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Abstract
In this article, we consider the nonlocal discrete nonlinear Schrödinger equation. We
first prove that the associated process has a pullback-Dδ attractor by overcoming
the difficulties caused by the nonlocal operator. Then we establish the existence of a
unique family of invariant Borel probabilitymeasures carried by the pullback attractor.
Finally, we further construct statistical solutions for this nonlocal equation on infinite
lattices.
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1 Introduction

In this article, we study the following discrete nonlocal Schrödinger equation:

i u̇n(t) +
∑

m∈Z
J (n − m)um(t) + fn(un(t)) + iγ un(t) = gn(t), n ∈ Z, t > τ,

(1.1)
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associated with the initial condition

un(τ ) = un,τ , τ ∈ R, (1.2)

where J : Z → R denotes the dispersive coupling operator, which is assumed to
be even and

∑∞
m=1 |J (m)| < ∞. In the system (1.1), the coupling parameters J (m)

include the long-range interactions, which have attracted much attention from many
researchers mainly in the physic literature due to their wide applications. For example,
a new form of (1.1) was proposed in [28] for the modelling of the nonlinear dynamics
of the DNA molecule. Later, some specific form of (1.1) can be rigorously derived as
the continuum limit of certain discrete physical systems with long-range lattice inter-
actions; see [19]. Recently, the author in [30] proved the existence of global attractor
for a nonlocal discrete Schrödinger equation. There are many works concerning the
nonlocal discrete systems; see e.g., [1, 2, 14, 26, 30], etc. In this article, we are mainly
interested in the invariant measures and statistical solutions for this nonlocal lattice
system (1.1).

Note that if we choose the coupling parameters J (m) in (1.1) as

J (m) =
2p∑
j=0

(
2p
j

)
(−1) jδm, j−p,

where p is any positive integer and δm,k is the Kronecker delta, then the nonlocal
system (1.1) can be transformed into the following generalized discrete Schrödinger
equation:

i u̇n(t) + �
p
d un(t) + fn(un(t)) + iγ un(t) = gn(t), n ∈ Z, t > τ. (1.3)

where �
p
d = �d ◦ · · · ◦ �d , p times, and �d denotes the one-dimensional discrete

Laplace operator given by �dun = un+1 + un−1 − 2un . It is well-known that the
discrete Schrödinger equation is a very important model with a great variety of appli-
cations, ranging from physics to biology; see e.g., [27, 29] and the references therein.

In recent years, the discrete Schrödinger equation has been widely studied bymath-
ematicians and physicists. There are various of works on global attractors [8, 11, 20,
30], pullback attractors [31], and bifurcations [17] for these equations under various
boundary conditions. The interested reader is referred to [7, 15, 33, 34] for more
results on the discrete Schrödinger equation. Particularly, Pereira [31] established the
existence of pullback attractors for the nonautonomous discrete Schrödinger equation
with delays. However, as far as we know, there are few papers studying the statistical
solution of this nonlocal Schrödinger equation on infinite lattices.

In this article we mainly investigate invariant measures and statistical solutions for
this nonlocal discrete system (1.1)–(1.2). We all know that these two concepts are very
important in understanding the turbulence; see [10]. This is because measurements of
many important aspects of turbulent flows are actually themeasurements of some time-
average quantities. Recently, there have been a series of works on invariant measures
and statistical solutions of evolution systems; see [3–6, 18, 21, 24, 25, 35, 37, 39,
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40, 42–44] for continuous systems. Especially, by using the notion of generalized
Banach limits, Łukaszewicz, Real and Robinson [25] constructed invariant measures
for general continuous dynamical systems on metric spaces. Later, Bronzi et al. [4]
have developed an abstract framework for the theory of statistical solutions for general
evolution systems. Based on these works, Zhao and Caraballo [42] used the natural
translation semigroup and the trajectory attractor to construct trajectory statistical
solutions for the globally modified Navier–Stokes equations.

Invariant measures and dynamics of lattice dynamical systems are widely studied
by many researchers; see e.g., [12, 13, 22, 23, 36, 38, 41, 45]. Lattice dynamical
systems are spatiotemporal systems with discretization in some variables, which have
been widely used in many fields such as chemical reaction theory [9], biology [16],
electrical engineering [32] and so on. Very recently, Zhao et al. [41] constructed the
invariant Borel probability measures for the nonautonomous discrete Klein–Gordon–
Schrödinger equations. Using some techniques in the above work,Wu and Huang [36]
further construct the statistical solutions for discrete Klein–Gordon–Schrödinger type
equations.

Our main purpose of this article is to construct the invariant Borel probability
measures and statistical solutions for this discrete nonlocal Schrödinger equation. By
using notions of generalized Banach limit and the theory given by Łukaszewicz and
Robinson (see [24]), we establish the existence of invariant measures for (1.1)–(1.2).
Then we further construct the statistical solutions of this nonlocal lattice system. We
remark that the system (1.1)–(1.2) considered here consists of the nonlocal operator
J , which can lead to some additional difficulties in giving the estimates of solutions.
This requires us to utilize some more delicate analysis and techniques to overcome
this term.

