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Abstract

In this paper, we investigate which classes of monomial ideals have a quasi-additive
property of homological shift ideals. More precisely, for a monomial ideal / we are
interested to find out whether HS; ; (1) € HS; (HS;(/)). It turns out that ¢-bounded
principal Borel ideals as well as polymatroidal ideals satisfying strong exchange
property, and polymatroidal ideals generated in degree two have this quasi-additive
property. For squarefree Borel ideals, we even have equality. Besides, the inclusion
holds for every equigenerated Borel ideal and polymatroidal ideal when j = 1.

Keywords Borel ideals - Free resolutions - Homological shift ideals - Linear
quotients - Multigraded shifts - Polymatroidal ideals
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1 Introduction

A recent approach in studying syzygies of a multigraded module is considering the
ideals generated by their multigraded shifts which following [9] we call them homolog-
ical shift ideals. It first came up during a discussion among Jiirgen Herzog, Somayeh
Bandari, and the author in 2012 whether the property of being polymatroidal is inher-
ited by homological shift ideals. Later it turned out that this question has a positive
answer for matroidal ideals [1], polymatroidal ideals with strong exchange property
[9], and polymatroidal ideals generated in degree two [6]. Besides, other properties
inherited by homological shift ideals, like being (squarefree) Borel or having linear
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quotients, are studied in [2, 9]. In this paper, we are mainly going to discuss a property
of homological shift ideals which we call it quasi-additive property.

To be more precise, let S = k[x1, ..., x,] be the polynomial ring in the variables
X1, ..., X, over a field k with its natural multigrading. Throughout, a monomial and
its multidegree will be used interchangeably, and S(x*) will denote the free S-module
with one generator of multidegree x*. A monomial ideal / € § has a (unique up to
isomorphism) minimal multigraded resolution

F:0->F,—- ---—>F—>FK
with

F = @ sx™fis.

acZ"

The ith homological shift ideal of I denoted by HS; (/) is the ideal generated by the
ith multigraded shifts of 7, that is,

HS; (1) = ({x"] Bia #0}).

Along with other results, Herzog et al. show in [9, Proposition 1.4] that if I has
linear quotients, then

HS;11(1) € HS{(HS; (1))

for all i. Later, it is shown in [10, Corollary 4.2] and in [5, Proposition 2.4] that if 7 is
an equigenerated squarefree Borel ideal or a matroidal ideal, then one has

HS; 11(I) = HS{(HS; (1))

for all i. So the following question naturally arises that for which classes of monomial
ideals one has

HS,'_H' (1) - HSi (Hsj (1))

for all i, j. We say that I has the quasi-additive property for homological shift ideals
or simply [ is quasi-additive if the above question has a positive answer for /.

In this paper, we are about to find classes of quasi-additive ideals. We first show
in Theorem 2.2 that when [ is an equigenerated monomial ideal, < is a monomial
order which extends x; > x > --- > x,, and I and HS; (/) have linear quotients
with respect to < for some j, then HS; ;(I) € HS;(HS;(/)) for all i. This implies
that c-bounded principal Borel ideals, polymatroidal ideals satisfying strong exchange
property, and the edge ideal of the complement of path graphs are among the quasi-
additive ideals. It is shown in [10, Corollary 4.2] if I is an equigenerated squarefree
Borel ideal then HS;  ; (1) = HS; (HS; (1)) for all i, j. We generalize this result for
(not necessarily equigenerated) squarefree Borel ideals in Theorem 2.9.
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In Theorem 3.1, we will show that the adjacency ideal of a polymatroidal ideal is
polymatroidal as well. This, in particular, implies that the first homological shift ideal
of a polymatroidal ideal is also polymatroidal, a result that has been proved by Ficarra
by a different approach in [5]. So, as stated in Corollary 3.3, when [ is a polymatroidal
ideal, one has HS; 1 (/) € HS; (HS; (7)) for each i.

We call a monomial x* € k[xy, ..., x,] quasi-squarefree if a is componentwise
less than or equal to 1 + i for some i where 1 = (1,...,1) € Z", and i is the ith
canonical basis vector of R”. If I C § is a monomial ideal, we define an operation
that assigns to I its quasi-squarefree part which is the monomial ideal generated by
quasi-squarefree monomials in G(/). We first show in Lemma 3.5 that if we start with a
polymatroidal ideal generated by quasi-squarefree monomials, then quasi-squarefree
part of its adjacency ideal is also polymatroidal. Next, it turns out in Lemma 3.7 that
when [ is a polymatroidal ideal generated in degree two, the ideal HS; (/) can be
obtained by taking i times iterated adjacency ideals and then quasi-squarefree part,
one after another, starting from /. On the one hand, this implies the quasi-additive
property for homological shift ideals of polymatroidal ideals generated in degree two,
as one can see in Theorem 3.8. On the other hand, as a result, one obtains a very recent
result by Ficarra and Herzog which gives a positive answer to the conjecture about
homological shift ideals of polymatroidal ideals when we restrict ourselves to those
generated in degree two; see Corollary 3.9. Finally, in Proposition 3.10 via the concept
of adjacency ideals, we prove HS; | (/) = HS; (HS (1)) when [ is a matroidal ideal,
as one has by [5, Proposition 2.4].

