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Abstract
In this paper, the well-known double inequality for the complete elliptic integral E(r)
of the second kind, which gives sharp approximations of E(r) by power means (or
Hölder means), is extended to the complete p-elliptic integral Ep(r) of the second
kind, and thus sharp approximations of Ep(r) by weighted power means are obtained.
This result confirmed the truth of Conjecture I by Barnard, Ricards and Tiedeman in
the case when a = b = 1/p ∈ (0, 1/2) and c = 1 and also provides a new method to
prove the above double inequality of E(r).

Keywords Gaussian hypergeometric function · Complete p-elliptic integral ·
Weighted power mean
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1 Introduction

For 1 < p < ∞ and x ∈ [0, 1], the generalized sine function sinp x is defined as the
inverse function of

arcsinp x :=
∫ x

0

dt

(1 − t p)
1
p

,

which can be extended to a function of half-period πp on (−∞,∞) as follows
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πp := 2 arcsinp 1 = 2
∫ 1

0

dt

(1 − t p)
1
p

= 2π

p sin(π/p)
= 2

p
B
( 1
p , 1 − 1

p

)
,

where

B(a, b) :=
∫ 1

0
ta−1(1 − t)b−1dt = �(a)�(b)

�(a + b)
(a, b > 0)

is the beta function and �(x) = ∫∞
0 t x−1e−tdt is the gamma function. Clearly, sinp =

sin and πp = π in the case when p = 2.
For r ∈ (0, 1), the well-known Legendre’s complete elliptic integrals of the first

and second kinds [1–4] are, respectively, defined by

⎧⎨
⎩
K (r) = ∫ π/2

0
dθ√

1−r2 sin2 θ
= ∫ 1

0
dt√

(1−t2)(1−r2t2)
,

K (0) = π/2, K (1−) = ∞

and

{
E(r) = ∫ π/2

0

√
1 − r2 sin2 θdθ = ∫ 1

0

√
1−r2t2

1−t2
dt,

E(0) = π/2, E(1−) = 1.

It is natural to try to apply generalized trigonometric functions to Legendre’s com-
plete elliptic integrals. In [5], Takeuchi introduced the complete p-elliptic integrals of
the first and second kind defined as

Kp(r) =
∫ πp/2

0

dθ

(1 − r p sinp
p θ)1−1/p

=
∫ 1

0

dt

(1 − t p)1/p(1 − r pt p)1−1/p

and

Ep(r) =
∫ πp/2

0
(1 − r p sinp

p θ)1/pdθ =
∫ 1

0

(
1 − r pt p

1 − t p

)1/p

dt (1.1)

for 1 < p < ∞ and r ∈ (0, 1), respectively, where Kp(0) = Ep(0) = πp/2,
Kp(1−) = ∞ and Ep(1−) = 1. It is clear that for p = 2, Kp and Ep reduce to K
and E , respectively. Moreover, the complete p-elliptic integrals have the following
expressions

Kp(r) = πp

2
F
(
1 − 1

p , 1
p ; 1; r p

)
, Ep(r) = πp

2
F
(
− 1

p , 1
p ; 1; r p

)
(1.2)
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(cf. [5, Proposition 2.8]), where F(a, b; c; x) is the Gaussian hypergeometric function
[6]

F(a, b; c; x) := 2F1(a, b; c; x) =
∞∑
n=0

(a)n(b)n
(c)nn! xn (|x | < 1) (1.3)

for complex parameters a, b, c with c �= 0,−1,−2, · · · , while (a)0 = 1 for a �= 0
and the Pochhammer symbol (a)n = a(a+1)(a+2) · · · (a+n−1) = �(n+a)/�(a)

for n ∈ N. The behavior of the hypergeometric function near x = 1 in the three cases
a + b < c, a + b = c and a + b > c, respectively, is given by

⎧⎪⎨
⎪⎩
F(a, b; c; 1) = �(c)�(c−a−b)

�(c−a)�(c−b) ,

B(a, b)F(a, b; c; x) + log(1 − x) = R(a, b) + O((1 − x) log(1 − x)),

F(a, b; c; x) = (1 − x)c−a−bF(c − a, c − b; c; x),
(1.4)

which can be found in the literature [6, Theorems 1.19 and 1.48], where

R(a, b) = −ψ(a) − ψ(b) − 2γ, ψ(x) = �′(x)/�(x)

and γ = lim
n→∞

(∑n
k=1

1
k − log n

) = 0.57721 · · · is the Euler–Mascheroni constant.

For more information on these and related functions, we refer the reader to [6–9] and,
for recently obtained related results, to [10–23] and the references contained therein.

The study of this paper begins with the following elegant inequality

π

2
Mα

(
1,
√
1 − r2

)
< E(r) <

π

2
Mβ

(
1,
√
1 − r2

)
(1.5)

for all r ∈ (0, 1) with the best possible constants α = 3/2 and β = (log 2)/ log π
2 ,

where Mq(x, y) is the q-th power mean of x and y defined by Mq(x, y) = [
(xq +

yq)/2
]1/q forq �= 0 andM0(x, y) = √

xy. Thefirst inequality in (1.5)was conjectured
by Vuorinen [24] and proved in 1997 by Qiu and Shen [25, Theorem 2] (see also
[26, Theorem 1.1] by different methods), while the second inequality in (1.5) was
established in 2000 by Qiu [27, Corollary (1)] (see also [28, Theorem 22]).

In light of inequality (1.5), the following questions are natural:

Question 1.1 (1) Can (1.5) be extended to the case of complete p-elliptic integral?
(2) Can we use Ms(x, y;w) to approximate to the complete p-elliptic integral of the

second kind, and if yes, what are the best possible constants s in the lower and
upper bounds? Here and hereafter,

Ms(x, y;w) =
{[

(1 − w)xs + wys
]1/s

, s �= 0,

x1−w yw, s = 0

is the w-weighted power mean of order s.
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The main purpose of this paper is to give the answer to Question 1.1 by proving
our following theorem.

