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Abstract
In this paper, we investigate which classes of monomial ideals have a quasi-additive
property of homological shift ideals. More precisely, for a monomial ideal I we are
interested to find out whether HSi+ j (I ) ⊆ HSi (HS j (I )). It turns out that c-bounded
principal Borel ideals as well as polymatroidal ideals satisfying strong exchange
property, and polymatroidal ideals generated in degree two have this quasi-additive
property. For squarefree Borel ideals, we even have equality. Besides, the inclusion
holds for every equigenerated Borel ideal and polymatroidal ideal when j = 1.

Keywords Borel ideals · Free resolutions · Homological shift ideals · Linear
quotients · Multigraded shifts · Polymatroidal ideals

Mathematics Subject Classification 13D02 · 13A02 · 13F20 · 05E40

1 Introduction

A recent approach in studying syzygies of a multigraded module is considering the
ideals generated by theirmultigraded shiftswhich following [9]we call them homolog-
ical shift ideals. It first came up during a discussion among Jürgen Herzog, Somayeh
Bandari, and the author in 2012 whether the property of being polymatroidal is inher-
ited by homological shift ideals. Later it turned out that this question has a positive
answer for matroidal ideals [1], polymatroidal ideals with strong exchange property
[9], and polymatroidal ideals generated in degree two [6]. Besides, other properties
inherited by homological shift ideals, like being (squarefree) Borel or having linear
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quotients, are studied in [2, 9]. In this paper, we are mainly going to discuss a property
of homological shift ideals which we call it quasi-additive property.

To be more precise, let S = k[x1, . . . , xn] be the polynomial ring in the variables
x1, . . . , xn over a field k with its natural multigrading. Throughout, a monomial and
its multidegree will be used interchangeably, and S(xa) will denote the free S-module
with one generator of multidegree xa. A monomial ideal I ⊆ S has a (unique up to
isomorphism) minimal multigraded resolution

F : 0 → Fp → · · · → F1 → F0

with

Fi =
⊕

a∈Zn

S(xa)βi,a .

The i th homological shift ideal of I denoted by HSi (I ) is the ideal generated by the
i th multigraded shifts of I , that is,

HSi (I ) = ({xa| βi,a �= 0 }).

Along with other results, Herzog et al. show in [9, Proposition 1.4] that if I has
linear quotients, then

HSi+1(I ) ⊆ HS1(HSi (I ))

for all i . Later, it is shown in [10, Corollary 4.2] and in [5, Proposition 2.4] that if I is
an equigenerated squarefree Borel ideal or a matroidal ideal, then one has

HSi+1(I ) = HS1(HSi (I ))

for all i . So the following question naturally arises that for which classes of monomial
ideals one has

HSi+ j (I ) ⊆ HSi (HS j (I ))

for all i, j . We say that I has the quasi-additive property for homological shift ideals
or simply I is quasi-additive if the above question has a positive answer for I .

In this paper, we are about to find classes of quasi-additive ideals. We first show
in Theorem 2.2 that when I is an equigenerated monomial ideal, < is a monomial
order which extends x1 > x2 > · · · > xn , and I and HS j (I ) have linear quotients
with respect to < for some j , then HSi+ j (I ) ⊆ HSi (HS j (I )) for all i . This implies
that c-bounded principal Borel ideals, polymatroidal ideals satisfying strong exchange
property, and the edge ideal of the complement of path graphs are among the quasi-
additive ideals. It is shown in [10, Corollary 4.2] if I is an equigenerated squarefree
Borel ideal then HSi+ j (I ) = HSi (HS j (I )) for all i, j . We generalize this result for
(not necessarily equigenerated) squarefree Borel ideals in Theorem 2.9.
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In Theorem 3.1, we will show that the adjacency ideal of a polymatroidal ideal is
polymatroidal as well. This, in particular, implies that the first homological shift ideal
of a polymatroidal ideal is also polymatroidal, a result that has been proved by Ficarra
by a different approach in [5]. So, as stated in Corollary 3.3, when I is a polymatroidal
ideal, one has HSi+1(I ) ⊆ HSi (HS1(I )) for each i .