2 Quasi-additive Property for Borel Ideals

Throughout, S = k[x1, ..., x,] denotes a polynomial ring over a field k£ with its natural
multigrading. Moreover, a monomial x* = xf' -+~ x5 and its multidegree (ay, .. .ay)
will be used interchangeably. Besides, in the case that x? is a squarefree monomial, we
may use its support instead of it. So we will apply some notions related to monomials
(resp. squarefree monomials) for vectors in Z’;O (resp. the subsets of [n]). If u, v € §
are monomials, then u : v denotes the monomial m. For a monomial u € S,
we set max # = max{k: x; divides u }. When £ = max u, we may sometimes write
x¢ = max u for ease of use.

Let I € S be a monomial ideal. We denote its minimal set of monomial generators
by G(I). A monomial ideal I C S is said to have linear quotients if there exists an

ordering uy, ..., u, of the elements of G(/) such that foreachi = 1,...,r — 1, the
colon ideal (uy,...,u;) : (u4;+1) is generated by a subset of {xy, ..., x,}. If I has
linear quotients with respect to the ordering uy, ..., u, of G(/), then

{xj:xj €y, ....u;): (Wit1)}

is denoted by set(u;+1).

Remark 2.1 Let a monomial ideal I C § have linear quotients. By [11, Lemma 1.5], a
minimal multigraded free resolution F of  can be described as follows: the S-module
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F; inhomological degree i of F is the multigraded free S-module whose basis is formed
by monomials uxy, ...x¢, whichu € G(I) and x¢,, ..., xg, are distinct elements of
set(u).

Theorem 2.2 Let I be a monomial ideal generated in a single degree and let j be a
nonnegative integer. Suppose that < is a monomial order which extends x| > xp >

- > xp. Ifthe ideals I and HS j (1) have linear quotients with respect to the descend-
ing order of their minimal set of monomial generators by <, then for every i

HS;+j () € HS; (HS (1)).

Proof We show that each generator uxy, N T of HS;1;(/) with u € G(I) and
{€1 < --- < Liy;} C set(u) belongs to HS; (HS;(/)). Notice that by Remark 2.1,

w =uxe,, ...xg,; € HS;j(I). Besides, foreach7 =1, ..., one has
—_—
Wi = UX Xl Kby - Xy = UXEXE -+ Xe,; € HSj(T),

—

where Xy, denotes omitted variable in the product. Moreover, w and w;’s belong
to the minimal set of monomial generators of HS; (/) because [ is generated in a
single degree. Since xg, > xg, | foreacht = 1, ..., i by assumption, multiplying this
inequality by uxy, ,, ... x¢,,; yields that w, > w. In addition,

Wi W = Xy, .

Hence, with respect to the descending order of the minimal set of monomial generators
of HS; () by <, one has

Xg, € set(w)
foreacht =1, ...,i. In particular, by Remark 2.1,
UXgy - Xg,; = WXy ... Xy € HS; (HS; (1)),
as desired. O

Let ¢ be a vector in Z” with non-negative entries. A monomial x” € S is called c-
bounded if b is componentwise less than or equal to ¢. Associated with each monomial
ideal I C S, I=¢ denotes the monomial ideal

1=¢ = (xP:x € G(/) and x” is ¢ — bounded ) C .

The ideal [ is called c-bounded if I = I=¢. Notice that each squarefree monomial
ideal is c-bounded fore = (1, 1, ..., 1).

An operation that sends a monomial u to (u/x;)x; is called a Borel move if x;
divides u and i < j. When u is a c-bounded (resp. squarefree) monomial, a Borel
move is called a c-bounded (resp. squarefree) Borel move if the monomial (u/x;)x; is

@ Springer



A Quasi-additive Property of Homological Shift Ideals Page50f17 111

also c-bounded (resp. squarefree). A monomial ideal / C Siscalled a Borelideal if itis
closed under Borel moves. The ideal [ is called c-bounded (resp. squarefree) Borel, if
itis a c-bounded (resp. squarefree) monomial ideal and closed under c-bounded (resp.
squarefree) Borel moves. A subset B of a Borel ideal [ is called its Borel generator if
I is the smallest Borel ideal containing B. A Borel ideal / is called a principal Borel
ideal if it has a Borel generator of cardinality one.