Theorem 1.2 For p > 1 and s > 0, let

σ := σ(p) = p + 1

2
, τ := τ(p) = log( p

p−1 )

log πp
2

,

� := �(p) = 2

πp(1 − 1
p )1/σ

(1.6)

and η := �(2) − 1 = 25/3π − 1 ≈ 0.01057, and define the function Qs on (0, 1) by

Qs(x) = F(− 1
p , 1

p ; 1; x)
Ms
(
1, (1 − x)1/p; 1

p

) = F(− 1
p , 1

p ; 1; x)[
1 − 1

p + (1−x)s/p
p

]1/s

and f (x) ≡ Qσ (x), g(x) ≡ Qτ (x). Then we have the following conclusions:

(1) If p ≥ 2, then the function f is strictly increasing and convex from (0, 1) onto
(1, �). In particular, for p ≥ 2 and x, r ∈ (0, 1),

Mσ

(
1, (1 − x)1/p; 1

p

)
< F

(
− 1

p , 1
p ; 1; x

)

<
[
1 + (� − 1)x

]
Mσ

(
1, (1 − x)1/p; 1

p

)
, (1.7)

π

2
M3/2

(
1,
√
1 − r2

)
< E(r) <

π

2
(1 + ηr2)M3/2

(
1,
√
1 − r2

)
. (1.8)

Moreover, if 1 < p < 2, then f is neither increasing nor decreasing on (0, 1).
(2) For p ≥ 2, there exists a number x∗ ∈ (0, 1) such that g is strictly decreasing on

(0, x∗] and strictly increasing on [x∗, 1), with g(0) = g(1) = 1.
(3) If p ≥ 2, then the double inequality

Mα

(
1, (1 − x)1/p; 1

p

)
< F

(
− 1

p , 1
p ; 1; x

)
< Mβ

(
1, (1 − x)1/p; 1

p

)
(1.9)

holds for all x ∈ (0, 1) if and only if α ≤ σ and β ≥ τ , and the inequality

F
(
− 1

p , 1
p ; 1; x

)
<
[
1 + (� − 1)x

]
Ms

(
1, (1 − x)1/p; 1

p

)
(1.10)

holds for all x ∈ (0, 1) if and only if s ≥ σ .

Taking x = r p in Theorem 1.2 and letting r ′ = (1−r p)1/p, we immediately obtain
the following.

Corollary 1.3 For p ≥ 2, let σ and τ be as in Theorem 1.2. Then the double inequality

πp

2
Mα

(
1, r ′; 1

p

)
< Ep(r) <

πp

2
Mβ

(
1, r ′; 1

p

)
(1.11)
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holds for all r ∈ (0, 1) if and only if α ≤ σ and β ≥ τ , and the inequality

Ep(r) <
πp

2

[
1 + (� − 1)r p

]
Ms

(
1, r ′; 1

p

)
(1.12)

holds for all r ∈ (0, 1) if and only if s ≥ σ .

Observe that for p = 2, the double inequality (1.11) coincides with (1.5). The proof
of Theorem 1.2 given in Sect. 4 requires several properties of πp and the Riemann zeta
function ζ(z) = ∑∞

n=1
1
nz for (z) > 1 or the Bernoulli numbers Bn defined by the

power series expansion

z

ez − 1
=

∞∑
n=0

Bn
zn

n! = 1 − z

2
+

∞∑
k=1

B2k
z2k

(2k)! (|z| < 2π), (1.13)

which will be revealed in Sect. 2, and some properties of F(a, b; c; x) presented in
Sect. 3.

Throughout this paper, we denote the set of positive integers byN andN0 = N∪{0},
and keep in mind the definitions of σ, τ and � given in (1.6).

2 Some Properties of the Riemann Zeta Function and �p

In this section, we prove several lemmas, which present several properties of πp and
the Riemann zeta function needed in the proof of our main results stated in Sect. 1.

Let us recall the following well-known formulas listed in [29, 23.2.1, 23.2.16 &
4.3.70-4.3.71]

ζ(2n) = (−1)n+1 (2π)2n

2(2n)! B2n for n ∈ N, (2.1)

cot x = 1

x
−

∞∑
n=1

2ζ(2n)

π2n x2n−1 and
1

x2
log

x

sin x
=

∞∑
n=0

ζ(2n + 2)

(n + 1)π2n+2 x
2n (2.2)

for |x | < π . By (2.1) and [30, 23.1], the first few values of Riemann zeta function are

ζ(2) = π2

6
, ζ(4) = π4

90
, ζ(6) = π6

945
, ζ(8) = π8

9450
,

ζ(10) = π10

93555
. (2.3)

The following lemma is a useful tool for dealing with the monotonicity of the ratio
of power series. The first part of Lemma 2.2 is first established by Biernacki and Krzyz
[31], while the second part comes from Yang et al. [32, Theorem 2.1]. But we cite the
latest version of the second part [33, Lemma 2], where the authors have corrected a
bug in the previous version [32, Theorem 2.1].
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Lemma 2.1 ([33]). Suppose that the power series A(t) = ∑∞
n=0 ant

n and B(t) =∑∞
n=0 bnt

n have the radius of convergence r > 0 with bn > 0 for all n ∈ N0. Let
HA,B = (A′/B ′)B − A. Then the following statements hold true:

(i) If the non-constant sequence {an/bn}∞n=0 is increasing (decreasing) for all n ≥ 0,
then A(t)/B(t) is strictly increasing (decreasing) on (0, r);

(ii) If for certain m ∈ N, the sequences {ak/bk}0≤k≤m and {ak/bk}k≥m both are
non-constant, and they are increasing (decreasing) and decreasing (increasing),
respectively. Then A(t)/B(t) is strictly increasing (decreasing) on (0, r) if and
only if HA,B(r−) ≥ (≤)0. If HA,B(r−) < (>)0, then there exists t0 ∈ (0, r)
such that A(t)/B(t) is strictly increasing (decreasing) on (0, t0) and strictly
decreasing (increasing) on (t0, r).

By (2.1), the double inequality for the ratio |B2n+2|/|B2n| obtained in [34, Theorem
1.1] can derive the following lower and upper bounds of ζ(2n + 2)/ζ(2n).

Lemma 2.2 ([34, Theorem 1.1]). For n ∈ N, the double inequality holds

22n+1 − 4

22n+1 − 1
<

ζ(2n + 2)

ζ(2n)
<

22n+2 − 4

22n+2 − 1
. (2.4)

The following two lemmas present some properties of ζ(2n) for n ∈ N, and
properties of πp, respectively.

