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Abstract
This article introduces the Fréchet log-logistic distribution (FLD) model, which offers
a notable, bounded, and flexible distribution for modeling increasing and bathtub
shapes failure rate phenomena. Compared to well-known distributions like Weibull
and Fréchet distributions, the proposed FLD model provides a more adaptable solu-
tion to lifetime data modeling. Various mathematical and statistical characteristics
of the model, including the hazard function, percentile function, moment generating
function, entropy, and characterization, are considered. Real-life data applications of
the FLD model are also explored using four data sets, and the results show that the
proposed model is a viable alternative to existing lifetime probability models.
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1 Introduction

In real-world lifetime phenomena, researchers often face a finite range of variations.
Bounded domain distributions result from such finite variations. For a detailed dis-
cussion of such distributions, please refer to [1–4]. Bounded domain distributions are
valuable in investigating lifetime phenomena such as yearly flood flow, yearly precipi-
tation data, and reliability analysis. The best conventional bounded domain probability
models in this regard are the beta, triangular, epsilon, PERT, uniform, arcsin, Bates,
Topp–Leone, Kumaraswamy, triangular, vonMises distributions, epsilon-Lindley, and
raised cosine. Applications of such distributions include wavelet, beamforming, and
pattern synthesis, as well as storage volume of a reservoir of capacity 0 < z < zmax,
modeling failure rate phenomena such as bathtub shape (BTS), inverted bathtub shape
(IBTS), increasing failure rate (IFR), decreasing failure rate (DFR), working life
expectancy modeling, and environmental data assessment.

Our motivational tactic starts with an overview of constrained function. The ear-
liest phase on this path is to pick up the odd link function D(x;�) = ln

(
1−G(x)
G(x)

)
,

which fulfills the provisions such as (i)D(x) is differentiable and monotonically non-
decreasing (ii) D(x) → a as x → 0 and D(x) → b as x → ∞ with a baseline
cumulative distribution function (CDF) G(x). Our second motivation deals with the
selection of baseline distribution, i.e., the log-logistic distribution (LLD) studied by
Verhulst [5], which has wide applications in modeling stochastic lifetime phenom-
ena, such as in time-to-event analysis, especially in survival analysis, color, e.g., the
modeling of mortality rate after cancer diagnosis or treatment [6], demography for
modeling population, economics for the distribution of wealth or income inequality,
engineering for reliability analysis, and hydrology for modeling stream flow rates
and precipitation [6]. In this regard, we took the CDF of LLD, which is constructed
on the interval (0,∞) as G(x |α, β) = xβ

xβ+αβ . Incorporating the baseline CDF into
D(x |α, β, θ), yields D(x |α, β, θ) = βln(α

x ). The next motivation is the extraction
of the CDF of Fréchet distribution (FD), a model of extreme values (EVs). Extreme
events are rare, but they may have a very high impact on the observed experiments [7].
This model has been used in modeling the data that appear in various spheres of life
such as accelerated life monitoring, sea waves, horse racing, rainfall, environmental
disasters, earthquakes, wind speeds, sea currents, track race records, relief periods and
survival times data, and so on. Although the above model has multiple applications in
various fields of study, it must first be defined as follows to extract it:

f (t; θ) = θ t−θ−1e−t−θ

, t > 0, θ > 0,

with the corresponding CDF given by

e−(D(x;α,β))−θ =
∫ D(x;α,β)

0
θ y−θ−1e−y−θ

dy, α > 0, β > 0, θ > 0,

However, it is important to note that the above is not a CDF according to the defined
odd link function. To propose a bounded CDF under the name FLD, we must first
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introduce a constraint 0 < x < α, then define the CDF as

F(x;α, β, θ) = 1 − e−(D(x,α,β))−θ ;

on incorporating the D(.) into the above expression, we get

FFLD(x;α, β, θ) = 1 − e−(β ln( α
x ))−θ

, β > 0, θ > 0, 0 < x < α, (1)

which after differentiation yields the PDF of FLD as

fFLD(x;α, θ, β) = βθ

x

(
β ln

(α

x

))−θ−1
e−(β ln( α

x ))−θ

. (2)

An interesting feature appearswhenwe setα = 1,which in turn yields a two-parameter
unit FLD defined as

fFLD(x; 1, θ, β) = βθ

x
(β ln(

1

x
))−θ−1e

−
(
β ln

(
1
x

))−θ

, β > 0, θ > 0, 0 < x < 1. (3)

Similarly, the survival function (SF) is

SFFLD(x;α, θ, β) = e−(β ln( α
x ))−θ

. (4)

The hazard rate function (HRF) describes the immediate future failure given that the
unit has not failed at time x , and stated as

HFLD(x;α, β, θ) = βθ

x

(
β ln

(α

x

))−θ−1
. (5)

The reversed hazard rate function (RHRF) describes the probability of an immediate
past failure, given that the unit has already failed at time x . For the FLD in Eq. (3),
the RHRF is

RFLD(x;α, β, θ) = βθ

x
(
1 − e−(β ln( α

x ))
−θ
)
(
β ln

(α

x

))−θ−1
e−(β ln( α

x ))
−θ

. (6)

Likewise, the concerned functions, for instance, thePDFandHRF, are highly adaptable
in respective performance, will be depicted in the coming sections. More explicitly,
the PDF takes on several forms, similar to symmetrical, right skewed, left skewed,
L-shape and U-shape curves, see Figs. 1 and 2. Besides, we observe a positive,
negative skewness, leptokurtic, mesokurtic, and platykurtic nature of the curvature,
which undoubtedly suggests that it is conceived to establish the light and thick tailed
prodigy, see Fig. 4. Such incidents are usually widespread in reliability presentations,
queuing theory, and environmental phases. Our application segment will assist the
readers for realistic predictions about the subsequent generation’s future in a health-
ier sense. Unlike the Weibull distribution, the suggested model may show the BTS,
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Fig. 1 FLD PDF graphs

which is uncommon in competing models such as LLD, gamma distribution (GD),
inverse gamma distribution (IGD), three-parameter Weibull distribution (3P WD),
three-parameter Kappa (3P Kappa) distribution, exponentiated exponential distribu-
tion (EED), FD and log-normal distribution (LND). One can visualize these eminent
qualities from HRF plots, probability graphs and four real lifetime data applications,
and it also has closed-form CDF and HRF functions. It can efficiently be used in life-
time data analysis, whose detail is given in the application section, which endorses
the suitability of the proposed model both in IFR and BTS functions. Also, it portrays
negatively, positively, and symmetric shapes of a density function, which is not seen
in the corresponding models except MWD. Fourthly, due to its closed CDF or SF one
can easily generates random numbers from it. A final motivation is its flexibility in
exhibiting a unit domain distribution by fixing α = 1. In addition, the notations and
acronyms used in this study are listed in Appendix-A0.

The rest of the manuscript is managed as follows. Section2 is reserved for studying
the curve behavior of PDF and HRF as well as characterizations based of five different
lifetime gadgets. The percentile function, r th moment via moment generating func-
tion, various entropies, Lorenz, Bonferroni, scaled total time on test transform (TTT),
conditional moments, mean deviation (MD), residual life (RL) functions, stress, and
strength function are studied in Sect. 3. Section4 studies the estimation of parameters.
Section5 deals with the competing models and applications. The conclusion is drawn
in Sect. 6.

2 Curve Behavior of PDF and HRF Along with Characterizations

2.1 Shapes and Distribution of Curve

In this segment, we shall scrutinize the graphs of PDF andHRF of the FLD distribution
as well as the characterization constructed on failure rate functions. For exploring the
curve behavior of PDF and HRF, we shall first define the logarithmic form of Eq. (2),
which after differentiation about x and equating to zero yields
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Fig. 2 FLD PDF graphs

d

dx
(ln( f (x))) = (ln( f (x)))′ = −1

x
+ 1 + θ

x ln
(

α
x

) − βθ
(
βln

(
α
x

))−1−θ

x
= 0. (7)

Since a closed-form solution is not possible, computational package can be used to
find the mode numerically. Furthermore, we observed that (ln( f (x)))′, at extreme
points exhibit a non-monotone behavior. For θ = 0, the mode of the distribution lies
at x = αe−1. It is also observed that

lim
x→0

e−(βln α
x )−θ ∼ e−(

β
x )−θ

, lim
x→α

e−(βln α
x )−θ ∼ e−(β(x−a))−θ

.

So, as x → 0, we have

lim
x→0

f (x) ∼ βθ

x

(
β

x

)−θ−1

e
−
(

β
x

)−θ

, 0 < x < ∞,

and

lim
x→α

f (x) ∼ βθ (β(x − α))−θ−1 e−(β(x−α))−θ

0 < x < α. as x → α.