Corollary 2.3 Let I be a c-bounded principal Borel ideal. Then,
HS;,; (1) € HS;(HS: (D)

foreachi, j.

Proof By [9, Theorem 2.2], if I is a c-bounded principal Borel ideal, then HS ;1) has
linear quotients for each j. Indeed by proof of [2, Theorem 2.4] and [9, Proposition
2.6], it turns out that each ideal HS; (/) has linear quotients when the elements of
HS (1) are ordered decreasingly with respect to the lexicographical order with x1 >
X3 > --- > Xp, as required in Theorem 2.2. Hence, for every i

HS;4; (1) € HS; (HS;(1)).

O
Example 2.4 Consider the principal Borel ideal / € k[x1, x2, x3] with Borel generator
{x1xpx3}, that is,

1 = <x13, x]2x2, x12x3, xlxg, x1x2x3> .
Then one has
HS (1) = (xfxz, x?)@, x%x%, x%xzxg, x1x22X3) ;
HS»>(I) = (x?xpm xlzxg)q) .
Besides, HS1 (HS (1)) = (x3x2, x{x2x3, x?x3x3). Recall that the ideal 7, and by [2,
Theorem 2.4] the ideal HS (/) have linear quotients with respect to the lexicographical

order induced by x; > x» > --- > Xx,. Hence, this example shows that equality does
not necessarily hold in Theorem 2.2.

Corollary 2.5 Let I be an equigenerated Borel ideal. Then,
HS;+1(I) € HS;(HS1(1))

for each .

Proof By [2, Proposition 2.2], the ideal HS{ (/) has linear quotients with respect to
the lexicographical order induced by the ordering x| > x» > --- > x, of variables.
Now the assertion follows from Theorem 2.2. O
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Remark 2.6 Let I be the edge ideal of the complement of a path graph. By [9, Propo-
sition 4.2], for each j the ideal HS;(/) has linear quotients with respect to the
lexicographical order induced by x; > x» > --- > x,. Hence, by Theorem 2.2
such an ideal [ is quasi-additive.

Remark 2.7 Let I be a squarefree Borel ideal. It is shown in [2, Theorem 3.3] that
the ideal HS; (/) has linear quotients for each i with respect to the following order
wi, ..., w, of the minimal set of monomial generators of HS;(/): i < j implies
that either (i) deg(w;) < deg(w;) or (ii) deg(w;) = deg(w;) and w; >jex w;. Here
lexicographical order is induced by the ordering x; > x3 > -+ > x,,.

Remark 2.8 Let I be a squarefree Borel ideal. Applying [7, Theorem 2.1] and [8,
Lemma 4.4.1] to the minimal multigraded free resolution described for Borel ideals
in [4, Theorem 2.1], one obtains the minimal multigraded free resolution F of [ as
follows: the basis of the multigraded free S-module F; in homological degree i of
F is formed by those multihomogeneous elements of multidegree a such that x? is a

squarefree monomial uxy, ... xg, withu € G(I)and¢; < maxuforeacht =1,...,1.
A sequence xy,, ..., xg, satisfying these conditions is called an admissible sequence
for u.

By [10, Corollary 4.2], if I is an equigenerated squarefree Borel ideal, then one has
HS;4;(I) = HS;(HS; (1)) for all 7, j. The following result gives a generalization for
(not necessarily equigenerated) squarefree Borel ideals.

Theorem 2.9 Let I be a squarefree Borel ideal. Then,
HS:4j (1) = HS; (HS, (1)).

foreachi, j.

Proof The assertion is trivial if j = 0. So assume that j > 0. We first show that
HS;4;(I) € HS;(HS;(1)). Recall the description of the minimal multigraded free
resolution of / in Remark 2.8. Let uxy, ...x¢; € HS;4;(I) where u € G(I) and
Xeysooes Xty is an admissible sequence for u with £; < --- < £;4 ;. One also has

Uxy X, ; € HSj(I);

i+l

however, this monomial may not belong to the minimal set of monomial generators of
HS; (). Assume that w = vxy, .. - Xk is a squarefree monomial in G(HS ; (1)) which

divides uxy,,, .. Xy Here v € G(I) and Xieys oo s Xk is an admissible sequence
for v with ky < --- < k;. Now recall that HS ; (/) has linear quotients as clarified in
Remark 2.7. So it is enough to show that x,, € set(w) foreacht =1, ..., i which by

Remark 2.1 implies that
wxe, ... xXg; = (VXg ...xkj)xg1 ...xg; € HS;(HS; (1)).