Thiswork is organized as follows. Section2 is devoted to the existence andbounded-
ness of solutions of equations (1.1)–(1.2). In Sect. 3we show that the process generated
by (1.1)–(1.2) has a pullback-Dδ attractor. In Sect. 4, we establish the existence of
a unique family of invariant Borel probability measures carried by the pullback-Dδ

attractor. Finally, we further construct the statistical solution of the nonlocal system
(1.1)–(1.2).

2 Existence and Boundedness of Solutions

In this section we study the existence and boundedness of solutions of equations
(1.1)–(1.2). Let us first introduce some spaces. Set

�2 ={u = (un)n∈Z : un ∈ C and
∑

n∈Z
|un|2 < +∞}

and equip it with the inner product and norm defined by

(u, v) =
∑

n∈Z
unvn, ‖u‖2 = (u, u), ∀u = (un)n∈Z, v = (vn)n∈Z ∈ �2.
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Then (�2, (·, ·)) is a Hilbert space. Let E = �2 and denote by (·, ·) and ‖ · ‖ the inner
product and norm, respectively.

For the sake of simplicity, we set

u = (un)n∈Z, Au = ((Au)n)n∈Z =
(

∑

m∈Z
J (n − m)um

)

n∈Z
,

f (u(t)) = ( fn(un(t)))m∈Z, uτ = (uτ,n)n∈Z.

Then Eq. (1.1)–(1.2) can be written as a vector form

i u̇(t) + Au(t) + f (u(t)) + iγ u(t) = g(t), (2.1)

u(τ ) = uτ . (2.2)

In order to establish our main results, in this article, we always assume that f in
(2.1) satisfies the following conditions.

(F1) There exists L f > 0 such that if x1, x2 ∈ C, then

| fn(x1) − fn(x2)| ≤ L f |x1 − x2|, n ∈ Z.

(F2) There exist k1 = (k1,n)n∈Z ∈ �∞, k2 = (k2,n)n∈Z ∈ �2 such that

| fn(x)| ≤ k1,n|x | + k2,n, ∀x ∈ C.

(F3) The number γ in (2.1) satisfies

γ

2
> 2K1 + L f

2
,

where K1 = ‖k1‖�∞ .

By C(R, �2) we denote the space of continuous functions from R to �2. Then if
h ∈ C(R, �2),

‖h(t)‖2 =
∑

m∈Z
|hm(t)|2 < +∞.

Let us begin with some fundamental properties on the operator A in (2.1).

Lemma 2.1 The operator A : �2 → �2 is a bound linear operator and satisfies

‖Au‖ ≤ KJ‖u‖, ∀u ∈ �2,

where KJ =
[
2|J (0)|2 + 8

(∑∞
j=1 |J ( j)|

)2]1/2
.
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Proof It is easy to see that A is a linear operator in E . Assume u ∈ �2. Then by the
definition of A, we have

‖Au‖2 =
∑

n∈Z
|
∑

m∈Z
J (n − m)um |2 =

∑

n∈Z
|J (0)un +

∑

m 	=n

J (n − m)um |2

=
∑

n∈Z

∣∣∣∣∣J (0)un +
∞∑

m=1

J (m)un−m +
∞∑

m=1

J (−m)un+m

∣∣∣∣∣

2

≤
∑

n∈Z

(
|J (0)un| +

∞∑

m=1

|J (m)||un−m + un+m |
)2

≤ 2
∑

n∈Z

⎡

⎣|J (0)un|2 +
( ∞∑

m=1

|J (m)||un−m + un+m |
)2

⎤

⎦ . (2.3)

In what follows we estimate the second term in (2.3). Indeed, by some basic com-
putations, one has

∑

n∈Z

( ∞∑

m=1

|J (m)||un−m + un+m |
)2

=
∑

n∈Z

⎡

⎣
∞∑

m,i=1

|J (m)||J (i)|(|un−m | + |un+m |)(|un−i | + |un+i |)
⎤

⎦

≤
∞∑

m,i=1

|J (m)||J (i)|
[
∑

n∈Z
(|un−m | + |un+m |)2

] 1
2
[
∑

n∈Z
(|un−i | + |un+i |)2

] 1
2

≤ 2
∞∑

m,i=1

|J (m)||J (i)|
[
∑

n∈Z
(|un−m |2 + |un+m |2)

] 1
2
[
∑

n∈Z
(|un−i |2 + |un+i |2)

] 1
2

.

(2.4)

Noticing that for k = m, i , we see that

∑

n∈Z
(|un−k |2 + |un+k |2) =

∑

n∈Z
|un−k |2 +

∑

n∈Z
|un+k |2 = 2‖u‖2.

