + (Z2σ)Z1 − (Z1σ)Z2, (2.2)

for any Z1, Z2 onM2n+1. Executing the covariant derivative of (1.8) and using (1.6),
we acquire

(∇Z1L)ζ = −LZ1 − 2nZ1. (2.3)

Now taking an inner product of (2.2) with ζ and inserting last expression along with
(1.8), we obtain

g(K (Z1, Z2)Dψ, ζ ) = 2n{(Z2ψ)T (Z1) − (Z1ψ)T (Z2)}
+ (Z2σ)T (Z1) − (Z1σ)T (Z2). (2.4)

Taking an inner product of (1.7) with Dψ and combining it with (2.4), we provide

(2n + 1){Dψ − (ζψ)ζ } + Dσ − (ζσ )ζ = 0. (2.5)

Contracting (2.2) infers

4nDσ − ψDr − 2r Dψ = 0. (2.6)

Taking trace of (2.3) and then using it in the inner product of (2.6) with ζ , we acquire

4n(ζσ ) + 2ψ(r + 2n(2n + 1)) − 2r(ζψ) = 0. (2.7)

Replacing Z2 by ζ in (2.2) and after that taking inner product with Z2, we have

g(K (Z1, ζ )Dψ, Z2) = −2n(Z1ψ)T (Z2) − (ζψ)Ric(Z1, Z2)

+ ψ{Ric(Z1, Z2) + 2ng(Z1, Z2)}
+ (ζσ )g(Z1, Z2) − (Z1σ)T (Z2). (2.8)
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As a consequence of taking inner product of (1.7) with Dψ and combining it with
(2.8), we get

g(Z1, (2n + 1)Dψ + Dσ)T (Z2) − (2nψ + ζψ + ζσ )g(Z1, Z2)

= (ψ − ζψ)Ric(Z1, Z2). (2.9)

Combining (2.6), (2.7) and (2.9) give

(ψ − ζψ)
{( r

2n
+ 1

)

Z1 −
( r

2n
+ 2n + 1

)

T (Z1)ζ
}

= (ψ − ζψ)LZ1, (2.10)

for any Z1 on M2n+1. Hence, M2n+1 is T -Einstein or, ζψ = ψ .
Let ζ leave the scalar curvature r invariant, that is, ζr = 0 implies r = −2n(2n+1).

In view of this, (2.10) gives LZ1 = −2nZ1. Utilizing the fact that r is constant in
(2.6), we get σ = −(2n + 1)ψ + k, where k indicates a constant. In consequence of
last equation and LZ1 = −2nZ1 in (1.1), we infer

∇Z1Dψ = (ψ − k)Z1.

By applying Kanai’s theorems [15], that is, Lemmas 1.2 and 1.3 we can conclude that
ifψ has a critical point which satisfies (1.1), thenM2n+1 is isometric to the hyperbolic
space H2n+1(1) or, if ψ is without critical points which satisfies (1.1), thenM2n+1 is
isometric to the warped product ˜M ×γ R of a complete Riemannian manifold ˜M2n

and the real line R with warped function γ : R → R such that γ̈ − γ = 0, γ > 0.
This completes the proof. ��
Remark 2.3 From (2.10), we see that either, M2n+1 is T -Einstein or, ψ − ζψ = 0.
Suppose ψ − ζψ = 0, then Kenmotsu maifold is locally isometric to the warped
product (−ε, ε) ×cet N , where N is a Kähler manifold of dimension 2n and (−ε, ε)

is an open interval [16]. Using the local parametrization: ζ = ∂
∂t (where t ∈ (−ε, ε))

we get

∂ψ

∂t
= ψ,

whose solution is ψ = cet , where c is a constant. Therefore, assuming ζψ �= ψ in
Theorem 2.2, implies M2n+1 is T -Einstein.

3 Almost KenmotsuManifolds Satisfying Einstein-Type Equation

Making use of Eq. (1.12) and the result by Dileo and Pastore [12, Theorem 4.2], we
can prove the subsequent:

Theorem 3.1 Let M2n+1(F, T , ζ, g) be a (κ, μ)′-akm with the condition h′ �= 0. If
(g, ψ) is a non-trivial solution of the Eq. (1.1), then M3 is locally isometric to the
Riemannian product H2(4) × R and M2n+1 is locally isometric to the WP
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H
n+1(α) ×ψ̄ R

n, B
n+1(α′) ×ψ̄ ′ Rn,

for n > 1. Here,Hn+1(α) andBn+1(α′) are the hyperbolic space of constant curvature
α = − 2

n − 1
n2

− 1 and space of constant curvature α′ = − 1
n2

+ 2
n − 1, respectively.