Consequently, the HRF asymptotic form, as x → 0, is

H(x) ∼ βθ

x

(
β

x

)−θ−1

, 0 < x < ∞,

and as x → α

H(x) ∼ βθ (β(x − α))−θ−1 , 0 < x < α.
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Fig. 3 FLD HRF graphs

After the differentiation of Eq. (5) with respect to x and setting the resultant deriva-
tive to zero, we get

d

dx
(ln(H(x))) = θ

(
1 + θ − ln

(
α
x

)) (
βln

(
α
x

))−θ

x2ln
(

α
x

)2 = 0. (8)

From the earlier equation, the mode of HRF is x = αe−θ−1, which depends upon
on α and θ only. Moreover, its second derivative is

d2

dx2
(ln(H(x))) =

θ
(
(1 + θ)(2 + θ) − 3(1 + θ)ln

(
α
x

)+ 2ln
(

α
x

)2)

x3
(
βln

(
α
x

))θ
(ln

(
α
x

)
)3

= 0, (9)

which implies that the change points (CP) are: CP1 = αe
1
4

(
−3−3θ−√−7−6θ+θ2

)
and

CP2 = αe
1
4

(
−3−3θ+√−7−6θ+θ2

)
(Fig. 3).

2.2 Characterizations

As lifetime phenomena are usually related to reliability and HRF that should be as far
as possible to be realistic, such a realistic mechanism can only be obtained if the model
is characterizable. Characterization assists scholars in finding the genuine model by
using anyparticular property. For a comprehensive study, readers are referred to [8–10].
In this regard, we characterize the proposed model by statistical lifetime gadgets like
hazard rate, reverse hazard rate, Mills’ ratio, and elasticity functions which are quite
well known in physical sciences and criminological sciences as well as in lifetime data
analysis. In this regard, respective characterizing conditions are defined in different
propositions one by one as follows.
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Definition 1 Let X : S −→ (0,∞) be a continuous stochastic variate with PDF f(x)
iff the HRF fulfills the subsequent equation

f ′(x)
f(x)

= H′(x)
H(x)

− H(x),

and RHRF R(x) fulfills the stated condition

f ′(x)
f (x)

= R′(x)
R(x)

+ R(x),

respectively.

Proposition 1 Let X : S −→ (0,∞) be a continuous stochastic variate with the PDF
(2)iff its HRF defined by 5 is twice differentiable and satisfies the expression

H′(x)
(H(x))2

=
(
1 + θ − ln α

x − θ(βln(α
x ))−θ

)
x

ln(α
x )βθ(βln(α

x ))−θ−1e−(βln( α
x ))−θ

βθ(βln(α
x ))−θ−1

+ 1. (10)

Proof The proof is given in Appendix A1. ��

Proposition 2 Let X : S −→ (0,∞) be a continuous stochastic variate with the PDF
2 iff Eq.6 is twice differentiable and satisfies the given expression

R′(x)
(R(x))2

=
e−(βln( α

x ))
−θ

θ
(
βln

(
α
x

))−2θ
(
−θ + (

1 + θ − ln
(

α
x

)) (
βln

(
α
x

))θ) (1 − e−(βln( α
x ))

−θ
)

(
ln
(

α
x

))2 (
βθ

(
βln

(
α
x

))−1−θ
e−(βln( α

x ))
−θ
)2 − 1. (11)

Proof The proof is given in Appendix A1. ��

Definition 2 Let X : S −→ (0,∞) be a continuous stochastic variate having abso-
lutely continuous CDF and PDF iff the Mills ratio defined as: M(x) = 1

H(x) is twice
differentiable function and satisfies the following equation:

f ′(x)
f (x)

+ M′(x) + 1

M(x)
= 0.

Proposition 3 Let X : S −→ (0,∞) be a continuous stochastic variate with PDF as
defined in Eq.2 iff its Mills ratioM(x) = x

βθ(βln( α
x ))−theta−1 is twice differentiable and

satisfies

M′(x) =
e−(βln( α

x ))
−θ

θ
(
βln

(
α
x

))−2θ
(
−θ + (

1 + θ − ln
(

α
x

)) (
βln

(
α
x

))θ) (
e−(βln( α

x ))
−θ
)

(
ln
(

α
x

))2 (
βθ

(
βln

(
α
x

))−1−θ
e−(βln( α

x ))
−θ
)2 + 1. (12)
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Proof The proof is given in Appendix A1. ��

Definition 3 Let X : S −→ (0,∞) be an absolutely continuous stochastic variate
with CDF and PDF, the elasticity function, E(x) = xR(x), of a twice differentiable
distribution function satisfies the differential equation,

f ′(x)
f (x)

= E′(x)
E(x)

+ E(x)

x
− 1

x
.

Proposition 4 Let X : S −→ (0,∞) be an absolutely continuous random variate
with PDF and CDF as defined in Eqs.2 and 4 iff its elasticity function is defined
E(x) = xR(x) which is twice differentiable and satisfies the given expression

E′(x) −
⎛
⎜⎝− 1

x
+ 1 + θ

xln
[

α
x

] − βθ
(
βln

[
α
x

])−1−θ

x
− e−(βln

[
α
x

]
)
−θ

βθ
(
βln

[
α
x

])−1−θ

(
1 − e−(βln

[
α
x

]
)
−θ
)
x

⎞
⎟⎠E(x)

= βθ(βln( α
x ))−θ−1e−(βln( α

x ))
−θ

x(1 − e−(βln( α
x ))

−θ

)
. (13)

Proof The proof is given in Appendix A1. ��

The following theorem was used in [11] to characterize different univariate contin-
uous distributions. Here, we discuss characterizations of FLD distributions through
Theorem [11] on the basis of simple relationship between two functions of X.

Theorem 1 Let (S : F;P) be a given probability space, and let W = [c, d] be an
interval for some c < d(c = −∞; d = ∞might as well be allowed). Let X : S → W

be a continuous random variable with distribution function F , and let p and q be two
real functions defined on W such that

E (p(X)|X ≥ x) = E (q(X)|X ≥ x) ψ(x), x ∈ W,

is defined with some real function ψ . Assume that p, q ∈ C1(W), λ ∈ C2(W) and
F is a twice continuously differentiable and strictly monotone function on the setW.
Finally, assume that the equation qψ = p has no real solution in the interior of W.
Then F is uniquely determined by the functions p, q and ψ , particularly

F =
∫ x

0
C| ψ ′(u)

ψ(u)q(u) − p(u)
|exp(−r(u))du,

where the function r is a solution of the differential equation r ′ = ψ ′q
ψq−p and C is a

constant to make
∫
W
dF = 1.

Proposition 5 Let X : S −→ (0,∞) be a continuous random variable, and let
q(x) = 3

e2(βln
α
x )−θ and p(x) = 2

e(βln α
x )−θ for x ∈ (0;α). The random variable X has
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PDF (2) iff there exist functions ψ and p defined in Glanzel Theorem satisfying the
differential equation

ψ ′(x)
ψ(x)q(x) − p(x)

= e2(βln( α
x ))−θ

βθ(βln(α
x ))−θ−1

x
. 0 < x < α (14)

Proof The proof is given in Appendix A1. ��
Corollary 1 Let X;S −→ (0,∞) be a continuous random variable, and let q(x) =

3

e2(βln
α
x )−θ and p(x) = 2

e(βln α
x )−θ for x ∈ (0;α). The random variable X has the PDF

(2) iff the ψ has the form ψ(x) = e(βln α
x )−θ

.

Remark 1 Since solution of differential Eq.14 is

ψ(x) =
∫

e(βln( α
u ))−θ

βθ(βln(α
u ))−θ−1

u
du + D,

where D is an integral constant.

3 Lifetime Variate’s Mathematical and Statistical Properties

This section is reserved only for the mathematical and statistical properties of the
proposedmodel, which are quite helpful in the lifetime phenomenon. These properties
include the quantile, moment generating function, moments, conditional moments,
mean deviation, entropy, residual and reverse residual, Bonferroni, Lorenz curves,
scaled TTT, and stress and strength probability.

3.1 Percentile Function

Let X be a continuous variate with CDFFX : R → [0, 1]. Now, from this definition a
percentile function P generally sends back a threshold measurement x . In this regard,
inverse of the FLD percentile function yields x = P(p) as follows:

Pp = F−1(p) = αe− (−1)−1/θ ln[1−p]−1/θ

β , (15)

where p ∈ (0, 1). The median is αe− (−1)−1/θ ln[0.5]−1/θ
β .