Lemma 2.3 For n ∈ N, let

an = 2n + 1

n + 1
ζ(2n + 2), bn = 2n + 1

6n + 1
an+1, cn = n + 1

6n + 7
ζ(2n + 4),

dn = (n + 2)(2n − 1)ζ(2n + 2) + n(2n + 3)ζ(2n + 4)

(n + 2)(3n − 1)
.

Then the following statements hold:

(1) The sequence {an} is strictly increasing for n ∈ Nwith a1 = π4/64 and lim
n→∞ an =

2;
(2) The sequence {bn} is strictly decreasing for 1 ≤ n ≤ 6 and strictly increasing for

n ≥ 6 with b1 = π6/1323 and lim
n→∞ bn = 2/3;

(3) The sequence {cn} is strictly increasing for n ∈ N with c1 = 2π6/12285 and
lim
n→∞ cn = 1/6;

(4) The sequence {dn} is strictly decreasing for 1 ≤ n ≤ 3 and strictly increasing for
n ≥ 3 with d1 = π4(1 + 10π2/63)/180 and lim

n→∞ dn = 4/3.

Proof Due to binomial expansion theorem, it can be easily established the following
inequality which will be often used in the proof of Lemma 2.3

4n = (1 + 3)n =
n∑

k=0

Ck
n3

k ≥ 1 + 3n + 9n(n − 1)

2
+ 27n(n − 1)(n − 2)

6

+ · · · , (2.5)
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for n ∈ N0, whereCk
n is a binomial coefficient. Clearly, the first item of each sequence

and the limits can be obtained from (2.1) and (2.4).

(1) By Lemma 2.2 and (2.5), we obtain

an+1

an
= (n + 1)(2n + 3)ζ(2n + 4)

(n + 2)(2n + 1)ζ(2n + 2)
>

(n + 1)(2n + 3)(22n+3 − 4)

(n + 2)(2n + 1)(22n+3 − 1)

= 8 · 4n − 6n2 − 15n − 10

(n + 2)(2n + 1)(22n+3 − 1)
+ 1

≥ 8[1 + 3n + 9n(n − 1)/2] − 6n2 − 15n − 10

(n + 2)(2n + 1)(22n+3 − 1)
+ 1

= 3(6 + n + 10n2)

(n + 2)(2n + 1)(22n+3 − 1)
+ 1 > 1,

which yields the monotonicity of {an}.
(2) Lemma 2.3(2) will be true if we can prove bn+1/bn < 1 for 1 ≤ n ≤ 5 and

bn+1/bn > 1 for n ≥ 6. By Lemma 2.2, we obtain

bn+1

bn
= (n + 2)(2n + 5)(6n + 1)ζ(2n + 6)

(n + 3)(2n + 1)(6n + 7)ζ(2n + 4)

<
(n + 2)(2n + 5)(6n + 1)(22n+6 − 4)

(n + 3)(2n + 1)(6n + 7)(22n+6 − 1)

= t1(n)

(n + 3)(2n + 1)(6n + 7)(22n+6 − 1)
+ 1 (2.6)

for 1 ≤ n ≤ 5 and

bn+1

bn
>

(n + 2)(2n + 5)(6n + 1)(22n+5 − 4)

(n + 3)(2n + 1)(6n + 7)(22n+5 − 1)

= t2(n)

(n + 3)(2n + 1)(6n + 7)(22n+5 − 1)
+ 1 (2.7)

for n ≥ 6, where t1(n) = 64(2n − 11)4n − 36n3 − 168n2 − 209n − 19 and
t2(n) = 32(2n − 11)4n − 36n3 − 168n2 − 209n − 19. Moreover, it can be easily
from (2.5) proved that

t1(n) ≤ 64(2n − 11)(1 + 3n) − 36n3 − 168n2 − 209n − 19

= −3[241 + (731 − 72n)n + 12n3] < 0 (1 ≤ n ≤ 5),

t2(n) ≥ 32(2n − 11)

[
1 + 3n + 9n(n − 1)

2
+ 27n(n − 1)(n − 2)

6

]

− 36n3 − 168n2 − 209n − 19

= 7111 + (n − 6)[1247 + 672n + 36n2(8n − 13)] > 0 (n ≥ 6).

This in conjunction with (2.6) and (2.7) gives the desired result of (2).
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(3) As in the proof of (1), by (2.4) and (2.5), the monotonicity of {cn} follows easily
from

cn+1

cn
= (n + 2)(6n + 7)ζ(2n + 6)

(n + 1)(6n + 13)ζ(2n + 4)
>

(n + 2)(6n + 7)(22n+5 − 4)

(n + 1)(6n + 13)(22n+5 − 1)

= 32 · 4n − 18n2 − 57n − 43

(n + 1)(6n + 13)(22n+5 − 1)
+ 1

>
32[1 + 3n + 9n(n − 1)/2] − 18n2 − 57n − 43

(n + 1)(6n + 13)(22n+5 − 1)
+ 1

= 126n2 + 183n − 11

(n + 1)(6n + 13)(22n+5 − 1)
+ 1 > 1 (n ≥ 1).

(4) Numerical experiment results show

d1 = π4(63 + 10π2)

11340
≈ 1.38895 > d2 = π6(60 + 7π2)

94500
≈ 1.31326

> d3 = π8(55 + 6π2)

831600
≈ 1.30322

< d4 = π10(143325 + 15202π2)

21070924875
≈ 1.30383. (2.8)

Moreover, it can be proved from Lemma 2.2 that

dn+1

dn
= (n + 2)(3n − 1)[(2n2 + 7n + 3) + (2n2 + 7n + 5)ζ(2n + 6)/ζ(2n + 4)]

(n + 3)(3n + 2)[n(2n + 3) + (2n2 + 3n − 2)ζ(2n + 2)/ζ(2n + 4)]
>

p4(n)22n+3 + 90n4 + 465n3 + 677n2 + 112n − 172

(n + 3)(3n + 2)(22n+5 − 1)[22n+4(2n2 + 3n − 1) − (10n2 + 15n − 2)] + 1,

(2.9)

where t3(n) = 64(n + 1)(n − 2)4n − 90n4 − 465n3 − 640n2 + 49n + 242.

