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Abstract
In this paper, we are concerned with an elliptic equation defined on R

N , N ≥ 1,
and involving the p(u)−Laplacian. When p(u) = p(u(x)), x ∈ R

N , i.e., when p
depends on the variable x ∈ R

N (through the unknown solution u), we say that we
are dealing with the local case of the problem. In this case the p(u)−Laplacian can be
considered as a new class of operators with variable exponents.When p(u) = p(α(u))

where α is a scalar function of the unknown solution u, we say that we are dealing
with the nonlocal case of the problem. In the present work, the issue of the existence
of nontrivial solution in the both cases is addressed.

Keywords p(u)−Laplacian · Schauder’s fixed point theorem · Variable exponent ·
Approximation · Existence result

Mathematics Subject Classification 35A01 · 35A25 · 35A35 · 35D30 · 35J15 · 35J60

1 Introduction and Statement of Main Results

When p(u) = p(u(x)), x ∈ R
N , N ≥ 1, then the problems involving the

p(u)−Laplacian represent a new class of equations with variable exponents whose
interest has been confirmed during last decades. Actually, this kind of nonlinear partial
differential equations has many applications in various branches of modern physics.
Foremost among these is themathematicalmodeling of electrorheological fluidswhich
have the property that their viscosity changes when exposed to an electric field. We
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can also mention the quasi-Newtonian fluids, the thermostor problem, the motion (of
flow) of a compressible or incompressible fluid in a porous media, image restoration,
or the phenomenon of elasticity. For the applied aspect of the study of problems with
variable exponents, we refer to [5, 12, 18, 19, 24].

But, the application of some numerical techniques to restore digital images has
proved that considering the case of variable exponents depending on the solution
u (or its derivatives) considerably reduces the noise of the restored image u. See
[8, 9, 20]. The same situation is observed when treating the problem of thermistor
which describes the electric current in a conductor that may change its properties in
dependence of temperature (see [4]).

When dealing with problems involving an exponent depending on the solution,
many obstacles mainly related to the theoretical well-posedeness of the problem itself
arise. Actually, comparing with similar ones defined in some classical functional
spaces (such as Sobolev space with constant p or variable exponent p(x) ), such
problems are not easy to study because their weak formulations cannot be written as
equations in terms of duality in a fixed Banach space. This observation can explain
the small number of works devoted to the study of elliptic and parabolic equations
involving an exponent of the type p(u) with local and nonlocal dependence of p on
u. The first one is due to B. Andreianov, M. Bendahmane and S. Ouaro who have
considered the problem

{
u − div

(|∇u|p(u)−2 ∇u
) = f , in �,

u = 0, on ∂�,
(1.1)

where � is some bounded domain of RN , N ≥ 2, f ∈ L1(�) and p : R → R

is Lipschitz continuous such that p− = inf
s∈R p(s) > N . In [1] and under the key

restriction p− > N , B. Andreianov, M. Bendahmane and S. Ouaro proved that (1.1)
is well-posed in L1(�) and, using some approximation method, they can establish the
existence of so-called narrow and broad weak solution. These kinds of solution are
suitable to the case when the source f is only integrable. The version of the problem
(1.1) with homogeneous Neumann boundary conditions has been treated in [17].

Recently, M. Chipot and H.B. de Oliveira proposed in [13] a new simple approach
to deal with a problem very similar to (1.1). More precisely, M. Chipot and H.B. de
Oliveira studied the problem

{−div
(|∇u|p(u)−2 ∇u

) = f , in �,

u = 0, on ∂�,
(1.2)

where � is a bounded domain of RN , N ≥ 2 with smooth boundary, p : R → R

is a Lipschitz continuous function such that p− > N , and f ∈ W−1,(p−)′(�). The
approach in [13] is mainly based on a perturbation of the problem (1.2) and the use
of the Schauder’s fixed point theorem to solve the approximated problem. Finally, a
process of passage to the limit in the spirit of [25] is carried out to prove the existence
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of aweak solution u of the problem (1.2) in the sense that u ∈ W 1,p(u)
0 (�) and satisfies

∫
�

|∇u|p(u)−2 ∇u∇vdx = 〈 f , v〉 , ∀ v ∈ W 1,p(u)
0 (�).

The nonlocal version of (1.2) has been also considered in [13]. More precisely, the
authors studied the problem

{−div
(|∇u|p(b(u))−2 ∇u

) = f , in �,

u = 0, on ∂�,
(1.3)

where p is merely bounded continuous and satisfies that 1 < p− < p(s), ∀ s ∈ R,

and b : W 1,p−
0 (�) → R sends bounded sets of W 1,p−

0 (�) into bounded sets of R.

Using the Browder’s fixed point theorem applied to some compact interval of R, M.
Chipot and H.B. de Oliveira proved that (1.3) has at least one weak solution u in the
sense that u ∈ W 1,p(b(u))

0 (�) and satisfies

∫
�

|∇u|p(b(u))−2 ∇u∇vdx = 〈 f , v〉 , ∀ v ∈ W 1,p(b(u))
0 (�).

This work has been completed in [23] where the authors treated the case when f ∈
L1(�) for which they prove the existence of an entropy solution. It seems that the work
of M. Chipot and H.B. de Oliveira had given a new impulse to the study of problems
involving exponents depending on the unknown solution. In [2], S. Antontsev and S.
Shmarev studied the homogeneous Dirichlet problem for the parabolic equation

ut − div
(
|∇u|p[u]−2 ∇u

)
= f , in QT = �×]0, T [,

where � ⊂ R
N , N ≥ 2, is a smooth domain, p [u] = p(l(u)), p is a given differ-

entiable function such that 2N
N+2 < p− ≤ p+ < 2, and sup

s∈R

∣∣p′(s)
∣∣ < +∞; l(u) =

∫
�

|u(x, t)|α dx, α ∈ [1, 2], and f ∈ L(p−)′(QT ).A result of existence and uniqueness

of a solution u ∈ C0
([0, T ]; L2(�)

)
, |∇u|p[u] ∈ L∞ (

0, T ; L1(�)
)
, ut ∈ L2(QT )

has been proved. This result has been extended in [3] to the case when the source f
is replaced by the nonlinear term f ((x, t), u, l(u)). In [4], S. Antontsev, S. Shmarev
and I. Kuzentsov treated the case when the exponent p is depending on the gradient of
u, i.e., when p[u] = p(l(|∇u|)). More recently, in [10] C. Allalou, K. Hilal and S.A.
Temghart have followed almost the same procedure as in [13] to treat the equation

{−div
(|∇u|p(u)−2 ∇u

) = f + g(u) |∇u|p(u)−1 , in �,

u = 0, on ∂�,

where � is a bounded domain of RN , N ≥ 2 with smooth boundary, f is given data
and p : R → R is a Lipschitz continuous function such that p− > N .
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The case of unbounded domain has been considered for the first time in [6] where
S. Aouaoui and A.E. Bahrouni studied the equation

−div(w1(x) |∇u|p(u)−2 ∇u) + w0(x) |u|p(u)−2 u = f (x, u), x ∈ R
N , N ≥ 2,

where p : R → R is a Lipschitz continuous function such that N < p− < p+ <

+∞; w0, w1 ∈ L1(RN ) and f is aCarathéodory function having a polynomial growth
with exponent lower than p− −1. A result of the existence of a nontrivial solution has
been established for the cases of local and nonlocal dependence of the exponent p on
the unknown solution. The introduction of the weights w1 and w2 and assuming that
they are both integrable allowed us to overcome the obstacle of constant functions not
being integrable over an unbounded domain of RN . Moreover, in contrast to [13, 23],
the source f is now a nonlinear term depending not only explicitly on x ∈ R

N but also
on the unknown value u(x). In [6], we used the Galerkin method to prove the existence
of the solution for the approximated problems and this for the local problem as well as
for the nonlocal one. Finally, we have to mention [7] where a local one-dimensional
equation (i.e a differential equation) involving the weighted p(u)−Laplacian has been
treated.

In the present work, we remove the weights and by this way, we are in presence
of the pure "unbounded domain version" of (1.2). Knowing that the presence of the
weights in [6] has been crucial to prove the existence of a nontrivial solution, obtaining
such a solution after removing them can be regarded as a more challenging task. For
instance, the boundedness of the approximated solution in W 1,p−

(RN ) cannot be
obtained. So, comparing to [6], many necessary changes are introduced. The main
idea of the proof is to use a double approximating schemes as well as some a priori
estimates (for example we establish a priori estimate in L∞(RN )). The passage to the
limit in the approximated problems needs some sophisticated arguments which gives
more interest to the problems considered in this article.

In this paper, we are concerned with two kinds of nonlinear problems. First, we
treat the following nonlinear equation:

− div
(
|∇u|p(u)−2 ∇u

)
+ |u|p(u)−2 u = f (x, u) + h(x), x ∈ R

N , N ≥ 2,

(1.4)

where p : R → R is a Lipschitz continuous function such that

N < p− = inf
s∈R p(s) < p+ = sup

s∈R
p(s) < +∞.

This equation is taken under the following assumptions:
(H1) f : RN × R → R is a Carathéodory function such that

| f (x, s)| ≤ g(x) |s|t , a.e. x ∈ R
N , ∀ s ∈ R,

where 0 < t < p− − 1, g ∈ L1(RN )∩ L∞(RN ), g(x) ≥ 0 a.e. x ∈ R
N . We assume

that f (x, s) = 0 a.e. x ∈ R
N , ∀ s ≤ 0.
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(H2) h ∈ L1(RN ) ∩ L∞(RN ), h �= 0, h(x) ≥ 0 a.e. x ∈ R
N .