3.2 RawMoments fromMoment Generating Function

In physical sciences, computing engineering, and environmental modeling, the term
raw moment of any model is a computable measure related to the center, dispersion,
skewness, and kurtosis of the model’s graph. It not only addresses the curve behavior
of a function but also assists in characterizing the probability functions. In order to
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Fig. 4 Skewness and Kurtosis graphs

generate moments from the MGF, we shall first define the MGF of a continuous
random variable X∼ FLD(α, β, θ) as MX (t) = E(et X ) = ∫ α

0 etx f (x)dx , where
|t | < 1. Now, on incorporating Eq. (2) we get

MX (t) =
∫ α

0
etx

βθ

x
(β ln(

α

x
))−θ−1e−(β ln( α

x ))−θ

dx .

Let y = (
βln

(
α
x

))−θ
, dy = θβ(βln( α

x ))
−θ−1dx

x , if x = 0, y = 0, x = α, y = ∞, so

when x = αe− y−1/θ

β α, on simplification we get

MX (t) =
∞∑
r=0

∞∑
m=0

αr
(−r

β

)m

m! �
[
1 − m

θ

] tr
r ! .

The r th raw moment for FLD distribution can be expressed as the coefficient of tr
r !

μ
′
r =

∞∑
m=0

αr
(−r

β

)m

m! �
[
1 − m

θ

]
,

where �[a] = ∫∞
0 ta−1e−tdt is a gamma function. On the basis of these, we are

able to assess the skewness (departure from symmetry, μ3

μ
3/2
2

) and kurtosis (degree of

peakedness μ4

μ2
2
), whereμ is the moment about mean. Since expressions for these ratios

are not in closed form, the plots are portrayed in Fig. 4, indicating that the proposed
model is negatively and positively skewed and symmetric. Moreover, the model is also
leptokurtic, mesokurtic, and platykurtic in behavior.
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3.3 Entropy

The measure of the degree of uncertainty is commonly known as entropy. It has many
significant chattels that agree with our innate belief of haphazardness. For studying
this, we like to mention some of its properties which are (1) It may be positive or
negative. (2) It vanishes if and only if it is a particular event. (3) Entropy is augmented
by the accumulation of an independent constituent and lessened by acclimatizing.
However, adding this belief to continuous probability models postures some contests.
The entropy is specially combatted in physics, computing engineering, and statistics,
where it measures the number of ways a thermodynamic system is arranged, the
total amount of information in each received message, and measures uncertainty and
dispersion, respectively. A number of research papers and monographs have appeared
over the past 60 years, discussing and extending the original work of Shannon. In this
research work, we will discuss some of them under the following names.

3.3.1 Shannon’s Entropy

The SE is a significant and famous notion in the field of physical sciences and com-
puting engineering, and its applications are generally seen in the field of financial
analysis, data compression, mathematics, statistics, and computing sciences. For con-
tinuous variable X , it can be expressed as

SE = −
∫ ∞

−∞
f(x)ln(f(x))dx .

Incorporating the PDF in the above equation and simplifying it, we get

SE = −ln(β) − ln(θ) + (θ + 1)γ

θ
+ 1 + ln(α) + 1

β
�

(
1 − 1

θ

)
,

SE = ln

(
α

βθ

)
+ (θ + 1)γ

θ
+ 1 + 1

β
�

(
1 − 1

θ

)
,

where γ is the Euler constant and 1
θ

< 1.

3.3.2 Cumulative Residual Entropy

Another measure of randomness of a random variable X called the CRE, where the
PDF of the random variable X is swapped by the CDF/SF in Shannon’s definition.
The CDF/SF is more consistent than the PDF, because the PDF is obtained as the
derivative of the CDF/SF. If X is a random variable, then we can define the CRE as

CRE = −
∫ ∞

−∞
S(x)ln(S(x))dx;
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for FLD, it can be expressed as

CRE = −
∫ α

0
e−(β ln( α

x ))
−θ

ln
(
e−(β ln( α

x ))
−θ
)
dx,

which on simplification yields

CRE = α

βθ

∞∑
m=0

(−1
β

)m

m! �

(
1 − m + 1

θ

)
.

provided θ > m + 1.

3.3.3 Tsallis Entropy

TEwaspresented byTsallis [12] in 1988, and it is a generalization ofBoltzmann–Gibbs
statistics. For a nonnegative continuous random variable X with the PDF 2, Tsallis
entropy of order λ is defined by T Eλ(X) = 1

λ−1

(
1 − ∫ α

0 (f(x))λ dx
) ; λ �= 1, λ > 1.

For FLD, it can be expressed as

T Eλ(X) = 1

λ − 1

⎛
⎜⎜⎝1 −

(
θβ

α

)λ−1

λ
1−(1+θ)λ

θ

∞∑
m=0

(
(λ−1)λ

1
θ

β

)m

m! �

(−1 − m + λ + θλ

θ

)
⎞
⎟⎟⎠ ,

provided (θ + 1)λ > m + 1.

3.3.4 Cumulative Residual Tsallis Entropy

Based on the TE, Sati and Gupta [13] proposed a CRTE of order λ, which is given by
CRT Eλ(X) = 1

λ−1

(
1 − ∫ α

0 (F(x))λ dx
) ; λ �= 1, λ > 1

CRT Eλ(X) = 1

λ − 1

⎛
⎜⎜⎝1 − α

∞∑
m=0

(
−λ

1
θ

β

)m

m! �
(
1 − m

θ

)
⎞
⎟⎟⎠ ,

provided θ > m.

3.3.5 Rényi Entropy

The REmeasures the assortment, uncertainty, or randomness of a system. The entropy
is identified after Alfréd Rényi, who looked for the most general definition of informa-
tion measures that maintain additivity for independent events. It is applied in ecology
and statistics as the index of diversity [14], in quantum information as a measure of
complex system [15] and in heart rate variability for detecting CAN [16]. The RE of
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Fig. 5 FLD Shannon’s and cumulative residual entropy graphs

order λ, where λ ≥ 0, λ �= 0 is defined as RE = 1
1−λ

ln
∫
� fλ(x)dx . For the FLD, it

can be expressed as

REλ(X) = 1

1 − λ

((
1 − (1 + θ)λ

θ

)
ln[λ] + (1 − λ)ln

[
α

θβ

]

ln

⎡
⎢⎢⎣

∞∑
m=0

(
− (1−λ)λ

1
θ

β

)m

m! �

[−1 − m + λ + θλ

θ

]
⎤
⎥⎥⎦

⎞
⎟⎟⎠ ,

provided (θ + 1)λ > m + 1.

3.3.6 Mathai–Haubold Entropy

An inaccuracy measure through disturbance or distortion of systems can be calculated

via an entropy known as MHE proposed by [17] is defined asMHE =
∫
� f2−λ(x)dx−1

λ−1 .
For the FLD it can be expressed as

MHEλ(X)

=
(2 − λ)

λ−1
θ

+λ−2
(

θβ
α

)2−λ−1∑∞
m=0

(
− (2−λ−1)(2−λ)

1
θ

β

)m

m! �
[
1−m−θ(−2+λ)−λ

θ

]
− 1

λ − 1
,

provided 1
θ

>
m+θ(λ−2)+λ

θ
.

Interpretations of Entropy From Figs. 5, 6, and 7, it is obvious that entropy occupies
both negative and positive amount. Both cases are observed in all types of entropies,
i.e., FLD is maximum entropy distribution and also has negative entropy, which indi-
cates that the model also exhibits ordered pattern in entropy and it requires energy to
achieve this state, i.e., negative entropy. However, the amount of entropy in positives
cases is too low, which indicates that disorder exists very negligibly, small.
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Fig. 6 Tsallis and cumulative residual Tsallis entropy graphs

Fig. 7 Rényi and Mathai–Haubold entropy graphs

3.4 Conditional Moments andMean Deviations

For lifetime probability models, the r th conditional moment is defined as E(Xr |X >

t), r = 1, 2, ..., which has crucial and substantial concern in forecasting. So for this
purpose the r th partial moments of the variate X defined as δr (t) for any real r > 0 is
given as

δr (t) =
∫ t

−∞
xr f(x)dx,

=
∞∑

m=0

αr
(
− r

β

)m (
�
[
1 − m

θ

]− �
[
1 − m

θ
,
(
βln

[
α
t

])−θ
])

m! ,

where �(a, b) = ∫∞
b ta−1e−t is an incomplete gamma function. Now, the r th condi-

tional moment of the FLD distribution can be obtained as
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E(Xr |X > t) = 1

S(t)

{
E(Xr ) −

∫ t

0
xr f(x)dx

}
,

= 1

S(t)
{μ′

r − δr (t)}.