Therefore, the desired result of (4) can be derived from (2.8) and (2.9) together
with

t3(n) > 64(n + 1)(n + 2)

[
1 + 3n + 9n(n − 1)

2
+ 27n(n − 1)(n − 2)

6

]

− 90n4 − 465n3 − 640n2 + 49n + 242.

= 3
[
16466 + (n − 4)(96n4 + 66n3 + 269n2 + 1108n + 4107)

]

> 0 (n ≥ 4).

��
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Lemma 2.4 Let a = 3
π2 ≈ 0.30396, b = log 2

log π
2

− 12
π2 ≈ 0.31907 and

ϕ(x) =
(
2a

x
+ b

)
log

πx

sin(πx)
− log

1

1 − x
,

φ(x) = log
1

1 − x
− a

(
1 + 2

x

)
log

πx

sin(πx)

for x ∈ (0, 1
2 ]. Then we have the following statements:

(i) There exists a number x1 ∈ (0, 1
2 ) such that the function ϕ(x) is strictly increas-

ing on (0, x1] and strictly decreasing on [x1, 1
2 ] with ϕ(0+) = ϕ( 12 ) = 0.

Moreover, the function ϕ1(x) = ϕ(x)/x2 is strictly decreasing from (0, 1
2 ] onto

[0, (b − a)/2a) and the function ϕ2(x) = ϕ(x)/(1 − 4x2) is strictly increasing
from (0, 1

2 ] onto
(
0, 1−b

2 − 2a(1 − log π
2 )
]
.

(ii) The function φ1(x) = φ(x)/x3 is strictly increasing from (0, 1
2 ] onto( 1

3 − 1
10a , 8(b − a) log π

2

]
.

In particular, for p ∈ [2,∞), we have

76σ

75
≤ 3p

5
+ 8

25
< 2ap + a + 1

p3

(
1

3
− 1

10a

)
< τ

≤ 2ap + b <
76p

125
+ 8

25
≤ 96p

125
(2.10)

with the equality in each instance if and only p = 2. Moreover, the constants a and
b, and the coefficient 2a in the the second and third inequalities in (2.10) are all best
possible.

Proof (i) Clearly, ϕ(0+) = ϕ( 12 ) = 0. By differentiation and (2.2), we obtain

ϕ3(x) : = ϕ′(x)
x

= 1

x

{(
2a

x
+ b

)[
1

x
− π cot(πx)

]
− 2a

x2
log

πx

sin(πx)
− 1

1 − x

}

=
∞∑
n=0

[
2bζ(2n + 2) − 1

]
x2n +

∞∑
n=0

(2aan+1 − 1)x2n+1 (2.11)

and

ϕ′
3(x) = 1

x2

{
6a

x2
log

πx

sin(πx)
− 2

(
4a

x
+ b

)[
1

x
− π cot(πx)

]

+π

(
2a

x
+ b

)
2πx − sin(2π)

2 sin2(πx)
+ 1 − 2x

(1 − x)2

}

= π2

10
− 1 +

∞∑
n=0

(2n + 3)(2aan+2 − 1)x2n+2

123
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+ 2
∞∑
n=0

(n + 1)
[
2bζ(2n + 4) − 1

]
x2n+1 (2.12)

with

ϕ3(0
+) = bπ2

3
− 1 ≈ 0.04971 and

ϕ3(
1
2 ) = 4

[
b − 1 − 4a(log π

2 − 1)
] ≈ −0.05652, (2.13)

where an is given as in Lemma 2.3. It follows from Lemma 2.3(1) that

2aan+2 − 1 ≥ 2aa2 − 1 = 2π4

189
− 1 ≈ 0.030784 > 0 (2.14)

for n ∈ N0. Hence by (2.12) and (2.14),

ϕ′
3(x) ≤ π2

10
− 1 + 1

2

∞∑
n=0

(2n + 3)(2aan+2 − 1)x2n+1

+ 2
∞∑
n=0

(n + 1)
[
2bζ(2n + 4) − 1

]
x2n+1

= π2

10
− 1 +

4∑
n=0

(6n + 7)
(
abn+1 + 4bcn − 1

2

)
x2n+1

+
∞∑
n=5

(6n + 7)
(
abn+1 + 4bcn − 1

2

)
x2n+1

for x ∈ (0, 1
2 ], where bn and cn are given as in Lemma 2.3. According to this with

Lemma 2.3 (2)–(3), it follows that

ϕ′
3(x) <

π2

10
− 1 + (ab1 + 4bc4 − 1

2

) 4∑
n=0

(6n + 7)x2n+1

+
[
2(a+b)

3 − 1
2

] ∞∑
n=5

(6n + 7)x2n+1 < 0,

since ab1 + 4bc4 − 1
2 ≈ −0.07321 < 0 and 2(a+b)

3 − 1
2 ≈ −0.08464 < 0. This

implies that ϕ3(x) is strictly decreasing on (0, 1
2 ]. Hence the result for ϕ follows from

(2.11) and (2.13).
Furthermore, since

ϕ′(x)
(x2)′

= ϕ3(x)

2
and

ϕ′(x)
(1 − 4x2)′

= −ϕ3(x)

8
,
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the desired results for ϕ1 and ϕ2 follow from the monotonicity of ϕ3 together with the
L’Hôpital Monotone Rule [6, Theorem1.25].
(i i) Differentiation gives

φ2(x) := 3
φ′(x)
(x3)′

= 1

x2

{
1

1 − x
+ 2a

x2
log

πx

sin(πx)
− a

(
2

x
+ 1

)[
1

x
− π cot(πx)

]}

=
∞∑
n=0

[1 − 2aζ(2n + 4)] x2n+1 −
∞∑
n=0

(2aan+1 − 1)x2n (2.15)

and

φ′
2(x) = 1

x3

{
a

(
10

x
+ 3

)[
1

x
− π cot(πx)

]
− 8a

x2
log

πx

sin(πx)

−πa

(
2

x
+ 1

)
2πx − sin(2π)

2 sin2(πx)
− 2 − 3x

(1 − x)2

}

=
∞∑
n=0

(2n + 1)
[
1 − 2aζ(2n + 4)

]
x2n − 2

∞∑
n=0

(n + 1)(2aan+2 − 1)x2n+1.