Definition 1.1 A function u : RN → R is said to be a weak solution to the equation
(1.4) if it satisfies that

u ∈ W 1,p(u)(RN )=
{
v ∈ L1

loc(R
N ),

∫
RN

|v|p(u) dx<+∞,

∫
RN

|∇v|p(u) dx<+∞
}

,

and
∫
RN

|∇u|p(u)−2 ∇u∇vdx +
∫
RN

|u|p(u)−2 uvdx

=
∫
RN

f (x, u)vdx +
∫
RN

hvdx, ∀ v ∈ W 1,p(u)(RN ).

The first main result in this work is given by the following theorem.

Theorem 1.2 Assume that (H1) and (H2) hold. Then, there exists at least one non-
negative and nontrivial weak solution to the Eq. (1.4) in the sense of Definition
1.1.

The second part of this work is devoted to the study of the nonlocal version of (1.4).
More precisely, we are concerned with the problem:

−div
(
|∇u|p(α(u))−2 ∇u

)
+ |u|p(α(u))−2 u

= f (x, u) + h(x), in RN , N ≥ 2, (1.5)

where p : R → R is some continuous function such that 1 < p− < p+ <

+∞, α : W 1,p−
loc (RN ) → R is a continuous function, i.e., α satisfies the follow-

ing property: for all (un)n ⊂ W 1,p−
loc (RN ) and u ∈ W 1,p−

loc (RN ) such that un → u

strongly in W 1,p−
loc (RN ) (i.e., un → u strongly in W 1,p−

(K ) for all compact set K of
R

N ), α(un) → α(u). For example, one can choose

α(u) = ‖u‖W 1,p− (�)
, α(u) = |∇u|L p− (�)

, or α(u) = |u|L p− (�)
,

where � is a bounded domain of RN . Concerning the terms f and h, we keep the
same assumptions (H1) and (H2).

Definition 1.3 A function u : R
N → R is said to be a weak solution of (1.5) if

u ∈ W 1,p(α(u))(RN ) and

∫
RN

|∇u|p(α(u))−2 ∇u∇vdx +
∫
RN

|u|p(α(u))−2 uvdx =
∫
RN

f (x, u)vdx

+
∫
RN

hvdx, ∀ v ∈ W 1,p(α(u))(RN ).
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In contrast to the previous problem (1.4),

W 1,p(α(u))(RN ) =
{
u ∈ L p(α(u))(RN ), ∇u ∈

(
L p(α(u))(RN )

)N
}

is a classical Sobolev space. The second result in the present paper is given by the
following theorem:

Theorem 1.4 Under the assumptions (H1) and (H2), the problem (1.5) has at least
one weak solution in the sense of Definition 1.3.

2 Preliminaries

Denote by L0(RN ) the space of all R−valued measurable functions on R
N , and

C+(RN ) =
{
v ∈ C(RN ) ∩ L∞(RN ), inf

x∈RN
v(x) > 1

}
.

For q ∈ C+(RN ), set q+ = sup
x∈RN

q(x), and q− = inf
x∈RN

q(x), and we introduce the

variable exponent Lebesgue space

Lq(·)(RN ) =
{
u ∈ L0(RN ),

∫
RN

|u|q(x) dx < +∞
}

.

This space becomes a Banach, reflexive and separable space with respect to the
Luxemburg norm,

|u|Lq(·)(RN ) = inf

{
λ > 0,

∫
RN

∣∣∣∣u(x)

λ

∣∣∣∣
q(x)

dx ≤ 1

}
.

The following Hölder’s inequality holds,

∣∣∣∣
∫
RN

uvdx

∣∣∣∣ ≤ 2 |u|Lq(·)(RN ) |v|Lq′(·)(RN )
, (2.1)

for any u ∈ Lq(·)(RN ) and v ∈ Lq ′(·)(RN ), where q ′ ∈ C+(RN ) is such that 1
q ′(x) +

1
q(x) = 1, ∀ x ∈ R

N . Moreover, we have

min
{
|u|q−

Lq(·)(RN )
, |u|q+

Lq(·)(RN )

}
≤

∫
RN

|u|q(x) dx ≤ max
{
|u|q−

Lq(·)(RN )
, |u|q+

Lq(·)(RN )

}
.

(2.2)

Now, fix a measurable function u : R
N → R and set q = p(u). Hence,

W 1,p(u)(RN ) = W 1,q(·)(RN ).This space is equippedwith thewell knownLuxemburg
norm
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‖u‖W 1,q(·)(RN ) = inf

{
λ > 0,

∫
RN

(
|∇u|q(x) + |u|q(x)

λq(x)

)
dx ≤ 1

}
.

It is known that (W 1,q(·)(RN ), ‖ · ‖W 1,q(·)(RN )) becomes a Banach, reflexive and
separable space.

If v ∈ W 1,q(·)(RN ), (vn)n ⊂ W 1,q(·)(RN ), then the following relations hold true.

min
{
‖v‖q−

W 1,q(·)(RN )
, ‖v‖q+

W 1,q(·)(RN )

}

≤
∫
RN

(
|∇v|q(x) + |v|q(x)

)
dx

≤ max
{
‖v‖q−

W 1,q(·)(RN )
, ‖v‖q+

W 1,q(·)(RN )

}
,

‖vn − v‖W 1,q(·)(RN ) → 0 ⇔
∫
RN

(
|∇(vn − v)|q(x) + |vn − v|q(x)

)
dx

→ 0, n → +∞.

For more details, we can refer to [11, 14, 15].

Proposition 1 Let � be a bounded Lipschitz domain. Assume that u ∈ W 1,p(u)(�).

Then D(�) = {
v|�, v ∈ D(RN )

}
is dense in W 1,p(u)(�).

Proof Since� is bounded, then u ∈ W 1,p−
(�).Since p− > 1, then u ∈ C

0, 1− N
p− (�)

and there exists a constant C > 0 depending on p− and N such that

|u(x) − u(y)| ≤ C ‖u‖W 1,p− (�)
|x − y|1−

N
p− , ∀ x, y ∈ �.

By hypothesis, there exists a constant L > 0 such that

|p(u(x)) − p(u(y))| ≤ L |u(x) − u(y)| , ∀ x, y ∈ �.

Thus,

|p(u(x)) − p(u(y))| ≤ LC ‖u‖W 1,p− (�)
|x − y|1−

N
p− , ∀ x, y ∈ �.

Hence, there exists a constant C ′ > 0 such that

|p(u(x)) − p(u(y))| ≤ −C ′

log |x − y| ,

∀ x, y ∈ �, |x − y| ≤ 1

2
,

i.e the variable exponent p(u) is log-Hölder continuous. By [14, Theorem 9.1.7], we
deduce that D(�) is dense in W 1,p(u)(�). ��
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3 Proof of Theorem 1.2

Set X = W 1,p+
(RN ) ∩ W 1,p−

(RN ). We naturally equip the space X with the norm

‖u‖X = ‖u‖W 1,p+ (RN )
+ ‖u‖W 1,p− (RN )

, u ∈ X .

Lemma 1 For each ε > 0, there exists a function uε ∈ X such that

∫
RN

|∇uε |p(uε )−2 ∇uε∇vdx +
∫
RN

|uε |p(uε )−2 uεvdx

+ε

(∫
RN

|∇uε |p+−2 ∇uε∇vdx +
∫
RN

|uε |p+−2 uεvdx

)

+ε

(∫
RN

|∇uε |p−−2 ∇uε∇vdx +
∫
RN

|uε |p−−2 uεvdx

)

=
∫
RN

f (x, uε)vdx +
∫
RN

hvdx, ∀ v ∈ X .

Proof Let ε > 0 fixed. For w : RN → R a measurable function, define the operator
Aw : X → X∗ by

〈Awu, v〉 =
∫
RN

|∇u|p(w)−2 ∇u∇vdx +
∫
RN

|u|p(w)−2 uvdx

+ε

(∫
RN

|∇u|p+−2 ∇u∇vdx +
∫
RN

|u|p+−2 uvdx

)

+ε

(∫
RN

|∇u|p−−2 ∇u∇vdx +
∫
RN

|u|p−−2 uvdx

)
, u, v ∈ X .

Observe that Aw is well defined. In fact, for u, v ∈ X , we have
∣∣∣∣
∫
RN

|∇u|p(w)−2 ∇u∇vdx +
∫
RN

|u|p(w)−2 uvdx

∣∣∣∣
≤

∫
RN

|∇u|p(w)−1 |∇v| dx +
∫
RN

|u|p(w)−1 |v| dx

≤
∫
RN

|∇u|p−−1 |∇v| dx +
∫
RN

|∇u|p+−1 |∇v| dx

+
∫
RN

|u|p−−1 |v| dx +
∫
RN

|u|p+−1 |v| dx

≤ |∇u|p−−1

L p− (RN )
|∇v|L p− (RN )

+ |∇u|p+−1

L p+ (RN )
|∇v|L p+ (RN )

+ |u|p−−1

L p− (RN )
|v|L p− (RN )

+ |u|p+−1

L p+ (RN )
|v|L p+ (RN )

.

Hence, for u fixed in X , the linear mapping v �−→ 〈Awu, v〉 is in the topological dual
X∗. Clearly, Aw is coercive and continuous. Moreover, Aw is strictly monotone, i.e.,
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〈Awu1 − Awu2, u1 − u2〉 > 0, ∀ u1, u2 ∈ X , u1 �= u2.

