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Abstract
Let �p ∈ (0, 1]n and H �p

A (Rn) be the anisotropic mixed-norm Hardy spaces associated
with a dilation matrix A. In this paper, we obtain a Mihlin multiplier theorem on
anisotropic Hardy spaces H �p

A (Rn), when �p depends on eccentricities of A and the
level of regularity of a multiplier symbol. This extends both the multiplier theorems
in classical Hardy spaces and anisotropic Hardy spaces.

Keywords Multiplier · Anisotropic mixed-norm Hardy space · Fourier transform
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1 Introduction and theMain Result

Let A be an n× n matrix, and | det A| = b. We say that A is a dilationmatrix if all the
eigenvalues λ of A satisfy |λ| > 1. Let λ1, . . . , λn be the eigenvalues of A, ordered
by their norm from smallest to largest. Define λ− and λ+, such that 1 < λ− < |λ1|
and |λn| < λ+. Then ln λ±/ ln b are called the eccentricities of dilation A. We point
out that, if A is diagonalizable, we may let λ− := |λ1| and λ+ := |λn|. Otherwise,
we may choose them sufficiently close to these equalities in accordance with what we
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need in our arguments. In addition, there is a sequence of nested ellipsoids {Bj } j∈Z
associated with A such that

Bj+1 = A(Bj ) and |B0| = 1.

If A∗ is the adjoint of A, then A∗ is also a dilation matrix with the same determinant b
and eigenvalues as well as eccentricities, with its own nested ellipsoids {B∗

j } j∈Z. We
refer the reader to [6] for more properties about the dilation.

Let S(Rn) be the Schwartz space, and let S ′(Rn) be the space of tempered distri-
butions. Given a multi-index �p := (p1, . . . , pn) with pi ∈ (0,∞) for any 1 ≤ i ≤ n,
the mixed-norm Lebesgue space L �p(Rn) consists of all measurable functions f , for
which

‖ f ‖L �p(Rn) :=
∥
∥
∥. . . ‖ f ‖L p1

x1
. . .

∥
∥
∥
L pn
xn

:=
{

∫

R

. . .

[∫

R

| f (x1, . . . , xn)|p1 dx1
] p2

p1
. . . dxn

} 1
pn

< ∞.

If p1 = . . . = pn = p, then the space L �p(Rn) reduces to the classical Lebesgue space
L p(Rn). The anisotropic mixed-norm Hardy space H �p

A (Rn) associated with dilation
matrix A is defined as

H �p
A (Rn) :=

{

f ∈ S ′(Rn) : ‖ f ‖
H �p
A (Rn)

:=
∥
∥
∥
∥
sup
k∈Z

| f ∗ ϕk |
∥
∥
∥
∥
L �p(Rn)

< ∞
}

,

where ϕ ∈ S(Rn) satisfies
∫

Rn ϕ(x) dx 	= 0 and ϕk(x) := bkϕ(Akx) for any k ∈ Z.
If p1 = . . . = pn = p and the dilation matrix

A :=

⎛

⎜
⎜
⎜
⎝

2 0 . . . 0
0 2 . . . 0
...

...
...

0 0 . . . 2

⎞

⎟
⎟
⎟
⎠

, (1.1)

then the anisotropic mixed-norm Hardy space H �p
A (Rn) coincides with the classical

Hardy space H p(Rn) of Fefferman-Stein [20].
The mixed-norm Lebesgue space L �p(Rn) was systematically studied by Benedek-

Panzone in [5], which goes back to Hörmander [28]. After that, many works on these
spaces have been done due to the importance of L �p(Rn), not only in harmonic analysis
but also in partial differential equations and geometric inequalities. For instance, in
a series of recent papers of Chen-Sun [9–11], they studied the Hardy-Littlewood-
Sobolev inequalities on L �p(Rn) and characterized the boundedness of multilinear
fractional integral operators on L �p(Rn). When A is an anisotropic diagonal matrix,
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precisely,

A :=

⎛

⎜
⎜
⎜
⎝

2a1 0 . . . 0
0 2a2 . . . 0
...

...
...

0 0 . . . 2an

⎞

⎟
⎟
⎟
⎠

(1.2)

with 1 ≤ ai < ∞ for 1 ≤ i ≤ n, the anisotropic mixed-norm Hardy space H �p
A (Rn)

was first introduced and studied by Cleanthous-Georgiadis-Nielsen [15], and further
developed by the author and his collaborators in [29–31, 33, 35]. This anisotropic
mixed-norm Hardy space H �p

A (Rn) associated with the diagonal matrix (1.2) was later
extended to the general dilation matrix A (no need to be diagonal matrix or even no
need to be diagonalizable) by the author and his collaborators in [32]. Here we refer
to [13, 14, 17, 22–24, 26, 27, 34, 36, 37, 43, 44] for more detials on (anisotropic)
mixed-norm function spaces and their applications.

