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Abstract

In this paper, we are concerned with an elliptic equation defined on RN, N > 1,
and involving the p(u)—Laplacian. When p(u) = p(u(x)), x € RV, i.e., when p
depends on the variable x € R (through the unknown solution u), we say that we
are dealing with the local case of the problem. In this case the p(u)—Laplacian can be
considered as a new class of operators with variable exponents. When p(u) = p(«(u))
where « is a scalar function of the unknown solution u, we say that we are dealing
with the nonlocal case of the problem. In the present work, the issue of the existence
of nontrivial solution in the both cases is addressed.

Keywords p(u)—Laplacian - Schauder’s fixed point theorem - Variable exponent -
Approximation - Existence result

Mathematics Subject Classification 35A01 - 35A25 - 35A35 - 35D30 - 35J15 - 35J60

1 Introduction and Statement of Main Results

When p(u) = pukx)), x € RN, N > 1, then the problems involving the
p(u)—Laplacian represent a new class of equations with variable exponents whose
interest has been confirmed during last decades. Actually, this kind of nonlinear partial
differential equations has many applications in various branches of modern physics.
Foremost among these is the mathematical modeling of electrorheological fluids which
have the property that their viscosity changes when exposed to an electric field. We
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can also mention the quasi-Newtonian fluids, the thermostor problem, the motion (of
flow) of a compressible or incompressible fluid in a porous media, image restoration,
or the phenomenon of elasticity. For the applied aspect of the study of problems with
variable exponents, we refer to [5, 12, 18, 19, 24].

But, the application of some numerical techniques to restore digital images has
proved that considering the case of variable exponents depending on the solution
u (or its derivatives) considerably reduces the noise of the restored image u. See
[8, 9, 20]. The same situation is observed when treating the problem of thermistor
which describes the electric current in a conductor that may change its properties in
dependence of temperature (see [4]).

When dealing with problems involving an exponent depending on the solution,
many obstacles mainly related to the theoretical well-posedeness of the problem itself
arise. Actually, comparing with similar ones defined in some classical functional
spaces (such as Sobolev space with constant p or variable exponent p(x) ), such
problems are not easy to study because their weak formulations cannot be written as
equations in terms of duality in a fixed Banach space. This observation can explain
the small number of works devoted to the study of elliptic and parabolic equations
involving an exponent of the type p(u) with local and nonlocal dependence of p on
u. The first one is due to B. Andreianov, M. Bendahmane and S. Ouaro who have
considered the problem

(1.1)

u—div (I[Vu|P“~2Vu) = f, inQ,
u=20, onoS2,

where  is some bounded domain of RV, N > 2, f € LI(Q) and p : R > R
is Lipschitz continuous such that p~ = inﬂg p(s) > N. In [1] and under the key
RS

restriction p~ > N, B. Andreianov, M. Bendahmane and S. Ouaro proved that (1.1)
is well-posed in L () and, using some approximation method, they can establish the
existence of so-called narrow and broad weak solution. These kinds of solution are
suitable to the case when the source f is only integrable. The version of the problem
(1.1) with homogeneous Neumann boundary conditions has been treated in [17].

Recently, M. Chipot and H.B. de Oliveira proposed in [13] a new simple approach
to deal with a problem very similar to (1.1). More precisely, M. Chipot and H.B. de
Oliveira studied the problem

—di pu)—2 — i
{ div (|Vu| Vu) = f, inQ, (12)

u=20, onoS2,

where €2 is a bounded domain of RY, N > 2 with smooth boundary, p : R - R
is a Lipschitz continuous function such that p~ > N, and f € W‘l'(p_)/(Q). The
approach in [13] is mainly based on a perturbation of the problem (1.2) and the use
of the Schauder’s fixed point theorem to solve the approximated problem. Finally, a
process of passage to the limit in the spirit of [25] is carried out to prove the existence
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of a weak solution u of the problem (1.2) in the sense thatu € WO1 () (2) and satisfies
f IVulP®=2 VuVodx = (f,v), Vv e W, ().
Q

The nonlocal version of (1.2) has been also considered in [13]. More precisely, the
authors studied the problem
—di pb(u)—2 — f i
div (|Vu| Vu) = f, in Q, (13)
u=0, onoQ2,

where p is merely bounded continuous and satisfies that 1 < p~ < p(s), Vs € R,

and b : Wé 7 (€) — R sends bounded sets of WOl "7 (Q) into bounded sets of R.
Using the Browder’s fixed point theorem applied to some compact interval of R, M.
Chipot and H.B. de Oliveira proved that (1.3) has at least one weak solution « in the
sense that u € Wol’p(b(“))(Q) and satisfies

/ |Vu|p(h(u))—2 Vqudx — (f, U) , v Ve Wol,p(b(u))(s.z)
Q

This work has been completed in [23] where the authors treated the case when f €
L' () for which they prove the existence of an entropy solution. It seems that the work
of M. Chipot and H.B. de Oliveira had given a new impulse to the study of problems
involving exponents depending on the unknown solution. In [2], S. Antontsev and S.
Shmarev studied the homogeneous Dirichlet problem for the parabolic equation

u; — div (|W|P“‘]—2 w) — f.in O = Qx]0, T[,

where @ ¢ RN, N > 2, is a smooth domain, plu]l = p((u)), p is a given differ-

entiable function such that A%—JIZZ < p~ < pt <2, and sup Ip/(s)| < 4o0; I(u) =
seR

Slu(x,0)|*dx, e € [1,2],and f € L% (Q7). Aresult of existence and uniqueness
Q

of a solution u € C° ([0, T]; LX()), [VulP") € L>® (0, T; L'(Q)), u, € L*(Q7)
has been proved. This result has been extended in [3] to the case when the source f
is replaced by the nonlinear term f((x, t), u, [(«)). In [4], S. Antontsev, S. Shmarev
and I. Kuzentsov treated the case when the exponent p is depending on the gradient of
u, i.e., when plu] = p(I(|Vul)). More recently, in [10] C. Allalou, K. Hilal and S.A.
Temghart have followed almost the same procedure as in [13] to treat the equation

—div (|VulPW =2 Vu) = f +g) [VulP™~! | inQ,
u=20, ono<2,

where Q is a bounded domain of RY, N > 2 with smooth boundary, f is given data
and p : R — Ris a Lipschitz continuous function such that p~ > N.
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The case of unbounded domain has been considered for the first time in [6] where
S. Aouaoui and A.E. Bahrouni studied the equation

—div(wi (x) |[Vul”D72 Vi) + wo(x) /P2 u = f(x,u), x e RN, N > 2,

where p : R — R is a Lipschitz continuous function such that N < p~ < pT <
+00; wg, wy € L'(RY)and £ is a Carathéodory function having a polynomial growth
with exponent lower than p~ — 1. A result of the existence of a nontrivial solution has
been established for the cases of local and nonlocal dependence of the exponent p on
the unknown solution. The introduction of the weights w; and w, and assuming that
they are both integrable allowed us to overcome the obstacle of constant functions not
being integrable over an unbounded domain of RY. Moreover, in contrast to [13, 23],
the source f is now a nonlinear term depending not only explicitly on x € R but also
on the unknown value u# (x). In [6], we used the Galerkin method to prove the existence
of the solution for the approximated problems and this for the local problem as well as
for the nonlocal one. Finally, we have to mention [7] where a local one-dimensional
equation (i.e a differential equation) involving the weighted p () —Laplacian has been
treated.

In the present work, we remove the weights and by this way, we are in presence
of the pure "unbounded domain version" of (1.2). Knowing that the presence of the
weights in [6] has been crucial to prove the existence of a nontrivial solution, obtaining
such a solution after removing them can be regarded as a more challenging task. For
instance, the boundedness of the approximated solution in W17~ (RV) cannot be
obtained. So, comparing to [6], many necessary changes are introduced. The main
idea of the proof is to use a double approximating schemes as well as some a priori
estimates (for example we establish a priori estimate in L (R")). The passage to the
limit in the approximated problems needs some sophisticated arguments which gives
more interest to the problems considered in this article.