Consequently, since this monomial divides uxg, ... xy;, ;, we will obtain that

i+j?

UXpy ... Xgy; € HS; (HS; (1),
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as desired. One has ¢, # k; foreacht =1, ...,i. So two cases may happen for each
t=1,...,1:

Case 1. If £, < kj, we set
Wy = VX¢, Xy - - .xkj,

where x’k\] denotes an omitted variable in the product. It is clear that
X0,y Xkyooons

Xk;_,» Xk, is an admissible sequence for v. So w; = vxg, Xy, ... Xk, € HS;(1).
Suppose that 1w, is an element of G(HS; (1)) that divides w;. Since w is also
an element of G(HS (1)), we conclude that xy, must divide w,. On the other
hand, w; comes before w in the order of generators of HS; (/) described in
Remark 2.7. Thus, w;, : w = x4, € set(w).

Case 2. If k; < £;, we set

v
w,:( x&)xkl...xkj.
max v

The condition k; < ¢, implies that u # v. So we may assume that

deg(v) < deg(u). (1)
To prove $ng € I, we claim that at least one of the variables
Xlipr s Xy divides v, say x¢, whichimpliesthat, < i+1 < {; < maxv

and consequently —%—x,, € . Assume on the contrary that none of the vari-
ables xg; 1, ..., Xy divide v. Since, on the other hand, v divides w, and w
divides the squarefree monomial uxg, , ... x¢,, ;, we deduce that v divides u;

a contradiction to the fact that by (1) u and v are distinct elements of G([).

Next, notice that the assumption k; < ¢, guarantees that x,, ..., Xk; with
ki < --- < kj is an admissible sequence for —=—xy, .

Considering an element w; € G(HS (1)) that divides w;, the same argument
as used in Case 1 shows that w, : w = x4, € set(w).

To finish the proof, we show the other inclusion, that is,
HS; (HS (1)) € HSi4; (D).

Regarding Remark 2.7 HS; () has linear quotients. So recall the description of gen-
erators of HS; (HS; (1)) by Remark 2.1 and the description of generators of HS; (/)
by Remark 2.8. Now suppose that the squarefree monomial

Uxe, .. .)C(jxkl oo X

i

belongs to HS; (HS; (1)) with xi,, ..., x, € set(uxg, ...X(j) in the ideal HS; (1),

and xg¢,, ..., xg ; is an admissible sequence for u € G([/). In particular, assume that
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UxXg, ... Xg; belongs to G(HS;(1)). We need to show that kK, < maxu for each t =
1, ..., i to deduce that

XOys ooy Xty Xkps + o v s Xk
is an admissible sequence for u and consequently,

UXpy .. XXk« Xk € HS;; (D).
Fixt =1,...,i. We have x;, € set(uxy, .. .xgj) in the ideal HS; (/). So there exists
a squarefree monomial vxy, ...xs; € G(HS;(/)) with v € G(I) and admissible
sequence Xs;, ..., Xs; for v with 51 < --- < s; such that

UXgy oo X D UXG o X = Xy 2)

and vxy, ... X ; comes before uxy, ... xg i in the ordering of generators of HS; (/)
described in Remark 2.7. Thus, one has either

deg(vxy, ...xsj) < deg(uxyg, ...xgj) 3)

or deg(vxy, .. .xxj) = deg(uxy, .. .xgj) and vxy, .. Xs; >lex UXpy ... Xg;.

First, assume that deg(vxs, ... xs;) < deg(uxy, ... x¢;). Regarding (2), since we are
working with squarefree monomials, we conclude that k; # max u. On the contrary,
suppose that k; > max u. Thus,

max (vxy, ...xs/,) =maxv > k; > max u = max(uxe, ...xgj).

As a result max(vxy, .. .xsj) = max v does not divide uxy, .. L X So regarding (2),
max v = k;. 4

Set

p = max{r: x,|uxe, o Xy and x, fuxg, ...xs].}.

Consider the admissible sequence xg,, .. ., Xs; 1> Xp for (v/ max v)xs_/. when p < s;.