This paper is devoted to studying the Mihlin multiplier theorem on the Hardy space
H �p

A (Rn). To state the multiplier theorem, let f̂ and f̌ denote the Fourier transform
and inverse Fourier transform of f , respectively. To be exact, when f ∈ S(Rn), then

f̂ (ξ) :=
∫

Rn
f (x)e−2π ı x ·ξ dx and f̌ (ξ) := f̂ (−ξ) =

∫

Rn
f (x)e2π ı x ·ξ dx, ∀ξ ∈ R

n,

where ı := √−1; when f ∈ S ′(Rn), 〈 f̂ , φ〉 := 〈 f , φ̂〉 for any φ ∈ S(Rn). Let
m ∈ L∞(Rn). We say the measurable function m is a Fourier multiplier on H �p

A (Rn)

if its associated Fourier multiplier operator Tm , initially defined by

Tm f (x) := (m f̂ )∨(x) =
∫

Rn
m(ξ) f̂ (ξ)e2π ı x ·ξ dξ, ∀x ∈ R

n,

for f ∈ L2(Rn) ∩ H �p
A (Rn), is bounded on H �p

A (Rn). For a dilation matrix A, define
the dilation operator DA by

DA f (x) = f (Ax), ∀x ∈ R
n .

For any� ∈ R
n and N ∈ N∪{0}, denote byCN (�) the set of all functions on�whose

derivatives with order no greater than N exist and are continuous. Then the following
anisotropic Mihlin condition was introduced in [4, 47]. Let A be a dilation matrix and
m ∈ CN (Rn\{0}) with N ∈ N∪{0} =: Z+. We saym satisfies the anisotropic Mihlin
condition of order N if there exists a constantC := CN such that for any multi-indices
α with |α| ≤ N ,

∣
∣
∣D

− j
A∗ ∂α

ξ D
j
A∗m(ξ)

∣
∣
∣ ≤ C, ∀ξ ∈ B∗

j+1 \ B∗
j , j ∈ Z, (1.3)
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where, for any j ∈ Z, D j
A∗m(ξ) := m((A∗) jξ).Henceforth,we always useC to denote

a positive constant which may depend on the dilation matrix A and scalar parameters
such as n and �p, andmay vary from line to line, but independent of themain parameters
such as f ∈ H �p

A (Rn). Given a vector �p := (p1, . . . , pn), let p− := min{p1, . . . , pn}
and p+ := max{p1, . . . , pn}. For any s ∈ R, we always use �s� to denote the largest
integer no greater than s.

Now we can state the Mihlin multiplier theorem on the Hardy space H �p
A (Rn) as

follows.

Theorem 1.1 Let A be a dilation matrix, �p ∈ (0, 1]n, N ∈ N and

M :=
(

N
ln λ−
ln b

− 1

)
ln b

ln λ+
.

If m satisfies the anisotropic Mihlin condition of order N and Tm is the Fourier

multiplier operator, then Tm : H �p
A (Rn) → H �p

A (Rn) is bounded, provided �p satisfies

0 ≤ 1

p−
− 1 < �M� (ln λ−)2

ln b ln λ+
.

Recall that the study of the Fourier multiplier theory was initiated by Mihlin [42]
and Hörmander [28] in the late 1950s. Then the multiplier theory for Triebel-Lizorkin
spaces andBesov-Lipschitz spaceswas considered by Peetre [45] in 1975; for classical
Hardy spaces was studied by Taibleson-Weiss [46] and Baernstein-Sawyer [3]; for
Hardy spaces in the parabolic setting was inversitaged by Calderón-Torchinsky [7,
8]; for anisotropic Hardy spaces was obtained by Wang [47]. Additionally, Fourier
multipliers (or more general operators) on the anisotropic mixed-norm setting were
well studied by Cleanthous et al. in [16] as well as by Georgiadis et al. in [21, 23, 25],
and the extensions on manifolds, Lie groups or discrete settings were considered in
[1, 2, 12, 18, 19, 21, 38, 39].

Next we give some remarks on Theorem 1.1.

Remark 1.2 Let p1 = . . . = pn = p and the dilation matrix A be as in (1.1). Then
p− = p, λ− = λ+ = 2, b = | det A| = 2n and the Hardy space H �p

A (Rn) goes back
to the classical Hardy space H p(Rn), and hence M = N − n and n

N < p ≤ 1. This
theorem, in this case, recovers the classical case.