In this paper, we are concerned with two kinds of nonlinear problems. First, we
treat the following nonlinear equation:

— div (|W|W>*2 w) F P2y = f(x u) +h(x), x eRY, N > 2,
(1.4)

where p : R — R is a Lipschitz continuous function such that

N < p~ =inf p(s) < p* = sup p(s) < +o0.
seR seR

This equation is taken under the following assumptions:
(Hy) f: RN x R — Ris a Carathéodory function such that

If(x,9) <g@)|sl", ae.x eRY, Vs eR,

where 0 <t < p~ —1, g e L'RM)NL®RY), g(x) > 0ae.x € RV. We assume
that f(x,s) =0ae.x e RV, Vs <0.
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(Hy) h e L"RN)YNL®@RN), h #£0, h(x) >0ae. x € RV,

Definition 1.1 A function u : RN — R is said to be a weak solution to the equation
(1.4) if it satisfies that

ueWl’p(”)(RN)z{veL}oc(RN),f |v|1’(”)dx<+oo,/ IVvlp(”)dx<+oo},
RN RN
and

/ |Vu| P2 VuVde-l—/ P92 yydx

RN RN

=f f(x,u)vdx—i—/ hvdx, Vv e WHPW(RN),
]RN RN

The first main result in this work is given by the following theorem.

Theorem 1.2 Assume that (H|) and (Hp) hold. Then, there exists at least one non-
negative and nontrivial weak solution to the Eq. (1.4) in the sense of Definition
1.1.

The second part of this work is devoted to the study of the nonlocal version of (1.4).
More precisely, we are concerned with the problem:
_div (|W|p<a<u>>72 w) + |u|P@@=2,
= f,u) +h(x), mRY, N >2, (1.5)

where p : R — R is some continuous function such that 1 < p~ < pt <
1
+oo, o W,

f B (RY) — R is a continuous function, i.e.,  satisfies the follow-

ing property: for all (u,), C Wllo’cpi (RV) and u € Wllo’fi (RN such that u,, — u
strongly in Wllo’cp_ (RM) (i.e., u, — u strongly in W-?~ (K) for all compact set K of
RM), a(u,) — a(u). For example, one can choose

a(”) = ||u||W1~l’_(§2) ’ a(“) = |VM|LP—(Q) ) OI‘O[(I/[) = |u|L1’_(Q) s

where © is a bounded domain of R¥. Concerning the terms f and &, we keep the
same assumptions (H;) and (H>).

Definition 1.3 A function u : RY — R is said to be a weak solution of (1.5) if
u € Whr@) RNy and

/ |Vu|p(°‘(“))72Vqudx+/ Iulp(“(”))fzuvdxz./ f(x, u)vdx
RN RN RN

+[ hvdx, ¥ v e WhPew) RNy,
]RN
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In contrast to the previous problem (1.4),
W],P(Ot(u))(RN) — {u c LP(W(M))(RN), Vu e (LP(OI(M)) (RN)>N}

is a classical Sobolev space. The second result in the present paper is given by the
following theorem:

Theorem 1.4 Under the assumptions (H,) and (H3), the problem (1.5) has at least
one weak solution in the sense of Definition 1.3.

2 Preliminaries

Denote by LO(R") the space of all R—valued measurable functions on RY and

C+(RY) = {v e CRM)NL®MRY), inf v(x) > 1}.

xeRN
Forg € CL(RN), setg™ = sup ¢g(x), and ¢~ = inf ¢(x), and we introduce the
XeRN xeRN

variable exponent Lebesgue space
LIO®RN) = {u e LO(RY), / )™ dx < +oo}.
RN

This space becomes a Banach, reflexive and separable space with respect to the
Luxemburg norm,

q(x)
|u|Lq(-)(RN) Zin{}\.>O, / M dx < 1}
RN | A
The following Holder’s inequality holds,
/I;N uvdx| <2 |M|Lq(')(RN) |U|Lq’(«)(RN) ) 2.1

for any u € LY0(RY) and v € LY O (RYN), where ¢’ € C4(RY) is such that ﬁ +

ﬁ =1, Vx € RY. Moreover, we have

. q- q* x) q- 9"
min 119 e+ Wl | szN l dx < max {1l gy - Tl |
2.2)
Now, fix a measurable function z : RY — R and set g = p(u). Hence,

whr@ RNy = whaO (RN). This space is equipped with the well known Luxemburg
norm
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) |Vu |20 4 |2
lullwi.a0 @ny = inf {A > 0, ./]RN ( PYIE) dx <1}.

It is known that (WH4O@RN), || - lw1.qo ®y)) becomes a Banach, reflexive and
separable space.
Ifv e WHO®RN), (v,), € WHIO(RN), then the following relations hold true.

: q- q*
min ”v”Wl‘q(-)(RN)i ”v“WI.q(-)(RN)

S/ (|Vv|t1(X) + |v|q(X)) dx
RN

< q qt
= max vl g0 @y > 10100 @y |

lon — U||W1,q(~)(RN) -0 /N (|V(Un - U)|q(x) + vp — v|q(x)> dx
R

— 0, n > +o00.

For more details, we can refer to [11, 14, 15].

Proposition 1 Let 2 be a bounded Lipschitz domain. Assume that u € whr ().
Then D(Q) = {vlg, v e DRY)} is dense in WPt (Q).

- N
Proof Since Q2is bounded, thenu € W!7" (Q). Since p~ > 1, thenu € c” ' (2)
and there exists a constant C > 0 depending on p~ and N such that

- ol
lu(x) —u)l < Cllullyp- (g lx =y 77, Vx,yeQ.
By hypothesis, there exists a constant L > 0 such that

Ip(x)) — pu()| < Llu@x) —u()|, Vx,yeQ.

Thus,

- ol
Ip(x)) = plu(y)| = LC lullyrp- (g X =y 77, Yx,y € Q.

Hence, there exists a constant C’ > 0 such that

el
lpw(x)) — pu(Y)| £ ——,
log |x — y|

— 1
Vx,y€Q, |x—y|§§,

i.e the variable exponent p(u) is log-Holder continuous. By [14, Theorem 9.1.7], we
deduce that D(Q) is dense in W17 (Q). o

@ Springer



123 Page 8 of 36 S. Aouaoui

3 Proof of Theorem 1.2
Set X = wip" @Ry N WP~ (RN). We naturally equip the space X with the norm

”u”X = ”u”Wl.er(RN) + ”u”Wl,p*(RN) , U € X.

Lemma 1 For each € > 0, there exists a function u. € X such that

fN |VMG|P(ME)—2 VueVudx + fN |u€|p(”€)_2 uevdx
R R

+€ </ IVuel”Jr_2 VueVvdx +/ Iuel”Jr_2 uevdx>
RN RN

+€ (/ |Vue|? =% Vu,Vodx +f luc|P 2 ugvdx>
RN RN

:/ f(x,ue)vdx+/ hvdx, Yv € X.
RN RN

Proof Let e > O fixed. For w : RY — R a measurable function, define the operator
Ay X > X*by

— \v4 p(w)—2 ViV p(w)—2
w -
<A u U) / | I/t| u de+/ |I/t| uvdx
RN RN

+e </ |Vu|”+72 VuVuvdx +/ |u|p+72 uvdx)
RN RN

+e <f [Vu|P~ 2 Vqudx+/ |u|P"—2uvdx), u,v € X.
RN RN

Observe that A,, is well defined. In fact, for u, v € X, we have

/ |Vu|p(w)_2Vqudx+/ lu|P™ =2 yvdx
RN RN

5/ |vu|l’<w)—1|w|dx+/ P~ |y dx

RN RN

5/ |Vu|P ! IVvldx—i—/ IVulP 1 V| dx
RN RN

+/ |u|P‘—1|v|dx+/ l? = ol dx
RN

<|Vul|’

1o ey 19V o, 19l

LP+(RN) |VU|LP+ (RN)

p—
+|M|L1’ (RN)|U|L1’ ]RN)+|M|LP+(RN)|U|LP+ RN)

Hence, for u fixed in X, the linear mapping v —> (A, u, v) is in the topological dual
X*. Clearly, A, is coercive and continuous. Moreover, A,, is strictly monotone, i.e.,
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(Awuy — Ayuz,uy —uz) >0, Yur,upx € X, uy # us.