(2.16)

It follows from (2.14) and (2.16) that

φ′
2(x) ≥

∞∑
n=0

(2n + 1)
[
1 − 2aζ(2n + 4)

]
x2n −

∞∑
n=0

(n + 1)(2aan+2 − 1)x2n

=
∞∑
n=0

(3n + 2)(1 − 2adn+1)x
2n, (2.17)

where dn is given in Lemma 2.3.
By Lemma 2.3(4), we obtain

1 − 2adn+1 ≥ min
{
1 − 2ad1, 1 − 2ad∞

} = 1 − π2

30
− π4

189
≈ 0.15562 > 0

for n ∈ N0. This in conjunction with (2.17) implies φ2 is strictly increasing on (0, 1
2 ].

Hence the monotonicity of φ1 follows from (2.15) and the L’Hôpital Monotone Rule
[6, Theorem1.25].

To this end, by substituting x = 1
p , the second and third inequalities in (2.10) can

be derived immediately from Lemma 2.4(i) and (i i). The first inequality of (2.10) can
be obtained from

l(p) = 2ap + a + 1

p3

(
1

3
− 1

10a

)
−
(
3p

5
+ 8

25

)
,

l(2) = 15

π2 − π2

240
− 887

600
≈ 0.00036107,
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l ′(p) =
(

1

π2 − 1

10

)(
6 − π2

p4

)
≥
(

1

π2 − 1

10

)(
6 − π2

24

)
≈ 0.00711213.

The last inequality is clear by numerical results. ��

3 Some Properties of the Gaussian Hypergeometric Functions

Wewill show, in this section, some properties of theGaussian hypergeometric function
F(a, b; c; x), which are also needed in the proof of Theorem 1.2. The technique tool
is to give a recurrence relation of maclaurin’s coefficients for the product of power
function and hypergeometric function, which has been proved by Yang in [35] that the
coefficients of the function x �→ (1 − θx)pF(a, b; c; x) satisfy a 3-order recurrence
relation for θ ∈ [−1, 1], and in particular they satisfy a 2-order recurrence relation for
θ = 1.

As a special case of [35, Corollary 2], we state it in the following lemma.

Lemma 3.1 For p ∈ (1,∞) and s ∈ (0,∞), defined the function fs on (0, 1) by

fs(x) = (1 − x)−
s
p F
(
1 − 1

p , 1 + 1
p ; 2; x) =

∞∑
n=0

unx
n .

Then u0 = 1, u1 = (2ps + p2 − 1)/(2p2) and for n ∈ N, the coefficients un satisfy
the recurrence relation

un+1 = αnun − βnun−1, (3.1)

where

αn = 2n2 + (3 + 2s/p)n + 2s/p + 1 − 1/p2

(n + 1)(n + 2)
, βn = (n + s/p)2 − 1/p2

(n + 1)(n + 2)
.

Moreover, we have un > 0 for all n ≥ 0.

Lemma 3.2 For p ∈ [2,∞) and s ∈ (0,∞), let un be defined as in Lemma 3.1 and

vn = (2 − 1
p )n(1 + 1

p )n

(2)nn! .

Then we have the following conclusions:

(i) If s = σ , then u0/v0 = u1/v1 and the sequence {un/vn} is strictly decreasing
for n ∈ N.

(ii) If s = τ , then for each p ∈ [2,∞), there exists an integer n0 = n0(p) ∈
{2, 3, 4, 5, 6} such that the sequence {un/vn} is increasing for 0 ≤ n ≤ n0 and
decreasing for n ≥ n0.
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Proof In order to obtain the monotonicity of {un/vn}, it suffices to consider the sign
of

Dn = Dn(s) = un+1 − vn+1

vn
un = un+1

− (n + 2 − 1/p)(n + 1 + 1/p)

(n + 1)(n + 2)
un, (3.2)

due to vn > 0 for n ∈ N0.
By (3.1) and (3.2), Dn can be written as

Dn = αnun − βnun−1 − vn+1

vn
un = α̃nun − βnun−1, (3.3)

where

α̃n = αn − vn+1

vn
= pn2 + 2(1 + n)s − (p + 1)

p(n + 1)(n + 2)
.

Let us first analyze the sign of

�n(s) = α̃n+1(αn − α̃n) − βn+1 = − �̃n(s)

p3(n + 1)(n + 2)2(n + 3)
, (3.4)

where

�̃n(s) = (1 + p + np)
[
p2(n + 2) − 1

]
− 2(n + 2)

[
p − 1 + p2(n + 1)

]
s

+p(n + 1)(n + 2)s2

can be regarded as a quadratic function of s.More precisely, �̃n(s) is a upward opening
parabola satisfyingwith �̃n(0) = (1+ p+np)

[
p2(n + 2) − 1

]
> 0 and its symmetric

axis x = 2(n+2)
[
p−1+p2(n+1)

]
2p(n+1)(n+2) = p + p−1

p(n+1) > p for n ≥ 0, which makes easily for

us to know �̃n(s) is strictly decreasing for s ∈ (0, p).
Taking s = σ into (3.4), we obtain

�n(σ ) = − (p − 1) [p(p − 1)n + 2(p + 1)(p − 2)]

4p3(n + 2)2(n + 3)
< 0 (3.5)

for n ≥ 1. On the other hand, for n ≥ 1, inequality (2.10) and the monotonicity of
s �→ �̃n(s) on (0, p) lead to the following estimation

�̃n(τ ) > �̃n

(
76p

125
+ 8

25

)
= 7

25
+ 223p

625
− 2918p2

3125
+ 4802p3

15625
+ p(49p − 40)2

15625
n2

+ n

15625

[
3(p − 2)2(2401p + 4559) + 24071(p − 2) + 3434

]
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≥ 7

25
+ 223p

625
− 2918p2

3125
+ 4802p3

15625
+ p(49p − 40)2

15625

+ 1

15625

[
3(p − 2)2(2401p + 4559) + 24071(p − 2) + 3434

]

= 1

15625

[
3(p − 2)2(4802p + 7993) + 43642(p − 2) + 5743

]
> 0,

which in conjunction with (3.4) implies

�n(τ ) < 0 for n ∈ N. (3.6)

Based on the above preparation, we are now in a position to study the monotonicity
of un/vn by investigating the sign of Dn .
(i) In the case of s = σ , it can be obtained from Lemma 3.1 and (3.2) that

⎧⎨
⎩
D0 = 0, D1 = − (p2−1)(p−2)

24p3
≤ 0,

D2 = − (p2−1)[6+(p−2)(1+5p+12p2)]
288p5

< 0.
(3.7)

Assume that Dn < 0 for n ≥ 2, that is, by (3.3),

α̃nun < βnun−1. (3.8)

We now show Dn+1 < 0 for n ≥ 2.
Clearly, α̃n > 0 and βn > 0. If α̃n+1αn − βn+1 ≤ 0, then it follows easily from

(3.1) that

Dn+1 = α̃n+1un+1 − βn+1un = α̃n+1(αnun − βnun−1) − βn+1un
= (α̃n+1αn − βn+1)un − α̃n+1βnun−1 < 0.