Remark 1.3 Let p1 = . . . = pn = p. Then the anisotropic mixed-norm Hardy space
H �p

A (Rn) reduces to the anisotropic Hardy space H p
A (Rn), and hence Theorem 1.1

coincides with the result in anisotropic Hardy space setting.

Remark 1.4 Let the dilationmatrix A be as in (1.1). Thenλ− = λ+ = 2,b = | det A| =
2n and the Hardy space H �p

A (Rn) goes back to the isotropic mixed-norm Hardy space
H �p(Rn), and hence M = N − n and n

N < p− ≤ 1. We point out that, even in this
case, Theorem 1.1 is also new.
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Finally,wemake some conventions on notation. The notation f � gmeans f ≤ Cg
and, if f � g � f , then we write f ∼ g. We also use the following convention: If
f ≤ Cg and g = h or g ≤ h, we then write f � g ∼ h or f � g � h, rather than
f � g = h or f � g ≤ h.

2 Proof of theMain Theorem

ToproveTheorem1.1, themain ingredients are the atomsof H �p
A (Rn) introduced in [32]

and the criterion on the boundedness of sublinear operators on H �p
A (Rn) established in

[32]. Moreover, the Calderón-Zygmund operator theory on anisotropic mixed-norm
Hardy spaces H �p

A (Rn) also plays an important role in our proof.
We begin with giving the following notion of the homogeneous quasi-norm.

Definition 2.1 For any given dilation A, a homogeneous quasi-norm, with respect to
A, is a measurable mapping ρ : R

n → [0,∞) satisfying

(i) if x 	= 0, then ρ(x) ∈ (0,∞);
(ii) for any x ∈ R

n , ρ(Ax) = bρ(x);
(iii) there exists some R ∈ [1,∞) such that

ρ(x + y) ≤ R[ρ(x) + ρ(y)], ∀x, y ∈ R
n .

For a fixed dilation A, the associated homogeneous quasi-norms are non-unique.
But they are equivalent to each other (see [6, p. 6 Lemma 2.4]). Thus, in what follows,
we may use the following step homogeneous quasi-norm ρ defined by setting

ρ(x) :=
∑

j∈Z
b j1Bj+1\Bj (x) when x ∈ R

n \ {0}, or else ρ(0) := 0

for both simplicity and convenience. In addition, if A∗ is the adjoint of a given dilation
matrix A, then A∗ is also a dilation matrix with the same determinant and eigenvalues,
with its own nested ellipsoids {B∗

j } j∈Z and step homogeneous quasi-norms ρ∗. Given
a dilation A, we say that ( �p, r , s) is an admissible triplet if �p ∈ (0, 1]n , r ∈ (1,∞]
and

s ∈
[⌊(

1

p−
− 1

)
ln b

ln λ−

⌋

,∞
)

∩ Z+.

Wenow present the definition of ( �p, r , s)-atom from [32, Definition 4.1] as follows.

Definition 2.2 Let ( �p, r , s) be admissible. A measurable function a on Rn is called a
( �p, r , s)-atom if

(i) supp a ⊂ x + Bk for some x ∈ R
n and k ∈ Z;

(ii) ‖a‖Lr (Rn) ≤ |Bk |1/r‖1x+Bk ‖
L �p (Rn )

;

(iii) for any γ ∈ Z
n+ with |γ | ≤ s,

∫

Rn a(x)xγ dx = 0.
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We now recall the following notion from [47, Definition 3.1].

Definition 2.3 Let R ∈ Z+ and K ∈ CR(Rn \ {0}). We say that K is a Calderón-
Zygmund convolution kernel of order R if there exists a constant C such that for all
multi-indices α with |α| ≤ R, and for any j ∈ Z and x ∈ Bj+1\Bj ,

∣
∣
∣D

− j
A ∂α

ξ D
j
AK (x)

∣
∣
∣ ≤ C

ρ(x)
.

If K is such a kernel, we say K satisfies CZC-R and its associated singular integral
operator T is defined by T f := K ∗ f , which is called a Calderón-Zygmund operator
of order R.

For the CZC-R kernel and the Mihlin condition (1.3), we have the following key
lemma (see [47, Lemma 3.2]).

Lemma 2.4 Let N ∈ Z+ and m ∈ L1
loc(R

n \ {0}). Suppose m satisfies the Mihlin
condition of order N as in (1.3), and define K by K := m̌. Then K is a Calderón-
Zygmund convolution kernel of order R provided R ∈ N and

0 ≤ R <

(

N
ln λ−
ln b

− 1

)
ln b

ln λ+
.