Also, ψ̄ = c1e(1− 1
n )t and ψ̄ ′ = c′

1e
(1− 1

n )t , where c1, c′
1 are positive constants.

Proof We first replace Z1 by ζ in (2.2), then take its inner product with ζ and utilizing
(1.12), infer that

g(K (ζ, Z2)Dψ, ζ ) = 2nκ{(ζψ)T (Z2) − (Z2ψ)} + (Z2σ) − (ζσ )T (Z2). (3.1)

Also, we replace Z1 by ζ in (1.9) and after that, taking inner product with Dψ gives

g(K (ζ, Z2)ζ, Dψ) = κ{(ζψ)T (Z2) − (Z2ψ)} − μh′(Z2ψ). (3.2)

Since the scalar curvature r = 2n(κ −2n) is constant, in view of Eq. (3.2) the Eq. (2.6)
becomes 4nDσ − 2r Dψ = 0. Combining (3.1) and (3.2) with the last expression, we
get

2n(κ + 1){(ζψ)ζ − Dψ} = μh′Dψ. (3.3)

Operating (3.3) by h′ and using (1.10) yield

−2n(κ + 1)h′Dψ = μ(κ + 1){−Dψ + (ζψ)ζ }.

Then combining the last equation with (3.3), we obtain

{μ2(κ + 1) + 4n2(κ + 1)2}F2Dψ = 0. (3.4)

Therefore, we have to discuss the following two cases: F2Dψ = 0 or, F2Dψ �= 0.

Case-I F2Dψ �= 0, then (3.4) givesκ = −1− μ2

4n2
. Sinceμ = −2,wegetκ = −1− 1

n2
.

By using Dileo and Pastore [12, Theorem 4.2] we can conclude that M3 is locally
isometric to the Riemannian productH2(4)×R andM2n+1 is locally isometric to the
WPs

H
n+1(α) ×ψ̄ R

n, B
n+1(α′) ×ψ̄ ′ Rn,

for n > 1.
Case-II F2Dψ = 0 implies Dψ = (ζψ)ζ . Taking the covariant derivative and using
(1.1) and (1.5), we get

ψLZ1 − σ Z1 = Z1(ζψ)ζ + (ζψ)(Z1 − T (Z1)ζ − FhZ1). (3.5)

Replacing Z1 by ζ in (3.5) gives ζ(ζψ) = 2nκψ −σ . In view of this in the contraction
of (3.5), we obtain ζψ = −2nψ − σ .

123



Einstein-Type Metrics on Almost Kenmotsu Manifolds Page 9 of 15 134

Comparing (3.5) with (1.12), then operating the obtained result by F gives (2nψ +
(ζψ))hZ1 = 0. Making use of ζψ = −2nψ − σ and the fact that h �= 0, we see
that σ = 0. In consequence, (2.6) becomes (κ − 2n)Dψ = 0. As κ < −1, we get
Dψ = 0, that is, ψ is constant, a contradiction. This completes the proof. ��

Let us consider a generalized (κ, μ)′-akm of dimension three with κ < −1. If
we assume that κ is invariant along ζ , then from Proposition 3.2 in [24] we have
ζ(κ) = −2(1+ κ)(μ + 2) which implies μ = −2. Moreover, from [28, Lemma 3.3],
we have h′(gradμ) = gradκ − ζ(κ)ζ which implies that κ is constant under our
assumption. Therefore M3 becomes a (κ,−2)′-akm. By applying Theorem 3.1, we
can conclude the following:

Corollary 3.2 LetM3(F, T , ζ, g) be a generalized (κ, μ)′-akm with κ < −1 which is
invariant along ζ . If (g, ψ) is a non-trivial solution of the Eq. (1.1) thenM3 is locally
isometric to the Riemannian product H2(4) × R.

Next, we investigate 3-dimensional akm admitting a non-trivial solution to the
Eq. (1.1). Suppose U1 is the open subset of a 3-dimensional akm M3 such that h �= 0
and U2, the open subset of M3 is defined by U2 = {p ∈ M3 : h = 0 in a neighbour-
hood of p}. Hence, U1 ∪ U2 is dense and open subset of M3 and there exists a local
orthonormal basis {e1 = e, e2 = Fe, e3 = ζ } of three smooth unit eigenvectors of h
for any point p ∈ U1 ∪ U2. On U1 we may set he1 = ϑe1 and he2 = −ϑe2, where ϑ

is a positive function.