We call a monomial xa ∈ k[x1, . . . , xn] quasi-squarefree if a is componentwise
less than or equal to 1 + î for some i where 1 = (1, . . . , 1) ∈ Z

n , and î is the i th
canonical basis vector of R

n . If I ⊆ S is a monomial ideal, we define an operation
that assigns to I its quasi-squarefree part which is the monomial ideal generated by
quasi-squarefreemonomials inG(I ).We first show in Lemma 3.5 that if we start with a
polymatroidal ideal generated by quasi-squarefree monomials, then quasi-squarefree
part of its adjacency ideal is also polymatroidal. Next, it turns out in Lemma 3.7 that
when I is a polymatroidal ideal generated in degree two, the ideal HSi (I ) can be
obtained by taking i times iterated adjacency ideals and then quasi-squarefree part,
one after another, starting from I . On the one hand, this implies the quasi-additive
property for homological shift ideals of polymatroidal ideals generated in degree two,
as one can see in Theorem 3.8. On the other hand, as a result, one obtains a very recent
result by Ficarra and Herzog which gives a positive answer to the conjecture about
homological shift ideals of polymatroidal ideals when we restrict ourselves to those
generated in degree two; see Corollary 3.9. Finally, in Proposition 3.10 via the concept
of adjacency ideals, we prove HSi+ j (I ) = HSi (HS j (I )) when I is a matroidal ideal,
as one has by [5, Proposition 2.4].

2 Quasi-additive Property for Borel Ideals

Throughout, S = k[x1, . . . , xn] denotes a polynomial ring over a field k with its natural
multigrading. Moreover, a monomial xa = xa11 · · · xann and its multidegree (a1, . . . an)
will be used interchangeably. Besides, in the case that xa is a squarefree monomial, we
may use its support instead of it. So we will apply some notions related to monomials
(resp. squarefree monomials) for vectors in Z

n≥0 (resp. the subsets of [n]). If u, v ∈ S
are monomials, then u : v denotes the monomial u

gcd(u,v)
. For a monomial u ∈ S,

we set max u = max{k: xk divides u }. When � = max u, we may sometimes write
x� = max u for ease of use.

Let I ⊆ S be a monomial ideal. We denote its minimal set of monomial generators
by G(I ). A monomial ideal I ⊆ S is said to have linear quotients if there exists an
ordering u1, . . . , ur of the elements of G(I ) such that for each i = 1, . . . , r − 1, the
colon ideal (u1, . . . , ui ) : (ui+1) is generated by a subset of {x1, . . . , xn}. If I has
linear quotients with respect to the ordering u1, . . . , ur of G(I ), then

{x j : x j ∈ (u1, . . . , ui ) : (ui+1)}

is denoted by set(ui+1).

Remark 2.1 Let a monomial ideal I ⊆ S have linear quotients. By [11, Lemma 1.5], a
minimal multigraded free resolution F of I can be described as follows: the S-module
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Fi in homological degree i ofF is themultigraded free S-modulewhose basis is formed
by monomials ux�1 . . . x�i which u ∈ G(I ) and x�1 , . . . , x�i are distinct elements of
set(u).

Theorem 2.2 Let I be a monomial ideal generated in a single degree and let j be a
nonnegative integer. Suppose that < is a monomial order which extends x1 > x2 >

· · · > xn. If the ideals I andHS j (I ) have linear quotients with respect to the descend-
ing order of their minimal set of monomial generators by <, then for every i

HSi+ j (I ) ⊆ HSi (HS j (I )).

Proof We show that each generator ux�1 . . . x�i+ j of HSi+ j (I ) with u ∈ G(I ) and
{�1 < · · · < �i+ j } ⊆ set(u) belongs to HSi (HS j (I )). Notice that by Remark 2.1,
w = ux�i+1 . . . x�i+ j ∈ HS j (I ). Besides, for each t = 1, . . . , i one has

wt = ux�t x̂�i+1x�i+2 . . . x�i+ j = ux�t x�i+2 . . . x�i+ j ∈ HS j (I ),

where x̂�i+1 denotes omitted variable in the product. Moreover, w and wt ’s belong
to the minimal set of monomial generators of HS j (I ) because I is generated in a
single degree. Since x�t > x�i+1 for each t = 1, . . . , i by assumption, multiplying this
inequality by ux�i+2 . . . x�i+ j yields that wt > w. In addition,

wt : w = x�t .