On the other hand, for w ∈ L p−
(RN ) and v ∈ X , by Hölder’s inequality we have

∣∣∣∣
∫
RN

f (x, w)vdx

∣∣∣∣ ≤
∫
RN

g(x) |w|t |v| dx ≤ |g|
L

p−
p−−t−1 (RN )

|w|t
L p− (RN )

|v|L p− (RN )
.

Also,

∣∣∣∣
∫
RN

hvdx

∣∣∣∣ ≤ |h|
L

p−
p−−1 (RN )

|v|L p− (RN )
, ∀ v ∈ X .

Thus, ( f (·, w) + h) ∈ X∗. By the virtue of the Minty-Browder’s theorem (see [21,
Theorem 26.A]), we deduce that there exists a unique element uw ∈ X such that

Aw(uw) = f (·, w) + h in X∗.

In other words,

〈Awuw, v〉 =
∫
RN

( f (x, w) + h)vdx, ∀ v ∈ X . (3.1)

Taking v = uw in (3.1), we infer

∫
RN

|∇uw|p(w) dx +
∫
RN

|uw|p(w) dx

+ε

(∫
RN

|∇uw|p+
dx +

∫
RN

|uw|p+
dx

)

+ε

(∫
RN

|∇uw|p−
dx +

∫
RN

|uw|p−
dx

)

=
∫
RN

f (x, w)uwdx +
∫
RN

huwdx

≤
∫
RN

g |w|t |uw| dx +
∫
RN

huwdx .

Using Young’s inequality, it comes

ε
(
‖uw‖p+

W 1,p+ (RN )
+ ‖uw‖p−

W 1,p− (RN )

)

≤ ε

2
|uw|p−

L p−(RN )
+ c1,ε |h|

p−
p−−1

L
p−

p−−1 (RN )

+ c2,ε

∫
RN

g
p−

p−−1 |w|
tp−
p−−1 dx,
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where c1,ε and c2,ε are two positive constants depending on ε but not on w. Hence,

ε

2

(
‖uw‖p+

W 1,p+ (RN )
+ ‖uw‖p−

W 1,p− (RN )

)
≤ c1,ε |h|

p−
p−−1

L
p−

p−−1 (RN )

+c2,ε

∫
RN

g
p−

p−−1 |w|
tp−
p−−1 dx . (3.2)

Set

tp−

p− − 1
= θ, and g1(x) = (g(x))

p−
p−−1 , x ∈ R

N .

Now, we claim that W 1,p−
(RN ) is compactly embedded into the weighted Lebesgue

space

Lθ
g1(R

N ) =
{
u : RN → R measurable,

∫
RN

g1(x) |u(x)|θ dx < +∞
}

,

equipped with the norm u �−→ |u|Lθ
g1

(RN ) = (∫
RN g1(x) |u(x)|θ dx) 1

θ . For that aim,

take a sequence (un)n ⊂ W 1,p−
(RN ) such thatun⇀0weakly inW 1,p−

(RN ).Weshow
that, up to a subsequence, un → 0 strongly in Lθ

g1(R
N ). Observe that the sequence

(|un|θ )n is bounded in L p−
θ (RN ) and, up to a subsequence, is weakly convergent to 0 in

L
p−
θ (RN ). Since g ∈ L

p−
p−−1−t (RN ), then g1 ∈ L

p−
p−−θ (RN ) which is the topological

dual of L
p−
θ (RN ) which leads to

∫
RN

g1 |un|θ dx → 0, n → +∞.

Let C1 > 0 be a positive constant such that

|u|Lθ
g1

(RN ) ≤ C1 ‖u‖W 1,p− (RN )
, ∀ u ∈ W 1,p−

(RN ). (3.3)

Set

Kε =
{
w ∈ Lθ

g1(R
N ), |w|Lθ

g1
(RN ) ≤ αε

}
,

where αε is some positive constant to be fixed later. Define themapping Tε : Kε → Kε

by Tεw = uw given by (3.1). We choose αε > 0 such that Tε(Kε) ⊂ Kε . By (3.2),
there exist two positive constants c3,ε and c4,ε, independent of w, such that

‖uw‖W 1,p− (RN )
≤

(
c3,ε |h|

p−
p−−1

L
p−

p−−1 (RN )

+ c4,ε |w|θLθ
g1

(RN )

) 1
p−

.
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If w ∈ Kε, then

‖uw‖W 1,p− (RN )
≤

(
c3,ε |h|

p−
p−−1

L
p−

p−−1 (RN )

+ c4,εα
θ
ε

) 1
p−

. (3.4)

By (3.3) and (3.4), it yields

|uw|Lθ
g1

(RN ) ≤ C1

(
c3,ε |h|

p−
p−−1

L
p−

p−−1 (RN )

+ c4,εα
θ
ε

) 1
p−

, ∀ w ∈ Kε . (3.5)

Since θ
p− < 1, then if we choose αε > 0 large enough, we get

C1

(
c3,ε |h|

p−
p−−1

L
p−

p−−1 (RN )

+ c4,εα
θ
ε

) 1
p−

≤ αε.

In view of (3.5), we infer

|Tε(w)|Lθ
g1

(RN ) = |uw|Lθ
g1

(RN ) ≤ αε, ∀ w ∈ Kε .

Furthermore, sinceW 1,p−
(RN ) is compactly embedded into Lθ

g1(R
N ), it immediately

follows that Tε(Kε) is relatively compact. In the next step of the proof, we show that
the mapping Tε is continuous. To prove this, let us assume that (wn)n is a sequence of
Lθ
g1(R

N ) and w is a function in Lθ
g1(R

N ) such that wn → w strongly in Lθ
g1(R

N ). By
(3.2), we know that the sequence (uwn )n is bounded in X . Thus, there exists u ∈ X
such that, up to a subsequence, uwn⇀u weakly in X , uwn (x) → u(x) a.e. x ∈ R

N ,

and uwn → u strongly in Lθ
g1(R

N ). By monotonicity of the p−−Laplacian and the
p+−Laplacian, we have

〈
Awn (uwn ) − Awn (v), uwn − v

〉 ≥ 0, ∀ v ∈ X . (3.6)

Taking w = wn and (uwn − v) as test function in (3.1), then by (3.6), it yields

∫
RN

( f (x, wn) + h)(uwn − v)dx ≥
∫
RN

|∇v|p(wn)−2 ∇v∇(uwn − v)dx

+
∫
RN

|v|p(wn)−2 v(uwn − v)dx

+ε

∫
RN

|∇v|p+−2 ∇v∇(uwn − v)dx + ε

∫
RN

|v|p+−2 v(uwn − v)dx

+ε

∫
RN

|∇v|p−−2 ∇v∇(uwn − v)dx + ε

∫
RN

|v|p−−2 v(uwn − v)dx . (3.7)
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By the weak convergence of (uwn )n to u in X , we get

ε

∫
RN

|∇v|p+−2 ∇v∇(uwn − v)dx + ε

∫
RN

|v|p+−2 v(uwn − v)dx

+ε

∫
RN

|∇v|p−−2 ∇v∇(uwn − v)dx + ε

∫
RN

|v|p−−2 v(uwn − v)dx

→
ε

∫
RN

|∇v|p+−2 ∇v∇(u − v)dx + ε

∫
RN

|v|p+−2 v(u − v)dx

+ε

∫
RN

|∇v|p−−2 ∇v∇(u − v)dx + ε

∫
RN

|v|p−−2 v(u − v)dx, (3.8)

and ∫
RN

h(uwn − v)dx →
∫
RN

h(u − v)dx . (3.9)

Moreover, by the strong convergence of (wn)n to w in Lθ
g1(R

N ), one can easily see
that

∫
RN

f (x, wn)(uwn − v)dx →
∫
RN

f (x, w)(u − v)dx . (3.10)

Next, observe that

∣∣∣∣
∫
RN

(
|∇v|p(wn )−2 ∇v − |∇v|p(w)−2 ∇v

)
∇(uwn − v)dx

∣∣∣∣
≤

∫
RN

∣∣∣(|∇v|p(wn )−2 ∇v − |∇v|p(w)−2 ∇v
)

∇(uwn − v)

∣∣∣ dx
≤

∫
|∇v|≥1

∣∣∣(|∇v|p(wn )−2 ∇v − |∇v|p(w)−2 ∇v
)

∇(uwn − v)

∣∣∣ dx
+

∫
|∇v|<1

∣∣∣(|∇v|p(wn )−2 ∇v − |∇v|p(w)−2 ∇v
)

∇(uwn − v)

∣∣∣ dx

≤
(∫

|∇v|≥1

∣∣∣|∇v|p(wn )−2 ∇v − |∇v|p(w)−2 ∇v

∣∣∣
p+

p+−1

) p+−1
p+ (∫

RN

∣∣∇(uwn − v)
∣∣p+

dx

) 1
p+

+
(∫

|∇v|<1

∣∣∣|∇v|p(wn )−2 ∇v − |∇v|p(w)−2 ∇v

∣∣∣
p−

p−−1

) p−−1
p− (∫

RN

∣∣∇(uwn − v)
∣∣p−

dx

) 1
p−

.

(3.11)

For x ∈ R
N such that |∇v(x)| ≥ 1, we have

(|∇v(x)|p(wn)−1) p+
p+−1 ≤

|∇v(x)|p+
, ∀ n ≥ 1. Since wn(x) → w(x) a.e. x ∈ R

N , then one can apply
the Lebesgue’s dominated convergence theorem to prove that

∫
|∇v|≥1

∣∣∣|∇v|p(wn)−2 ∇v − |∇v|p(w)−2 ∇v

∣∣∣
p+

p+−1 dx → 0, n → +∞.
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Similarly,

∫
|∇v|<1

∣∣∣|∇v|p(wn)−2 ∇v − |∇v|p(w)−2 ∇v

∣∣∣
p−

p−−1 dx → 0, n → +∞.