The partial moments methodology is quite useful in finding the average deviance
between the median andmean, where the median/mean aberration yields key evidence
about typical of population. These partial moments can be used in many fields like
economics and insurance. It delivers vital evidence about a population’s attributes via
the first partial moment. Now in this regard, the MD about the mean (μ′) and median
(μ̃) are expressed as

MDμ′ = E | X − μ′
1 |= 2μ′

1F(μ′
1) − 2δ1(μ

′
1), (16)

where δr (t) = ∫ t
−∞ xr f(x)dx and

MDμ̃ = E | X − μ̃ |= μ′
1 − 2δ1(μ̃), (17)

respectively, which in turn assists researchers to determine the volume of diffusion
in a population, also μ′

1 = E(X), μ̃ = M(X)=P( 12 ), and δ1(t) is the first complete
moment defined as above with r = 1.

3.5 Residual Lifetime Function and Its Characteristics

If t > 0 is the survival time, then RL and RRL stochastic variates from time t till the
time of failure and the time passed from the failure of a section given that its life ≤ t ,
are stated, respectively, asRL(t) := (X − t |X > t) and ¯RRL(t) := (t − X |X ≤ t).
The SF of the RL is SFRL(t) , t ≥ 0; for the FLD distribution, it is given as

SFRL(t) (x) = SF(x + t)

SF(t)
= e−(β ln( α

x+t ))
−θ

e−(β ln( α
t ))−θ

,

SFRL(t) (x) = e−(β ln( α
x+t ))

−θ−(β ln( α
t ))−θ

,

and the corresponding PDF is

fRL(t) (x) = βθ

x + t

(
β ln

(
α

x + t

))−θ−1

e−(β ln( α
x+t ))

−θ−(β ln( α
t ))−θ

,

and HRF of RL(t) is given by

HRL(t) (x) = βθ

x + t

(
β ln

(
α

x + t

))−θ−1

.
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Fig. 8 FLD MRL function graphs

As MRL, suggests how much retentive apparatus will last for a specific point of time,
is a vital gauge in reliability appraisal and modeling. It deals with condensed data for
various decision-makingmalfunctions, such as fixing burn-in tests, planning enhanced
life tests, determining warranty policy, and making maintenance decisions. Keeping
in view the significance of the function, one can define it as

K(t) = E(RL(t)) = 1

SF(t)

∫ α

t
xf(x)dx

= 1

SF(t)
{E(X) −

∫ t

0
xf(x)dx} − t,

where

δr (t) =
∫ t

−∞
xr f(x)dx .

TheMRL function ismuscularly linked to the failure rate function; theMRL classes
are also related to the classes defined via the HRF. From Fig. 3, its is obvious that
purported model belongs to BFR, which suggests that the linked MRL has an IBTS
shape, see Fig. 8.

Mean = M(t) = 1

S(t)

⎧⎪⎨
⎪⎩
E(X) − α

∞∑
m=0

(−1
β

)m

m!
(

�
(
1 − m

θ

)
− �

(
1 − m

θ
,
(
βln

(α

x

))−θ
))}

− t,

Gupta and Kirmani [18] stated the substantial importance of the variance of RL func-
tion which compelled us to calculate it for FLD as (Fig. 9)
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Fig. 9 FLD variance of residual life function graphs

VAR(t) = Variance(RL(t))

= 2

SF(t)

∫ α

t
xSF(x)dx − 2tK(t) − (K(t))2 ,

VAR(t) = 1

SF(t)

⎧
⎪⎨
⎪⎩
E(X2) − α2

∞∑
m=0

(−1
β

)m

m!
(
�
(
1 − m

θ

)
− �

(
1 − m

θ

}
− t2 − 2tK(t) − (K(t))2

)}
.

3.6 Reversed Residual Life Function and Its Features

Similarly, we have also calculated the SF of the RRL function RV(t), t ≥ 0 for the
FLD as

SFRV(t) (x) = F(t − x)

F(t)
= 1 − e−(β ln( α

t−x ))−θ

1 − e−(β ln( α
t ))−θ

, 0 ≤ x ≤ t,

and the corresponding PDF is

fRV(t) (x) = βθ

(t − x)(1 − e−(β ln( α
t ))−θ

)

(
β ln

(
α

t − x

))−θ−1

e−(β ln( α
t−x ))−θ

.

The HRF ofRV(t) is given by

HRV(t) (x) = βθ

(t − x)(1 − e−(β ln( α
t−x ))−θ

)

(
β ln

(
α

t − x

))−θ−1

e−(β ln( α
t−x ))−θ

,
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with average and dispersion measures as

Mean(RV(t)) = LW(t) = E(RV(t)) = t − 1

F(t)

∫ t

0
xf(x)dx = t − δ1(t)

F(t)
,

Variance(RV(t)) = W(t) = 2tLW(t) − (LW(t))2 − 2

F(t)

∫ t

0
xF(x)dx,

W(t) = 2tLW(t) − (LW(t))2 − t2 + δ2(t)

F(t)
.

3.7 Lorenz Curve

Suppose X is a nonnegative random variable, then the Lorenz curve for the FLD is
expressed, for a given probability p, as

Z(p) = 1

μ′
1
δ1(q).

3.8 Bonferroni Curve

Suppose X be a nonnegative random variable, then the Bonferroni curve for FLD can
be expressed as

B(p) = 1

pμ′
1
δ1(q),

where μ′
1 = E(X), and p = P(p) is the percentile function of X at percentile p and

q = F−1(p).

3.9 Scaled Total Time on Test

The scaled TTT is important for the aging properties of the underlying distribution and
can be applied to solve geometrically some stochastic maintenance problems. TTT
for a CDF F can be defined as SFF (F(t)) = 1

E(X)

∫ t
0 SF(y)dy see [19]. Therefore,

for the FLD it can be expressed as

SFF (F(t)) = 1

E(X)
{te−(β ln( α

t ))−θ + δ1(t)}.

3.10 Stress–Strength Reliability for the FLD Distribution

In this subsection, themathematical form of stress–strengthR for the FLD is calculated
asR = P (Y < X). It gauges the constituent reliability when it is exposed to random
stress, Y , given that its strength is X . In this perspective, R can be believed as a
measure of system execution and spontaneously develops electrical and electronic
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systems. For comprehensive study about stress–strength reliability, readers may see
[20]. Let X ∼ FLD(α, β, θ1) and Y ∼ FLD(α, β, θ2) denote the strength–stress
random variable. Hence, the parameter R for the FLD is obtained as

R = P (Y < X) =
∫ α

x=0

∫ x

y=0
f (x;α, β, θ1) f (y;α, β, θ2)dxdy

=
∫ α

x=0
f (x;α, β, θ1)F(x;α, β, θ2)dx,

which after simplification yields

R = 1 −
∫ α

x=0

βθ

x
(β ln(

α

x
))−θ1−1e−(β ln( α

x ))−θ1 e−(β ln( α
x ))−θ2 dx,

= 1 −
∫ ∞

z=0
e−ze−z

θ2
θ1 dz,= 1 −

∞∑
m=0

(−1)m

m! �

(
1 + m

θ2

θ1

)
,

provided m θ2
θ1

> −1.

4 Estimation of Model Parameters

4.1 LikelihoodMethod

Statistical implications are usually passed through three dissimilar methods like inter-
val and point estimation as well as hypothesis testing. Even though abundant of
approaches for the estimation of parameters were available in the statistical litera-
ture, the maximum likelihood method of estimation is the most excellently adaptable
one. It owns projected chattels when fabricating the confidence regions and intervals
as well as in test statistics. Asymptotic theories of these estimators convey simple
calculations that toil well in the limited information contained in the samples. Statis-
ticians frequently pursue to estimate quantities like the density of a test statistic that
depends on the sample size so as to obtain better estimate distributions. The subse-
quent calculations for the MLEs in distribution theory can be handled either logically
or mathematically. In this section, we are trying to cope with parameters estimation
via the MLE method from the whole sample. Suppose x1, ..., xn is a stochastic real-
ization of size n from the FLD distribution given by Eq. (2). The logarithmic form of
likelihood function of the FLD is expressed as

�n(�) = nln(β) + nln(θ) −
n∑

i=1

ln(xi ) − (θ + 1)
n∑

i=1

βln

(
α

xi

)

−
n∑

i=1

(
βln

(
α

xi

))−θ

, (18)
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on partially differentiating Eq. (18) with respect to “θ” and “β,” respectively, and
equating it to zero, we get

∂�n(�)

∂θ
= n

θ
−

n∑
i=1

ln

(
βln

(
α

xi

))
−

n∑
i=1

−ln

(
βln

(
α

xi

))(
βln

(
α

xi

))
−θ = 0,

(19)

∂�n(�)