On the other hand, for w € L?” (RY) and v € X, by Hélder’s inequality we have

< g) |wl" [vldx < g - lw|’ [l - gy
[;{N Lp*1—1—1 ®Y) LP™ (RN) LP (RVY)*

‘/ f(x, w)vdx
RN

Also,

<l - Wl@yy, YVEX.
LP —1(RN)

/ hvdx
RN

Thus, (f(-, w) + h) € X*. By the virtue of the Minty-Browder’s theorem (see [21,
Theorem 26.A]), we deduce that there exists a unique element u,, € X such that

Ay(uy) = f(G,w)+hin X*.

In other words,
(Ayuy, v) = / (f(x,w) + h)vdx, Vv € X. 3.1
RN

Taking v = uy, in (3.1), we infer

/ | Vit |P™) dx +/ || 7™ dx
RN RN
+e (/ |Viuw|? dx + / it |7 dx)
RN RN
+e </ Vi |? dx—}—/ ML dx>
RN RN

=/ f(x,w)uwdx+/ huy,dx

RN RN

5/ glwl‘luwldx+/ huydx.
RN RN

Using Young’s inequality, it comes

€ (Il v oy + ltull - (RN))

p -

r tp—
ere [ g7 Tl Ta
RN

€
5 |uw|Lp (RN +Cle |h|"
LP *I(RN)
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where c1 ¢ and ¢; ¢ are two positive constants depending on € but not on w. Hence,

P

= (M2 gy + Il ) < e 1]
LP —1(RN)

r L2
+Cz,e-/ gr ! w|r -1 dx. (3.2)
RN

Set

tp—

P —

r
T = 6, and g1 (x) = (g(x))7 ', x e RV,

Now, we claim that W!-?~ (R") is compactly embedded into the weighted Lebesgue
space

Lgl(RN) = {u : RY - R measurable, /N g1(x) lu())? dx < +oo} ,
R

equipped with the norm u — |u|LZl @y = (Jgv g1(0) [u)| dx) . For that aim,

take a sequence (i), C W7 (RV) suchthat u,—0weaklyin W17~ (R"). We show
that, up to a subsequence u, — 0 strongly in Le (RN ). Observe that the sequence

(|u,, 1?,, is bounded in L% (R™)and,uptoa subsequence is weakly convergent to 0 in
_r
T (RV). Since g € L7 11 (RN), then g; € L7~ = (R™) which is the topological
dual of L7 (RV) which leads to

/Ng1 lun|? dx = 0, n > 4o0.
R

Let C; > 0 be a positive constant such that
L,p~ (N
|u|Lgl(RN) <C ||M||W1,p*(RN), Yuew:? RY). (3.3)
Set
Ke = {w € Lgl(RN)» |w|Lgl(RN) = Ole} >
where o, is some positive constant to be fixed later. Define the mapping T, : K¢ — K¢

by Tew = u,, given by (3.1). We choose ¢ > 0 such that T, (C,) C K.. By (3.2),
there exist two positive constants ¢3 ¢ and c4 ¢, independent of w, such that

L
=

p

1 9
”uwnwl,p*(RN) < (C3 € |h|p 4+ C4.,¢ |w|L6 (RN)>
LP - (RN) 81
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If w € K, then
L

L P
”Mw”Wl,p*(RN) < (03,5 |h|p [_,l +C4,€Otf> . (3.4)
LP =1 (RN)

By (3.3) and (3.4), it yields
1

P P
|'4w|Lgl(RN) <C <C3,e |n|” - +C4,e(¥f) , Yw e Ke. (3.5)

P
Lp -1 (RN)

Since pi_ < 1, then if we choose o > 0 large enough, we get

-
LP —1(RN)

P_ P
p~—1 [
Cy <C3,e A ] + C4,ea5> < de.

In view of (3.5), we infer

|Te(w)|Lgl(RN) = |Mw|LZl(RN) <de, YweK..

Furthermore, since W17 (RN) is compactly embedded into LZ, ] (RN, it immediately
follows that T, (IC¢) is relatively compact. In the next step of the proof, we show that
the mapping 7¢ is continuous. To prove this, let us assume that (wy,), is a sequence of
Lgl (RN) and w is a function in Lzl (R™) such that w,, — w strongly in Lgl (RM). By
(3.2), we know that the sequence (uy,,), is bounded in X. Thus, there exists u € X
such that, up to a subsequence, u,, —u weakly in X, uy, (x) — u(x) a.e.x € RN,
and u,, — u strongly in LY (R"). By monotonicity of the p~—Laplacian and the
p+—Laplacian, we have

(Awn (Uw,) — Aw, (V), Uy, — v) >0, VveX. (3.6)

Taking w = w, and (u,,, — v) as test function in (3.1), then by (3.6), it yields
/ (f(x, wn) + h) (g, — v)dx > / [Vo|Pn =2 VoV (uy,, — v)dx
RN RN
+/ [P =2y (uy, — v)dx
RN
+e/ IVol? 2 VoV (uy, — v)dx +e/ W7 2 vy, — v)dx
RN RN

+e/ |Vo|P 2 VoV (uy, —v)dx —i—e/ lv|P” 2 v(uy, —v)dx. (3.7)
RN RN
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By the weak convergence of (u,,), to u in X, we get
e/ IVol? "2 VoV (uy, — v)dx +e/ W? 2 v (uy, — v)dx
RV RN

+e/ |Vo|P 2 VoV (uy, —v)dx—i—e/ [v|P” 2 V(Uy, — v)dx
RN RN

—

6/ |Vv|"’+_2 VoV(u — v)dx + e/ Ivl”Jr_2 v(u —v)dx

RN RN

+6/ |Vo|?” "2 VoV (u — v)dx + e/ [v]?” "2 v(u — v)dx, (3.8)
RN RN

and

/ h(y, —v)dx — / h(u — v)dx. 3.9)
RN RN

Moreover, by the strong convergence of (wy), to w in Lgl (RM), one can easily see
that

/ f G, wy) (g, —v)dx — / f(x, w)(u —v)dx. (3.10)
RN RN
Next, observe that

'/ (IVolP @2 Vo — [90]7 72 V1) Yy, — v)dx
RN

- / ‘(wvv’(wn)*z Vo — [Vy|P@—2 W) V (it — v)‘ dx
RN

< / ‘(|VU|P<"’">—2 Vo — |Vp[P@-2 Vv) V (i, — v)‘ dx
[Vu[=1

g
|Vv|<1

< / ‘|v1;|f’<wn>*2 Vo — Vo2 7y
Vulz1

(101702 vy — [90]72 Vo) V(ay, — v)) dx

+_
! 1

o\ 5 PN
”‘) (/ |V, —v)|” dx)
IRN

=1
£ E

"‘)p (/ |V(uwn—v)|p7dx>p
RN

(3.11)

+ / [IV017 =2y — 9002
|Vul<1

P+
For x € R such that [Vu(x)| > 1, we have (|[Vu(x)P®=1F—1 <

|Vv(x)|1’+, ¥ n > 1. Since w,(x) — w(x) a.e. x € RY, then one can apply
the Lebesgue’s dominated convergence theorem to prove that