Furthermore, regarding p < maxu < k; = max v consider the element (v/ max v)x,

with the admissible sequence x,, ey Xsjps Xs; when s; < p. Both admissible

sequences give an element

(v/ max v)xy, . . Xsp X Xp

of the ideal HS (). By (2) and (4), the monomial (v/ max v)xs, ...xs;, | Xs;Xp €
HS (1) with the same degree as vx;, ... X i divides

UXgy ... X¢; € GHS; (1)),
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a contradiction to (3). Hence, in the case that deg(vxy, .. .xsj) < deg(uxy, .. .)ng),
we have k; < max u, as desired.
Next assume that

deg(vxy, ...xsj) = deg(uxg, ...xgj) and vxy, e Xgj >lex UXEy .. Xy

Then (2) along with the lexicographical order of generators immediately yields that
ky < max(uxg, ...x@j) = max u. O

3 Quasi-additive Property for Polymatroidal Ideals

In this section, we consider polymatroidal ideals and study the quasi-additive property
for some important classes of these ideals.

Leta, b € ZZ; be two vectors. The join a v b of a and b denotes the vector in Z
corresponding to lem(x?, xb). For eachi € [n], we will denote the ith canonical basis

vector of R"” by i. We consider the distance between the monomials of S in the sense
of [3], that is,

1 n
dx',x") = ; | degy x* — deg; x|

where for a monomial x? = xf‘ ...x3" one has deg; x* = ai. Following [1], we
consider the adjacency graph G| of I whose set of vertices is the set of minimal
monomial generators G(/) of 1, and two vertices x* and xP are adjacent if d (x?, xP) =
1. The adjacency ideal of I, denoted by A([), is defined to be the monomial ideal
generated by the least common multiples of adjacent vertices in G, that is,

A = (lem(x?, x°) : d(x® xP) = 1) Ck[x1,...,x].

In terms of bases, a discrete polymatroid P is a pair ([n], B) which the nonempty
finite set of bases B C ZZ, is satisfying the following conditions:

(I) Every a, b € B have the same modulus, thatis,a; + ... +a, = b + ...+ by;

(II) If a, b € B, for each i with a; > b;, there exists j € [n] such that b; > a; and
a—i+jeB.

Property (II) is called the exchange property. It is known that bases of P possess the

following symmetric exchange property:

If a,b € B, for each i with a; > b;, there exists j € [n] such that b; > a; and
a—i+j,b—j+ieB.
The discrete polymatroid P = ([n], B) is said to satisfy the sfrong exchange property if
foreverya, b € Bandeachi, j € [n]witha; > b;anda; < bj,onehasa—i+j € B.
A monomial ideal I C S is called a polymatroidal ideal if its minimal set of monomial

generators G(/) corresponds to the set of bases of a discrete polymatroid. A matroidal
ideal is a squarefree polymatroidal ideal.
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Theorem 3.1 Let I be a polymatroidal ideal. Then, its adjacency ideal A(I) is also a
polymatroidal ideal.

Proof Let P = ([n], B) be the discrete polymatroid corresponding to /. For each basis
a of P, we define set(a) C [n] as follows: i € set(a) if there exists a vector b € 3 and
Jj #iin[n] suchthata—i—f:b—l—f.

Remind that we use monomialsink[xy, ..., x,]and vectorsin ZZ , interchangeably.

Consider two distinct arbitrary elements b + lA c +f € A(I)withb,c € B,i € set(b),
and j € set(c). Since i € set(b), there exists b’ € B and £ € [n] such that deg, b >
deg, b’, and
b+i=b+10 5)
We are going to check the exchange property for the elements b + iand ¢+ f, that is,
for each element b € [n] with deg, (b + i) > deg;,(c+ j), we find an element ¢ € [n]
such that
deg.(c+ j) > deg,(b+1i) and b+i—b+¢é e A(D). (©6)

For such an element b, we may assume that deg, b > deg,, ¢. Otherwise b = i, and we
can proceed with the other presentation, namely the presentation b’ + £ given in (5).
We thus assume that

deg, b > deg, ¢, )
and then, exchange property for bases of B yields that the following set is not empty:
T = {c € [n] : deg, ¢ > deg.b andb — b + ¢ € B).
There exist two cases: o
Case 1. First, suppose thati € T.Soby =b —b+i € B.If by = ¢, then j # b
because b 4 i and ¢ + j are distinct elements. This implies that

deg;c =deg; by > deg; b.

In particular, the inequality is strict if i = j. Hence, deg;(c + f) > deg;(b + i). So
the choice of ¢ = j, for whichb+i —b+ j = ¢+ j € A(I), has the required property
mentioned in (6). So we are done when b; = c¢. Otherwise, if by # ¢, there exists
b' € [n] such that deg,, b; > deg,, ¢, and consequently, by exchange property, there
exists an element ¢ € [n] such that deg.c¢ > deg.b; and

b, = by —5/4-568.
The vertices by and b, are adjacent. Therefore, b; v by € A(/). But

by Vby=b V(b —b +&) =bj+é=(Mb-—b+i)+¢ e Ad). 8)
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On the other hand, ¢ # b because deg,. ¢ > deg. b but
deg, by =deg, b — 1> deg,c
by (7). This implies that
deg.c > deg.b; > deg,.b,

and the last inequality is strict if ¢ = i. Therefore, deg_.(c + f) > deg.(b + i). Thus,
regarding (8), the element c is an appropriate choice for (6).