∂β
= n

β
− n(1 + θ)

β
+

n∑
i=1

θln

(
α

xi

)(
βln

(
α

xi

))
−1−θ = 0. (20)

Because this expression cannot be worked out rationally, we desire to apply a com-
putational package like Mathematica [12.0]. Therefore, we started estimation by
utilizing the NMaximized commands. But, we have examined that we are unable
to attain the fairly accurate estimate of α from Eq. (18). Since α is not based on
x and it is the highest value in the domain of x , so we assume that the MLE for
α as α̂ = max(x1, x2, ..., xn) + ξ where ξ > 0 represents some arbitrary constants.
However, when start estimation of parameter,α of the FLD, using limited sample infor-
mation, we assume that all the components in the sample are the stochastic variate.
Therefore, we should assume that the sample should be encompassed of independent
observations on the random variable in demand. As the value of parameter α defines in
the domain of attraction of the FLD random variable, during the process of estimation,
it is a stipulation that α should be greater than the greatest element in the sample. That
is why, we are looking for the vigorous value of α̂ which will perhaps be recognized
under the condition that α̂ is greater than the greatest element in the sample. Like-
wise, the convergence of anticipated model’s MLE is based on the massive value of
α̂, which seems to be in accordance with the distribution theory of standard epsilon
models; for comprehensive study, the reader is referred to [1]. Furthermore, the regu-
larity conditions of MLEs, the FLD (α, β, θ ) model fulfill the regularity conditions as
declared by [21](pp. 419). Thus, the confidence interval beltMLE vector of �̂=(α̂,β̂,θ̂)
is consistent and asymptotically normal family, i.e.,

√
n[�̂T − �T ] ∼ TVN[0, I−1],

where I−1 is the inverse of the expected Fisher information matrix, which generates
variance–covariance matrix based on the expectation of second-order log-likelihood
derivatives.

5 CompetingModels and Applications

In this section, we have studied four data sets ranging from lifetime perspective to
participation aspects. The sources of data sets arementioned in their respective section.

5.1 Models for Comparisons

For comparison purposes, we have studied ten competing models, including MWD
[22], 3P Kappa distribution studied by [23], 3P WD [24], EED [25], WD and GD
taken from Wikipedia, IGD [26], FD [7], LND [27], and LLD [6].
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5.2 Detection of Hazard Rate Pattern

For failure rate identification pattern, the researchers usually prefer to use the TTT-
transform, which helps to examine the shapes of the hazard rate of a given data. In
this concern, Barlow and Campo [28] first applied it, for statistical inference problems
under order restrictions. When modeling a data set, Aarset [29] used this test as a
selection method [30]. As the developed model exhibits IBTS together with IFR, so
we prefer to select various data sets exhibiting BTS or IFR.

5.3 Goodness-of-Fit and Discrimination Criterion

In this subsection, diverse standard discriminations are adopted, which are built on the
log-likelihood (−l) function. Let q denote the number of parameters to be fitted and
�̂ be the MLEs of �, n is the size of data set, the number of classes is denoted by k,
z j = FX (x j ) and the x j , j = 1, 2, 3, . . . , n being the arranged observations. Then,
the expressions for respective information criteria are given as

AIC = 2q − 2�(�̂), AICc = AIC + 2q(q + 1)

n − q − 1
, BIC = qln(n) − 2�(�̂)

HQIC = −2�(�̂) + 2q log(log(n)), CAIC = −2�(�̂) + 2qn

n − q − 1
.

The finest model will be accepted if it possesses the least values of these gadgets.
Additionally, brilliance of rival models is also confirmed through various goodness-
of-fit test statistics which include both the parametric and nonparametric tests like KS,
χ2, W ∗

0 and A∗
0. Their corresponding expressions are given as follows:

KS = max

{
j

k
− z j , z j − j − 1

k

}
, χ2 =

k∑
j=1

(o j − e j )2

e j
,

W ∗
0 =

k∑
j=1

(
z j − 2 j − 1

2k

)2

+ 1

12k
,

A∗
0 =

(
2.25

k2
+ 3

4k
+ 1

)⎧⎨
⎩−k − 1

k

k∑
j=1

(2 j − 1) ln(z j (1 − zk− j+1))

⎫⎬
⎭ .

Moreover, the VTS, suggested by [31], is also applied. For comprehensive procedural
understanding, the readers are referred to [32]. The evaluations of the competing
models are described in Table 14.

5.4 Application with Real Lifetime Data Sets

Example 1 The lengths of power failures, in minutes, are recorded in this data set, and
the data are extracted from the book [33](pp. 51) with the following measurements:
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Table 1 Data set I descriptive summary

SS X̄ X̃ σ̂ ˆSK K̂U ŜE

45 74.022 78.00 39.2576 −0.0320 1.93677 3.5178

Table 2 Data set I theoretical measures

SS X̄ X̃ σ̂ ˆSK K̂U ŜE

45 73.7476 74.9678 37.1584 −0.0164 2.3106 4.9937

Fig. 10 Empirical TTT plots

22, 18, 135, 15, 90, 78, 69, 98, 102, 83, 55, 28, 121, 120, 13, 22, 124, 112, 70, 66, 74,
89, 103, 24, 21, 112, 21, 40, 98, 87, 132, 115, 21, 28, 43, 37, 50, 96, 118, 158, 74, 78,
83, 93, 95.

Analytical Discussion About Data Set I Table 1 displays some descriptive features
like SS, X̄, X̃, σ̂ , ŜK, K̂U and SE of the data, which reveals a close coordination
between descriptive and theoretical results given by Table 2. The proposed model has
a minimum value of χ2 goodness-of-fit statistic as compared to rest of the models
values. Also, FLD has minimum value of A∗

0, W
∗
0 and the KS statistic that supports

the suitability of suggested model. Take note of that the parameter α is the highest
value in the domain of Eq.2, i.e., it is nonnegative only if x ∈ (0, α), which implies
that the value of parameter α must fulfill the necessity that α > maxi=1,2,3,...,n(xi ),
see [2]. In this regard, while finding the MLEs we observed that α̂ is larger than
the maxi=1,2,3,...,n(xi ) for any data set, which can be visualized in the related tables.
Moreover, it is noteworthy that data portray an IFR behavior as portrayed in Fig. 10
along with maximum entropy model as exhibited in Table 13. So, such narrative
demands a model that can not only model the positive skewness, leptokurtic behavior,
IFR but also the maximum entropy issue in a pleasant way. In addition, for drawing
valid conclusion, we have grouped the observation by using R as [13,22], (22,41.7],
(41.7,73.4], (73.4,87.3], (87.3,98], (98,117], (117,158] and the frequencies are listed
as 8, 5, 6, 7, 7, 5, 7, respectively. Moreover, Tables 3 and 15 (see Appendix A2) portray
that the developed model is the most suitable one, with least values for all statistics
and highest p value for χ2 and with the smallest KS statistics. Furthermore, the VTS
and histogram that are portrayed in Table 13 and Fig. 11, respectively, also support
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Table 4 Data set II descriptive summary

SS X̄ X̃ σ̂ ŜK K̂U ŜE

52 80.9615 78.00 69.5092 2.17917 10.2266 3.7646

Table 5 Data set II theoretical measures

SS X̄ X̃ σ̂ ŜK K̂U ŜE

52 81.6837 78.9833 67.2136 1.14350 10.2601 −8.4441

Fig. 11 Histogram of data set I and II

the above results. Hence, our proposed model seems to be a natural choice for such
data sets.

Example 2 This data set is extracted from the book [34](pp. 12). This data set mentions
the death times (in weeks) of patients with cancer (Aneuploid Tumor) of the tongue,
with the measurements: 1, 3, 3, 4, 10, 13, 13, 16, 16, 24, 26, 27, 28, 30, 30, 32, 41, 51,
61, 65, 67, 70, 72, 73, 74, 77, 79, 80, 81, 87, 87, 88, 89, 91, 93, 93, 96, 97, 100, 101,
104, 104, 108, 109, 120, 131, 150, 157, 167, 231, 240, 400.