/IVvlzl
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Similarly,

=

/ ‘|Vv|p(w”)*2 Vo — |[Vu|P®2vy|” ' dx — 0, n — +oo.
|Vv|<1

Taking the boundedness of the sequence (uy,,), in wbhr™(RN) and in whr* RM)
into account, we immediately deduce from (3.11) that

/ (IVvI"’(w”)_2 Vo — |Vo|PW) 2 Vv) V(uy, —v)dx — 0, n - 4o0.
RN

(3.12)
The weak convergence of (u,, ), to u in X together with (3.12) implies that
f |Vu|P =2 TV (uy, — v)dx — / Vol =2 VyV (u — v)dx. (3.13)
RN RN

Similarly,

/ P2 v (uy, — v)dx — f P2 y(u — v)d. (3.14)
RN RN

Combining (3.14), (3.13), (3.10), (3.9), (3.8) with (3.7), we obtain

f (f(x,w) +h)(u — v)dx > / IVolPM =2 VyV (u — v)dx
RN RN
+/ [0[P™ =2 p(u — v)dx
RN
+6/ IVUI”Jr_2 VoV (u — v)dx
RN
+6/ |v|p+72 v — v)dx
RN
+e/ IVolP" 2 VoV (u — v)dx
RN

+6/ [v|?” 2 v(u —v)dx, Vv € X.
RN
(3.15)

Letz € X and t € R. Taking v = u — tz in (3.15), it yields

zf (f(x,w) 4+ h)zdx > z/ |Vu — tVz|PW =2V (4 — 17)Vzdx
RN RN

—i—t/ lu —tz]P™ =2 (u — 17)zdx
RN
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—i—et/ Vi — tVz|P 2V (u — 17)Vzdx
RN
+El‘/ lu — tz|p+_2 (u — tz)zdx
RN
+6t/ |Vu — tVz|P 2 V(u — tz)Vzdx
RN

+et/ lu —tz|P” 72 (u — 1z)zdx.
RN
Dividing by ¢ > 0 and then tending ¢ to 0T in that last inequality, we obtain

/ (f (x, w) + h)zdx z/ |Vu|p(w)72Vqudx+/ lu|P® =2y zdx
RN RN RN
—i—e/ |Vu|”+_2 Vqudx+e/ |u|”+_2uzdx
RN RN

+e/ [Vu|P” 2 Vqudx—i—e/ lul?” % uzdx.
RN RN
(3.16)

Plainly, inequality (3.16) is also valid for (—z) instead of z. Therefore,

/ (f(x,w)—}—h)zdx:/ |Vu|P<W>—2wvzdx+/ lulP™ 2 yzdx
RN RN RN
+6/ IVul”Jr_2 Vqudx+6/ |u|”+_2uzdx
RN RN

+e/ [Vu|P” 2 Vqudx—}—e/ lul? "2uzdx, Vz € X.
RN RN

Consequently, u = u,, which ends the proof of the continuity of the mapping 7. Now,
one can use the Schauder’s fixed point theorem (see [22, Theorem 2.A]) to deduce the
existence of w € K¢ such that 7. (W) = uzp = w. Hence,

/ [Vug| @2 Vy s Vodx +/ lug| P72 yzudx
RN RN
+€ </ IVugler_2 VugVudx +/ Iumlw_2 ugvdx)
RN RN

+€ </ [Vug|P 2 Vquvdx—l—/ Iuwlp__zuwvdx>
RN RN

=/ f(x,u@)vdx—i—/ hvdx, Vv e X.
RN RN

This ends the proof of Lemma 1. O
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Choosing € = %, n > 1, in Lemma 1 we deduce that there exists u,, € X such that

/ [V, |P#) =2 Yy, Vodx +/ iy [P =2 4y vdx
RN RN

1
4— (/ |Vun|p+72 Vu, Vvdx +/ |un|f”+72 u,,vdx)
RN RN

n

1 _ _
+- </ |Vun|? ~2 Vu, Vvdx +f lun|? 2 u,,vdx)
n RN RN

= /]RN f(x,un)vdx—i—/RN hvdx, Vv e X. (3.17)

Since & > 0 and f(x,u,(x)) = O for a.e. x € R¥ such that u,(x) < 0, by taking
v = u, = min(u,, 0) as test function in (3.17), we can easily see that u, (x) > 0 a.e.
x e RN,

Lemma2 There exists M > 0 independent of n such that u,(x) < M a.e x €
RN, vn>1.

Proof Let M > 1 be a real number. Taking v = (4, — M)™ = max(u, — M, 0) as
test function in (3.17) and having in mind that

/ Vit [P0 =2 V10, V (1 — M) Fdx = / |V @, — M) P dx > 0,
RN RN
.
/ Vitn” =2 Vi,V (uy — M)*dx = / |V, — M)*|” dx >0,
RN RN

/ IVun|? "2 Vu,Vu, — M)tdx = / |V, — M)+|P7 dx >0,
RN RN
and that u,, > 0, it yields

/ up__l(un — M)Tdx < f u,f(u")_l(un — M)Tdx
RN RN

< / (gul + h)(u, — M)*dx
RN

p-—1

t el
+ (1 — ) / gr -l (u, — M)+dx
p~—1) Jry

+/ h(u, — M) dx.
]RN

t -_
< / ub l(un — M)Tdx
RN
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Hence,

p——1
(3.18)
Choosing M > 1 large enough such that
pp:llt Al oo mN) < pmP !
| |L°°(RN) 1_—t = s
p——1
it follows from (3.18) that
/ (™ = M7 1) = M) dx <0,
RN
which implies that u, < M. This ends the proof of Lemma 2. O
The completion of the proof of theorem 1.2
Taking v = u, as test function in (3.17), we get
p(up) p(up)
[ vt e [ L+l )
=/ f(x, up)uydx +/ huydx, Vn > 1.
RN RN
(3.19)

By Young’s inequality, we have

5/ gu;+ldx+f hu,dx
RN RN

/ guf1+ldx

up<l1

+/ gu;+1dx+/ hundx+/ hu,dx
up>1 up <1 up>1

1 _
< gl +4_1/ uy dx
up>1

f (f(x,up) + h)u,dx
RN

IA

e
+cy / gr —=ldx + |h|L1(RN)
up>1

1 - i
—i——/ ul dx—i—czf hr —ldx
4 up>1 up>1
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< Iglpi@wyy + Al @y

1
—i——/ u,’;(u”)dx
2 up>1

P P
+cj / gr —i=tdx —{-cz/ hr~—ldx
RN RN

1
<c3+ —/ ufl’(”")dx.
2 JrN

Putting that last inequality in (3.19), we obtain

puy) pup) l pt l P
[ A Y o e A

<c4, Vn>1.
(3.20)

By Lemma 2, we get
+ +_
/ ub dx =/ u,f(u”)u,f Pl 4 < Mp+/ uf("")dx <caMPT, V> 1.
RN RN RN

Thus, (i), is bounded in L?" (RY) and by consequence there exists u € L?" (RY)
such that, up to a subsequence, u, —u weakly in L (RN ). Now, fork e N, k > 1,
set = {x € RV, |x| < k}. We have

/ IVunlpfdx=/ IVunlpfdx—l—/‘ [Vu,|? dx
Qe QeN{IVun|>1} QeN{IVun <1}

sf Vit P dx + |9
Qe

<c4+ %], V> 1.