Hence, with respect to the descending order of theminimal set of monomial generators
of HS j (I ) by <, one has

x�t ∈ set(w)

for each t = 1, . . . , i . In particular, by Remark 2.1,

ux�1 . . . x�i+ j = wx�1 . . . x�i ∈ HSi (HS j (I )),

as desired. ��
Let c be a vector in Z

n with non-negative entries. A monomial xb ∈ S is called c-
bounded if b is componentwise less than or equal to c. Associated with eachmonomial
ideal I ⊆ S, I≤c denotes the monomial ideal

I≤c = (xb: xb ∈ G(I ) and xb is c − bounded ) ⊆ S.

The ideal I is called c-bounded if I = I≤c. Notice that each squarefree monomial
ideal is c-bounded for c = (1, 1, . . . , 1).

An operation that sends a monomial u to (u/x j )xi is called a Borel move if x j
divides u and i < j . When u is a c-bounded (resp. squarefree) monomial, a Borel
move is called a c-bounded (resp. squarefree) Borel move if the monomial (u/x j )xi is
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also c-bounded (resp. squarefree). Amonomial ideal I ⊆ S is called aBorel ideal if it is
closed under Borel moves. The ideal I is called c-bounded (resp. squarefree) Borel, if
it is a c-bounded (resp. squarefree) monomial ideal and closed under c-bounded (resp.
squarefree) Borel moves. A subset B of a Borel ideal I is called its Borel generator if
I is the smallest Borel ideal containing B. A Borel ideal I is called a principal Borel
ideal if it has a Borel generator of cardinality one.

Corollary 2.3 Let I be a c-bounded principal Borel ideal. Then,

HSi+ j (I ) ⊆ HS j (HSi (I ))

for each i, j .

Proof By [9, Theorem 2.2], if I is a c-bounded principal Borel ideal, then HS j (I ) has
linear quotients for each j . Indeed by proof of [2, Theorem 2.4] and [9, Proposition
2.6], it turns out that each ideal HS j (I ) has linear quotients when the elements of
HS j (I ) are ordered decreasingly with respect to the lexicographical order with x1 >

x2 > · · · > xn , as required in Theorem 2.2. Hence, for every i

HSi+ j (I ) ⊆ HSi (HS j (I )).

��
Example 2.4 Consider the principal Borel ideal I ⊆ k[x1, x2, x3]with Borel generator
{x1x2x3}, that is,

I =
(
x31 , x

2
1 x2, x

2
1 x3, x1x

2
2 , x1x2x3

)
.

Then one has

HS1(I ) =
(
x31 x2, x

3
1 x3, x

2
1 x

2
2 , x

2
1 x2x3, x1x

2
2 x3

)
;

HS2(I ) =
(
x31 x2x3, x

2
1 x

2
2 x3

)
.

Besides, HS1(HS1(I )) = (x31 x
2
2 , x

3
1 x2x3, x

2
1 x

2
2 x3). Recall that the ideal I , and by [2,

Theorem2.4] the ideal HS1(I ) have linear quotientswith respect to the lexicographical
order induced by x1 > x2 > · · · > xn . Hence, this example shows that equality does
not necessarily hold in Theorem 2.2.

Corollary 2.5 Let I be an equigenerated Borel ideal. Then,

HSi+1(I ) ⊆ HSi (HS1(I ))

for each i .

Proof By [2, Proposition 2.2], the ideal HS1(I ) has linear quotients with respect to
the lexicographical order induced by the ordering x1 > x2 > · · · > xn of variables.
Now the assertion follows from Theorem 2.2. ��
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Remark 2.6 Let I be the edge ideal of the complement of a path graph. By [9, Propo-
sition 4.2], for each j the ideal HS j (I ) has linear quotients with respect to the
lexicographical order induced by x1 > x2 > · · · > xn . Hence, by Theorem 2.2
such an ideal I is quasi-additive.