Taking the boundedness of the sequence (uwn )n in W 1,p−
(RN ) and in W 1,p+

(RN )

into account, we immediately deduce from (3.11) that

∫
RN

(
|∇v|p(wn)−2 ∇v − |∇v|p(w)−2 ∇v

)
∇(uwn − v)dx → 0, n → +∞.

(3.12)

The weak convergence of (uwn )n to u in X together with (3.12) implies that

∫
RN

|∇v|p(wn)−2 ∇v∇(uwn − v)dx →
∫
RN

|∇v|p(w)−2 ∇v∇(u − v)dx . (3.13)

Similarly,

∫
RN

|v|p(wn)−2 v(uwn − v)dx →
∫
RN

|v|p(w)−2 v(u − v)dx . (3.14)

Combining (3.14), (3.13), (3.10), (3.9), (3.8) with (3.7), we obtain

∫
RN

( f (x, w) + h)(u − v)dx ≥
∫
RN

|∇v|p(w)−2 ∇v∇(u − v)dx

+
∫
RN

|v|p(w)−2 v(u − v)dx

+ε

∫
RN

|∇v|p+−2 ∇v∇(u − v)dx

+ε

∫
RN

|v|p+−2 v(u − v)dx

+ε

∫
RN

|∇v|p−−2 ∇v∇(u − v)dx

+ε

∫
RN

|v|p−−2 v(u − v)dx, ∀ v ∈ X .

(3.15)

Let z ∈ X and t ∈ R. Taking v = u − t z in (3.15), it yields

t
∫
RN

( f (x, w) + h)zdx ≥ t
∫
RN

|∇u − t∇z|p(w)−2 ∇(u − t z)∇zdx

+t
∫
RN

|u − t z|p(w)−2 (u − t z)zdx
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+εt
∫
RN

|∇u − t∇z|p+−2 ∇(u − t z)∇zdx

+εt
∫
RN

|u − t z|p+−2 (u − t z)zdx

+εt
∫
RN

|∇u − t∇z|p−−2 ∇(u − t z)∇zdx

+εt
∫
RN

|u − t z|p−−2 (u − t z)zdx .

Dividing by t > 0 and then tending t to 0+ in that last inequality, we obtain

∫
RN

( f (x, w) + h)zdx ≥
∫
RN

|∇u|p(w)−2 ∇u∇zdx +
∫
RN

|u|p(w)−2 uzdx

+ε

∫
RN

|∇u|p+−2 ∇u∇zdx + ε

∫
RN

|u|p+−2 uzdx

+ε

∫
RN

|∇u|p−−2 ∇u∇zdx + ε

∫
RN

|u|p−−2 uzdx .

(3.16)

Plainly, inequality (3.16) is also valid for (−z) instead of z. Therefore,

∫
RN

( f (x, w) + h)zdx =
∫
RN

|∇u|p(w)−2 ∇u∇zdx +
∫
RN

|u|p(w)−2 uzdx

+ε

∫
RN

|∇u|p+−2 ∇u∇zdx + ε

∫
RN

|u|p+−2 uzdx

+ε

∫
RN

|∇u|p−−2 ∇u∇zdx+ε

∫
RN

|u|p−−2 uzdx, ∀ z ∈ X .

Consequently, u = uw which ends the proof of the continuity of the mapping Tε .Now,
one can use the Schauder’s fixed point theorem (see [22, Theorem 2.A]) to deduce the
existence of w̃ ∈ Kε such that Tε(w̃) = uw̃ = w̃. Hence,

∫
RN

|∇uw̃|p(uw̃)−2 ∇uw̃∇vdx +
∫
RN

|uw̃|p(uw̃)−2 uw̃vdx

+ε

(∫
RN

|∇uw̃|p+−2 ∇uw̃∇vdx +
∫
RN

|uw̃|p+−2 uw̃vdx

)

+ε

(∫
RN

|∇uw̃|p−−2 ∇uw̃∇vdx +
∫
RN

|uw̃|p−−2 uw̃vdx

)

=
∫
RN

f (x, uw̃)vdx +
∫
RN

hvdx, ∀ v ∈ X .

This ends the proof of Lemma 1. ��
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Choosing ε = 1
n , n ≥ 1, in Lemma 1 we deduce that there exists un ∈ X such that

∫
RN

|∇un|p(un)−2 ∇un∇vdx +
∫
RN

|un|p(un)−2 unvdx

+1

n

(∫
RN

|∇un|p+−2 ∇un∇vdx +
∫
RN

|un|p+−2 unvdx

)

+1

n

(∫
RN

|∇un|p−−2 ∇un∇vdx +
∫
RN

|un|p−−2 unvdx

)

=
∫
RN

f (x, un)vdx +
∫
RN

hvdx, ∀ v ∈ X . (3.17)

Since h ≥ 0 and f (x, un(x)) = 0 for a.e. x ∈ R
N such that un(x) ≤ 0, by taking

v = u−
n = min(un, 0) as test function in (3.17), we can easily see that un(x) ≥ 0 a.e.

x ∈ R
N .

Lemma 2 There exists M > 0 independent of n such that un(x) ≤ M a.e x ∈
R

N , ∀ n ≥ 1.

Proof Let M ≥ 1 be a real number. Taking v = (un − M)+ = max(un − M, 0) as
test function in (3.17) and having in mind that

∫
RN

|∇un|p(un)−2 ∇un∇(un − M)+dx =
∫
RN

∣∣∇(un − M)+
∣∣p(un) dx ≥ 0,

∫
RN

|∇un|p+−2 ∇un∇(un − M)+dx =
∫
RN

∣∣∇(un − M)+
∣∣p+

dx ≥ 0,

∫
RN

|∇un|p−−2 ∇un∇(un − M)+dx =
∫
RN

∣∣∇(un − M)+
∣∣p−

dx ≥ 0,

and that un ≥ 0, it yields

∫
RN

u p−−1
n (un − M)+dx ≤

∫
RN

u p(un)−1
n (un − M)+dx

≤
∫
RN

(gutn + h)(un − M)+dx

≤ t

p− − 1

∫
RN

u p−−1
n (un − M)+dx

+
(
1 − t

p− − 1

)∫
RN

g
p−−1

p−−1−t (un − M)+dx

+
∫
RN

h(un − M)+dx .
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Hence,

(
1 − t

p− − 1

) ∫
RN

(
u p−−1
n − Mp−−1

)
(un − M)+dx

≤
(
1 − t

p− − 1

) ∫
RN

(
g

p−−1
p−−1−t + h

1 − t
p−−1

− Mp−−1

)
(un − M)+dx .

(3.18)

Choosing M > 1 large enough such that

|g|
p−−1

p−−1−t

L∞(RN )
+ |h|L∞(RN )

1 − t
p−−1

≤ Mp−−1,

it follows from (3.18) that

∫
RN

(
u p−−1
n − Mp−−1

)
(un − M)+dx ≤ 0,

which implies that un ≤ M . This ends the proof of Lemma 2. ��
The completion of the proof of theorem 1.2
Taking v = un as test function in (3.17), we get

∫
RN

|∇un|p(un) dx +
∫
RN

u p(un)
n dx + 1

n
‖un‖p+

W 1,p+ (RN )
+ 1

n
‖un‖p−

W 1,p− (RN )

=
∫
RN

f (x, un)undx +
∫
RN

hundx, ∀ n ≥ 1.

(3.19)

By Young’s inequality, we have

∣∣∣∣
∫
RN

( f (x, un) + h)undx

∣∣∣∣ ≤
∫
RN

gut+1
n dx +

∫
RN

hundx

≤
∫
un≤1

gut+1
n dx

+
∫
un≥1

gut+1
n dx +

∫
un≤1

hundx +
∫
un≥1

hundx

≤ |g|L1(RN ) + 1

4

∫
un≥1

u p−
n dx

+c1

∫
un≥1

g
p−

p−−t−1 dx + |h|L1(RN )

+1

4

∫
un≥1

u p−
n dx + c2

∫
un≥1

h
p−

p−−1 dx
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≤ |g|L1(RN ) + |h|L1(RN )

+1

2

∫
un≥1

u p(un)
n dx

+c1

∫
RN

g
p−

p−−t−1 dx + c2

∫
RN

h
p−

p−−1 dx

≤ c3 + 1

2

∫
RN

u p(un)
n dx .

Putting that last inequality in (3.19), we obtain

∫
RN

|∇un|p(un) dx +
∫
RN

u p(un)
n dx + 1

n
‖un‖p+

W 1,p+ (RN )
+1

n
‖un‖p−

W 1,p− (RN )

≤ c4, ∀ n ≥ 1.

(3.20)

By Lemma 2, we get

∫
RN

u p+
n dx =

∫
RN

u p(un)
n u p+−p(un)

n dx ≤ Mp+
∫
RN

u p(un)
n dx ≤ c4M

p+, ∀ n ≥ 1.

Thus, (un)n is bounded in L p+
(RN ) and by consequence there exists u ∈ L p+

(RN )

such that, up to a subsequence, un⇀u weakly in L p+
(RN ). Now, for k ∈ N, k ≥ 1,

set �k = {
x ∈ R

N , |x | < k
}
. We have

∫
�k

|∇un|p−
dx =

∫
�k∩{|∇un |≥1}

|∇un|p−
dx +

∫
�k∩{|∇un |<1}

|∇un|p−
dx

≤
∫

�k

|∇un|p(un) dx + |�k |
≤ c4 + |�k | , ∀ n ≥ 1.