Then it follows from (2.4) that

∑

n∈Z

( ∞∑

m=1

|J (m)||un−m + un+m |
)2

≤ 4

⎡

⎣
∞∑

j=1

|J ( j)|
⎤

⎦
2

‖u‖2. (2.5)
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Combining (2.3) and (2.5), it yields that

‖Au‖2 ≤ 2|J (0)|2‖u‖2 + 8

⎡

⎣
∞∑

j=1

|J ( j)|
⎤

⎦
2

‖u‖2.

This completes the proof of this lemma. 
�

Lemma 2.2 Let g(t) = (gn(t))n∈Z ∈ C(R, �2). Then for each uτ ∈ E, there exists
T0 > τ , such that Eq. (2.1)–(2.2) has a unique solution u(t), t ≥ τ satisfying

u ∈ C([τ, T0), E) ∩ C1((τ, T0), E).

Moreover, if T0 < +∞, then lim
t→T−

0

‖u(t)‖E = +∞.

Proof Let F(u, t) = i Au + i f (u) − γ u − ig(t). Then we can rewrite the equation
(2.1) as the following equivalent form

u̇ = F(u, t). (2.6)

Assume B ⊂ E is a bounded subset and that u1, u2 ∈ B. By assumption (F1), one can
see that there exists L f > 0 such that

‖ f (u1) − f (u2)‖ =
(

∑

n∈Z
| fn(u1n) − fn(u

2
n)|2

)1/2

≤ L f ‖u1 − u2‖. (2.7)

Thus we deduce from Lemmas 2.1 and (2.7) that

‖F(u1, t) − F(u2, t)‖ ≤‖A(u1 − u2)‖ + ‖ f (u1) − f (u2)‖ + γ ‖u1 − u2‖
≤ (

KJ + L f + γ
) ‖u1 − u2‖,

which implies that F(u, t) is locally Lipschitz from E × R to E . By the classical
theory of ODEs, the results of Lemma 2.1 hold. 
�

Lemma 2.3 Assume g(t) = (gn(t))n∈Z ∈ C(R, �2). Let u(t) be a solution of (2.1)–
(2.2) associated with the initial value uτ ∈ E. Then

‖u(t)‖2 ≤ e−δ(t−τ)‖uτ‖2 + e−δt

γ

∫ t

τ

eδs‖g(s)‖2ds + 2K 2
2

δγ
, ∀t ≥ τ. (2.8)

where δ = γ
2 − 2K1 and K2 = ‖k2‖.
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Proof Taking the imaginary part of the inner product (·, ·) of the equation (2.1) with
u in �2, we have

1

2

d

dt
‖u‖2 + Im(Au, u) + Im( f (u), u) + γ ‖u‖2 = Im(g(t), u). (2.9)

Some elementary computations give that

(Au, u) = J (0)‖u‖2 + 2
∞∑

m=1

∑

n∈Z
J (m)Re(un+mun). (2.10)

By (F2), one can find

Im( f (u), u) = Im
∑

n∈Z
fn(un)ūn ≤

∑

n∈Z

[
k1,n|un| + k2,n

] |un| ≤ K1‖u‖2 + K2‖u‖.

(2.11)

It is easy to see that

K2‖u‖ ≤ γ

4
‖u‖2 + K 2

2

γ
, (2.12)

Im(g(t), u) ≤ γ

2
‖u‖2 + 1

2γ
‖g‖2. (2.13)

Thus we combine (2.9)–(2.13) to obtain that

d

dt
‖u‖2 + δ‖u‖2 ≤ 2K 2

2

γ
+ 1

γ
‖g‖2. (2.14)

Applying the Gronwall inequality to (2.14) on [τ, t] with t ≥ τ , one has

‖u(t)‖2 ≤ e−δ(t−τ)‖uτ‖2 + e−δt

γ

∫ t

τ

eδs‖g(s)‖2ds + 2K 2
2

δγ
,

which completes the proof of this lemma. 
�
In order to guarantee that the Eqs. (2.1)–(2.2) has a bounded pullback absorbing

set, we further assume that the function g satisfies the following condition.
(F4) Assume g(t) = (gn(t))n∈Z ∈ C(R, �2) and that

∫ t

−∞
eδs‖g(s)‖2ds < M(t), t ∈ R,

where M is a continuous function on R, which remains bounded on the interval
(−∞, t) for each fixed t .
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Therefore if the condition (F4) holds, then one can immediately conclude fromLemma
2.3 that the system (2.1)–(2.2) has a bounded pullback absorbing set.

Moreover, we infer from (F3) and Lemma 2.3 that for every uτ ∈ E , the corre-
sponding solution u(t) of (2.1)–(2.2) exists globally on [τ,+∞). Furthermore, by
Lemma 2.1 one can know that

u ∈ C([τ,+∞), E) ∩ C1((τ,+∞), E).