It follows that, for every k > 0, there exists a subsequence (¢, (n))n Of (1), and v €
WLP™(€4) such that Uy (n)—Vk weakly in wLPT (). In particular, ug, () — vk in
D’(L2). But we know that u,—u weakly in Lr" (RM). Thus, we immediately deduce
that u|g, = v. In particular, u € W,” (RV). Now, by standard diagonal argument,
we can extract from (u,), a subsequence (independent of & ), still denoted by (u,),,
such that u,—u weakly in W7 (), Yk > 1 and u,(x) — u(x) ae. x € RV,
Consequently, u(x) > 0 a.e. x € RY. Now, we claim that

/|wwwm+/ uP®dx < 4o0. (3.21)
RN RN
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For that aim, set g,(x) = p(u,(x)) and g(x) = p(u(x)). For k > 0, set wxy =
g min {ud~", k97'} . By the virtue of Young’s inequality, it yields

1
upw < up +anwZ”, Vk>0,Vn=>1,
qnn

where g, = q;’—’_’l. Let ¢ € D(RV) be such that 0 < ¢ < 1. Thus,

—1 ’
/ Cupwidx 5/ {uZ"dx—i—/ an ; ;wZ”dx, Vk>0,Vn>1.
RN RN RN gn
qn
Tending n to 400 (using the Lebesgue’s dominated convergence theorem) and having

(3.20) in mind, we get

g—1_ g
Cuwrdx < cq4 + —Cw, dx.

RN RN g4

Consequently,
/ qtuldx —i—/ gk9™ cudx
u<k u>k
<c4 +f (g — Deuldx +/ (g — Dk9¢dx.
u<k u>k

We infer,

/ ;uqu—}—/ kl¢dx < cy.
u<k u>k

Passing to the limit as k tends to +o0 in that last inequality, we obtain

culdx < cy.
RN

Since ¢ is arbitrary in {v S D(]RN ), 0<v < 1} , we immediately deduce that

/ uldx < cy.
RN

In order to prove that

/ Val? dx < e,
RN

one can proceed exactly as previously by considering the vector
qVu |Vu|172 | if |Vu| <k,
Wi =

qkq*lg—;l, if |Vu| > k.
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Hence, the claim (3.21) holds. In particular, we find again that u € Wllo’cp “(RM).
Letv € X and ¢ € X be such that ¢ > 0 and supp(¢) is compact. Taking (u, —v)¢
as test function in (3.17), we infer

/ £ttty — v)pelx + / By — v)pdx
RN RN
= / & |Viun |72 Vu,V(u, — v)dx + / Vit |2 Vu, Ve (u, — v)dx
RN RN
_ 1
+/ w7 — v)pdx + —/ & |Vin|” 2V V(uy — v)dx
RN n JrnN
1 1 _
+—/ |Vun|1’+*2 Vu,Vo(u, — v)dx + —/ u,f+ 1(14,, — v)¢pdx
n Jrwy n JrnN
1 -_2 1 =2
+— ¢ |\ Vu,|? = Vu,V(u, —v)dx + — [Vu,|? = Vu,Vo(u, — v)dx
n JrnN n JrN
1 .
+—/ ub l(un — v)¢pdx
n Jrwy
= / ¢ (|w,,|”(“n>—2 Vu, — |Vo|P#n=2 Vv) V(u, — v)dx
RN
—i—/ & |Vu|P# =2 yV (4, — v)dx +/ |V, [P =2 Vu, Ve (u, — v)dx
RN RN
+ / (™! = 1P 2 0) gy — v)dx + / 01772 vt — v)dx
RN RN
1 +_2 +_2
[ ¢ (|wn|f’ Vi, — |Vol? W) Yy — v)dx
n JrN
1 +_9 1 +-2
= GIVUIP TEVuV (@, —v)dx + — | [Vunl? "2 Vu, Ve (u, — v)dx
n JryN n JryN
1 _ 1
+—/ <u5+ b |v|p+_2 v) ¢ (u, —v)dx + —/ |v|p+_2 v (u, — v)dx
n JrN n JrN
1 _ B
+ fRN P (IVunlp 2y, — Vol 2 Vv) V(u, — v)dx

1 ., 1 -,
+- ¢ |Vv|P ~*VoV(u, —v)dx + — [Vu,|? ~*Vu,Vé(u, — v)dx
n JryN n JrN

1 - - 1 _
+—f (uﬁl7 - [v|? -2 v)qb(un —v)dx + —f [v|? -2 v (u, — v)dx.
n JryN n JryN
(3.22)

Forgetting the nonnegative terms in the right-hand side of the identity (3.22), we get

f F . )1ty — V) + / ity — v)pdx
RN RN

> / ¢ |Vu|P“) 2 VoV (u, — v)dx +/ |V, P2 Vu, Ve (u, — v)dx
RN RN
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1
—i—/ [0[P“) =2 v (u, — v)dx + —/ ¢ |Vv|p+72 VoV (u, —v)dx
RN n RN
1 1
+—/ Vit ?" =2 Vi, Vb (1t — v)dx + —/ 1”2 v, — v)dx
n Jry n JrnN
1 - 1 -
+—/ ¢ |Vol? 2 VuV(u, —v)dx + —/ |Viun|? =% Vi,V (un — v)dx
n Jrvy n Jrwy
1 _
+;fRN WI? 2 v (uy — v)dx. (3.23)

We have

1
- /IRN ¢ |Vv|p+72 VoV (u, —v)dx

< %/ Vol? 1 [V — v)] d
n RN

P+

—1 1

= oF

< 9l (/ |VolP" dx) ! (/ IV (up — )P dx>"

n ]RN RN
1 p+ll 1 X p+ll —
= ¢l <_> ! (_)” </ |Vv|1’*dx> ! (/ |V(u,,—v)|1’+dx>p
n n RN RN
p+,

1 1
1 pT 1 + T +_1
< 1Pl (7,) (7, lien = w7, e (RN)> ol o (3.24)

By (3.20), we know that

1 ot
sup (= ), v o ) < +00.

n>1

Then, from (3.24), we obtain

1
-/ ¢ VP "2 VoV (u, — v)dx — 0, n — +oo. (3.25)
n Jrny
Similarly,
1 i
- ¢ vl? “v(u, —v)dx — 0, n — +o0, (3.26)
n Jrny
1 _
| ¢|Vul? 2VuV(u, —v)dx —> 0, n > +00, (3.27)
n Jrny
and,
1 )
- ¢ vl? ~“v(u, —v)dx - 0, n — +oo0. (3.28)
n Jrny
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Now, note that f(x, uy (x))(un(x) — v(x))@(x) — f(x, u(x))@x) — vx)$(x),
ac.x e RV, Using the boundedness of (1), in L®RN) and taking into account that
g € L'(RY), one can easily apply the Lebesgue’s dominated convergence theorem to
immediately deduce that

/ fx, up)(uy —v)pdx — / fx,u)(u —v)¢pdx, n - 4+o00. (3.29)
RN RN
Similarly,
/ h(u, —v)pdx — / h(u — v)pdx, n — +oo. (3.30)
RN RN

In view of (3.30), (3.29), (3.28), (3.27), (3.26) and (3.25), one can pass to the limit in
(3.23) as n tends to 400, and finally obtain

/ S, u)(u — v)pdx +/ h(u — v)pdx
RN RN

> lim / ¢ |VuPU) "2 VY (i, — v)dx
N

n—-400 R
+ lim |Vun|p(“”)_2 Vi,V uy — v)dx
+ lim / ¢ 1IP )72 Gy — v)dax. (3.31)
n—+00

Let ko > 0 be such that supp(¢) C @, = {x € R, |x| < ko}. Assume that v €
X N WS (Qy,) where s = %p’ > pt. We have

V P (|VU|PW—2 Vo — [Vy|P®-2 w) V(u, — v)dx
RN

p_ -1
< (/ ¢‘ |Vo|PUn)=2 vy — VP2 vy
]RN

pldx) !
%
(/ ¢V, — )P dx) . (3.32)

Observe that

P
p~—1

¢ |Vv|1’<“n>*2 Vo — [Vo|P@-2 vy

p—(pt-n -

< ¢2p UV T Tgwy=1 +¢2” vel<yy
. p=pt=D
< g27 <1+|w| e )