It follows that, for every k > 0, there exists a subsequence (uϕk (n))n of (un)n and vk ∈
W 1,p−

(�k) such that uϕk (n)⇀vk weakly in W 1,p−
(�k). In particular, uϕk (n) → vk in

D′(�k). But we know that un⇀u weakly in L p+
(RN ). Thus, we immediately deduce

that u|�k = vk . In particular, u ∈ W 1,p−
loc (RN ). Now, by standard diagonal argument,

we can extract from (un)n a subsequence (independent of k ), still denoted by (un)n,
such that un⇀u weakly in W 1,p−

(�k), ∀ k ≥ 1 and un(x) → u(x) a.e. x ∈ R
N .

Consequently, u(x) ≥ 0 a.e. x ∈ R
N . Now, we claim that

∫
RN

|∇u|p(u) dx +
∫
RN

u p(u)dx < +∞. (3.21)
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For that aim, set qn(x) = p(un(x)) and q(x) = p(u(x)). For k > 0, set wk =
q min

{
uq−1, kq−1

}
. By the virtue of Young’s inequality, it yields

unwk ≤ uqnn + qn − 1

q
q ′
n

n

w
q ′
n

k , ∀ k > 0, ∀ n ≥ 1,

where q ′
n = qn

qn−1 . Let ζ ∈ D(RN ) be such that 0 ≤ ζ ≤ 1. Thus,

∫
RN

ζunwkdx ≤
∫
RN

ζuqnn dx +
∫
RN

qn − 1

q
q ′
n

n

ζw
q ′
n

k dx, ∀ k > 0, ∀ n ≥ 1.

Tending n to +∞ (using the Lebesgue’s dominated convergence theorem) and having
(3.20) in mind, we get∫

RN
ζuwkdx ≤ c4 +

∫
RN

q − 1

qq ′ ζw
q ′
k dx .

Consequently,

∫
u≤k

qζuqdx +
∫
u>k

qkq−1ζudx

≤ c4 +
∫
u≤k

(q − 1)ζuqdx +
∫
u>k

(q − 1)kqζdx .

We infer, ∫
u≤k

ζuqdx +
∫
u>k

kqζdx ≤ c4.

Passing to the limit as k tends to +∞ in that last inequality, we obtain∫
RN

ζuqdx ≤ c4.

Since ζ is arbitrary in
{
v ∈ D(RN ), 0 ≤ v ≤ 1

}
, we immediately deduce that∫

RN
uqdx ≤ c4.

In order to prove that

∫
RN

|∇u|q dx ≤ c4,

one can proceed exactly as previously by considering the vector

Wk =
{
q∇u |∇u|q−2 , if |∇u| ≤ k,

qkq−1 ∇u
|∇u| , if |∇u| > k.
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Hence, the claim (3.21) holds. In particular, we find again that u ∈ W 1,p−
loc (RN ).

Let v ∈ X and φ ∈ X be such that φ ≥ 0 and supp(φ) is compact. Taking (un −v)φ

as test function in (3.17), we infer

∫
RN

f (x, un)(un − v)φdx +
∫
RN

h(un − v)φdx

=
∫
RN

φ |∇un|p(un)−2 ∇un∇(un − v)dx +
∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx

+
∫
RN

u p(un)−1
n (un − v)φdx + 1

n

∫
RN

φ |∇un|p+−2 ∇un∇(un − v)dx

+1

n

∫
RN

|∇un|p+−2 ∇un∇φ(un − v)dx + 1

n

∫
RN

u p+−1
n (un − v)φdx

+1

n

∫
RN

φ |∇un|p−−2 ∇un∇(un − v)dx + 1

n

∫
RN

|∇un|p−−2 ∇un∇φ(un − v)dx

+1

n

∫
RN

u p−−1
n (un − v)φdx

=
∫
RN

φ
(
|∇un|p(un)−2 ∇un − |∇v|p(un)−2 ∇v

)
∇(un − v)dx

+
∫
RN

φ |∇v|p(un)−2 ∇v∇(un − v)dx +
∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx

+
∫
RN

(
u p(un)−1
n − |v|p(un)−2 v

)
φ(un − v)dx +

∫
RN

|v|p(un)−2 vφ(un − v)dx

+1

n

∫
RN

φ
(
|∇un|p+−2 ∇un − |∇v|p+−2 ∇v

)
∇(un − v)dx

+1

n

∫
RN

φ |∇v|p+−2 ∇v∇(un − v)dx + 1

n

∫
RN

|∇un|p+−2 ∇un∇φ(un − v)dx

+1

n

∫
RN

(
u p+−1
n − |v|p+−2 v

)
φ(un − v)dx + 1

n

∫
RN

|v|p+−2 vφ(un − v)dx

+1

n

∫
RN

φ
(
|∇un|p−−2 ∇un − |∇v|p−−2 ∇v

)
∇(un − v)dx

+1

n

∫
RN

φ |∇v|p−−2 ∇v∇(un − v)dx + 1

n

∫
RN

|∇un|p−−2 ∇un∇φ(un − v)dx

+1

n

∫
RN

(
u p−−1
n − |v|p−−2 v

)
φ(un − v)dx + 1

n

∫
RN

|v|p−−2 vφ(un − v)dx .

(3.22)

Forgetting the nonnegative terms in the right-hand side of the identity (3.22), we get

∫
RN

f (x, un)(un − v)φdx +
∫
RN

h(un − v)φdx

≥
∫
RN

φ |∇v|p(un)−2 ∇v∇(un − v)dx +
∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx

123



123 Page 20 of 36 S. Aouaoui

+
∫
RN

|v|p(un)−2 vφ(un − v)dx + 1

n

∫
RN

φ |∇v|p+−2 ∇v∇(un − v)dx

+1

n

∫
RN

|∇un|p+−2 ∇un∇φ(un − v)dx + 1

n

∫
RN

|v|p+−2 vφ(un − v)dx

+1

n

∫
RN

φ |∇v|p−−2 ∇v∇(un − v)dx + 1

n

∫
RN

|∇un|p−−2 ∇un∇φ(un − v)dx

+1

n

∫
RN

|v|p−−2 vφ(un − v)dx . (3.23)

We have
∣∣∣∣1n

∫
RN

φ |∇v|p+−2 ∇v∇(un − v)dx

∣∣∣∣
≤ |φ|∞

n

∫
RN

|∇v|p+−1 |∇(un − v)| dx

≤ |φ|∞
n

(∫
RN

|∇v|p+
dx

) p+−1
p+

(∫
RN

|∇(un − v)|p+
dx

) 1
p+

= |φ|∞
(
1

n

) p+−1
p+

(
1

n

) 1
p+

(∫
RN

|∇v|p+
dx

) p+−1
p+

(∫
RN

|∇(un − v)|p+
dx

) 1
p+

≤ |φ|∞
(
1

n

) p+−1
p+

(
1

n
‖un − v‖p+

W 1,p+ (RN )

) 1
p+ ‖v‖p+−1

W 1,p+ (RN )
. (3.24)

By (3.20), we know that

sup
n≥1

(
1

n
‖un‖p+

W 1,p+ (RN )

)
< +∞.

Then, from (3.24), we obtain

1

n

∫
RN

φ |∇v|p+−2 ∇v∇(un − v)dx → 0, n → +∞. (3.25)

Similarly,

1

n

∫
RN

φ |v|p+−2 v(un − v)dx → 0, n → +∞, (3.26)

1

n

∫
RN

φ |∇v|p−−2 ∇v∇(un − v)dx → 0, n → +∞, (3.27)

and,

1

n

∫
RN

φ |v|p−−2 v(un − v)dx → 0, n → +∞. (3.28)
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Now, note that f (x, un(x))(un(x) − v(x))φ(x) → f (x, u(x))(u(x) − v(x))φ(x),
a.e. x ∈ R

N .Using the boundedness of (un)n in L∞(RN ) and taking into account that
g ∈ L1(RN ), one can easily apply the Lebesgue’s dominated convergence theorem to
immediately deduce that

∫
RN

f (x, un)(un − v)φdx →
∫
RN

f (x, u)(u − v)φdx, n → +∞. (3.29)

Similarly,

∫
RN

h(un − v)φdx →
∫
RN

h(u − v)φdx, n → +∞. (3.30)

In view of (3.30), (3.29), (3.28), (3.27), (3.26) and (3.25), one can pass to the limit in
(3.23) as n tends to +∞, and finally obtain

∫
RN

f (x, u)(u − v)φdx +
∫
RN

h(u − v)φdx

≥ lim
n→+∞

∫
RN

φ |∇v|p(un)−2 ∇v∇(un − v)dx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx

+ lim
n→+∞

∫
RN

φ |v|p(un)−2 v(un − v)dx . (3.31)

Let k0 > 0 be such that supp(φ) ⊂ �k0 = {
x ∈ R

N , |x | < k0
}
. Assume that v ∈

X ∩ W 1,s(�k0) where s = p+−1
p−−1 p

− > p+. We have

∣∣∣∣
∫
RN

φ
(
|∇v|p(un)−2 ∇v − |∇v|p(u)−2 ∇v

)
∇(un − v)dx

∣∣∣∣

≤
(∫

RN
φ

∣∣∣ |∇v|p(un)−2 ∇v − |∇v|p(u)−2 ∇v

∣∣∣
p−

p−−1 dx

) p−−1
p−

×
(∫

RN
φ |∇(un − v)|p−

dx

) 1
p−

. (3.32)

Observe that

φ

∣∣∣ |∇v|p(un)−2 ∇v − |∇v|p(u)−2 ∇v

∣∣∣
p−

p−−1

≤ φ2
p−

p−−1 |∇v|
p−(p+−1)

p−−1 1{|∇v|≥1} + φ2
p−

p−−11{|∇v|≤1}

≤ φ2
p−

p−−1

(
1 + |∇v|

p−(p+−1)
p−−1

)
.
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Taking into account that, for a.e. x ∈ R
N , p(un(x)) → p(u(x)) as n → +∞, then

we can apply the Lebesgue dominated convergence theorem to get

∫
RN

φ

∣∣∣ |∇v|p(un)−2 ∇v − |∇v|p(u)−2 ∇v

∣∣∣
p−

p−−1 dx → 0, n → +∞.