Thus the solution operators can generate a family of continuous processes {U (t, τ )}t≥τ

on E :

U (t, τ ) : uτ �→ u(t) ∈ E, t ≥ τ.

Let P(E) denote the family of all nonempty subsets of E and Dδ denote the class
of families of nonempty subsets D = {D(s) : s ∈ R} ⊂ P(E) satisfying

lim
s→−∞

(
e

δs
2 sup

u∈D(s)
‖u‖2) = 0. (2.15)

We usually call the class Dδ a universe in P(E).

Remark 2.4 Clearly, the universe Dδ contains all bounded subsets of E .

Lemma 2.5 Let the assumptions (F1)–(F4) hold. Then the process {U (t, τ )}t≥τ gen-
erated by (2.1)–(2.2) possesses a bounded pullback-Dδ absorbing set

B0 := {B0(s) : s ∈ R} ⊂ P(E),

where B0(s) = B(0, rδ(s)) is a ball in E centered at 0 with radius rδ(s).

Proof Choose rδ(t) = ρ
1/2
δ (t), where

ρδ(t) :=1 + e−δt

γ

∫ t

−∞
eδs‖g(s)‖2ds + 2K 2

2

δγ
.

Then one can easily deduce fromLemma 2.2 and the construction ofDδ that the family
B0 is the desired pullback-Dδ bounded absorbing set for {U (t, τ )}t≥τ in E .

3 Pullback Attractors

In this section we prove that the process {U (t, τ )}t≥τ has a pullback-Dδ attractor.
To this endwe first verify that the solutions of (2.1)–(2.2) have pullback-Dδ asymptotic
nullness.
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Lemma 3.1 Assume that the conditions (F1)–(F4) hold. Then for every t ∈ R, ε > 0
and D = {D(s) : s ∈ R} ∈ Dδ , there exist two numbers N∗ = N∗(t, ε,D) ∈ N and
τ∗ = τ∗(t, ε,D) ≤ t such that

sup
uτ ∈D(τ )

∑

|n|≥N∗
|(U (t, τ )uτ )n|2E ≤ ε2, ∀τ ≤ τ∗.

Proof Define a smooth function χ(x) ∈ C1(R+, [0, 1]) satisfying

χ(x) =
{
0, 0 ≤ x ≤ 1;
1, x ≥ 2,

and |χ ′(x)| ≤ χ0 (positive constant), ∀x ≥ 0.

Assume D = {D(s) : s ∈ R} ∈ Dδ and that

u(t) = U (t, τ )uτ = (un(t))n∈Z ∈ E

is a solution of (2.1)–(2.2) associated with the initial value uτ ∈ D(τ ) for t ≥ τ . Let

v = (vn)n∈Z, vn = χ(
|n|
N

)un,

where N is a positive integer which will be decided later. For the sake of simplicity,
we set

χn = χ(
|n|
N

), ‖w‖2χ =
∑

n∈Z
χn|wn|2, n ∈ Z.

Taking the imaginary part of the inner product (·, ·) of (2.1) with v in �2, we obtain

1

2

d

dt
‖u‖2χ + γ ‖u‖2χ + Im(Au, v) + Im( f (u), v) = Im(g, v). (3.1)

By the definitions of A and χ , one has

Im(Au, v) = Im

[
J (0)‖u‖2χ +

∑

n∈Z

∞∑

m=1

J (m)(χn+m − χn)ūn+mun

]

≤
∑

n∈Z

∞∑

m=1

|J (m)||χn+m − χn||un+m ||un|. (3.2)

It is easy to see that

|χn+m − χn| ≤ χ0

N
m and |χn+m − χn| ≤ 2.
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By Lemmas 2.3 and 2.5, we know that there exists τ1 = τ1(t,D) ≤ t such that

‖u(t)‖ ≤ ρδ(t), τ ≤ τ1. (3.3)

Thus it follows from (3.2) and (3.3) that if τ ≤ τ1, then

Im(Au, v) ≤
∑

n∈Z

∞∑

m=1

|J (m)||χn+m − χn||un+m ||un|

=
∑

n∈Z

l∑

m=1

|J (m)||χn+m − χn||un+m ||un|

+
∑

n∈Z

∞∑

m=l+1

|J (m)||χn+m − χn||un+m ||un|

≤ χ0

N

l∑

m=1

m|J (m)|ρ2
δ (t) + 2

∞∑

m=l+1

|J (m)|ρ2
δ (t), (3.4)

where l ≥ 1 is a positive integer. By virtue of assumption (F2), one finds that

Im( f (u), v) ≤
∑

n∈Z
χn

(
k1,n|un| + k2,n

) |un| ≤ K1‖u‖2χ + K2,χ‖u‖χ

≤ K1‖u‖2χ + K 2
2,χ

γ
+ γ

4
‖u‖2χ , (3.5)

where K2,χ = (
∑

n∈Z χnk22,n)
1/2. Note that

Im(g, v) ≤ 1

2γ
‖g(t)‖2χ + γ

2
‖u‖2χ . (3.6)