@ Springer



123 Page 22 0f36 S. Aouaoui

Taking into account that, for a.e. x € RN, p(u,(x)) — pu(x)) as n — 400, then
we can apply the Lebesgue dominated convergence theorem to get

2
/ qb’ [Vo|PED=2 vy — |V PW2vy| 7 " dx > 0, n —> +o0.
RN

Having in mind that the sequence (u,,),, is bounded in W17 (), Yk > 1, we infer

sup O |V, — )P dx < +oo.

n>1JRN
By (3.32), it follows

/ é (lel”(””)_z Vo — |Vy|P0—2 vU) V(u, — v)dx — 0,
RN

n — 400. (3.33)
In a similar way, we get
/ ¢ (|v|p(”")72 v — |y|PW—2 v) (u, —v)dx — 0, n — +o0. (3.34)
RN

In view of (3.34) and (3.33), from (3.31), it comes

/ fx,u)(u —v)pdx +/ h(u — v)pdx
RN RN

~ n—>+4o0

> lim ¢ |[Vu|PW72 VoV (u, — v)dx
RN
n——400

+ lim f & 101”72 y(u, — v)dx
RN

+ lim |Vun P2 Vu, Ve (u, — v)dx. (3.35)
n—-400 RN

It is easy to see that the linear mapping

El—)/ ¢ |Vu|P®W 2 vyvedsx,
RN

is in the topological dual of wlhr” (R24,). Indeed, forv € X N wls (24,) and & €
whr- (S24,), we have

‘/ ¢ |Vu|PW 72 Vyvedx
RN

< f $ 170701 |VE|dx
Qko

5(/9

p_—1

1
_ - Pw-1p~ P
IVEIP dx / ¢|Vv| r -1 dx
Qg

ko
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1 p_—1

_ - ot -np~ [
< (/ Ve dx) (/ ¢>(1+|Vv| i )dx)
Qko Q,

Since (up,), is weakly convergent to u in whr- (£24,), then

ko

lim / ¢ |Vu|P"2 VoV (4, — v)dx
]RN

n—+o00

= lim ¢ |[Vu|PW 72 VoV (4, — v)dx

n——+00 Qk()

= ¢ |VuIP72 VuV(u — v)dx
Qko

:/ ¢ |VuIPW72VyV (4 — v)dx. (3.36)
RN

Similarly,

lim f & 101”72 y(u, — v)dx =/ ¢ 10?92 y(u —v)dx.  (3.37)
RN RN

n—-+00

Inserting (3.37) and (3.36) in (3.35), we obtain

/ (fGx,u) +h)(u —v)pdx > / ¢ |Vu|PW 2 VoV (u — v)dx
RN RN
+/ ¢ 10”72 v(u — v)dx
RN

+ lim Vi, P42 Vi, Ve (u, — v)dx.
N

n——+00 R
(3.38)
In particular,
[ 0 = vgax
RN
> / & |Vu|PW 2 VoV (u — v)dx + / & )PP 72 y(u — v)dx
RN RN
+ lim Vi |2 Vu, Ve (u, — v)dx, Vv e DRY).
n—-+00 JpN

(3.39)

Next, we claim that the inequality (3.39) can be extended to wl.p@ (2k,) in the sense
that

/ (f(x,u) +h)(u —v)pdx
RN
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2/ ¢ |Vo|P2 VvV(u—v)dx—i—/ ¢ 0?72 y(u — v)dx
RN RN

+ lim |Vitn P2 Vu, Ve (u, — v)dx, Yv e WHPO ().
N

n—+oo Jp

(3.40)

To see that, let v € Wl’/’(“)(.QkO). By Proposition 1, there exists a sequence (v;); C
D(RY) such that Vj |Qk0 — v strongly in Wl"’(”)(Qko). Clearly, up to a subsequence,

vj(x) > v(x)ae x € RY and (vj); is bounded in L*°(€2,). By (2.1), we have

/ ; [V, P42 Vi, Ve (v — v)dx
R

<2 ’ |Vun|l7(un)—1

un \Y Vi — UV u . 3.41
Ll’f)u(n)ll (RN) | | ¢|( J )|Lp( n) (RN) ( )

We have,

/ |V¢|p(un)
RN

vj — U|p(un) dx

Uj—U|p(u")d)C :/S'? |V¢|p(u,,)
k

0

S'/Qk (1+|V¢|p+) (|vj—v|p++|vj—v|f)dx.
0

By (2.2), it yields

lim sup||Ve|(v; —v " =0. 3.42
j*>+00n21t1)| | ¢|( J )|Lp( n)(RN) ( )

Since

/ Vi, |P#) dx < cqy, V> 1,
RN
then by (2.2)

sup |Vl/ln |[7(un)_l
n>1

plun) < +00. (343)
L plun)=1 (RN)

We deduce from (3.41), (3.42) and (3.43) that

lim lim Vit [P 72 Vi, Ve (v; — v)dx =0,
N

j—>+oon—>+o0 Jp

which implies that

lim  lim Vit [P "2 V1, Vb (u — vj)dx
N

j—>+oon—+00 Jp

= lim |V, |P“) 2 Vu, Ve (u, — v)dx.
N

n——+00 R
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The extensions of the other terms in (3.39) are immediate.
Fors > 0and w € WHPW(@RN)y ¢ WP (Qy), choosing v = u — sw as test
function in (3.40), it yields

s/ (f(x,u) + h)pwdx > s/ ¢ |Vu — sVw|P® 2 (Vu — sVw)Vwdx
RV RN
+s/ élu—swlP®2 (u — sw)wdx
RN

+ lim [Vitn|P# "2 Vu, Ve (u, — u)dx
N

n—+o0o Jp

+s lim |V, |P“) =2 Yy, Vowdx. (3.44)
N

n——+00 R

By (2.1), we have

/ ; [Vin P42V, Ve (1, — u)dx
R

< / Vit P [ty — ) V|
]RN

i — WV | pwn @yy - 3.45
LP(pu(n)ll(RN)H(un WV | Lpunm @) (3.45)

< 2 [Vt P!

On the other hand, by the Lebesgue dominated convergence theorem, we can easily
see that

A;N |y — u)Ve|P") dx — 0, n — +o0.
Hence, from (3.45) we infer
A;{N Vit |P# 72 Vu, Ve (up, — u)dx — 0, n — +00. (3.46)
Taking (3.46) into account, dividing by s > 0 and tending s to 0T in (3.44), we obtain

/ (f@x, 1) + h)pwdx > / ¢ |VulP“~2 VuVwdx + duP®=ydx
RV RN o

+ lim |Vin |P“) 2 Vu,, Vowdsx.
N

n—+oo Jp

Clearly, that last inequality holds also with (—w) instead of w. Therefore,

/ (f(x,u)+h)¢wdx=/ ¢|Vu|”(”)_2Vqudx+/ duP O ydx
RN RN RN

+ lim Vi |72 Vu, Vowdx.  (3.47)
N

n——+00 R
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At this step, we established the inequality (3.47) for all ¢ € X such that ¢ > 0 and
supp(¢) is compact. But, it is obvious that the same identity holds also for all ¢ € X
such that supp(¢) is compact. In particular, it holds forall ¢ € D(RV).Letn € D(RY)
be a cut-off function such that0 < n < 1, n(x) =0, if |x| > 2, n(x) = 1,if [x| < 1.
For an integer m > 1 and x € RV, set 7, (x) = 1 (%) . Plainly, there exists a positive
constant c¢s such that

1
Vi ()] = — \Vn (ﬁ){ <5 Vms1. VxeRV
m m m

Taking ¢ = n,, as test function in (3.47), it yields

/ (f(x’”)+h)’7MU’dx:/ nmIVul”(”)*ZVquder/ ntt? =V ipdx
RV RN -

N

+ lim [Viy P42V, Viwdx.  (3.48)
N

n—+o00 Jp

We have

/N | Vit |72 Vi, Vg wdx
R

< 2| [Vay P!