Having in mind that the sequence (un)n is bounded inW 1,p−
(�k), ∀ k ≥ 1, we infer

sup
n≥1

∫
RN

φ |∇(un − v)|p−
dx < +∞.

By (3.32), it follows∫
RN

φ
(
|∇v|p(un)−2 ∇v − |∇v|p(u)−2 ∇v

)
∇(un − v)dx → 0,

n → +∞. (3.33)

In a similar way, we get∫
RN

φ
(
|v|p(un)−2 v − |v|p(u)−2 v

)
(un − v)dx → 0, n → +∞. (3.34)

In view of (3.34) and (3.33), from (3.31), it comes

∫
RN

f (x, u)(u − v)φdx +
∫
RN

h(u − v)φdx

≥ lim
n→+∞

∫
RN

φ |∇v|p(u)−2 ∇v∇(un − v)dx

+ lim
n→+∞

∫
RN

φ |v|p(u)−2 v(un − v)dx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx . (3.35)

It is easy to see that the linear mapping

ξ �−→
∫
RN

φ |∇v|p(u)−2 ∇v∇ξdx,

is in the topological dual of W 1,p−
(�k0). Indeed, for v ∈ X ∩ W 1,s(�k0) and ξ ∈

W 1,p−
(�k0), we have

∣∣∣∣
∫
RN

φ |∇v|p(u)−2 ∇v∇ξdx

∣∣∣∣ ≤
∫

�k0

φ |∇v|p(u)−1 |∇ξ | dx

≤
(∫

�k0

|∇ξ |p−
dx

) 1
p−

(∫
�k0

φ |∇v|
(p(u)−1)p−

p−−1 dx

) p−−1
p−
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≤
(∫

�k0

|∇ξ |p−
dx

) 1
p−

(∫
�k0

φ

(
1 + |∇v|

(p+−1)p−
p−−1

)
dx

) p−−1
p−

.

Since (un)n is weakly convergent to u in W 1,p−
(�k0), then

lim
n→+∞

∫
RN

φ |∇v|p(u)−2 ∇v∇(un − v)dx

= lim
n→+∞

∫
�k0

φ |∇v|p(u)−2 ∇v∇(un − v)dx

=
∫

�k0

φ |∇v|p(u)−2 ∇v∇(u − v)dx

=
∫
RN

φ |∇v|p(u)−2 ∇v∇(u − v)dx . (3.36)

Similarly,

lim
n→+∞

∫
RN

φ |v|p(u)−2 v(un − v)dx =
∫
RN

φ |v|p(u)−2 v(u − v)dx . (3.37)

Inserting (3.37) and (3.36) in (3.35), we obtain

∫
RN

( f (x, u) + h)(u − v)φdx ≥
∫
RN

φ |∇v|p(u)−2 ∇v∇(u − v)dx

+
∫
RN

φ |v|p(u)−2 v(u − v)dx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx .

(3.38)

In particular,∫
RN

( f (x, u) + h)(u − v)φdx

≥
∫
RN

φ |∇v|p(u)−2 ∇v∇(u − v)dx +
∫
RN

φ |v|p(u)−2 v(u − v)dx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx, ∀ v ∈ D(RN ).

(3.39)

Next, we claim that the inequality (3.39) can be extended toW 1,p(u)(�k0) in the sense
that ∫

RN
( f (x, u) + h)(u − v)φdx
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≥
∫
RN

φ |∇v|p(u)−2 ∇v∇(u − v)dx +
∫
RN

φ |v|p(u)−2 v(u − v)dx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx, ∀ v ∈ W 1,p(u)(�k0).

(3.40)

To see that, let v ∈ W 1,p(u)(�k0). By Proposition 1, there exists a sequence (v j ) j ⊂
D(RN ) such that v j |�k0

→ v strongly inW 1,p(u)(�k0). Clearly, up to a subsequence,

v j (x) → v(x) a.e. x ∈ R
N and (v j ) j is bounded in L∞(�k0). By (2.1), we have∣∣∣∣

∫
RN

|∇un|p(un)−2 ∇un∇φ(v j − v)dx

∣∣∣∣
≤ 2

∣∣∣ |∇un|p(un)−1
∣∣∣
L

p(un )
p(un )−1 (RN )

∣∣ |∇φ| (v j − v)
∣∣
L p(un )(RN )

. (3.41)

We have,∫
RN

|∇φ|p(un) ∣∣v j − v
∣∣p(un) dx =

∫
�k0

|∇φ|p(un) ∣∣v j − v
∣∣p(un) dx

≤
∫

�k0

(
1+ |∇φ|p+) (∣∣v j−v

∣∣p+ + ∣∣v j − v
∣∣p−)

dx .

By (2.2), it yields

lim
j→+∞ sup

n≥1

∣∣ |∇φ| (v j − v)
∣∣
L p(un )(RN )

= 0. (3.42)

Since ∫
RN

|∇un|p(un) dx ≤ c4, ∀ n ≥ 1,

then by (2.2)

sup
n≥1

∣∣∣ |∇un|p(un)−1
∣∣∣
L

p(un )
p(un )−1 (RN )

< +∞. (3.43)

We deduce from (3.41), (3.42) and (3.43) that

lim
j→+∞ lim

n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(v j − v)dx = 0,

which implies that

lim
j→+∞ lim

n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v j )dx

= lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − v)dx .
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The extensions of the other terms in (3.39) are immediate.
For s > 0 and w ∈ W 1,p(u)(RN ) ⊂ W 1,p(u)(�k0), choosing v = u − sw as test

function in (3.40), it yields

s
∫
RN

( f (x, u) + h)φwdx ≥ s
∫
RN

φ |∇u − s∇w|p(u)−2 (∇u − s∇w)∇wdx

+s
∫
RN

φ |u − sw|p(u)−2 (u − sw)wdx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − u)dx

+s lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φwdx . (3.44)

By (2.1), we have

∣∣∣∣
∫
RN

|∇un|p(un)−2 ∇un∇φ(un − u)dx

∣∣∣∣
≤

∫
RN

|∇un|p(un)−1 |(un − u)∇φ| dx

≤ 2
∣∣∣ |∇un|p(un)−1

∣∣∣
L

p(un )
p(un )−1 (RN )

| |(un − u)∇φ| |L p(un )(RN ) . (3.45)

On the other hand, by the Lebesgue dominated convergence theorem, we can easily
see that

∫
RN

|(un − u)∇φ|p(un) dx → 0, n → +∞.

Hence, from (3.45) we infer

∫
RN

|∇un|p(un)−2 ∇un∇φ(un − u)dx → 0, n → +∞. (3.46)

Taking (3.46) into account, dividing by s > 0 and tending s to 0+ in (3.44), we obtain

∫
RN

( f (x, u) + h)φwdx ≥
∫
RN

φ |∇u|p(u)−2 ∇u∇wdx +
∫
RN

φu p(u)−1wdx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φwdx .

Clearly, that last inequality holds also with (−w) instead of w. Therefore,

∫
RN

( f (x, u) + h)φwdx =
∫
RN

φ |∇u|p(u)−2 ∇u∇wdx +
∫
RN

φu p(u)−1wdx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇φwdx . (3.47)
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At this step, we established the inequality (3.47) for all φ ∈ X such that φ ≥ 0 and
supp(φ) is compact. But, it is obvious that the same identity holds also for all φ ∈ X
such that supp(φ) is compact. In particular, it holds for allφ ∈ D(RN ).Let η ∈ D(RN )

be a cut-off function such that 0 ≤ η ≤ 1, η(x) = 0, if |x | ≥ 2, η(x) = 1, if |x | ≤ 1.
For an integer m ≥ 1 and x ∈ R

N , set ηm(x) = η
( x
m

)
. Plainly, there exists a positive

constant c5 such that

|∇ηm(x)| = 1

m

∣∣∣∇η
( x

m

)∣∣∣ ≤ c5
m

, ∀ m ≥ 1, ∀ x ∈ R
N .