Remark 2.7 Let I be a squarefree Borel ideal. It is shown in [2, Theorem 3.3] that
the ideal HSi (I ) has linear quotients for each i with respect to the following order
w1, . . . , wr of the minimal set of monomial generators of HSi (I ): i < j implies
that either (i) deg(wi ) < deg(w j ) or (ii) deg(wi ) = deg(w j ) and wi >lex w j . Here
lexicographical order is induced by the ordering x1 > x2 > · · · > xn .

Remark 2.8 Let I be a squarefree Borel ideal. Applying [7, Theorem 2.1] and [8,
Lemma 4.4.1] to the minimal multigraded free resolution described for Borel ideals
in [4, Theorem 2.1], one obtains the minimal multigraded free resolution F of I as
follows: the basis of the multigraded free S-module Fi in homological degree i of
F is formed by those multihomogeneous elements of multidegree a such that xa is a
squarefreemonomial ux�1 . . . x�i with u ∈ G(I ) and �t < max u for each t = 1, . . . , i .
A sequence x�1 , . . . , x�i satisfying these conditions is called an admissible sequence
for u.

By [10, Corollary 4.2], if I is an equigenerated squarefree Borel ideal, then one has
HSi+ j (I ) = HSi (HS j (I )) for all i, j . The following result gives a generalization for
(not necessarily equigenerated) squarefree Borel ideals.

Theorem 2.9 Let I be a squarefree Borel ideal. Then,

HSi+ j (I ) = HSi (HS j (I )).

for each i, j .

Proof The assertion is trivial if j = 0. So assume that j > 0. We first show that
HSi+ j (I ) ⊆ HSi (HS j (I )). Recall the description of the minimal multigraded free
resolution of I in Remark 2.8. Let ux�1 . . . x�i+ j ∈ HSi+ j (I ) where u ∈ G(I ) and
x�1 , . . . , x�i+ j is an admissible sequence for u with �1 < · · · < �i+ j . One also has

ux�i+1 . . . x�i+ j ∈ HS j (I );

however, this monomial may not belong to the minimal set of monomial generators of
HS j (I ). Assume that w = vxk1 . . . xk j is a squarefree monomial in G(HS j (I )) which
divides ux�i+1 . . . x�i+ j . Here v ∈ G(I ) and xk1 , . . . , xk j is an admissible sequence
for v with k1 < · · · < k j . Now recall that HS j (I ) has linear quotients as clarified in
Remark 2.7. So it is enough to show that x�t ∈ set(w) for each t = 1, . . . , i which by
Remark 2.1 implies that

wx�1 . . . x�i = (vxk1 . . . xk j )x�1 . . . x�i ∈ HSi (HS j (I )).

Consequently, since this monomial divides ux�1 . . . x�i+ j , we will obtain that

ux�1 . . . x�i+ j ∈ HSi (HS j (I ),
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as desired. One has �t �= k j for each t = 1, . . . , i . So two cases may happen for each
t = 1, . . . , i :

Case 1. If �t < k j , we set

wt = vx�t xk1 . . . x̂k j ,

where x̂k j denotes an omitted variable in the product. It is clear that
x�t , xk1 , . . . ,
xk j−1 , x̂k j is an admissible sequence for v. Sowt = vx�t xk1 . . . x̂k j ∈ HS j (I ).
Suppose that w̃t is an element of G(HS j (I )) that divides wt . Since w is also
an element of G(HS j (I )), we conclude that x�t must divide w̃t . On the other
hand, w̃t comes before w in the order of generators of HS j (I ) described in
Remark 2.7. Thus, w̃t : w = x�t ∈ set(w).

Case 2. If k j < �t , we set

wt =
( v

max v
x�t

)
xk1 . . . xk j .

The condition k j < �t implies that u �= v. So we may assume that

deg(v) < deg(u). (1)

To prove v
max v

x�t ∈ I , we claim that at least one of the variables
x�i+1 , . . . , x�i+ j divides v, say x�s which implies that �t < i+1 ≤ �s ≤ max v

and consequently v
max v

x�t ∈ I . Assume on the contrary that none of the vari-
ables x�i+1 , . . . , x�i+ j divide v. Since, on the other hand, v divides w, and w

divides the squarefree monomial ux�i+1 . . . x�i+ j , we deduce that v divides u;
a contradiction to the fact that by (1) u and v are distinct elements of G(I ).
Next, notice that the assumption k j < �t guarantees that xk1 , . . . , xk j with
k1 < · · · < k j is an admissible sequence for v

max v
x�t .