If α̃n+1αn − βn+1 > 0, then by (3.5) and the assumption (3.8), we obtain

Dn+1 = (α̃n+1αn − βn+1)un − α̃n+1βnun−1

< (α̃n+1αn − βn+1)
βn

α̃n
un−1 − α̃n+1βnun−1

= βn

α̃n

[
α̃n+1(αn − α̃n) − βn+1

]
un−1 = �n(σ )βnun−1

α̃n
< 0.

Hence by mathematical induction, Dn < 0 for all n ≥ 2 and we conclude by (3.7)
that Dn ≤ 0 for n ∈ N0, with equality if and only if n = 0 or (n = 1 and p = 2). This
completes the proof of (i).
(i i) In the case of s = τ , we will divide into three cases to complete the proof.

Case 1: n = 0, 1. From (2.10) and Lemma 2.3 we clearly see that

D0 = τ − σ

p
> 0,
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D1(τ ) = 2τ(3pτ − p − 2) − (p2 − 1)(2p + 1)

12p3
> D1

(
3p

5
+ 8

25

)

= 353 + (p − 2)(100p2 + 265p + 264)

7500p3
> 0.

Case 2: n = 2, 3, 4. In this case, we will prove that Dn > 0 if Dn+1 ≥ 0.
If Dn+1 ≥ 0, then it follows from (3.1) and (3.3) that (α̃n+1αn −βn+1)un ≥
α̃n+1βnun−1, so that α̃n+1αn − βn+1 > 0. Combining this with (3.3) and
(3.6), we obtain

Dn = α̃nun − βnun−1 ≥ α̃n · α̃n+1βnun−1

α̃n+1αn − βn+1
− βnun−1 = − �n(τ )βnun−1

α̃n+1αn − βn+1
> 0.

In conclusion, it can be easily seen that for 2 ≤ n ≤ 5, only the following
possible signs of Dn can be happened:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D5 ≥ 0 ⇒ D4 > 0, D3 > 0, D2 > 0,

D5 < 0 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D4 ≥ 0 ⇒ D3 > 0, D2 > 0,

D4 < 0 ⇒

⎧⎪⎨
⎪⎩
D3 ≥ 0 ⇒ D2 > 0,

D3 < 0 ⇒
{
D2 ≥ 0,

D2 < 0.

Case 3: n ≥ 6. In this case, we shall show Dn < 0 for n ≥ 6 by mathematical
induction.
By Lemma 3.1 and (3.2), D6(τ ) can be written explicitly as

D6(τ ) = − 1

203212800p13

7∑
k=0

Ck(p)τ
k, (3.9)

where

C0(p) = (7p + 1)
6∏

k=1

(k2 p2 − 1),

C1(p) = 14p3(p − 2)
(
751680p8 + 1684800p7 + 2865600p6 + 5548752p5

+ 11144348p4 + 22337716p3 + 44684772p2 + 89364525p

+ 178727517
)+ 14

(
357455244p3 + 70p2 − 3p − 1

)
,

C2(p) = −42p
[
50400p10 − 83520p9 − 266648p8 + 61500p7 + 116160p6

− 11595p5 − 15649p4 + 750p3 + 790p2 − 15p − 13
]
,

C3(p) = −840p2
[
9 + 5p − 400p2 − 160p3 + 5297p4 + 116853p5

+ 28p5(p − 2)(762p2 + 1434p + 2063)
]
,
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C4(p) = −4200p3(3360p6 − 150p5 − 2216p4 + 51p3 + 313p2 − 3p − 11),

C5(p) = −5040p4(924p4 − 18p3 − 374p2 + 3p + 25)

C6(p) = −5040p5(140p2 − p − 27), C7(p) = −40320p6.

Clearly, C1(p) > 0 and Ck(p) < 0 (3 ≤ k ≤ 7) for p ≥ 2. Since

[
C2(p)x

2 + C3(p)x
3
]′ = x

[
2C2(p) + 3C3(p)x

]
≤ 2x

[
C2(p) + C3(p)

]

= −2x
[
p3(p − 2)

(
50400p6 + 444000p5 + 570952p4

+ 752604p3 + 1647868p2 + 3390081p + 6761313
)

+ 13515376p3 + 890p2 + 165p − 13
]

< 0,

the function x �→ C2(p)x2 + C3(p)x3 is strictly decreasing on [ 23 ,∞).
Hence by (2.10),

7∑
k=0

Ck(p)τ
k = C0(p) + C1(p)τ + C2(p)τ

2 + C3(p)τ
3 +

7∑
k=4

Ck(p)τ
k

> C0(p) + C1(p)

(
3p

5
+ 8

25

)
+

7∑
k=2

Ck(p)

(
76p

125
+ 8

25

)k

= 95588549454428739236367 + (p − 2)
[
θ1(p) + 48p8(p − 2)θ2(p)

]
95367431640625

> 0, (3.10)

where

θ1(p) = 47794274893153700672871 + 23897135488187568109873p

+ 11948556936797031125249p2 + 5974427435759965757937p3

+ 2987550877507058074281p4 + 1489664993280209701203p5

+ 737767438296634655289p6 + 416386484287891444832p7

+ 3326960318887724226640p8,

θ2(p) = 31651285140980996919 + 16430140617613083499p

+ 11955793840667518488p2 + 5523472440264886632p3.