Case 2. Next, suppose that there exists an element ¢ € T such that ¢ # i. Thus,
b =b— b+¢eB. Moreover, we have deg.(c 4 f) > deg.(b + f) becausec € T
and ¢ # i. So it remains to show that b — b+é+ice A(I) as required in (6).

If b = £ where ¢ is introduced in (5), then the vertex by = b — { + ¢ € Bbecomes
adjacenttob’ =b — ¢ +i e B.Hence,b Vb, € A(I). Thus,

b Vb =M —¢é+i)vbi=b +i=b-—b+8+iecAd).

So c is the desired element.

If b # £, then b’ as introduced in (5) is equal to by — (¢ + é) + (13 + f). Notice that
d(b',b) = 2 because {c, £} and {b, i} are disjoint sets. Now by exchange property
for bases of the discrete polymatroid, there exist a common nelghbor b, € Bof b/
and by by i plvoted in, namely b2 =b; — {+1ior b, = by — ¢ + 1. In any case,
b1Vb2—b1+l—b b—i—c—i—teA(l),asdesned. m]

Corollary 3.2 [5, Theorem 2.2] Let I be a polymatroidal ideal. Then, HS|(I) is also
a polymatroidal ideal.

Proof Regarding Remark 2.1, one has HS{ (/) = A(/) when [ is a monomial ideal
with linear quotients generated in a single degree. Now recall that by [11, Lemma 1.3],
polymatroidal ideals have linear quotients. O

The next result partially generalizes [5, Proposition 2.4] by Ficarra about matroidal
ideals. Recall that by the result of Herzog et al. in [9, Proposition 1.4] HS; (/) C
HS | (HS; (1)) for every i if I has linear quotients.

Corollary 3.3 Let I be a polymatroidal ideal. Then,
HS;+1(I) € HS; (HS1(1))

foreachi.

Proof By [11, Lemma 1.3], polymatroidal ideals have linear quotients with respect to
the reverse lexicographical order of the generators, as required in Theorem 2.2. Now
the assertion immediately follows from Theorem 2.2 and Corollary 3.2. O
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Remark 3.4 Let I be a polymatroidal ideal corresponding to a discrete polymatroid
satisfying strong exchange property. Then, by [9, Corollary 2.6], the ideal HS; (1) is
polymatroidal for every i. This yields that

HS;4; (1) € HS; (HS;(1)).

for each i, j by Theorem 2.2. One can see that equality does not hold necessar-
ily. Indeed, the ideal presented in Example 2.4 is a polymatroidal ideal with strong
exchange property for which HS>(7) € HS1(HS;(Z)).

Recall that i denotes the ith canonical basis vector of R”, and suppose that 1 € R”
denotes the vector whose all entries are equal to one. We call a monomial u € §
quasi-squarefree if it is c-bounded by ¢ = 1+ i for some i. Let I C S be a monomial
ideal. The ideal [ is called quasi-squarefree monomial ideal if it is generated by quasi-
squarefree monomials. For a monomial ideal J € S, we define its quasi-squarefree
part, denoted by J*, to be the ideal generated by quasi-squarefree elements of J.

Lemma 3.5 Let I be a quasi-squarefree polymatroidal ideal. Then, A(I)* is also a
polymatroidal ideal.

Proof Suppose that w, w’ € A(I) are quasi-squarefree monomials in the minimal set
of monomial generators of A(/), and suppose that deg; w > deg; w’ for some i. We
show that there exists p € [n] such that deg » w’ > deg pw and (w/x;)xp is a quasi-
squarefree element of A(/). By Theorem 3.1, we know that A([) is polymatroidal, and
consequently, the exchange property of polymatroidal ideals guarantees the existence
of j such that degj w > degj w and (w/x;)x; € A(I). If (w/x;)x; is a quasi-
squarefree monomial, we are done. Otherwise, assume that (w/x;)x; is not quasi-
squarefree. While w is quasi-squarefree, this implies that degree of (w/x;)x; in two
distinct variables is two. Hence, one has

o deg;w =1,
o deg; w = 1;
e There exists ¢ such that deg, w = 2.