Lemma 3.3 [10] On U1 we have

∇ζ ζ = 0, ∇ζ e = aHe, ∇ζ Fe = −ae,

∇eζ = e − ϑFe, ∇ee = −ζ − bHe, ∇eHe = ϑζ + be,

∇Feζ = −ϑe + Fe, ∇Fee = ϑζ + cHe, ∇FeFe = −ζ − ce,

where a, b, c are smooth functions.

From Lemma 3.3, the Poisson brackets for {e1 = e, e2 = Fe, e3 = ζ } are as
follows:

[e3, e1] = (a + ϑ)e2 − e1, [e1, e2] = be1 − ce2, [e2, e3] = (a − ϑ)e1 + e2.

(3.6)

Moreover, applying Lemma 3.3 in the subsequent Jacobi identity

[[ζ, e], Fe] + [[Fe, ζ ], e] + [[e, Fe], ζ ] = 0

gives that

e(ϑ) − e(a) − b − ζ(b) + c(ϑ − a) = 0, (3.7)

Fe(ϑ) + Fe(a) − c − ζ(c) + b(ϑ + a) = 0. (3.8)

In regard of Lemma 3.3 we also get the following lemma.
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Lemma 3.4 [10] The Ricci operator L with respect to the local basis {ζ, e, Fe} on U1
can be written as

Lζ = −2(ϑ2 + 1)ζ − (Fe(ϑ) + 2ϑb)e − (e(ϑ) + 2ϑc)Fe,

Le = −(Fe(ϑ) + 2ϑb)ζ − (A + 2ϑa)e + (ζ(ϑ) + 2ϑ)Fe,

LHe = −(e(ϑ) + 2ϑc)ζ + (ζ(ϑ) + 2ϑ)e − (A − 2ϑa)Fe,

(3.9)

where we set A = e(c) + b2 + c2 + Fe(b) + 2 for simplicity.

Before proceeding to the main result, we recollect few basic notion of harmonic
vector fields. Perrone [26] characterized the harmonicity of an akm. Let (Mn, g) be
a Riemannian manifold and (T 1M, gs) its unit tangent sphere bundle furnished with
the well-known standard Sasakian metric gs . If M is compact, then the energy E(V)

is defined as the energy of the corresponding map V from (M, g) into (T 1M, gs) by

E(V) = 1

2

∫

M
||dV ||2dvg = m

2
Vol(M, g) + 1

2

∫

M
||∇V||2dvg,

where E indicates the energy function and ∇ being the Levi–Civita connection of g.
A unit vector field V is named harmonic if it is a critical point for E defined on the set
of all unit vector fields �1(M), that is,

�̄V − ||∇V||2V = 0,

where �̄ indicates the rough Laplacian, that is, �̄V = −tr∇2V . The critical point
condition still specifies a harmonic vector field even thoughM is non-compact. AKen-
motsu 3-manifold’s Reeb vector field is always harmonic. Now,we give the subsequent
definition.

Definition 3.5 [31] An almost Kenmotsu 3-manifold with harmonic Reeb vector field
or equivalently, the Reeb vector field is an eigenvector of the Ricci operator, is called
almost Kenmotsu 3-H-manifold.

Now, we state and prove the following:

Theorem 3.6 LetM3(F, ζ, T , g) be an almost Kenmotsu 3-H-manifold equipped with
h′ �= 0. If (ψ, g) is a non-trivial solution of the Eq. (1.1)with smooth functionψ which
is constant along the Reeb vector field, then it is locally isometric to a non-unimodular
Lie group with a left invariant almost Kenmotsu structure.