Hence D6(τ ) < 0 follows from (3.9) and (3.10).
Next, we assume that Dn < 0 for n ≥ 6. In other words, the inequality (3.8)
is valid again. If α̃n+1αn − βn+1 ≤ 0, then Dn+1 = (α̃n+1αn − βn+1)un −
α̃n+1βnun−1 < 0. If α̃n+1αn − βn+1 > 0, then it follows from (3.6) and
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(3.8) that

Dn+1 < (α̃n+1αn − βn+1)
βn

α̃n
un−1 − α̃n+1βnun−1

= βn

α̃n

[
α̃n+1(αn − α̃n) − βn+1

]
un−1 = �n(τ )βnun−1

α̃n
< 0.

Hence by mathematical induction, Dn < 0 for all n ≥ 6.

By the discussion in Cases 1-3, we conclude that for each p ∈ [2,∞), there exists
an integer n0 = n0(p) ∈ {2, 3, 4, 5, 6} such that the sequence {un/vn} is increasing
for 0 ≤ n ≤ n0 and decreasing for n ≥ n0. ��
Proposition 3.3 For p ≥ 2, let fs(x) be defined as in Lemma 3.1 and

h(x) = F
(
2 − 1

p , 1 + 1
p ; 2; x

)
.

Then the following statements are true:

(i) The function �1(x) = fσ (x)/h(x) is strictly decreasing from (0, 1) onto (0, 1)
if and only if p ≥ 2;

(ii) There exists x0 ∈ (0, 1) such that �2(x) = fτ (x)/h(x) is strictly increasing on
(0, x0) and strictly decreasing on (x0, 1) with �2(0) = 1 and �2(1−) = 0.

Proof (i) In terms of power series, we can rewrite as

�1(x) = (1 − x)−
σ
p F
(
1 − 1

p , 1 + 1
p ; 2, ; x)

F
(
2 − 1

p , 1 + 1
p ; 2; x) =

∑∞
n=0 unx

n∑∞
n=0 vnxn

,

where un and vn are given as in Lemmas 3.1 and 3.2, respectively.
Clearly, by (1.4), �1(0) = u0/v0 = 1 and �1(1−) = 0. Hence for p ∈ [2,∞), it

can be easily seen from Lemma 2.1 and Lemma 3.2(i) that �1 is strictly decreasing
from (0, 1) onto itself.

Conversely, the necessary condition of Proposition 3.3(i) requires us to satisfy

lim
x→0−

�′
1(x)

x
= lim

x→0−
f ′
σ (x)h(x) − fσ (x)h′(x)

xh2(x)

= lim
x→0−

1

x

∞∑
n=0

[ ∞∑
k=0

(k + 1)(uk+1vn−k − un−kvk+1)

]
xn

= lim
x→0−

[
2(u2 − v2) + o(x)

] = 2(u2 − v2) = − (p2 − 1)(p − 2)

12p3
≤ 0,

since u1 = v1 for s = σ . This yields p ≥ 2 and completes the proof of (i).
(i i) For s = τ , it can be computed from (1.4) and τ < p that

H fτ ,h(1
−) = lim

x→1−

(
f ′
τ

h′ h − fτ

)
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= lim
x→1−

{
(1 − x)−τ/p

[
(p2 − 1)F̂1(x) + 2pτ F0(x)

]
F1(x)

(p + 1)(2p − 1)F2(x)

−(1 − x)−τ/pF0(x)
}

= lim
x→1−(1 − x)−τ/p

[
p2 − 1

2p2
F̂1(x) −

(
1 − τ

p

)
F0(x)

]
= −∞,

(3.11)

where

F0(x) = F
(
1 − 1

p , 1 + 1
p ; 2; x

)
, F1(x) = F

(
1 − 1

p , 1
p ; 2; x

)
,

F̂1(x) = F
(
1 − 1

p , 1 + 1
p ; 3; x

)
, F2(x) = F

(
1 − 1

p , 1
p ; 3; x

)
.

Hence the piecewise monotonicity of �2(x) follows from Lemma 2.1, Lemma 3.2(2)
and (3.11). The limiting values of �2 are clear. ��

4 Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 stated in Sect. 1.

Proof of Theorem 1.2 Let fs be defined as in Lemma 3.1, and h,�1,�2 be given as in
Proposition 3.3. By differentiation,

Q′
s(x) = (1 − x)s/pqs(x)

p2
[
1 − 1

p + 1
p (1 − x)s/p

]1+1/s , (4.1)

where

qs(x) = F
(− 1

p , 1
p ; 1; x)

1 − x
−
[(

1 − 1

p

)
(1 − x)−s/p + 1

p

]
F

(
1 − 1

p
, 1 + 1

p
; 2; x

)
.

By (1.4), it can be easily seen that

F
(
− 1

p , 1
p ; 1; x

)

1 − x
− 1

p
F

(
1 − 1

p
, 1 + 1

p
; 2; x

)

= F

(
1 − 1

p
, 1 + 1

p
; 1; x

)
− 1

p
F

(
1 − 1

p
, 1 + 1

p
; 2; x

)

=
∞∑
n=0

(1 − 1
p )n(1 + 1

p )n

(n!)2 xn −
∞∑
n=0

(1 − 1
p )n(1 + 1

p )n

p(2)nn! xn

=
∞∑
n=0

(1 − 1
p )n(n + 1 − 1

p )(1 + 1
p )n

n!(2)n xn
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=
∞∑
n=0

(1 − 1
p )(2 − 1

p )n(1 + 1
p )n

n!(2)n xn =
(
1 − 1

p

)
h(x).

According to this, we can simplify qs(x) as follows

qs(x) =
(
1 − 1

p

)[
h(x) − (1 − x)−s/pF

(
1 − 1

p
, 1 + 1

p
; 2; x

)]

=
(
1 − 1

p

)
fs(x)

[
h(x)

fs(x)
− 1

]
. (4.2)

(1) For s = σ , it follows from (4.1) and (4.2) that

f ′(x) = (1 − 1
p )

p2
[
1 − 1

p + 1
p (1 − x)σ/p

]1+1/σ

·F
(
1 − 1

p
, 1 + 1

p
; 2; x

)
·
[

1

�1(x)
− 1

]
,

which is a product of three positive and strictly increasing functions on (0, 1) by
Proposition 3.3. Hence the monotonicity and convexity of f follow.