Combining (3.4)–(3.6) and (3.1), we know that if τ ≤ τ1,

d

dt
‖u‖2χ + δ‖u‖2χ ≤ 2χ0

N

l∑

m=1

m|J (m)|ρ2
δ (t) + 4

∞∑

m=l+1

|J (m)|ρ2
δ (t)

+ 2K 2
2,χ

γ
+ 1

γ
‖g(t)‖2χ , (3.7)

where δ is the number given in Lemma 2.3. Now let t ∈ R and ε > 0 be arbitrary
given numbers. Since

∑∞
m=1 |J (m)| < ∞, we deduce from the definition of ρδ(t) that

there exists N1 = N1(ε, t) such that

4
∞∑

m=N1+1

|J (m)|ρ2
δ (t) < δε2/6. (3.8)
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Moreover, using the fact that
∑

n∈Z k22,n < ∞, one can pick N2 = N2(t, ε) with
N2 ≥ N1 so that

2K 2
2,χ

γ
+ 2χ0

N2

N1∑

m=1

m|J (m)|ρ2
δ (t) < δε2/6. (3.9)

Thus we conclude from (3.7) to (3.9) that for N ≥ N2 and τ ≤ τ1,

d

dt
‖u‖2χ + δ‖u‖2χ ≤ 1

γ
‖g(t)‖2χ + δε2/3. (3.10)

Applying Gronwall inequality to (3.10), it yields

‖u‖2χ ≤ e−δ(t−τ)‖uτ‖2χ + 1

γ

∫ t

τ

e−δ(t−s)
∑

|n|≥N

|gn(s)|2ds + ε2/3, t ≥ τ,

(3.11)

provided τ ≤ τ1 and N ≥ N2. Noticing that for the given t ∈ R, one can deduce from
(F4) that there exists positive constant Kt (depending on t) satisfying

∫ t

−∞
eδs‖g(s)‖2ds < Mt ,

from which it can be seen that there exists N3 = N3(ε, t) ∈ N such that

1

γ

∫ t

τ

e−δ(t−s)
∑

|n|≥N

g2n(s)ds ≤ 1

γ
e−δt

∑

|n|≥N

∫ t

−∞
eδs |gn(s)|2ds < ε2/3, ∀N ≥ N3.

(3.12)

Because uτ ∈ D(τ ) and D = {D(s) : s ∈ R} ∈ Dδ , we easily see from the construc-
tion of Dδ that there is τ∗ = τ(ε, t,D) with τ∗ ≤ τ1 so that

e−δt (eδτ sup
uτ ∈D(s)

‖uτ‖2) < ε2/3, ∀τ ≤ τ∗. (3.13)

Set N∗ = max{N2, N3}. Then we conclude from (3.11)-(3.13) that if N ≥ N∗ and
τ ≤ τ∗,

∑

n∈Z
χ(

|n|
N

)u2n ≤ ε2.

The proof of Lemma 3.1 is complete. 
�
By virtue of Lemmas 2.5, 3.1 and [41, Theorem 2.1], we obtain the following main
result.
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Theorem 3.2 Assume the conditions (F1)–(F4) hold. Then the family of continuous
processes {U (t, τ )}t≥τ corresponding to Eqs. (2.1)–(2.2) possesses a pullback-Dδ

attractor ADδ
= {ADδ

(t) : t ∈ R} so that
(i) Compactness: ADδ

(t) is a nonempty compact subset of E for every t ∈ R;
(ii) Invariance: U (t, τ )ADδ

(s) = ADδ
(t) for t ≥ s;

(iii) Pullback attracting: ADδ
is pullback-Dδ attracting in the following sense that

lim
τ→−∞ distE (U (t, τ )D(τ ),ADδ

(t)) = 0, ∀D = {D(s) : s ∈ R} ∈ Dδ, t ∈ R.

4 Invariant Measures on the Pullback Attractor

In this section we prove the existence of a unique family of invariant Borel proba-
bility measures for the process {U (t, τ )}t≥τ in E generated by equations (2.1)–(2.2).
We first recall two basic definitions.

Definition 4.1 [10] A generalized Banach limit is any functional, which we denoted
by LIMT→+∞, defined on the space of all bounded real-valued functions on [0,+∞)

that satisfies

(i) LIMT→+∞ ψ(T ) ≥ 0 for nonnegative functions ψ ;
(ii) LIMT→+∞ ψ(T ) = lim

T→+∞ ψ(T ) if the usual limit lim
T→+∞ ψ(T ) exists.