Considering an element w̃t ∈ G(HS j (I )) that divides wt , the same argument
as used in Case 1 shows that w̃t : w = x�t ∈ set(w).

To finish the proof, we show the other inclusion, that is,

HSi (HS j (I )) ⊆ HSi+ j (I ).

Regarding Remark 2.7 HS j (I ) has linear quotients. So recall the description of gen-
erators of HSi (HS j (I )) by Remark 2.1 and the description of generators of HS j (I )
by Remark 2.8. Now suppose that the squarefree monomial

ux�1 . . . x� j xk1 . . . xki

belongs to HSi (HS j (I )) with xk1 , . . . , xki ∈ set(ux�1 . . . x� j ) in the ideal HS j (I ),
and x�1 , . . . , x� j is an admissible sequence for u ∈ G(I ). In particular, assume that
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ux�1 . . . x� j belongs to G(HS j (I )). We need to show that kt < max u for each t =
1, . . . , i to deduce that

x�1 , . . . , x� j , xk1 , . . . , xki

is an admissible sequence for u and consequently,

ux�1 . . . x� j xk1 . . . xki ∈ HSi+ j (I ).

Fix t = 1, . . . , i . We have xkt ∈ set(ux�1 . . . x� j ) in the ideal HS j (I ). So there exists
a squarefree monomial vxs1 . . . xs j ∈ G(HS j (I )) with v ∈ G(I ) and admissible
sequence xs1 , . . . , xs j for v with s1 < · · · < s j such that

vxs1 . . . xs j : ux�1 . . . x� j = xkt , (2)

and vxs1 . . . xs j comes before ux�1 . . . x� j in the ordering of generators of HS j (I )
described in Remark 2.7. Thus, one has either

deg(vxs1 . . . xs j ) < deg(ux�1 . . . x� j ) (3)

or deg(vxs1 . . . xs j ) = deg(ux�1 . . . x� j ) and vxs1 . . . xs j >lex ux�1 . . . x� j .

First, assume that deg(vxs1 . . . xs j ) < deg(ux�1 . . . x� j ). Regarding (2), sincewe are
working with squarefree monomials, we conclude that kt �= max u. On the contrary,
suppose that kt > max u. Thus,

max(vxs1 . . . xs j ) = max v ≥ kt > max u = max(ux�1 . . . x� j ).

As a result max(vxs1 . . . xs j ) = max v does not divide ux�1 . . . x� j . So regarding (2),

max v = kt . (4)

Set

p = max{r : xr |ux�1 . . . x� j and xr � |vxs1 . . . xs j }.

Consider the admissible sequence xs1 , . . . , xs j−1 , xp for (v/max v)xs j when p < s j .
Furthermore, regarding p ≤ max u < kt = max v consider the element (v/max v)xp
with the admissible sequence xs1 , . . . , xs j−1 , xs j when s j < p. Both admissible
sequences give an element

(v/max v)xs1 . . . xs j−1xs j x p

of the ideal HS j (I ). By (2) and (4), the monomial (v/max v)xs1 . . . xs j−1xs j x p ∈
HS j (I ) with the same degree as vxs1 . . . xs j divides

ux�1 . . . x� j ∈ G(HS j (I )),
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a contradiction to (3). Hence, in the case that deg(vxs1 . . . xs j ) < deg(ux�1 . . . x� j ),
we have kt < max u, as desired.

Next assume that

deg(vxs1 . . . xs j ) = deg(ux�1 . . . x� j ) and vxs1 . . . xs j >lex ux�1 . . . x� j .

Then (2) along with the lexicographical order of generators immediately yields that
kt < max(ux�1 . . . x� j ) = max u. ��

3 Quasi-additive Property for Polymatroidal Ideals

In this section, we consider polymatroidal ideals and study the quasi-additive property
for some important classes of these ideals.