In particular, by the L’Hôpital Monotone Rule [6, Theorem1.25], the convexity of
f shows

f (x) − f (0)

x
= f (x) − 1

x

is strictly increasing on (0, 1). So we obtain

f (x) − 1

x
< lim

x→1−

[
f (x) − 1

x

]
= 2

πp(1 − 1
p )1/σ

= �

for x ∈ (0, 1). This together with f (x) > 1 gives the inequality (1.7).
(2) Similarly, for s = τ , the piecewise monotonicity property of g follows from (4.1),

(4.2) and Proposition 3.3(i i).

Clearly, g(0) = 1. By the definition of τ , it can be easily verified that

g(1−) = 2

πp(1 − 1
p )1/τ

= 1.

123



126 Page 20 of 23 T. Zhao

(3) If α ≤ σ and β ≥ τ , then the double inequality (1.8) holds by parts (1) and (2).
Conversely, the necessary conditions of Theorem 1.2(3) require us to satisfy

lim
x→0+

F
(
− 1

p , 1
p ; 1; x

)
−
[
1 − 1

p + (1−x)α/p

p

]α
x2

≥ 0 (4.3)

and

lim
x→1−

{
F

(
− 1

p
,
1

p
; 1; x

)
−
[
1 − 1

p
+ (1 − x)β/p

p

]β
}

≤ 0. (4.4)

By Taylor’s series expansion, we obtain

F

(
− 1

p
,
1

p
; 1; x

)
= 1 − x

p2
− (p2 − 1)x2

4p4
+ o(x2),

[
1 − 1

p
+ (1 − x)α/p

p

]α

= 1 − x

p2
− (p − 1)(p + 1 − α)x2

2p4
+ o(x2),

which yields

lim
x→0+

F
(
− 1

p , 1
p ; 1; x

)
−
[
1 − 1

p + (1−x)α/p

p

]α
x2

= lim
x→0+

1

x2

[
(p − 1)(p + 1 − 2α)x2

4p4
+ o(x2)

]
= (p − 1)(p + 1 − 2α)

4p4
.

Combining this with (4.3) gives α ≤ (p + 1)/2 = σ . On the other hand, it can be
easily seen from (1.4) that

lim
x→1−

{
F

(
− 1

p
,
1

p
; 1; x

)
−
[
1 − 1

p
+ (1 − x)β/p

p

]β
}

= 2

πp
−
(
p − 1

p

)1/β

.

Hence by (4.4) yields

β ≥
[
log
(

p
p−1

)]
/ log(πp/2) = τ.

This completes the proof of Theorem 1.2. ��

5 Concluding Remark

(1) In the study of the hypergeometric mean [F(−a, b; c; x)]1/a with c ≥ b > 0,
Richards proved in [36, Theorem 1] that the inequality

[F(−a, b; c; x)]1/a >
[(
1 − b

c

)+ b
c (1 − x)λ

]1/λ
(5.1)
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holds for all x ∈ (0, 1) if and only if λ ≤ (a + c)/(1 + c) provided that

b > 0, a ≤ 1 and c ≥ max{1 − 2a, 2b}. (5.2)

Our parameters a = b = 1/p ∈ (0, 1/2] and c = 1 satisfy clearly the conditions
in (5.1) and

a + c

1 + c
= p + 1

2p
= σ

p
= aσ,

so that in this case, the first inequality (1.9) coincides with the inequality (5.1). It is
worth pointing out that the method used in this paper is completely different from that
used in [36, Theorem 1].

(2) In [37, Section 3] Barnard et al. proposed two conjectures on the inequalities
involving the hypergeometric mean, one of which was stated as follows.

Conjecture 5.1 ([37, Conjection I]) Let a ≤ 1, c > b > 0 and c > b − a.

• Suppose c ≥ max{1 − 2a, 2b}. Then

[F(−a, b; c; x)]1/a <
[(
1 − b

c

)+ b
c (1 − x)μ

]1/μ
(5.3)

for all x ∈ (0, 1) if μ ≥ [
a log(1 − b

c )
]
/ log

[
�(c+a−b)�(c)
�(c−b)�(c+a)

]
(sharp).

• Suppose c ≤ min{1 − 2a, 2b}. Then the inequality (1.10) reverses if μ ≤[
a log(1 − b

c )
]
/ log

[
�(c+a−b)�(c)
�(c−b)�(c+a)

]
(sharp).

Our Theorem 1.2 is related to Conjecture 5.1. As a matter of fact, it can be easily
seen that the second inequality in (1.9) implies that inequality (5.3) holds in the case

when a = b = 1/p ∈ (0, 1/2], c = 1 and
[
a log(1 − b

c )
]
/ log

[
�(c+a−b)�(c)
�(c−b)�(c+a)

]
= aτ .

(3) For p ≥ 2, let �, σ, τ, f , g be defined as in Theorem 1.2 and

δ1 = (p2 − 1)(p − 1)(p − 2)

72p6
, δ2 = 2

πp
− (1 − 1

p )1/σ ,

δ3 = (p − 1)(τ − σ)

2p4
, δ4 = (1 − 1

p )1/τ−1

pτ

and define the functions G1,G2,G3,G4 on (0, 1) by

G1(x) =
F
(
− 1

p , 1
p ; 1; x

)
− Mσ

(
1, (1 − x)1/p; 1/p)

x3
, G2(x) = f (x) − 1

x3
,

G3(x) =
Mτ

(
1, (1 − x)1/p; 1/p)− F

(
− 1

p , 1
p ; 1; x

)

x2(1 − x)τ/p
, G4(x) = 1 − g(x)

x2(1 − x)τ/p
.

Our computation seems to show that the following conjectures are true.
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Conjecture 5.2 (i) The function G1 is absolutelymonotone on (0, 1)with G1(0+) =
δ1 and G1(1) = δ2, and G2 is strictly increasing and convex from (0, 1) onto
(δ1, � − 1);

(ii) The functions G3 and G4 are both strictly increasing and convex from (0, 1) onto
(δ3, δ4).

If these conjectures are true, then the inequalities in (1.7)–(1.10) and, correspondingly,
Corollary 1.3 and even (1.5) can be improved.
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