To prove our main theorem, the following lemma plays an important role.

Lemma 2.5 Let ( �p,∞, s) be an admissible triplet, m ∈ L∞(Rn) and Tm the associ-

ated Fourier multiplier operator initially defined on L2(Rn)∩ H �p
A (Rn). If there exists

a positive constant C such that, for any ( �p,∞, s)-atom a, ‖Tma‖
H �p
A (Rn)

≤ C, then

Tm has a unique bounded extension T̃m : H �p
A (Rn) → H �p

A (Rn).

To prove Lemma 2.5, we need the following Lemma 2.6 from [32, Corollary 4],
which gives the boundedness criterion about sublinear operators on H �p

A (Rn). To state
it, we first recall that a complete vector space B, equipped with a quasi-norm ‖ · ‖B,
is called a quasi-Banach space if

(i) ‖ϕ‖B = 0 if and only if ϕ is the zero element of B;
(ii) there exists a positive constantC ∈ [1,∞) such that, for anyϕ, φ ∈ B,‖ϕ+φ‖B ≤

C(‖ϕ‖B + ‖φ‖B).

In addition, for any given γ ∈ (0, 1], a γ -quasi-Banach space Bγ is a quasi-Banach
space equipped with a quasi-norm ‖ · ‖Bγ

satisfying that there exists a constant C ∈
[1,∞) such that, for any K ∈ N and {ϕi }Ki=1 ⊂ Bγ ,

∥
∥
∥
∥
∥

K
∑

i=1

ϕi

∥
∥
∥
∥
∥

γ

Bγ

≤ C
K

∑

i=1

‖ϕi‖γ

Bγ
.
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Let Bγ be a γ -quasi-Banach space with γ ∈ (0, 1] and Y a linear space. An operator
T from Y to Bγ is said to be Bγ -sublinear if there exists a positive constant C̃ such
that, for any K ∈ N, {μi }Ki=1 ⊂ C and {ϕi }Ki=1 ⊂ Y ,

∥
∥
∥
∥
∥
T

(
K

∑

i=1

μiϕi

)∥
∥
∥
∥
∥

γ

Bγ

≤ C̃
K

∑

i=1

|μi |γ ‖T (ϕi )‖γ

Bγ

and, for any ϕ, φ ∈ Y , ‖T (ϕ) − T (φ)‖Bγ
≤ C̃‖T (ϕ − φ)‖Bγ

(see [30, 48]).

Lemma 2.6 Let ( �p,∞, s) be an admissible triplet, γ ∈ (0, 1] and Bγ a γ -quasi-
Banach space. If T is a Bγ -sublinear operator defined on all continuous ( �p,∞, s)-
atoms satisfying

sup
{

‖T (a)‖Bγ
: a is any continuous ( �p,∞, s)-atom

}

< ∞,

then T uniquely extends to a bounded Bγ -sublinear operator from H �p
A (Rn) into Bγ .

Additionally, the following property of Fourier transform of elements in Hardy
spaces H �p

A (Rn) is required in the proof of Lemma 2.5 (see [41, Theorem 3.1]).

Lemma 2.7 Let �p ∈ (0, 1]n. Then, for any f ∈ H �p
A (Rn), there exists a continuous

function g on R
n such that f̂ = g in S ′(Rn), and there exists a positive constant C

such that

|g(x)| ≤ C‖ f ‖
H �p
A (Rn)

max

{

[ρ∗(x)]
1
p+ −1

, [ρ∗(x)]
1
p− −1

}

, ∀x ∈ R
n .

With the help of Lemmas 2.6 and 2.7, we next show Lemma 2.5.

Proof of Lemma 2.5 From [32, Lemma 3.4], we infer that, for any { fi }i∈N ⊂ H �p
A (Rn),

∥
∥
∥
∥
∥

K
∑

i=1

fi

∥
∥
∥
∥
∥

p−

H �p
A (Rn)

≤ C
K

∑

i=1

‖ fi‖p−
H �p
A (Rn)

,

which implies that (H �p
A (Rn), ‖ · ‖

H �p
A (Rn)

) is a p−-quasi-Banach space. By Lemma

2.7, we find that f̂ agrees with a continuous function in the sense of distribution for
any f ∈ H �p

A (Rn). Moreover, applying [32, Lemma 3.4] again, we know that there
exists a positive constant C such that, for any K ∈ N, {μi }Ki=1 ⊂ C and {ϕi }Ki=1 ⊂
L2(Rn) ∩ H �p