Definition 4.2 [24] A process {U (t, τ )}t≥τ on ametric space X is called τ -continuous,
if for each x0 ∈ X and each t ∈ R, the X -valued function τ �→ U (t, τ )x0 is continuous
and bounded on (−∞, t].
Remark 4.3 Note that we study the pullback asymptotic behavior of (2.1)–(2.2) andwe
require the generalized limit as τ → −∞. Thus for a real-valued function ψ defined
on the interval (−∞, 0] and a Banach limit LIMT→+∞, we define

LIM
τ→−∞ ψ(τ) = LIM

τ→+∞ ψ(−τ).

In the following we establish the existence of a unique family of invariant Borel
probability measures corresponding to the process {U (t, τ )}t≥τ in E . By Łukaszewicz
and Robinson [24, Theorem 3.1], we need to show the τ -continuous property of
{U (t, τ )}t≥τ .

Lemma 4.4 Assume that u(1)(t) and u(2)(t) are two solutions of the system (2.1)–(2.2)
with initial values u(1)

τ and u(2)
τ , respectively. Then

‖u(1)(t) − u(2)(t)‖ ≤e(2γ−2L f )(t−τ)‖u(1)
τ − u(2)

τ ‖, t ≥ τ.

Proof Assume that u(i)(t) are two solutions of (2.1)–(2.2) with initial values u(i)
τ ∈ E

for i = 1, 2. Let

w(t) = u(1)(t) − u(2)(t).
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Then
iẇ(t) + Aw(t) + f (u(1)(t)) − f (u(2)(t)) + iγw(t) = 0. (4.1)

Taking the imaginary part of the inner product (·, ·) of (4.1) with w in �2 gives that

1

2

d

dt
‖w‖2 + Im(Aw,w) + Im

(
f (u(1)(t)) − f (u(2)(t)), w

)
+ γ ‖w‖2 = 0. (4.2)

By (F1), we see that

Im
(
f (u(1)(t)) − f (u(2)(t)), w

)
≤ L f ‖w‖2. (4.3)

Thus it follows from (2.10), (4.1) and (4.2) that

d

dt
‖w‖2 + (2γ − 2L f )‖w‖2 ≤ 0. (4.4)

Applying Gronwall inequality to (4.4), we obtain

‖u(1)(t) − u(2)(t)‖ ≤ e(2γ−2L f )(t−τ)‖u(1)
τ − u(2)

τ ‖,

which completes the proof of this lemma. 
�
Lemma 4.5 Assume that the assumptions (F1)–(F4) hold. Then for every fixed u∗ ∈ E
and t ∈ R, the E-valued function τ → U (t, τ )u∗ is continuous and bounded on
(−∞, t].
Proof Given u∗ ∈ E and t ∈ R. In what follows we shall show that for every ε > 0
and s ≤ t , there is ε > 0 so that if r ∈ (−∞, t] with |r − s| < ε,

‖U (t, r)u∗ −U (t, s)u∗‖E < ε.

Without loss of generality we assume that r < s. Set

U (·, s)U (s, r)u∗ = u(1)∗ (·), U (·, s)U (r , r)u∗ = u(2)∗ (·).

By virtue of Lemma 4.4 and the property of the process {U (t, τ )}t≥τ , we obtain

‖U (t, r)u∗ −U (t, s)u∗‖ = ‖U (t, s)U (s, r)u∗ −U (t, s)U (r , r)u∗‖
≤ e(2γ−2L f )(t−s)‖U (s, r)u∗ −U (r , r)u∗‖. (4.5)

Thus one can immediately conclude from (4.5) that if |r − s| is sufficiently small,
right hand side of (4.5) is as small as need. This shows that the E-valued function
τ → U (t, τ )u∗ is continuous with respect to τ ∈ (−∞, t].
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Now let us check that the E-valued function τ → U (t, τ )u∗ is bounded on (−∞, t].
Assume that u∗ and t ∈ R are given as above. Observing that uτ ∈ D(τ ), one can
easily deduce from Lemma 2.3 and the assumption (F4) that

lim
τ→−∞ ‖U (t, τ )u∗‖2 ≤ lim

τ→−∞ e−δ(t−τ)‖uτ‖2 + e−δt

γ

∫ t

−∞
eδs‖g(s)‖2ds + 2K 2

2

δγ

= e−δt

γ

∫ t

−∞
eδs‖g(s)‖2ds + 2K 2

2

δγ
. (4.6)

Because the E-valued function τ → U (t, τ )u∗ is continuous on (−∞, t] in E , we
conclude from (4.6) that the E-valued function τ → U (t, τ )u∗ is bounded on (−∞, t].
The proof is complete. 
�

Thanks to Lemma 4.5, Theorem 3.2 and [24, Theorem 3.1], we have the following
main result.