Proof Under our hypothesis, from the first argument of Lemma 3.4, we obtain

e(ϑ) = −2ϑc, Fe(ϑ) = −ϑb. (3.10)

Taking the inner product of (1.1) with the vector filed Z2, the Eq. (1.1) can be rewritten
as:

g(∇Z1Dψ, Z2) = ψRic(Z1, Z2) − σ g(Z1, Z2), (3.11)
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for all Z1, Z2 on M3. Since a smooth function ψ is constant along the Reeb vector
field ζ , we can write

Dψ = ψ1e + ψ2Fe,

for smooth functions ψ1, ψ2 on M3.
Replacing Z1 and Z2 by ζ in (3.11), then making use of Lemmas 3.3 and 3.4 we

get

σ = −2ψ(ϑ2 + 1). (3.12)

Substituting Z1 = e and Z2 = ζ in (3.11) and using Lemmas 3.4, 3.3 yield

ϑψ2 − ψ1 = 0. (3.13)

Similarly, taking Z1 = Fe and Z2 = ζ in (3.11) gives

ϑψ1 − ψ2 = 0. (3.14)

Combining (3.13) and (3.14), we get (ϑ2 − 1)ψ1 = 0. If ψ1 = 0, then from (3.14)
we see that ψ2 = 0 which implies Dψ = 0, that is, ψ is constant, a contradiction.
Therefore, we must have ϑ2 = 1 which implies ϑ is constant. Since ϑ is a positive
function, we get ϑ = 1. Making use of the fact that ϑ = 1 in (3.10) gives b = c = 0.
Moreover, equation (3.13) implies ψ1 = ψ2.

Now consider the following open set:

O = {p ∈ U1 : ψ1 = ψ2 �= 0 in a neighborhood of p}

According to Poincare’s lemma d2ψ = 0, that is, the relation

g(∇Z1Dψ, Z2) = g(∇Z2Dψ, Z1) (3.15)

holds for any vector fields Z1, Z2 inM3. Letting Z1 = ζ and Z2 = e in (3.15) and by
using Lemma 3.3, we obtain

ζ(ψ1) = aψ2. (3.16)

Also, taking Z1 = ζ and Z2 = Fe in (3.15) gives ζ(ψ2) = −aψ1 and by combining
it with (3.16), we get 2aψ1 = 0, which further implies that a = 0 in O.

Making use of the fact that a = b = c = 0 and ϑ = 1 along with Lemma 3.3, we
obtain

[e, Fe] = 0, [Fe, ζ ] = Fe − e, [ζ, e] = Fe − e.

According to Milnor’s theorem [23], we can conclude that M3 is locally isometric to
a non-unimodular Lie group with a left invariant almost Kenmotsu structure, which
completes the proof. ��
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Applying Wang’s Theorems [31] and 3.6, we can now establish the following:

Corollary 3.7 LetM3(F, ζ, T , g) be an almost Kenmotsu 3-H-manifold. If (ψ, g) is a
non-trivial solution of the Eq. (1.1) with smooth function ψ which is constant along
the Reeb vector field, then either, it is locally isometric to the hyperbolic space H3(1)
or, the Riemannian product H2(4) × R.

Proof We shall establish the theorem via the subsequent cases:
Case i Let h = 0, then M3 is a Kenmotsu manifold. The Ricci operator of M3 is
written by (see [10])

L =
( r

2
+ 1

)

id −
( r

2
+ 3

)

T ⊗ ζ. (3.17)

Replacing Z1 by ζ in (1.1), then taking the inner product of it with ζ and using (1.8),
we get ζ(ζψ) = −2ψ + σ . If ζψ = 0, last equation becomes σ = 2ψ which further
implies ζσ = 0. In conclusion, for n = 1 Eq. (2.7) becomes r = −6, that is, scalar
curvature is constant, which together with (3.17) implies that L = −2id. ClearlyM3

is conformally flat.
Case ii h �= 0 on some open subset of M3. By the proof of Theorem 3.6, we see that
a = b = c = 0 and ϑ = 1. Using this in Lemma 3.4, we get

Lζ = −4ζ,

Le = 2Fe − 2e,

LHe = 2e − 2Fe.

Also, the scalar curvature is constant, that is, r = −8. Since r is constant and by the
last equations, it is easy to see thatM3 is conformally flat.

By applyingWang’s theorem [31, Theorem1.6], we conclude that either, it is locally
isometric to the hyperbolic spaceH3(1) or, the Riemannian productH2(4)×R, which
completes the proof. ��

Under the assumptions of Theorem 3.6, for non-Kenmotsu almost Kenmotsu 3-H-
manifold, ∇ζ h = 0. Also, it is known that a akm of dimension 3 is Kenmotsu if and
only if h vanishes (see [12]). In regard of Corollary 3.3 [31] and Corollary 3.7, we can
write:

Corollary 3.8 LetM3(F, ζ, T , g) be an almost Kenmotsu 3-H-manifold. If (ψ, g) is a
non-trivial solution of the Eq. (1.1) with smooth function ψ which is constant along
the Reeb vector field, then either, it is locally isometric to the WP R×cet N (κ) (N (κ):
space of constant curvature κ) or, the Riemannian product H2(4) × R.