A (Rn),

∥
∥
∥
∥
∥
Tm

(
K

∑

i=1

μiϕi

)∥
∥
∥
∥
∥

p−

H �p
A (Rn)

=
∥
∥
∥
∥
∥

K
∑

i=1

μi Tmϕi

∥
∥
∥
∥
∥

p−

H �p
A (Rn)

≤ C
K

∑

i=1

|μi |p− ‖Tmϕi‖p−
H �p
A (Rn)

,
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which implies that the Fourier multiplier Tm is a H �p
A (Rn)-sublinear operator. Then

combining the assumption ‖Tma‖
H �p
A (Rn)

≤ C for all ( �p,∞, s)-atom a and the cri-

terion on the boundedness of sublinear operators on H �p
A (Rn) (see Lemma 2.6), we

conclude that the operator Tm has a unique bounded extension T̃m : H �p
A (Rn) →

H �p
A (Rn). This hence completes the proof. ��

When applying Lemma 2.5, we must first show that the condition in Lemma 2.5
is satisfied. Thus, we need the following result, which is just a consequence of [40,
Theorem 3]. In what follows, for any s ∈ N, an operator T is said to have the vanishing
moments up to order s if, for any f ∈ L2(Rn)with compact support and satisfying that,
for anyα ∈ Z

n+ with |α| ≤ s,
∫

Rn xα f (x) dx = 0, it holds true that
∫

Rn xαT f (x) dx =
0.

Lemma 2.8 Let ( �p,∞, s) be an admissible triplet and � ∈ N with

0 ≤ 1

p−
− 1 < �

(ln λ−)2

ln b ln λ+
.

Assume that T is a Calderón-Zygmund operator of order � and has the vanishing
moment conditions up to order s0 := �(1/p− − 1) ln b/ ln λ−�. Then there exists a
positive constant C such that for any ( �p,∞, s)-atom a,

‖Ta‖
H �p
A (Rn)

≤ C .

Using Lemmas 2.5 and 2.8, we now show Theorem 1.1.

Proof of Theorem 1.1 Let m satisfy the anisotropic Mihlin condition of order N as in
(1.3). Without loss of generality, we may assume M /∈ N. Otherwise, if M ∈ N, then
let λ̃− and λ̃+ be defined as

1 < λ− < λ̃− < |λ1| ≤ . . . ≤ |λn| < λ̃+ < λ+

such that the new

M̃ :=
(

N
ln λ̃−
ln b

− 1

)
ln b

ln λ̃+
,

defined in terms of the new eccentricities ln λ̃±/ ln b, is slightly larger and no longer
an integer satisfying �M̃� = �M�. Notice that, applying Lemma 2.4, we conclude that
K := m̌ is a Calderón-Zygmund convolution kernel of order R provided R ∈ Z+ and

0 ≤ R <

(

N
ln λ−
ln b

− 1

)
ln b

ln λ+
.
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Thus, we may take

R :=
⌊(

N
ln λ−
ln b

− 1

)
ln b

ln λ+

⌋

and then, from the assumption of Theorem 1.1, it follows that R = �M�.
We now show that there exists a positive constantC such that, for all ( �p,∞, s)-atom

a, the singular integral operator T associated with kernel K defined by T f := K ∗ f
satisfying

‖Ta‖
H �p
A (Rn)

≤ C

when

0 ≤ 1

p−
− 1 < �M� (ln λ−)2

ln b ln λ+
.

Indeed, we first note that T is a Calderón-Zygmund operator of order �M�. Moreover,
by the definition of operator T and the vanishingmoments condition of ( �p,∞, s)-atom
a, we know that, for any γ ∈ Z

n+ with |γ | ≤ s,

∫

Rn
T a(x)xγ dx =

∫

Rn

∫

Rn
a(x − y)K (y) dy xγ dx

=
∫

Rn

∫

Rn
a(x − y)xγ dx K (y) dy = 0,

which implies that T has the vanishing moment conditions up to order s. Therefore,
the operator T satisfies all assumptions of Lemma 2.8 and hence, from Lemma 2.8,
we infer that ‖Ta‖

H �p
A (Rn)

≤ C . By this and the fact that T = Tm , we find that

‖Tma‖
H �p
A (Rn)

≤ C . Combining this and Lemma 2.5, we finally conclude that Tm has

a unique bounded extension T̃m : H �p
A (Rn) → H �p

A (Rn) and hence Theorem 1.1 is
proved. ��
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