Theorem 4.6 Let the assumptions (F1)–(F4) hold. Assume that {U (t, τ )}t≥τ is the
process generated by the system (2.1)–(2.2) and that ADδ

= {ADδ
(t) : t ∈ R} is

the pullback-Dδ attractor obtained by Theorem 3.2. Fix a generalised Banach limit
LIMT→+∞ and let ϕ(·) : R �→ E be a continuous map satisfying ϕ(·) ∈ Dδ . Then
there exists a unique family of Borel probability measures {μt }t∈R in E so that the
support of the measure μt is contained in ADδ

(t) and

LIM
τ→−∞

1

t − τ

∫ t

τ

φ(U (t, s)ϕ(s))ds =
∫

ADδ
(t)

φ(z)dμt (z) =
∫

E
φ(z)dμt (z)

for every real-value continuous functional φ on E. Moreover, μt is invariant in the
sense that

∫

ADδ
(t)

φ(z)dμt (z) =
∫

ADδ
(τ )

φ(U (t, τ )z)dμτ (z), t ≥ τ.

Furthermore, if � is a real-valued continuous and bounded functional on E, then

LIM
τ→−∞

1

t − τ

∫ t

τ

∫

E
�(U (t, s)z)dμs(z)ds =

∫

ADδ
(t)

�(z)dμt (z). (4.7)

5 Statistical Solutions

In this sectionwe further verify that the invariantmeasure {μt }t∈R given inTheorem4.6
is actually a statistical solution for (2.1)–(2.2). Let E be the Hilbert space introduced
in Sect. 2 and E∗ denote its dual. Let 〈·, ·〉 denote the dual product between E∗ and
E .
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For convenience, we also consider the following equivalent system:

du

dt
= F(u, t), (5.1)

u(τ ) = uτ , (5.2)

where F(u, t) = i Au + i f (u) − γ u − ig(t).
We begin with some basic definitions on statistical solutions; see [10] for details.
By T we denote the class of real-valued functionals � on E that are bounded on

any bounded subset of E and satisfy the following conditions.

(1) For every u ∈ E , the Fréchet derivative � ′(u) exists. Specifically, for each u ∈ E ,
there is an element � ′(u) ∈ E∗ satisfying

‖�(u + h) − �(u) − 〈� ′(u), h〉‖
‖h‖ → 0 as ‖h‖ → 0, h ∈ E;

(2) The mapping u �→ � ′(u) is continuous and bounded from E to E∗.
It is trivial to see that if � ∈ T and u(t) is a solution of equations (5.1)–(5.2),

d

dt
�(u(t)) = 〈� ′(u(t)), F(u(t), t)〉. (5.3)

Definition 5.1 Assume that ADδ
= {ADδ

(t) : t ∈ R} is the pullback-Dδ attractor
obtained by Theorem 3.2. A family of Borel probability measures νt is said to be a
statistical solution for the system (5.1)–(5.2), if it satisfies

(i) the function

t �→
∫

ADδ
(t)

�(ϕ)dνt (ϕ)

is continuous on [τ,+∞) for every � ∈ T ;
(ii) for almost every t ∈ [τ,+∞), the function ϕ �→ 〈F(ϕ, t), v〉 is νt -integral for

each v ∈ E , and the mapping

t �→
∫

ADδ
(t)

〈F(ϕ, t), v〉dνt (ϕ)

belongs to L1
loc([τ,+∞)) for any v ∈ E ;

(iii) for every test function ϒ in T , then it holds that

∫

ADδ
(t)

ϒ(ϕ)dνt (ϕ) −
∫

ADδ
(τ )

ϒ(ϕ)dντ (ϕ)

=
∫ t

τ

∫

ADδ
(θ)

〈ϒ ′(ϕ), F(ϕ, θ)〉dμθ(ϕ)dθ
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for all t ≥ τ .

Theorem 5.2 Assume the conditions (F1)–(F4) hold. Then the family of invariant
measures {μt }t∈R obtained in Theorem 4.6 are statistical solutions of the system
(5.1)–(5.2).

Proof We prove that the family of invariant measures {μt }t∈R obtained in Theorem
4.6 satisfy the conditions (i)–(iii) in Definition 5.1.

Let ADδ
= {ADδ

(t) : t ∈ R} be the pullback-Dδ attractor given by Theorem 3.2
and � ∈ T . Let us first show that t �→ ∫

ADδ
(t) �(ϕ)dνt (ϕ) is continuous on [τ,+∞)

for � ∈ T . Indeed, by the invariant property of {μt }t∈R, one can find that

∫

ADδ
(t)

�(u)dμt (u) =
∫

ADδ
(τ )

�(U (t, τ )u)dμτ (u), t ≥ τ.