Let a,b ∈ Z
n≥0 be two vectors. The join a∨ b of a and b denotes the vector in Z

n≥0

corresponding to lcm(xa, xb). For each i ∈ [n], we will denote the i th canonical basis
vector of R

n by î . We consider the distance between the monomials of S in the sense
of [3], that is,

d(xa, xb) = 1

2

n∑

k=1

| degk xa − degk x
b|

where for a monomial xa = xa11 . . . xann , one has degk x
a = ak . Following [1], we

consider the adjacency graph GI of I whose set of vertices is the set of minimal
monomial generators G(I ) of I , and two vertices xa and xb are adjacent if d(xa, xb) =
1. The adjacency ideal of I , denoted by A(I ), is defined to be the monomial ideal
generated by the least common multiples of adjacent vertices in GI , that is,

A(I ) = 〈lcm(xa, xb) : d(xa, xb) = 1〉 ⊆ k[x1, . . . , xn].

In terms of bases, a discrete polymatroid P is a pair ([n],B) which the nonempty
finite set of bases B ⊆ Z

n≥0 is satisfying the following conditions:

(I) Every a,b ∈ B have the same modulus, that is, a1 + . . . + an = b1 + . . . + bn ;
(II) If a,b ∈ B, for each i with ai > bi , there exists j ∈ [n] such that b j > a j and

a − î + ĵ ∈ B.
Property (II) is called the exchange property. It is known that bases of P possess the
following symmetric exchange property:

If a,b ∈ B, for each i with ai > bi , there exists j ∈ [n] such that b j > a j and
a − î + ĵ,b − ĵ + î ∈ B.

The discrete polymatroidP = ([n],B) is said to satisfy the strong exchange property if
for every a,b ∈ B and each i, j ∈ [n]with ai > bi and a j < b j , one has a− î+ ĵ ∈ B.
Amonomial ideal I ⊆ S is called a polymatroidal ideal if its minimal set of monomial
generators G(I ) corresponds to the set of bases of a discrete polymatroid. Amatroidal
ideal is a squarefree polymatroidal ideal.
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Theorem 3.1 Let I be a polymatroidal ideal. Then, its adjacency ideal A(I ) is also a
polymatroidal ideal.

Proof LetP = ([n],B) be the discrete polymatroid corresponding to I . For each basis
a of P , we define set(a) ⊆ [n] as follows: i ∈ set(a) if there exists a vector b ∈ B and
j �= i in [n] such that a + î = b + ĵ .
Remind thatweusemonomials in k[x1, . . . , xn] andvectors inZ

n≥0 interchangeably.

Consider two distinct arbitrary elements b+ î, c+ ĵ ∈ A(I )with b, c ∈ B, i ∈ set(b),
and j ∈ set(c). Since i ∈ set(b), there exists b′ ∈ B and � ∈ [n] such that deg� b >

deg� b
′, and

b + î = b′ + �̂ (5)

We are going to check the exchange property for the elements b+ î and c+ ĵ , that is,
for each element b ∈ [n] with degb(b+ î) > degb(c+ ĵ), we find an element c ∈ [n]
such that

degc(c + ĵ) > degc(b + î) and b + î − b̂ + ĉ ∈ A(I ). (6)

For such an element b, we may assume that degb b > degb c. Otherwise b = i , and we
can proceed with the other presentation, namely the presentation b′ + �̂ given in (5).
We thus assume that

degb b > degb c, (7)

and then, exchange property for bases of B yields that the following set is not empty:

T = {c ∈ [n] : degc c > degc b and b − b̂ + ĉ ∈ B}.

There exist two cases:
Case 1. First, suppose that i ∈ T . So b1 = b − b̂ + î ∈ B. If b1 = c, then j �= b

because b + î and c + ĵ are distinct elements. This implies that

deg j c = deg j b1 ≥ deg j b.

In particular, the inequality is strict if i = j . Hence, deg j (c + ĵ) > deg j (b + î). So

the choice of c = j , for which b+ î − b̂+ ĵ = c+ ĵ ∈ A(I ), has the required property
mentioned in (6). So we are done when b1 = c. Otherwise, if b1 �= c, there exists
b′ ∈ [n] such that degb′ b1 > degb′ c, and consequently, by exchange property, there
exists an element c ∈ [n] such that degc c > degc b1 and

b2 = b1 − b̂′ + ĉ ∈ B.