(un) V s |lw (un Ny . 349
Lpﬁm)—l(RN)H Nml - | ||Lp )(RN) ( )

By (3.43), we know that the sequence (| |V, [P 1 | Pplun) > is bounded. On
L pun)=T(RN) n
the other hand, by (2.2) we have

1
o

1V - 1wl | s ey < < /R AP dx)
1

+ (/N |V7’]m|p(u”) |w|p(un) dx> r . (350)
R

For m large enough, it yields

/ |V | P [ | PO dx = / |V [P | P dxe
RY m<lx|<2m

c5\P~
=(2) [l e
m m=<|x|<2m

< —Céf {x eRN, m < |x| §2m”
mpP
N
=9 yns1. 3.51)
mP

Combining (3.51) with (3.50), from (3.49) we get

N—p—
<cgm ",
n——4o00

lim/ Vi, |P#) =2y, Vi, wdx
RN
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which, since p~ > N, implies

lim (hm / |Vun|p(””)_2VunVnmwdx)=0. (3.52)
RN

m——+00 \ n——+00

Since w € WHP® (RN), then the functions ( f (x, u) +h)w, |Vu|?® =2 VuVw and
uP@=1y belong to L' (RY). By consequence, one can apply the Lebesgue dominated
convergence theorem to obtain that

lim / (f(x,u) + h)npwdx = / (f(x,u) + hHwdx, (3.53)
RN RN

m——+00
lim M |Vu|?® =2 VyuVwdx = / IVulPD=2VuVwdx, (3.54)
m—+00 JpN RN
and
lim nmup(”)flwdx=/ uP = lydx. (3.55)
m—+00 JpN RN

In view of (3.52),(3.53),(3.54) and (3.55), from (3.48) we conclude that

/ (f(x,u) + Hhwdx = / [Vu|P®=2 7y Vwdx
RN RN

+ | wP® lywdx, Vw e WHPE (RN,
RV ’
Since i # 0, then u # 0. This ends the proof of Theorem 1.2.

4 Proof of Theorem 1.4

Using the same arguments as in the first part of the proof of Theorem 1.2, we can
casily show that, for each n > 1, there exists u, € X = Wh?" ®RY) n wlr™ (RV)
such that u, > 0 and

/N Vi, | P02 Vuandx+/N ity [P@@=2
R R

1
4- (f Vi, |P' 2 Vu,,Vvdx+f |, P2 u,,vdx)
n RN RN

1 - _
+- </ |Vun|? ~2 Vu, Vvdx +f lun|?” 2 u,wdx)
n RN RN

=/ f(x,u,,)vdx—i—/ hvdx, Vv e X. 4.1)
RN RN
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Moreover, we have u, € L>®(R") and the sequence (u,), is bounded in L (R").
Furthermore, there exists a positive constant cg > 0 such that

/ |Wn|p<a(un>>dx+/ L) g
RN RN

1 p* P
o (s gy 07 ) < 090 ¥ = 1.
Proceeding as for the local case treated in Theorem 1.2, we can also prove that there
exists u € LP" (RV) N L®°@RN) N Wllo’cf (R™) such that, up to subsequence, u,—u
weakly in LP+(RN), up,—u weakly in WHP™ (@), Vk > 1, and u,(x) — u(x)
a.e. x € RV Since pT < oo, then the sequence (p(a(uy))), is bounded in R. By

the Bolzano-Weierstrass theorem, there is pg € R such that, up to a subsequence,
p(a(uy)) — po strongly in R. Arguing as for the claim (3.21), we can prove that

/ |Vu|P° dx +/ uPdx < +oo, ie.u € WHPORN).
RN RN

Finally, proceeding exactly as at the end of the proof of Theorem 1.2 (i.e., arguing
by approximation with the classical Sobolev space W70 (R") playing the role of the
Sobolev space of variable exponent W!»®) (RV)), we can see that

/ |Vu|Po—2 Vqudx—}—/ u|P°~% uvdx :/ (f(x,u) +h)vdx, Vv
RN RN RN

e WhroRN). 4.2)

In order to conclude the proof of Theorem 1.4, it remains to prove that pg = p(x(u)).
For n > 1, set p, = p(a(u,)). Without loss of generality, we can split the set

{Pn. n > 1}into {pgeny, n = 1} U{pym), n = 1}, where (pg(n))n and (py u))n are
two subsequences of (p,), such that

Pem) = po, and py @) < po, Vn > 1.

We claim that, up to a subsequence, (ug(,)), and (uy 1)), are both converging to u in

Wllu’f B (RM). Let ¢ € X be such that ¢ > 0 and supp(¢) is compact. First, observe
that, as for the identity (3.47), we can easily see that, for all w € X, we have

lim |Vu,,|p”_2Vu,,V¢wdx:/ (f (x, u) + h)pwdx
n—+00 JpN RN

—/ [Vu|P~2 VuVwepdx
RN

—/ uP~lpwdx. 4.3)
RN
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Taking v = ¢u as test function in (4.2), it yields
/ (f(x,u + hupdx = / ¢ |Vu|Po dx + / PuPodx
RY RV RY
+ f [Vu|P~2 VuVeudx. (4.4)
RN
Combining (4.3) (where we take w = u) and (4.4), we get

lim [Vin P2 Vu, Veudx = /
N

|VulP~2 VuVudx. 4.5)
n—400 R RN

Choosing v = ¢u, as test function in (4.1), it yields

/ ¢ |Vu,|Pn dx~|—/ |V, | P2 VuanSu,,dx—i—f ub" gdx
RN RN RN

1
+- </ |Vun|p+_2VunV¢undx+/ & |Vin|”" dx—i—/ u,f+qbdx)
RN RN RN

n
1 7 _ _
+-— </ [Vu,|? 72Vunv¢undx+/‘ ¢ |Vu,|? dx—i—/ ub ¢dx)
n RN RN RN
- / G + g “6)
R

By the boundedness of the sequence (i), in L®@®RYN), we have

/u,’,’+¢dx+/ u,f_¢dx
RN RN

By the Lebesgue’s dominated convergence theorem, we easily get

1

n

— 0, n > +o0. “4.7)

f (f (e, un)up + hup)pdx — / (f (x, wu + hu)gdx, 4.8)
RW R

/uf"¢dx—>/ uP¢pdx. 4.9)
RN RN

Moreover, using again the boundedness of (u,), in L®(RM), it yields

1 +_ C10 +_
- / \Viea P 2 Vu,Voupdx| < — [ |Vu,|P ~' V| dx
n RN n RN
+_1
i r
cit 2/l + i
<—nr" _|Vun|p+ N
n n LPT(RY)
c12
nrt
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Hence,
1
—/ IVunlff2 Vu,Vou,dx — 0, n — +oo0. 4.10)
n Jrny

Similarly,
1 -2
- [Vu,|? ~*Vu,Vou,dx — 0, n - +oo. 4.11)
n JrnN

On the other hand, by Holder’s inequality we have

Pn

pn—1
< (/ Vit P dx)
RN
1

x (/ V|7 iy — u|Pn dx)p" T ES!
RN

By the virtue of the Lebesgue’s dominated convergence theorem, it comes

‘/N |Vun P2 Vu, Ve (u, — u)dx
R

/ IVo|Pr |uy, — u|Prdx — 0, n — +oo.
RN
That fact together with the boundedness of the sequence ( fRN |V, |Pr dx)n gives
/ |Viun|P" =2 Vu, Ve (u, — u)dx — 0, n — +oo.
RN
But,
f |Vin|P" ™% Vu, Vu,dx :/ |Vun P2 Vu, Voudx
RN RN
4 [ 190177 Y, T —
RN
in view (4.5), we deduce that
/ [Viun P2 Vu,Vu,dx — / |Vu|P~2 VuVeudx. (4.12)
RN RV