Thus we deduce from the continuity of the process {U (t, τ )}t≥τ and the definition of
T that the function

t �→
∫

ADδ
(t)

�(u)dμt (u)

is continuous.
Secondly, for each fixed v ∈ E , define

�1(u) = 〈F(u, t), v〉, ∀ u ∈ E . (5.4)

Then �1 maps E to R. We claim that �1 is continuous. Assume that B is a bounded
subset of E and that u1, u2 ∈ B. Then we see from the proof of Lemma 2.2 that

‖�1(u1) − �1(u2)‖ = ‖〈F(u1, t) − F(u2, t), v〉‖ ≤ ‖F(u1, t) − F(u2, t)‖‖v‖
≤ (

KJ + L f + γ
) ‖u1 − u2‖‖v‖,

which implies that �1 is continuous on E . Thus the function u �→ 〈F(u, t), v〉 is
μt -integral for each v ∈ E . Consequently, we deduce from the proof of the assertion
(i) in Definition 5.1 that the mapping

t �→
∫

ADδ
(t)

〈F(u, t), v〉dμt (u)

belongs to L1
loc([τ,∞)) for every v ∈ E .

Finally, it remains to prove that {μt }t∈R satisfies (iii) in Definition 5.1. Let � ∈ T
and t ≥ τ . By (5.3) we see that

�(u(t)) − �(u(τ )) =
∫ t

τ

〈� ′(u(θ)), F(u(θ), θ)〉dθ. (5.5)
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Let s < τ , u0 ∈ E and u(θ) = U (θ, s)u0 for θ ≥ s. Then it follows by (5.5) that

�(U (t, s)u0) − �(U (τ, s)u0) =
∫ t

τ

〈� ′(U (θ, s)u0), F(U (θ, s)u0, θ)〉dθ. (5.6)

By (4.7), we find that

∫

ADδ
(t)

�(u)dμt (u) −
∫

ADδ
(τ )

�(u)dμτ (u)

= LIM
M→−∞

1

t − M

∫ t

M

∫

E
�(U (t, s)u0)dμs(u0)ds

− LIM
M→−∞

1

τ − M

∫ τ

M

∫

E
�(U (τ, s)u0)dμs(u0)ds

= LIM
M→−∞
1

t − M

[∫ τ

M

∫

E
�(U (t, s)u0)dμs(u0)ds +

∫ t

τ

∫

E
�(U (t, s)u0)dμs(u0)ds

]

− LIM
M→−∞

1

τ − M

∫ τ

M

∫

E
�(U (τ, s)u0)dμs(u0)ds. (5.7)

Noticing that

∫

E
�(U (t, s)u0)dμs(u0)=

∫

ADδ
(s)

�(U (t, s)u0)dμs(u0)=
∫

ADδ
(t)

�(u0)dμt (u0)

is independent of s, one deduces that

LIM
M→−∞

1

t − M

∫ t

τ

∫

E
�(U (t, s)u0)dμs(u0)ds = 0. (5.8)

Thus we conclude from (5.7), (5.8) and the Fubini’s Theorem that

∫

ADδ
(t)

�(u)dμt (u) −
∫

ADδ
(τ )

�(u)dμτ (u)

= LIM
M→−∞

1

τ − M

∫ τ

M

∫

E

(
�(U (t, s)u0) − �(U (τ, s)u0)

)
dμs(u0)ds

= LIM
M→−∞

1

τ − M

∫ τ

M

∫

E

∫ t

τ

〈� ′(U (θ, s)u0), F(U (θ, s)u0, θ)〉dθdμs(u0)ds

= LIM
M→−∞

1

τ − M

∫ τ

M

∫ t

τ

∫

E
〈� ′(U (θ, s)u0), F(U (θ, s)u0, θ)〉dμs(u0)dθds.

(5.9)
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Using the properties of the process and {μt }t∈R in Theorem 4.6, one can obtain

∫

E
〈� ′(U (θ, s)u0), F(U (θ, s)u0, θ)〉dμs(u0)

=
∫

E
〈� ′(U (θ, τ )U (τ, s)u0), F(U (θ, τ )U (τ, s)u0, θ)〉dμs(u0)

=
∫

E
〈� ′(U (θ, τ )u0), F(U (θ, τ )u0, θ)〉dμτ (u0).

Because
∫

E
〈� ′(U (θ, τ )u0), F(U (θ, τ )u0, θ)〉dμτ (u0)

is independent of s, one can see from (5.9) that

∫

ADδ
(t)

�(u)dμt (u) −
∫

ADδ
(τ )

�(u)dμτ (u)

=
∫ t

τ

∫

E
〈� ′(U (θ, τ )u0), F(U (θ, τ )u0, θ)〉dμτ (u0)dθ

=
∫ t

τ

∫

E
〈� ′(u0), F(u0, θ)〉dμθ(u0)dθ,

which justifies the validity of (iii) in Definition 5.1. 
�
Remark 5.3 Although in this paper we study m ∈ Z (corresponding to the spatial
domain R) in equations (1.1)–(1.2), our main results on invariant measures and statis-
tical solutions are still valid if m ∈ Z

k for some positive integer k ≥ 2 (corresponding
to the spatial domain R

k). The interested reader is referred to Remark 4.1 in [41] for
details.
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