Discussion on the Fit of Data Set II It is evident from Table 4 that the data por-
tray a maximum entropy, see Table 14, positive skewness and high kurtosis in such
a way that skewness to kurtosis ratio is 0.2131. However, the theoretical aspect as
given in Table 6 also portrays the same results. But Table 13 endorses both positive
and negative entropies. Moreover, Table 5 also affirms the above statement. In addi-
tion, we have made frequency distribution of the above data set by R computational
package. For this purpose, we have created different classes, such as [1,16], (16,31.1,
(31.1,71.7], (71.7,87], (87,96.4],(96.4,117],(117,400] along with respective frequen-
cies 9, 6, 7, 9, 6, 7, 8. In this regard, Tables 6 and 16 (see Appendix A2) display that
the proposed model is highly recommended in moderate tailed behavior and BTS data
set as portrayed in 10. Also, these tables provide enough evidence about the appro-
priateness of the proposed model, with reasonably small values of all the statistics
with least loss of information attitude by depicting minimum value of all information
criteria. Furthermore, Vuong test statistics and histogram as portrayed in Table 13
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Table 7 Data set III descriptive summary

SS X̄ X̃ σ̂ ˆSK K̂U ŜE

99 458.82 495.00 195.867 −0.3250 1.9499 4.5391

Table 8 Data set III theoretical measures

SS X̄ X̃ σ̂ ŜK K̂U ŜE

99 464.78 495.68 192.0034 −0.5695 2.5977 6.5431

and Fig. 11, respectively, indicate that the MWD and 3P WD are reasonably good
competitors of the proposed model. Moreover, our claims are further consolidated by
the above findings.

Example 3 The third data set is extracted from the book [34](pp. 12). This data set
mentions the death times (in weeks) of patients with cancer (Aneuploid Tumor) of the
tongue, with measurements: 159, 189, 191, 198, 200, 207, 220, 235, 245, 250, 256,
261, 265, 266, 280, 343, 356, 383, 403, 414, 428, 432, 317, 318, 399, 495, 525, 536,
549, 552, 554, 557, 558, 571, 586, 594, 596, 605, 612, 621, 628, 631, 636, 643, 647,
648, 649, 661, 663, 666, 670, 695, 697, 700, 705, 712, 713, 738, 748, 753, 40, 42, 51,
62, 163, 179, 206, 222, 228, 249, 252, 282, 324, 333, 341, 366, 385, 407, 420, 431,
441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647, 651, 686,
761, 763.

Discussion About the Third Data Set From Tables 7 and 8, the theoretical and
observed descriptive statistics show a remarkable closeness to each other and it seems
that third data set is being simulated by the proposed model. Furthermore, BFR can
be observed from Fig. 10. For more authoritative advocacy of the proposed model,
we have calculated the χ2 by making classes of data set via the command bins of
R computational package as [40,238], (238,352], (352,495], (495,595], (595,650],
(650,763] with the respective frequencies 17, 16, 17, 16, 17,17.Moreover, fromTables
9 and 17 (see Appendix A2), it is evident that our proposed model gives more viable
results as compare to the competing models.

Example 4 The fourth data set measures the exact times of failure which is reported
by [35] with the measurements:14, 34, 59, 61, 69, 80, 123, 142, 165, 210, 381, 464,
479, 556, 574, 839, 917, 969, 991, 1064, 1088, 1091, 1174, 1270, 1275, 1355, 1397,
1477, 1578, 1649, 1702, 1893, 1932, 2001, 2161, 2292, 2326, 2337, 2628, 2785, 2811,
2886, 2993, 3122, 3248, 3715, 3790, 3857, 3912, 4100, 4106, 4116, 4315, 4510, 4584,
5267, 5299, 5583, 6065, 9701.

Discussion and Analysis of the Fourth Data It is evident from Tables 10 and 11
that the theoretical and empirical measures are closely associated, indicating positive
skewness and high kurtosis behaviors. Therefore, these data require a model that
can work very well in positively skewed, moderate kurtosis and BFR distributions,
as shown in Fig. 10. Furthermore, grouped data with the classes such as [14,184],

123



A Flexible Bounded Distribution: Information Measures and... Page 27 of 39 115

Ta
bl
e
9

D
at
a
se
tI
II
go
od
ne
ss
-o
f-
fit

m
ea
su
re

ba
se
d
on

lis
te
d
M
L
E
s

D
is
tr
ib
ut
io
n

α̂
θ̂

β̂
χ
2
(d
.f
)

p
va
lu
e

A
∗ 0

W
∗ 0

K
S

p
va
lu
e

F
L
D

10
71

.7
80

0
2.
17

39
1.
54

29
8

8.
34

89
8
(5
)

0.
13

80
26

1.
13

51
0.
20

00
0.
09

66
0.
33

81

M
W
D

0.
00

21
0.
10

86
0.
00

00
96

.3
37

2
(4
)

0.
00

00
1

12
.4
42

7
2.
35

84
0.
26

39
0.
00

00

3P
K
ap
pa

99
11

.6
00

0
0.
00

00
11

.1
34

4
62

9.
82

6
(2
)

0.
00

00
1

57
.6
59

0
12

.4
59

9
0.
64

97
0.
00

00

3P
W
D

8.
79

41
14

97
.8
40

0
−9

55
.3
79

0
16

.0
82

9
(5
)

0.
00

00
1

1.
68

53
0.
28

35
0.
11

42
0.
16

80

E
E
D

3.
90

15
0.
00

44
–

37
.6
86

2
(4
)

0.
00

00
1

2.
75

51
0.
39

60
0.
12

90
0.
08

48

W
D

2.
53

94
51

4.
98

10
–

22
.2
88

6
(5
)

0.
00

04
62

2.
01

53
0.
29

87
0.
12

32
0.
11

19

G
D

3.
74

05
12

2.
66

10
–

34
.6
77

1(
5)

0.
00

00
1

2.
46

60
0.
35

96
0.
13

30
0.
06

94

IG
D

1.
97

11
59

7.
65

50
–

91
.3
86

7
(4
)

0.
00

00
1

6.
85

08
1.
07

36
0.
19

21
0.
00

18

FD
1.
19

01
28

1.
32

20
–

11
2.
11

3
(4
)

0.
00

00
1

8.
30

81
1.
33

04
0.
26

29
0.
00

00

L
N

5.
98

91
0.
61

45
–

49
.1
19

2
(4
)

0.
00

00
1

3.
64

68
0.
51

79
0.
14

57
0.
03

54

L
L
D

3.
14

26
43

4.
82

80
–

42
.2
23

5
(5
)

0.
00

00
1

2.
94

23
0.
35

77
0.
14

59
0.
03

50

123



115 Page 28 of 39 Z. Ur Rehman et al.

Table 10 Data set IV descriptive summary

SS X̄ X̃ σ̂ ˆSK K̂U ŜE

60 2193.03 1675.50 1920.15 1.2613 5.2312 4.0943

Table 11 Data set IV theoretical measures

SS X̄ X̃ σ̂ ˆSK K̂U ŜE

60 2197.04 1646.66 1881.03 1.2304 4.5710 8.0259

Fig. 12 Histogram of data set III and IV

(184,962], (962,1370], (1370,2120], (2120,3010],(3010,4110], (4110,9701] and the
observed frequencies of each class, which are 9, 8, 9, 8, 9, 8, 9, respectively, also
used for comparison purposes. So in this regard, Tables 12 and 18 (see Appendix
A2) portray the comparison of the compared distributions. From these tables, it is
evident that our proposed model is the suitable one, with least values for all statistics
and highest p value for χ2 statistics. However, encouraging aspects for the proposed
model are its VTS values that ensure that our proposed model is better strategy than
other competing models (Fig. 12, Table 13).

Comparison Via Vuong Test The brief summary of theVTS is portrayed in Table
14, where the possible paired values of the FLD with their competitor models are
given. From these values, it is clear that the proposed model is suitable choice among
these best competitors. Moreover, another encouraging aspect of the proposed model
is having a least loss of information model which can be seen from Tables 15, 16, 17,
and 18 of criterion, see Appendix A2.