Taking φ = ηm as test function in (3.47), it yields∫
RN

( f (x, u) + h)ηmwdx =
∫
RN

ηm |∇u|p(u)−2 ∇u∇wdx +
∫
RN

ηmu
p(u)−1wdx

+ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇ηmwdx . (3.48)

We have ∣∣∣∣
∫
RN

|∇un|p(un)−2 ∇un∇ηmwdx

∣∣∣∣
≤ 2

∣∣∣ |∇un|p(un)−1
∣∣∣
L

p(un )
p(un )−1 (RN )

| |∇ηm | · |w| |L p(un )(RN ) . (3.49)

By (3.43), we know that the sequence

(∣∣ |∇un|p(un)−1
∣∣
L

p(un )
p(un )−1 (RN )

)
n
is bounded. On

the other hand, by (2.2) we have

| |∇ηm | · |w| |L p(un )(RN ) ≤
(∫

RN
|∇ηm |p(un) |w|p(un) dx

) 1
p+

+
(∫

RN
|∇ηm |p(un) |w|p(un) dx

) 1
p−

. (3.50)

For m large enough, it yields∫
RN

|∇ηm |p(un) |w|p(un) dx =
∫
m≤|x |≤2m

|∇ηm |p(un) |w|p(un) dx

≤
(c5
m

)p− ∫
m≤|x |≤2m

|w|p(un)∞ dx

≤ c6
mp−

∣∣∣{x ∈ R
N , m ≤ |x | ≤ 2m

}∣∣∣
= c7mN

mp− , ∀ n ≥ 1. (3.51)

Combining (3.51) with (3.50), from (3.49) we get

∣∣∣∣ lim
n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇ηmwdx

∣∣∣∣ ≤ c8m
N−p−
p+ ,
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which, since p− > N , implies

lim
m→+∞

(
lim

n→+∞

∫
RN

|∇un|p(un)−2 ∇un∇ηmwdx

)
= 0. (3.52)

Since w ∈ W 1,p(u)(RN ), then the functions ( f (x, u) + h)w, |∇u|p(u)−2 ∇u∇w and
u p(u)−1w belong to L1(RN ).By consequence, one can apply the Lebesgue dominated
convergence theorem to obtain that

lim
m→+∞

∫
RN

( f (x, u) + h)ηmwdx =
∫
RN

( f (x, u) + h)wdx, (3.53)

lim
m→+∞

∫
RN

ηm |∇u|p(u)−2 ∇u∇wdx =
∫
RN

|∇u|p(u)−2 ∇u∇wdx, (3.54)

and

lim
m→+∞

∫
RN

ηmu
p(u)−1wdx =

∫
RN

u p(u)−1wdx . (3.55)

In view of (3.52),(3.53),(3.54) and (3.55), from (3.48) we conclude that

∫
RN

( f (x, u) + h)wdx =
∫
RN

|∇u|p(u)−2 ∇u∇wdx

+
∫
RN

u p(u)−1wdx, ∀ w ∈ W 1,p(u)(RN ).

Since h �= 0, then u �= 0. This ends the proof of Theorem 1.2.

4 Proof of Theorem 1.4

Using the same arguments as in the first part of the proof of Theorem 1.2, we can
easily show that, for each n ≥ 1, there exists un ∈ X = W 1,p+

(RN ) ∩ W 1,p−
(RN )

such that un ≥ 0 and

∫
RN

|∇un|p(α(un))−2 ∇un∇vdx +
∫
RN

|un|p(α(un))−2 unvdx

+1

n

(∫
RN

|∇un|p+−2 ∇un∇vdx +
∫
RN

|un|p+−2 unvdx

)

+1

n

(∫
RN

|∇un|p−−2 ∇un∇vdx +
∫
RN

|un|p−−2 unvdx

)

=
∫
RN

f (x, un)vdx +
∫
RN

hvdx, ∀ v ∈ X . (4.1)
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Moreover, we have un ∈ L∞(RN ) and the sequence (un)n is bounded in L∞(RN ).

Furthermore, there exists a positive constant c9 > 0 such that

∫
RN

|∇un|p(α(un)) dx +
∫
RN

u p(α(un))
n dx

+1

n

(
‖un‖p+

W 1,p+ (RN )
+ ‖un‖p−

W 1,p− (RN )

)
≤ c9, ∀ n ≥ 1.

Proceeding as for the local case treated in Theorem 1.2, we can also prove that there

exists u ∈ L p+
(RN ) ∩ L∞(RN ) ∩ W 1,p−

loc (RN ) such that, up to subsequence, un⇀u

weakly in L p+
(RN ), un⇀u weakly in W 1,p−

(�k), ∀ k ≥ 1, and un(x) → u(x)
a.e. x ∈ R

N . Since p+ < +∞, then the sequence (p(α(un)))n is bounded in R. By
the Bolzano-Weierstrass theorem, there is p0 ∈ R such that, up to a subsequence,
p(α(un)) → p0 strongly in R. Arguing as for the claim (3.21), we can prove that

∫
RN

|∇u|p0 dx +
∫
RN

u p0dx < +∞, i.e. u ∈ W 1,p0(RN ).

Finally, proceeding exactly as at the end of the proof of Theorem 1.2 (i.e., arguing
by approximation with the classical Sobolev spaceW 1,p0(RN ) playing the role of the
Sobolev space of variable exponent W 1,p(u)(RN )), we can see that

∫
RN

|∇u|p0−2 ∇u∇vdx +
∫
RN

|u|p0−2 uvdx =
∫
RN

( f (x, u) + h)vdx, ∀ v

∈ W 1,p0(RN ). (4.2)

In order to conclude the proof of Theorem 1.4, it remains to prove that p0 = p(α(u)).

For n ≥ 1, set pn = p(α(un)). Without loss of generality, we can split the set
{pn, n ≥ 1} into {

pξ(n), n ≥ 1
} ∪ {

pψ(n), n ≥ 1
}
, where (pξ(n))n and (pψ(n))n are

two subsequences of (pn)n such that

pξ(n) ≥ p0, and pψ(n) < p0, ∀ n ≥ 1.

We claim that, up to a subsequence, (uξ(n))n and (uψ(n))n are both converging to u in

W 1,p−
loc (RN ). Let φ ∈ X be such that φ ≥ 0 and supp(φ) is compact. First, observe

that, as for the identity (3.47), we can easily see that, for all w ∈ X , we have

lim
n→+∞

∫
RN

|∇un|pn−2 ∇un∇φwdx =
∫
RN

( f (x, u) + h)φwdx

−
∫
RN

|∇u|p0−2 ∇u∇wφdx

−
∫
RN

u p0−1φwdx . (4.3)
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Taking v = φu as test function in (4.2), it yields

∫
RN

( f (x, u + h)uφdx =
∫
RN

φ |∇u|p0 dx +
∫
RN

φu p0dx

+
∫
RN

|∇u|p0−2 ∇u∇φudx . (4.4)

Combining (4.3) (where we take w = u) and (4.4), we get

lim
n→+∞

∫
RN

|∇un|pn−2 ∇un∇φudx =
∫
RN

|∇u|p0−2 ∇u∇φudx . (4.5)

Choosing v = φun as test function in (4.1), it yields

∫
RN

φ |∇un|pn dx +
∫
RN

|∇un|pn−2 ∇un∇φundx +
∫
RN

u pn
n φdx

+1

n

(∫
RN

|∇un|p+−2 ∇un∇φundx +
∫
RN

φ |∇un|p+
dx +

∫
RN

u p+
n φdx

)

+1

n

(∫
RN

|∇un|p−−2 ∇un∇φundx +
∫
RN

φ |∇un|p−
dx +

∫
RN

u p−
n φdx

)

=
∫
RN

( f (x, un)un + hun)φdx . (4.6)

By the boundedness of the sequence (un)n in L∞(RN ), we have

1

n

∣∣∣∣
∫
RN

u p+
n φdx +

∫
RN

u p−
n φdx

∣∣∣∣ → 0, n → +∞. (4.7)

By the Lebesgue’s dominated convergence theorem, we easily get

∫
RN

( f (x, un)un + hun)φdx →
∫
RN

( f (x, u)u + hu)φdx, (4.8)
∫
RN

u pn
n φdx →

∫
RN

u p0φdx . (4.9)

Moreover, using again the boundedness of (un)n in L∞(RN ), it yields

1

n

∣∣∣∣
∫
RN

|∇un|p+−2 ∇un∇φundx

∣∣∣∣ ≤ c10
n

∫
RN

|∇un|p+−1 |∇φ| dx

≤ c11
n

n
p+−1
p+

(
1

n
|∇un|p

+
L p+ (RN )

) p+−1
p+

≤ c12

n
1
p+

, ∀ n ≥ 1.
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Hence,

1

n

∫
RN

|∇un|p+−2 ∇un∇φundx → 0, n → +∞. (4.10)

Similarly,

1

n

∫
RN

|∇un|p−−2 ∇un∇φundx → 0, n → +∞. (4.11)

On the other hand, by Hölder’s inequality we have∣∣∣∣
∫
RN

|∇un|pn−2 ∇un∇φ(un − u)dx

∣∣∣∣ ≤
(∫

RN
|∇un|pn dx

) pn
pn−1

×
(∫

RN
|∇φ|pn |un − u|pn dx

) 1
pn

, ∀ n ≥ 1.

By the virtue of the Lebesgue’s dominated convergence theorem, it comes∫
RN

|∇φ|pn |un − u|pn dx → 0, n → +∞.

That fact together with the boundedness of the sequence
(∫

RN |∇un|pn dx
)
n gives∫

RN
|∇un|pn−2 ∇un∇φ(un − u)dx → 0, n → +∞.