Example In a strictly almost Kähler Einstein manifold (M, J , ḡ), we set T = dt ,
ζ = ∂

∂t and the tensor field F is defined on R ×ψ N by FZ1 = J Z1 for a vector
field Z1 on M and FZ1 = 0 if Z1 is tangent to R. Consider a metric g = g0 + σ̄ 2 ḡ,
where σ̄ 2 = ce2t , g0 indicates the Euclidean metric on R and c denotes a positive
constant. Then it is easy to verify that the WP R×σ̄ M, σ̄ 2 = ce2t , with the structure
(F, ζ, T , g) is an akm [12]. Since M is Einstein, we have S = −2ng. If we set a
smooth function ψ(x, t) = t2, then ψ solves the Eq. (1.1) for σ = −2nt2 − 2.
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Definition 3.9 A 3-dimensional akm is named a (κ, μ, ν)-akm if the Reeb vector field
obeys the (κ, μ, ν)-nullity condition, that is,

K (Z1, Z2)ζ = κ(T (Z2)Z1 − T (Z1)Z2) + μ(T (Z2)hZ1

− T (Z1)hZ2) + ν(T (Z2)h
′Z1 − T (Z1)h

′Z2),

for any Z1, Z2 and κ, μ and ν indicate smooth functions.

Example Let G3 be a non-unimodular Lie group admitting a left invariant local
orthonormal frame fields {v1, v2, v3} obeying (see [23]):

[v2, v3] = 0, [v1, v2] = αv2 + βv3, [v1, v3] = γ v2 + (2 − α)v3, (3.18)

where α, β, γ ∈ R. We define g on G by g(vi, vj) = δi j for 1 ≤ i, j ≤ 3. Take
ζ = −v1 and denote its dual 1-form by T . Also, we define a (1, 1) tensor field F by
F(ζ ) = 0, F(v2) = v3 and F(v3) = −v2. We can easily verify that (G, F, ζ, T , g)
admits a left invariant almost Kenmotsu structure. From [30, Theorem 3.2], we get
that G has a (κ, μ, ν)-almost Kenmotsu structure where

κ = −α2 + 2α − 1

4
(β + γ )2 − 2, μ = β − γ, ν = −2.

Moreover, from [30], we have

he2 = (α − 1)v3 − 1

2
(β + γ )v2, he3 = 1

2
(β + γ )v3 + (α − 1)v2. (3.19)

The Ricci operator is determined as follows (see [31]):

Lζ =
(

1

2
(β − γ )2 − α2 − β2 − (α − 2)2 − γ 2

)

ζ.

Clearly, taking α = β = γ = 1 in the above expressions shows that G is a non-
Kenmotsu (κ,−2)′-akm with κ = −2. In view of this, we get Lζ = −4ζ and the
scalar curvature as r = −8 (fromLemma 1.12).We define a functionψ = e−2t , t ≥ 0.
Then by Laplace transformation, we get �ψ = 1

s+2 , where s is a complex number. In
view of this in (1.2) gives σ = −8e−2t . Then it is easy to verify that ψ is a non-trivial
solution of Einstein-typemetrics (1.1). Moreover, using the result of Dileo and Pastore
[12, Theorem 4.2], we state that G is locally isometric toH2(4) ×R, the Riemannian
product. Hence, Theorem 3.1 is verified.

Next, we produce an example of almost Kenmotsu 3-H-manifold of dimension
three (for details see [31]).

Example Consider a cylindrical coordinates (r , θ, z) of R3. OnM3 which is a simply
connected domain ofR3 excluding the origin, we define an almost Kenmotsu structure
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as (see [5]):

ζ = 2

γ

∂

∂r
, T = γ

2
dr , g = γ 2

4
(dr2 + r2dθ2 + dz2),

F

(

∂

∂z

)

= 1

r

∂

∂θ
, F

(

∂

∂r

)

= 0, F

(

∂

∂θ

)

= −r
∂

∂z
,

where γ = 1
c1

√
r−r

,
√
r > c1 > 0 or

√
r < c1, c1 being a constant. If we set

e1 = 2
γ r

∂
∂θ

and e2 = Fe1 = − 2
γ

∂
∂z , then in [31] it is showed that ζ is an eigenvector

of the Ricci operator. Therefore M3 is an almost Kenmotsu 3-H-manifold.
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