6 Conclusion

The Fréchet log-logistic distribution introduced in this study is a notable bounded
distribution. It can be used as a restricted substitute for the beta probability model
because the unit support model is a limit case of the FLD, which is an uncommon form
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Table 13 Theoretical entropy when λ = 0.75

Data sets CRE TCE CRTE RE MHE

I 878.537 13.3444 2720.82 5.86789 3.55664

II 1.16732×106 2.52477 1.69468 ×106 1.95724 3.9183

III −1958.92 9.47261 8569.69 4.57619 3.49023

IV −3.58685 ×107 307.559 1.09047×108 17.3098 3.93821

Table 14 Comparison via VTS

Competing models Statistics Data I Data II Data III Data IV

FLD-MWD Z 4.7916 9.9705 7.3965 6.7851

Z0.05 1.645 1.645 1.645 1.645

FLD- 3P Kappa Z 4.4715 4.8048 13.0030 7.9481

Z0.05 1.645 1.645 1.645 1.645

FLD-3P WD Z 6.5014 6.4004 21.2992 2.8658

Z0.05 1.645 1.645 1.645 1.645

FLD-EED Z 4.6408 18.5898 5.8529 5.8439

Z0.05 1.645 1.645 1.645 1.645

FLD-WD Z 6.8798 13.5381 6.2153 6.8676

Z0.05 1.645 1.645 1.645 1.645

FLD-GD Z 4.9265 18.7655 5.7082 6.1063

Z0.05 1.645 1.645 1.645 1.645

FLD-IGD Z 3.7798 6.1086 5.4869 5.2836

Z0.05 1.645 1.645 1.645 1.645

FLD-FD Z 3.5875 8.1484 6.5932 6.9552

Z0.05 1.645 1.645 1.645 1.645

FLD-LND Z 4.4001 10.5250 5.6660 8.1816

Z0.05 1.645 1.645 1.645 1.645

FLD-LLD Z 9.2496 27.2169 8.0684 13.5222

Z0.05 1.645 1.645 1.645 1.645

for a restricted domain model. Thus, this proposed model offers a flexible explanation
to the dilemma of demonstrating constrained qualities. We have also shown that the
PDF and HRF of the FLD are very accommodating in their curve shapes. The multiple
skewed and kurtosis patterns shown in the PDF of the FLD indicate its versatility. We
found that the FLD’s HRF can approve a variety of shapes ranging from BTS to IFR
with a left skewed J-shape, which normally comprises two phases: the lengthy usable
period phase and the wear-out phase. These forms of the FLD’s HRF make this model
an appropriate choice for modeling determinations in a wide range of practical issues.
Theproposedmodel adopts amathematicallymanipulated able formof its fundamental
functions, including CDF, HRF, and SF, based on which we also characterize the FLD,
indicating that all of the estimated parameters are reliable. Finally, in the applications
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section, we explored the FLDmodel for modeling the failure time of a product, device,
or human in respective units. Based on the empirical findings, we can infer that this
suggested model outperforms the other competing models for all given data sets.

Acknowledgements This work was supported by the National Social Science Fund under Grant No.
21&ZD150.

Appendix

A0-Notation and Acronyms

BTS bathtub shape; IBTS inverted bathtub shape; CDF cumulative distribution func-
tion; EVs extreme values; FLD Fréchet log-logistic distribution; PDF probability
density function; SF survival function; HRF hazard rate function; RHRF reversed haz-
ard rate function; IFR increasing failure rate; DFR decreasing failure rate; TTT total
time on test transform; CP change points; iff if and only if; P percentile function; M̃D
Median; MGF moment generating function; SE Shannon entropy; CRE cumulative
residual entropy; TE Tsallis entropy; CRTE cumulative residual Tsallis entropy; RE
Rényi entropy; CAN cardiac autonomic neuropathy; MHE Mathai–Haubold entropy;
RL residual life; RRL reversed residual life; MRL mean residual life; R reliabil-
ity parameter; MD mean deviation; MLE maximum likelihood estimation; MWD
modifiedWeibull distribution; 3PWD three-parameterWeibull distribution; LLD log-
logistic distribution; GD gamma distribution; IGD inverse gamma distribution; WD
Weibull distribution; 3P Kappa three-parameter Kappa; LND log-normal distribution;
EED exponentiated exponential distribution; FD Fréchet distribution; SK Skewness;
KU Kurtosis; KS Kolmogorov–Smirnov; W ∗

0 Cramer–Von Mises; A∗
0 Anderson–

Darling; χ2 Chi-Square; AIC Akaike information criterion; AICc Corrected Akaike
information criterion; BIC Bayesian information criterion; HQIC Hannan–Quinn
information criterion; CAIC consistent Akaike information criterion; X̄ mean; X̃
median; σ̂ standard deviation; SS sample size; l log-likelihood; TVN tri-variate nor-
mal; IBTS inverted bathtub shape; VTS Vuong test statistics.

A1 Characterization

Proof of Proposition 1 Necessity If X ∼ FLD(α, β, θ), with the PDF 2, then logarith-
mic for its PDF can be expressed as

ln f (x) = ln(β) + ln(θ) − ln(x) − (θ + 1)ln
(
βln

(α

x

))
−
(
βln

(α

x

))−θ

,

on differentiating both sides with respect to x we get

f ′(x)
f (x)

= −1

x
+ θ + 1

xln
(

α
x

) − βθ
(
βln

(
α
x

))−θ−1

x
, (21)
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where

H′(x)
H(x)

= −1

x
+ θ + 1

xln(α
x )

,

and

f ′(x)
f (x)

=
(
1 + θ − ln

(
α
x

)− θ
(
β ln

(
α
x

))−θ
)
x

x ln
(

α
x

)
βθ

(
β ln

(
α
x

))−1−θ
e−(β ln( α

x ))
−θ

. (22)

On comparing Eq.21 with Eq.22, we get

H′(x)
H(x)

=
(
1 + θ − ln

(
α
x

)− θ
(
β ln

(
α
x

))−θ
)
x

x ln
(

α
x

)
βθ

(
β ln

(
α
x

))−1−θ
e−(β ln( α

x ))
−θ

+ βθ(βln(α
x ))−θ−1

x
,

which after simplification yields Eq.10.
Sufficiency Suppose Eq.10 holds, then it may be rewritten as

H′(x)
(H(x))2

=
βe(βLog(

α
x ))

−θ

x
(
βLog

(
α
x

))1+2θ
(
1 + θ − Log

(
α
x

)− θ
(
βLog

(
α
x

))−θ
)

+ β2θ2Log
(

α
x

)

β2θ2
,

the above differential equation yields

H(u) = βθ((βln(α
u ))−θ−1)

u
. (23)

After integrating the expression 23 from 0 to x we get

−ln(1 − F(x)) =
(
βln

(α

x

))−θ

,

which implies that

F(x) = 1 − e−((βln( α
x ))−θ ), β > 0, θ > 0, α > 0, 0 ≤ x ≤ α.

This completes the proof. ��
Proof of Proposition 2 Necessity If X ∼ FLD(α, β, θ), with PDF 2 then

ln f (x) = ln(β) + ln(θ) − ln(x) − (θ + 1)ln
(
βln

(α

x

))
−
(
βln

(α

x

))−θ

,

after differentiating both sides of the above expression with respect to x we get

f ′(x)
f (x)

= −1

x
+ θ + 1

xln(α
x )

− βθ(βln(α
x ))−θ−1

x
, (24)
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where

R′(x)
R(x)

= −1

x
+ 1 + θ

x ln
(

α
x

) − βθ
(
β ln

(
α
x

))−1−θ

x
− e−(β ln( α

x ))
−θ

βθ
(
β ln

(
α
x

))−1−θ

(
1 − e−(β ln( α

x ))
−θ
)
x

,

and

f ′(x)
f (x)

=
e−(β ln( α

x ))
−θ

θ(βln( α
x ))

−2θ
(
−θ+(1+θ−ln( α

x ))(β ln( α
x ))

θ
)

x2(ln( α
x ))

2

βθ
x (β ln(α

x ))−θ−1e−(β ln( α
x ))−θ

. (25)

On comparing Eq.24 with Eq.25, we get

R′(x)
R(x)

=
e−(βln( α

x ))
−θ

θ(βln( α
x ))

−2θ
(
−θ+(1+θ−ln( α

x ))(βln(
α
x ))

θ
)

x2(ln( α
x ))

2

βθ
x (β ln(α

x ))−θ−1e−(β ln( α
x ))−θ

−βθ(βln(α
x ))−θ−1e−(β ln( α

x ))−θ

x(1 − e−(β ln( α
x ))−θ

)
,

which after simplification yields Eq.11.
Sufficiency Suppose Eq.11 holds, then we can rewrite it as

R′(x)
(R(x))2

=

d

(
βθ
x (β ln( α

x ))
−θ−1e−(β ln( α

x ))
−θ
)

dx

(
1 − e

−
(
(βln( α

x ))
−θ
))

(
βθ
x

(
β ln

(
α
x

))−θ−1
e−(β ln( α

x ))
−θ
)2 − 1;

after integrating the above expression from 0 to u, we get

R(u) = βθ

u(1 − e−(β ln( α
u ))−θ

)
(β ln(

α

u
))−θ−1e−(β ln( α

u ))−θ

, (26)

which on integrating from 0 to x yields

ln(F(x)) = ln(1 − (e−βln( α
x ))−θ ),

which implies that

F(x) = 1 − e
−
(
(βln( α

x ))
−θ
)
, β > 0, θ >, α > 0, 0 ≤ x ≤ α.