But, ∫
RN

|∇un|pn−2 ∇un∇φundx =
∫
RN

|∇un|pn−2 ∇un∇φudx

+
∫
RN

|∇un|pn−2 ∇un∇φ(un − u)dx,

in view (4.5), we deduce that
∫
RN

|∇un|pn−2 ∇un∇φundx →
∫
RN

|∇u|p0−2 ∇u∇φudx . (4.12)

Having in mind that φ ≥ 0, taking (4.12), (4.11), (4.10), (4.9), (4.8) and (4.7) into
account, we can pass to the upper limit in (4.6) as n tends to +∞ :

lim sup
n→+∞

∫
RN

φ |∇un|pn dx ≤
∫
RN

φ |∇u|p0 dx . (4.13)

Inequality (4.13) is valid for all nonnegative functionφ ∈ X having a compact support.
That fact immediately implies that

lim sup
n→+∞

∫
|x |<ρ

|∇un|pn dx ≤
∫

|x |<ρ

|∇u|p0 dx, ∀ ρ > 0. (4.14)
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Since pξ(n) ≥ p0, then one can apply Hölder’s inequality to obtain

∫
|x |<ρ

∣∣∇uξ(n)

∣∣p0 dx ≤ |B(0, ρ)|1−
p0

pξ(n)

(∫
|x |<ρ

∣∣∇uξ(n)

∣∣pξ(n) dx

) p0
pξ(n)

, ∀ n

≥ 1, ∀ ρ > 0, (4.15)

where B(0, ρ) = {
x ∈ R

N , |x | < ρ
}
. Having in mind that pξ(n) → p0 and using

(4.14), passing to the upper limit in (4.15), we infer

lim sup
n→+∞

∫
|x |<ρ

∣∣∇uξ(n)

∣∣p0 dx ≤
∫

|x |<ρ

|∇u|p0 dx . (4.16)

Now, observing that p0 ≥ p−, it follows thatW 1,p0(B(0, ρ)) is continuously embed-
ded into W 1,p−

(B(0, ρ)). Since uξ(n)⇀u weakly in W 1,p−
(B(0, ρ)), then uξ(n)⇀u

weakly in W 1,p0(B(0, ρ)), which implies that

lim inf
n→+∞

∫
|x |<ρ

∣∣∇uξ(n)

∣∣p0 dx ≥
∫

|x |<ρ

|∇u|p0 dx . (4.17)

Combining (4.17) and (4.16), we get

∫
|x |<ρ

∣∣∇uξ(n)

∣∣p0 dx →
∫

|x |<ρ

|∇u|p0 dx, n → +∞.

Having in mind that

∫
|x |<ρ

u p0
ξ(n)dx →

∫
|x |<ρ

u p0dx,

wededuce thatuξ(n) → 0 strongly inW 1,p0(B(0, ρ)).Since p0 ≥ p−, thenuξ(n) → u

strongly inW 1,p−
(B(0, ρ)). Since ρ is arbitrary, then we can conclude that uξ(n) → u

strongly in W 1,p−
loc (RN ).

Let, as usual, φ ∈ X be such that φ ≥ 0 and supp(φ) is compact. Now, taking
v = φ(un − u) as test function in (4.1), it yields

∫
RN

|∇un|pn−2 ∇un∇φ(un − u)dx +
∫
RN

|∇un|pn−2 ∇un∇(un − u)φdx

+
∫
RN

u pn−1
n (un − u)φdx

+1

n

(∫
RN

|∇un|p+−2 ∇un∇((un − u)φ)dx +
∫
RN

u p+−1
n (un − u)φdx

)
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+1

n

(∫
RN

|∇un|p−−2 ∇un∇((un − u)φ)dx +
∫
RN

u p−−1
n (un − u)φdx

)

=
∫
RN

( f (x, un) + h)(un − u)φdx .

(4.18)

Using the same arguments as previously (i.e., using the boundedness of the sequence
(un)n in L∞(RN ) and the Lebesgue’s dominated convergence theorem), one can easily
see that∫

RN
|∇un|pn−2 ∇un∇φ(un − u)dx → 0, n → +∞,

∫
RN

u pn−1
n (un − u)φdx → 0, n → +∞,

1

n

(∫
RN

|∇un|p+−2 ∇un∇((un − u)φ)dx +
∫
RN

u p+−1
n (un − u)φdx

)

→ 0, n → +∞,

1

n

(∫
RN

|∇un|p−−2 ∇un∇((un − u)φ)dx +
∫
RN

u p−−1
n (un − u)φdx

)

→ 0, n → +∞,

and ∫
RN

( f (x, un) + h)(un − u)φdx → 0, n → +∞.

From (4.18), we infer

∫
RN

|∇un|pn−2 ∇un∇(un − u)φdx → 0, n → +∞.

In particular,

∫
RN

∣∣∇uψ(n)

∣∣pψ(n)−2 ∇uψ(n)∇(uψ(n) − u)φdx → 0, n → +∞. (4.19)

Next, we recall the following classical monotonicity inequalities: for all η1, η2 ∈
R

N , we have

21−q |η1 − η2|q ≤
(
|η1|q−2 η1 − |η2|q−2 η2

)
(η1 − η2), ∀ q ≥ 2, (4.20)

(q − 1) |η1 − η2|q ≤
((

|η1|q−2 η1

− |η2|q−2 η2

)
(η1 − η2)

) q
2 (|η1|q + |η2|q

) 2−q
2 , ∀ 1 < q < 2. (4.21)
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From (4.20) and (4.21), we can also establish the following useful inequalities: for all
η1, η2 ∈ R

N , we have

|η1|q − |η2|q ≥ q |η2|q−2 η2(η1 − η2) + cq |η1 − η2|q , ∀ q ≥ 2, (4.22)

|η1|q − |η2|q ≥ q |η2|q−2 η2(η1−η2)

+c′
q |η1−η2|2

(|η1|q + |η2|q
) q−2

q , ∀ 1 < q < 2,

(4.23)

where cq and c′
q are two positive constants depending (continuously) only in q. See,

for example, [16].
Case 1: p0 > 2. Since pψ(n) → p0, then there exists n0 ≥ 1 large enough such that
pψ(n) > 2, ∀ n ≥ n0. Applying inequality (4.22) with η1 = ∇u and η2 = ∇uψ(n), it
yields

∫
RN

φ |∇u|pψ(n) dx −
∫
RN

φ
∣∣∇uψ(n)

∣∣pψ(n) dx

≥ pψ(n)

∫
RN

∣∣∇uψ(n)

∣∣pψ(n)−2 ∇uψ(n)∇(u − uψ(n))dx

+cpψ(n)

∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣pψ(n) dx . (4.24)

Since φ |∇u|pψ(n) ≤ φ
(
1 + |∇u|p0) , ∀ n, then one can use the Lebesgue’s dominated

convergence theorem to obtain

∫
RN

φ |∇u|pψ(n) dx →
∫
RN

φ |∇u|p0 dx, n → +∞. (4.25)

Moreover, proceeding as for the sequence (pξ(n))n (i.e., by taking v = φuψ(n) as test
function in (4.1)), we can easily show that

∫
RN

φ
∣∣∇uψ(n)

∣∣pψ(n) dx →
∫
RN

φ |∇u|p0 dx . (4.26)

Combining (4.19), (4.25) and (4.26), after passing to the limit as n tends to +∞ in
(4.24), we deduce that

∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣pψ(n) dx → 0, n → +∞. (4.27)

We have,

∫
RN

φ
∣∣∇(uψ(n)−u)

∣∣p−
dx≤

(∫
RN

φdx

) pψ(n)−p−
p−

(∫
RN

φ
∣∣∇(uψ(n)−u)

∣∣pψ(n) dx

) p−
pψ(n)

.

123



123 Page 34 of 36 S. Aouaoui

From (4.27), it follows that

∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣p−
dx → 0, n → +∞.

By the virtue of the Lebesgue’s dominated convergence Theorem, it comes

∫
RN

φ
∣∣uψ(n) − u

∣∣p−
dx → 0.

Therefore, uψ(n) → u strongly in W 1,p−
loc (RN ).

Case 2: p0 ≤ 2. In this case, pψ(n) < 2, ∀ n ≥ 1. Applying inequality (4.23) with
η1 = ∇u and η2 = ∇uψ(n), it yields

∫
RN

φ |∇u|pψ(n) dx −
∫
RN

φ
∣∣∇uψ(n)

∣∣pψ(n) dx

≥ pψ(n)

∫
RN

∣∣∇uψ(n)

∣∣pψ(n)−2 ∇uψ(n)∇(u − uψ(n))dx

+ c′
pψ(n)

∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣2 (∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
) pψ(n)−2

pψ(n) dx .

(4.28)

Using (4.19), (4.25) and (4.26), we deduce from (4.28) that

∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣2 (∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
) pψ(n)−2

pψ(n) dx → 0,

n → +∞. (4.29)

We have∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣pψ(n) dx

=
∫
RN

φ
∣∣∇(uψ(n)−u)

∣∣pψ(n)
(∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
) pψ(n)−2

2
(∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
) 2−pψ(n)

2 dx

≤
(∫

RN
φ

∣∣∇(uψ(n) − u)
∣∣2 (∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
) pψ(n)−2

pψ(n)

) pψ(n)
2

(∫
RN

(∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
)
dx

) 2−pψ(n)
2

. (4.30)

Clearly,

sup
n≥1

∫
RN

(∣∣∇uψ(n)

∣∣pψ(n) + |∇u|pψ(n)
)
dx < +∞.
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By (4.29), inequality (4.30) leads to

∫
RN

φ
∣∣∇(uψ(n) − u)

∣∣pψ(n) dx → 0, n → +∞.

As in the previous case, we deduce that (uψ(n))n is strongly convergent to u in

W 1,p−
loc (RN ). Hence, un → u strongly in W 1,p−

loc (RN ). Consequently, α(un) → α(u)

inR and by the continuity of the function p,we conclude that p(α(un)) → p(α(u)) =
p0. This ends the proof of Theorem 1.4.
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