Having in mind that ¢ > 0, taking (4.12), (4.11), (4.10), (4.9), (4.8) and (4.7) into
account, we can pass to the upper limit in (4.6) as n tends to 400 :

lim sup/ ¢ |Vuy|Prdx < / ¢ |Vu|P dx. (4.13)
RN RN

n——+00

Inequality (4.13) is valid for all nonnegative function ¢ € X having a compact support.
That fact immediately implies that

lim sup/ [Vu,|Prdx < / [VulP0dx, ¥V p > 0. (4.14)
lx|<p

n——+00 |x|<p
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Since pgn) = po, then one can apply Holder’s inequality to obtain

Po
po P 0 Pe
Vg |™ dx < [BO, p)| 75 Vg |75 dx )™ ¥
lx|<p |x|<p

>1,Vp>0, 4.15)

where B(0, p) = {x eRN, x| < ,0} . Having in mind that pg,) — po and using
(4.14), passing to the upper limit in (4.15), we infer

limsup/ | Vg ny | dxg/ |Vul|P0 dx. (4.16)
lxl<p

n——+00 |x|<p

Now, observing that pg > p~, it follows that wl-po (B(0, p)) is continuously embed-
ded into WP (B(0, p)). Since ug(y—u weakly in WP (B(0, p)), then ug () —u
weakly in wl.ro(B(0, p)), which implies that

lim inf/ | Vg™ dx > / |Vul|P0 dx. 4.17)
=00 Jixl<p lxl<p
Combining (4.17) and (4.16), we get
/ |Vugm|” dx — [VulP*dx, n — 4o0.
lx|<p |x|<p

Having in mind that

/ ué’?n)dx — uPodx,
[xl<p |x|<p

we deduce thatug(,) — O strongly in W1-Po(B(0, p)).Since py > p~, thenugp) — u
strongly in wL-P™(B(0, p)). Since p is arbitrary, then we can conclude that ug,) — u
strongly in Wllo’cp B (RM).

Let, as usual, ¢ € X be such that ¢ > 0 and supp(¢) is compact. Now, taking
v = ¢(u, — u) as test function in (4.1), it yields

/ |Vitn P2 Vun, Ve (u — u)dx +/ |Vitn P2 Vu, V(i — u)ddx
RN RN
+/ u,f”fl(un — u)pdx
RN
1

41 (/ Vit |”" =2 Vi, V ((y — u)p)dx +/ ul "y — u)¢dX>
]RN

n RN
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1

—I—l (/ IVun|? =2 Vu, V((u, — u)d)dx +/ ul Y, — u)d)dx)
n RN RN

=/ (f (s un) 4+ h)(un — u)pdx.
RN
(4.18)

Using the same arguments as previously (i.e., using the boundedness of the sequence
(), in L (RY) and the Lebesgue’s dominated convergence theorem), one can easily
see that

/ |Vun P2 Vu, Ve (u, —u)dx — 0, n — +o0,
RN

/ u,’,’”_l(un —u)pdx — 0, n — +o0,
RN

1 (/ Vit ? =2 Vit V (( — 1))dix +/ wl ", — u)¢dx)
RN

n RN
— 0, n > 400,

l <f |Vun|p__2 Vu,V((u, —u)p)dx +/ ugi_l(un — u)¢dx)
RN RN

n
— 0, n — +o0,

and

/N(f(x, un) + h)(up —u)pdx — 0, n — +o0.
R
From (4.18), we infer
/ |Vitn|P" =2 Vu, V(i — u)pdx — 0, n — +oo.
RN
In particular,
n 72
/N |Vaty 0|77 Vg Vg (ny — u)pdx — 0, n — +oo.  (4.19)
R

Next, we recall the following classical monotonicity inequalities: for all n1, ny €
RY we have

27— ol < (Im 1972 = el 0 ) (1 — ), Yg 22, (420)

(g—=Dln —ml? < ((Imlq_2 n

a4 2—¢
— Il ) O =) (Il ) T V< <2 @2
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From (4.20) and (4.21), we can also establish the following useful inequalities: for all
n1, 12 € RV, we have

Il —1ml? = q Iml? 2 nn —m) +eqlm —ml?, Yq =2, (4.22)
Im1? =l = q 21972 na(n1—n2)

’ 2 2
+c, Im—ml* (Im1? +1ml?) « , V1<g <2,
(4.23)

where ¢, and c; are two positive constants depending (continuously) only in g. See,
for example, [16].

Case 1: po > 2. Since py ) — po, then there exists ng > 1 large enough such that
Py > 2, ¥ n > ng. Applying inequality (4.22) with 71 = Vu and 12 = Viuy (), it
yields

/RN¢ [Vu|Pror dx — /RN ¢ [Vity | dx
ny—2
> Py /RN | Vity )| "™ Vit () V (= sty ) dx

terym /R LS|V y e —w[™ dx. (4.24)

Since ¢ |Vu|P¥® < ¢ (1 + |Vu|P?), V¥ n, then one can use the Lebesgue’s dominated
convergence theorem to obtain

/ ¢ |Vu|Pro dx —>/ ¢ |VulP dx, n — +oo. (4.25)
RN RN

Moreover, proceeding as for the sequence (pg(n))n (i-€., by taking v = duy (,) as test
function in (4.1)), we can easily show that

/ ¢|Vu¢(n)|p‘“”)dx—>/ & |Vu|P dx. (4.26)
RN RN

Combining (4.19), (4.25) and (4.26), after passing to the limit as n tends to 400 in
(4.24), we deduce that

/RN ¢ |Vym —w)|""™ dx — 0, n — +oo. (4.27)

We have,

Pym P P~

/ ¢|V(u¢<n>—u>|’)dxs</ ¢dx) ’ (f ¢|V<uw<n>—u>|”“’<”>dx)pw")~
RN RN RN
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From (4.27), it follows that
/ 1) |V(u1/,(,,) — M)|p7 dx - 0, n —> +oo.
RN

By the virtue of the Lebesgue’s dominated convergence Theorem, it comes
/ ¢|u¢(n)—u|p_dx—>0.
RN

Therefore, uy ) — u strongly in Wllo’c‘" C(RM).

Case 2: po < 2. In this case, pyn) < 2, ¥ n > 1. Applying inequality (4.23) with
N1 =Vuand ny = Vuy )y, it yields

/ ¢|Vu|1’w<n>dx—/ ¢ [Viryon|""™ dx
RN RN

Ir(n _2
> Py fRN | Vity oy [P Vit 0y V (= ) dx (4.28)

Py =2
+ g /RNWV(“WM —w)[* ([Vaty | + [Vu|Pver) 7o dx.

Using (4.19), (4.25) and (4.26), we deduce from (4.28) that

Pyr(m)—2
[ 819 =0 [Ty |+ 19ul50) P ax >
RN

n — +oo. (4.29)
We have
/ G|V @y —w)|"™ dx
RN

Py =2 2=Pym)

v
P40 (D |+ 190790) 5 (T2 (9l)

= fRN ¢ [V —u)

Py
2 Py —2 2
< (/RN PV gy = w|” (| Vg [+ [Vu|Pren) Py )

=Py )
2

( [, (Fpen | + |ww<»«>)dx> . (4.30)
R

Clearly,

sup /RN (IVitg o "' + [Vl Pro) dx < 4o0.

n>1
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By (4.29), inequality (4.30) leads to
f ¢ }V(uw(n) — u)|p"’(”) dx - 0, n > +o0.
RN

As in the previous case, we deduce that (uy (), is strongly convergent to u in
Wllo’cp B (RM). Hence, u, — u strongly in Wllo’cp B (RNY, Consequently, o (u,) — o(u)
in R and by the continuity of the function p, we conclude that p(a(u,)) — p(a(u)) =

po- This ends the proof of Theorem 1.4.
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