This completes the proof. ��
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Proof of Proposition 3 Necessity If X ∼ FLD(α, β, θ) has a CDF as defined in Eq.1,
then logarithmic form of its PDF can be expressed as

ln f (x) = ln(β) + ln(θ) − ln(x) − (θ + 1)ln
(
βln

(α

x

))
−
(
βln

(α

x

))−θ

,

on differentiating both sides with respect to x we get

f ′(x)
f (x)

= −1

x
+ θ + 1

xln
(

α
x

) − βθ
(
βln

(
α
x

))−θ−1

x
, (27)

where

M′(x)
M(x)

= −1

x
+ 1 + θ

x ln
(

α
x

) ,

and

f ′(x)
f (x)

=
e−(β ln( α

x ))
−θ

θ(βln( α
x ))

−2θ
(
−θ+(1+θ−ln( α

x ))(β ln( α
x ))

θ
)

x2(ln( α
x ))

2

βθ
x (β ln(α

x ))−θ−1e−(β ln( α
x ))−θ

. (28)

On comparing Eq.27 with Eq.28, we get

M′(x) =
e−(βln( α

x ))
−θ

θ(βln( α
x ))

−2θ
(
−θ+(1+θ−ln( α

x ))(βln(
α
x ))

θ
)

x2(ln( α
x ))

2

βθ
x

(
β ln

(
α
x

))−θ−1
e−(β ln( α

x ))
−θ

+ 1,

which after simplification yields Eq.12.
Sufficiency Suppose Eq.12 holds, then it may be rewritten as

M′ (x) =
d

(
βθ
x (β ln( α

x ))
−θ−1e−(β ln( α

x ))
−θ
)

dx e
−
(
(βln( α

x ))
−θ
)

(
βθ
x

(
β ln

(
α
x

))−θ−1
e−(β ln( α

x ))
−θ
)2 + 1,

On integrating the above equation from 0 to x , we get

M(x) = x

βθ(βln(α
x ))−θ−1 ,

which is the Mills’ ratio of FLD. This completes the proof. ��
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Proof of Proposition 4 Necessity If X ∼ FLD(α, β, θ), with a CDF defined by Eq.1,
then logarithmic form of its elasticity function can be expressed as

lnE(x) = ln(θ) + ln(β) − (θ + 1)ln
(
β ln

(α

x

))

−
(
βln

(α

x

))−θ − ln
(
1 − e−(βln( α

x ))
−θ
)

on differentiating both sides with respect to x we get

E′(x)
E′(x)

= 1 + θ

xln
(

α
x

) − βθ
(
βln

(
α
x

))−1−θ

x
− e−(β ln( α

x ))
−θ

βθ
(
β ln

(
α
x

))−1−θ

(
1 − e−(β ln( α

x ))
−θ
)
x

,

on adding and subtracting 1
x in the above expression we get

E′(x)
E′(x)

= −1

x
+ 1 + θ

xln
(

α
x

) − βθ
(
βln

(
α
x

))−1−θ

x

−e−(β ln( α
x ))

−θ

βθ
(
β ln

(
α
x

))−1−θ

(
1 − e−(β ln( α

x ))
−θ
)
x

+ 1

x
,

which after simplification yields Eq.13.
Sufficiency Suppose Eq.13 holds, then it may be rewritten as

E′(x) = x

(1 − e−(βln( α
x ))

−θ

) d
dx

(
βθ(βln( α

x ))−θ−1e−(βln( α
x ))

−θ

x

)
−
(

βθ(βln( α
x ))−θ−1e−(βln( α

x ))
−θ

x

)2

(1 − e−(βln( α
x ))

−θ

)2

+

(
βθ(βln( α

x ))−θ−1e−(βln( α
x ))

−θ

x

)

(1 − e−(βln( α
x ))−θ

)
.

On integrating the above equation from 0 to x , we get

E(x) = βθ(βln(α
x ))−θ−1e−(βln( α

x ))
−θ

(1 − e−(βln( α
x ))

−θ

)
,

which is the elasticity function of FLD. This completes the proof. ��
Proof of Proposition 5 Necessity For a random variable X having the FLD with PDF 2
and CDF 1, we proceed as

(1 − F(x))E (q(x)|X ≥ x) = e−3(βln α
x )−θ

, 0 < x < α

(1 − F(x))E (p(x)|X ≥ x) = e−2(βln α
x )−θ

, 0 < x < α
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Table 15 Model’s information adaptability in data set I

Distribution −l AIC AICC BIC HQIC CAIC

FLD 225.897 457.795 458.380 463.215 454.468 458.380

MWD 238.696 483.393 483.978 488.813 480.066 483.978

3P Kappa 266.810 539.620 540.206 545.040 536.294 540.206

3P WD 227.255 460.511 461.096 465.931 457.184 461.096

EED 229.827 463.654 463.940 467.268 462.328 463.940

WD 227.256 458.511 458.797 462.125 457.185 458.797

GD 229.080 462.159 462.445 465.773 460.833 462.445

IGD 236.586 477.172 477.458 480.785 475.846 477.458

FD 238.457 480.914 481.200 484.528 479.588 481.200

LND 232.186 468.372 468.650 471.985 467.046 468.658

LLD 233.400 470.800 471.086 474.413 469.474 471.086

which implies that

ψ(x) = E (p(x)|X ≥ x)

E (q(x)|X ≥ x)
= e(βln α

x )−θ

, 0 < x < α

ψ(x)q(x) − p(x) = e−(βln α
x )−θ

, 0 < x < α

and ψ(x)q(x) − p(x) = e−(βln α
x )−θ

for 0 < x < α. The differential equation (14)
clearly holds.
Sufficiency If g and λ satisfy the differential Eq. 14, then

r ′(x) = ψ ′(x)q(x)

ψ(x)q(x) − p(x)
= 3βθ(βln(α

x ))−θ−1

x
, 0 < x < α

hence r(x) = 3(βln(α
x ))−θ . Now from Theorem 1, X has PDF 2. ��

A2-Information Criteria

See Tables 15, 16, 17, and 18.
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Table 16 Model’s information adaptability in data set II

Distribution −l AIC AICC BIC HQIC CAIC

FLD 279.314 564.628 565.128 570.482 561.376 565.128

MWD 280.487 566.974 567.474 572.828 563.722 567.474

3P Kappa 305.663 617.326 617.826 623.180 614.074 617.826

3P WD 279.420 564.840 565.340 570.694 561.588 565.340

EED 279.830 563.660 563.905 567.562 562.408 563.905

WD 279.481 562.962 563.207 566.864 561.710 563.207

GD 279.769 563.538 563.783 567.440 562.286 563.783

IGD 306.082 616.164 616.409 620.066 614.912 616.409

FD 300.250 604.500 604.745 608.402 603.248 604.745

LND 287.003 578.006 578.251 581.908 576.754 578.251

LLD 284.557 573.114 573.359 577.016 571.862 573.359

Table 17 Model’s information adaptability in data set III

Distribution −l AIC AICC BIC HQIC CAIC

FLD 654.595 1315.19 1315.44 1322.98 1312.24 1315.44

MWD 705.737 1417.47 1417.73 1425.26 1414.52 1417.73

3P Kappa 849.559 1705.12 1705.37 1712.9 1702.17 1705.37

3P WD 659.668 1325.34 1325.59 1333.12 1322.39 1325.59

EED 675.963 1355.93 1356.05 1361.12 1354.98 1356.05

WD 663.779 1331.56 1331.68 1336.75 1330.61 1331.68

GD 672.482 1348.96 1349.09 1354.15 1348.01 1349.09

IGD 708.044 1420.09 1420.21 1425.28 1419.14 1420.21

FD 715.874 1435.75 1435.87 1440.94 1434.8 1435.87

LND 685.179 1374.36 1374.48 1379.55 1373.41 1374.48

LLD 679.026 1362.05 1362.18 1367.24 1361.1 1362.18

Table 18 Model’s information adaptability in data set IV

Distribution −l AIC AICC BIC HQIC CAIC

FLD 520.221 1046.44 1046.87 1052.73 1043.26 1046.87

MWD 521.459 1048.92 1049.35 1055.20 1045.74 1049.35

3P Kappa 595.067 1196.13 1196.56 1202.42 1192.95 1196.56

3P WD 520.472 1046.94 1047.37 1053.23 1043.76 1047.37

EED 521.436 1046.87 1047.08 1051.06 1045.69 1047.08

WD 521.582 1047.16 1047.37 1051.35 1045.98 1047.37

GD 521.479 1046.96 1047.17 1051.15 1045.78 1047.17

IGD 552.627 1109.25 1109.46 1113.44 1108.07 1109.46

FD 544.278 1092.56 1092.77 1096.74 1091.38 1092.77

LND 531.031 1066.06 1066.27 1070.25 1064.88 1066.27

LLD 529.666 1063.33 1063.54 1067.52 1062.15 1063.54
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