If d(w,w") = 1, then (w/x;)x; = w’ which contradicts our assumption that
(w/x;)x; is not quasi-squarefree. So d(w, w’) > 2. On the other hand, w and w’ are
of the same degree. Hence there exists p 7 j such that deg, w' > deg p W. Since w’
is quasi-squarefree, and 1 = deg; w < deg; w’, we conclude that deg » w’ = 1. Thus,
deg, w = 0. Let

~ 2.2

w = (w/x;)x; = XGXFXEy - Xy
such that j, ¢, £1, ..., £; are pairwise distinct. Since w belongs to A([/), there exist
adjacent monomials u, u’ € G(I) such that w = Iecm(u, u’). Regarding the fact that u
and u’ are quasi-squarefree, we set

— x:x2
U =XjX; Xy, ...x¢g
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and
r__ 2
U = XXXy .. Xy

Considering the symmetric exchange property of polymatroidal ideals for u € G(1)
with deg, u < deg,w = 0 and an element of G(/) divisible by x,, one deduces
that (u/x,)x, € G(I) for some r € {j, t, {1, ..., £}. On the other hand, (u/x,)x is
adjacent to u. Moreover,

lem((u/x;)xp, u) = ux, = (W/x;)xp.

Hence, the quasi-squarefree monomial (w/x;)x, belongs to A([), as desired. O

Notice that while the adjacency ideal of a polymatroidal ideal is polymatroidal as
well by Theorem 3.1, in Lemma 3.5 we cannot replace A (/) with the ideal I itself, as
the following example shows.

Example 3.6 Consider the polymatroidal ideal
I = (xyz%, xyzw, y?2%, y*zw) C klx, y, z, w].
One can see that its quasi-squarefree part
I* = (xyz?, xyzw, y*zw)
is not polymatroidal anymore. However, A(/) and the quasi-squarefree part of A(/)
AD* = (xyzzw, xyzzw)
are polymatroidal.

The next lemma states that by taking iterated adjacency ideals and then quasi-
squarefree part, one after another, one can obtain homological shift ideals of a
polymatroidal ideal generated in degree 2.

Lemma 3.7 Let I be a polymatroidal ideal generated in degree two. Then, HS;(I)
is obtained by taking successively i times iterated adjacency ideals and then quasi-
squarefree part starting from I.

Proof Assume that the elements of [ are ordered decreasingly in the lexicographical
order with respect to x; > --- > x,. By [12, Theorem 1.3], the ideal I has linear
quotients with respect to this ordering of generators. We first show that HS; 1 (1) is
a subset of A(HS;(1))*, that is, the quasi-squarefree part of the adjacency ideal of
HS;(I). Let uxg, ... xg, ., be an element of G(HS; 1 (/)) with u € G(I) and

Xpys oo X, € set(u).

i+1
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Notice that if u = x2 for some J € I[nl, then x; ¢ set(u). Hence, uxe, ...xg ., is
a quasi-squarefree monomial. On the other hand, this element is the least common
multiple of the adjacent monomials uxy, ...xg and uxy, ...xg_,x¢,, in GHS; (1)).
So

i+1

HS; 11 (I) € AHS; ()"
Next, we show that
AHS;(I))* € HS;+1(]). ©)

For this purpose, let w and w’ be two adjacent elements of HS; (1) for which lem(w, w’)
is a quasi-squarefree monomial. We are going to show that lem(w, w’) € HS; 1 (I).
If w and w’ are both squarefree monomials, then w, w’ € HS; (I )51 where 1 =
(1, ..., 1) € Z"; see Sect. 2 for the definition of 1-bounded part HS; (D=1 of HS; (1).
But HS; (/)= = HS; (I=1) by [9, Corollary 1.10]. On the other hand, for matroidal
ideal 7=! by [1, Corollary 3.3] one has

HS, 1 (15" = AHS; (1Y),
Hence,
lem(w, w') € AHS; (I=Y) = HS; 41 (I=") € HS; 11 (]).

So we are done in the case that w and w’ are both squarefree.

Next assume that w is not squarefree. Suppose that w = uxy, ... xe, withu € G(I),
and x¢,, ..., x¢; are elements of set(u). We are going to show that lem(w, w’) can be
written as a product of an element of G(/) and i 4 1 distinct elements of its set which
implies the desired inclusion (9). Since w and w’ are of the same degree and adjacent,
the monomial w’ : w is of degree one, say

w/

—_— —— . 10
v ged(w, w') xf (10

Hence,
lem(w, w') = wxy.

Regarding our assumption that w is not squarefree, there exists j € [n] such that
deg; w = 2. There are two cases to consider:

Case 1. Letu = sz.. Besides, there exist monomials in G(/) divided by each variable
X¢y, ..., Xg and xz; a pairwise distinct sequence of variables as discussed
below. Applying the exchange property of polymatroidal ideals for u = xlz.

and the monomials divisible by these mentioned variables, one concludes that
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Case 2.

XjX¢, ..., XjX¢; and xjx r are elements of G(/). Now consider the following
elements of G(/):

2
X5y XjXgys ey XjXg, XjXf (11

These elements are pairwise distinct because

® X¢,...,Xq € set(u) are pairwise distinct by Remark 2.1;

o the ideal [ is generated in degree two. This implies that x; ¢ set(x]z).
Consequently, x; ¢ {x¢,, ..., x¢};

e x; # xy. Otherwise, regarding (10), deg, w" = 3 which contradicts the
fact that w’ is quasi-squarefree;

o x¢ & {xg,...,xg} Otherwise,deg , w = 1 and consequently, deg w =
2 by (10). So x% and xlz both divide lem(w, w’), a contradiction to the
assumption that lem(w, w’) is quasi-squarefree.

Let v be the maximum element in (11) with respect to the lexicographical
order induced by x; > --- > x,. By considering v : v for each

~ 2
v E {xj, XjXey, .o, XX, Xjx N\ {v},
one obtains i + 1 distinct variables x,, ..., X, in set(v). One can see that
2 /
UXjy oo Xy = XjXey oo XX p = lem(w, w').

Thus, lem(w, w’) € HS; 11 (I).

Letu = xjx), for some p # j,and x; € {x¢, ..., xg,}. We first discuss why
in this case x¢,, ..., x¢;, Xp, Xy are pairwise distinct. For this purpose, we
notice that

® X¢,...,Xq € set(u) are pairwise distinct as we have seen in Case 1.

o x, & {x¢,...,xq}. Otherwise, xI% and sz- both divide w, a contradiction
to the fact that w is quasi-squarefree.

o xr & {x¢,...,xq). Otherwise, degf w = 1, and consequently
deg,w" = 2 by (10). This implies that lem(w, w’) is divisible by x%
and sz. while j # f regarding the degree of w and w’ in these variables.
As aresult, lem(w, w’) is not quasi-squarefree, a contradiction.

® x; # xp. Otherwise, deg w =1+ deg, w = 2. On the other hand,

7and x7 divide

lem(w, w’) which contradicts its property of being quasi-squarefree.

f # jasdiscussed above. As aresult distinct monomials, x

Based on this discussion, x¢,, . .., X¢;, Xp, X r are pairwise distinct. Since x; €
{x¢), ..., xg} C set(x;xp), we deduce that sz € 1. On the other hand, for
each variable x¢,, ..., x¢; and x 7, there exists a monomial which is divisible
by that variable. Applying the exchange property of polymatroidal ideals for
sz. and those monomials, we conclude that x;x¢,, ..., xjx¢, xjx5 € G(I).
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Recall that u = xx, also belongs to G(/). Furthermore,
ijgl, e ,xjx/gi,xjxf,xjxp
are pairwise distinct as discussed above. Suppose that v is the maximum

elementof {x;x¢,, ..., x;xe, XjXf, xjxp} withrespect to the lexicographical
order induced by x; > --- > x,. Now by considering

v:v foreach v € {xjx¢, ..., xjx5,xjx7, x;xp}\{v},
we obtain i + 1 distinct variables x,, ..., xi,,, in set(v). Moreover,
VX - Xk = (Xjxp)xe .. X xp = lem(w, w),
as desired.

Theorem 3.8 Let I be a polymatroidal ideal generated in degree two. Then,
HS;+; (1) € HS; (HS (1))
foreachi, j.

Proof It is enough to notice that by Lemmas 3.5 and 3.7, the ideal HS ; (/) is polyma-
troidal for each j. Thus, the assertion follows from Theorem 2.2. O

As an immediate consequence of Lemmas 3.5 and 3.7, we have

Corollary 3.9 [6, Theorem 4.5] Let I be a polymatroidal ideal generated in degree
two. Then, the ideal HS; (1) is also a polymatroidal ideal for all i.

Proposition 3.10 [5, Proposition 2.4] Let I be a matroidal ideal. Then,
HS;+; (1) = HS; (HS (1))
foreachi, j.
Proof By [1, Corollary 3.3], the ideal HS; ; ; (I) can be obtained by taking i 4 j times
iterated adjacency ideals starting from / for each 7, j. On the other hand, HS; (/) is

also a matroidal ideal by [1, Theorem 3.2]. So one obtains HS; (HS;(/)) by taking
first j times and next i more times adjacency ideals starting from /. O
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