The vertices b1 and b2 are adjacent. Therefore, b1 ∨ b2 ∈ A(I ). But

b1 ∨ b2 = b1 ∨ (b1 − b̂′ + ĉ) = b1 + ĉ = (b − b̂ + î) + ĉ ∈ A(I ). (8)
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On the other hand, c �= b because degc c > degc b1 but

degb b1 = degb b − 1 ≥ degb c

by (7). This implies that

degc c > degc b1 ≥ degc b,

and the last inequality is strict if c = i . Therefore, degc(c + ĵ) > degc(b + î). Thus,
regarding (8), the element c is an appropriate choice for (6).

Case 2. Next, suppose that there exists an element c ∈ T such that c �= i . Thus,
b1 = b − b̂ + ĉ ∈ B. Moreover, we have degc(c + ĵ) > degc(b + î) because c ∈ T
and c �= i . So it remains to show that b − b̂ + ĉ + î ∈ A(I ) as required in (6).

If b = � where � is introduced in (5), then the vertex b1 = b− �̂ + ĉ ∈ B becomes
adjacent to b′ = b − �̂ + î ∈ B. Hence, b′ ∨ b1 ∈ A(I ). Thus,

b′ ∨ b1 = (b1 − ĉ + î) ∨ b1 = b1 + î = (b − b̂ + ĉ) + î ∈ A(I ).

So c is the desired element.
If b �= �, then b′ as introduced in (5) is equal to b1 − (ĉ+ �̂) + (b̂+ î). Notice that

d(b′,b1) = 2 because {c, �} and {b, i} are disjoint sets. Now by exchange property
for bases of the discrete polymatroid, there exist a common neighbor b2 ∈ B of b′
and b1 by i pivoted in, namely b2 = b1 − �̂ + î or b2 = b1 − ĉ + î . In any case,
b1 ∨ b2 = b1 + î = b − b̂ + ĉ + î ∈ A(I ), as desired. ��
Corollary 3.2 [5, Theorem 2.2] Let I be a polymatroidal ideal. Then, HS1(I ) is also
a polymatroidal ideal.

Proof Regarding Remark 2.1, one has HS1(I ) = A(I ) when I is a monomial ideal
with linear quotients generated in a single degree. Now recall that by [11, Lemma 1.3],
polymatroidal ideals have linear quotients. ��

The next result partially generalizes [5, Proposition 2.4] by Ficarra about matroidal
ideals. Recall that by the result of Herzog et al. in [9, Proposition 1.4] HSi+1(I ) ⊆
HS1(HSi (I )) for every i if I has linear quotients.

Corollary 3.3 Let I be a polymatroidal ideal. Then,

HSi+1(I ) ⊆ HSi (HS1(I ))

for each i .

Proof By [11, Lemma 1.3], polymatroidal ideals have linear quotients with respect to
the reverse lexicographical order of the generators, as required in Theorem 2.2. Now
the assertion immediately follows from Theorem 2.2 and Corollary 3.2. ��
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Remark 3.4 Let I be a polymatroidal ideal corresponding to a discrete polymatroid
satisfying strong exchange property. Then, by [9, Corollary 2.6], the ideal HSi (I ) is
polymatroidal for every i . This yields that

HSi+ j (I ) ⊆ HSi (HS j (I )).

for each i, j by Theorem 2.2. One can see that equality does not hold necessar-
ily. Indeed, the ideal presented in Example 2.4 is a polymatroidal ideal with strong
exchange property for which HS2(I ) � HS1(HS1(I )).

Recall that î denotes the i th canonical basis vector of R
n , and suppose that 1 ∈ R

n

denotes the vector whose all entries are equal to one. We call a monomial u ∈ S
quasi-squarefree if it is c-bounded by c = 1+ î for some i . Let I ⊆ S be a monomial
ideal. The ideal I is called quasi-squarefree monomial ideal if it is generated by quasi-
squarefree monomials. For a monomial ideal J ⊆ S, we define its quasi-squarefree
part, denoted by J ∗, to be the ideal generated by quasi-squarefree elements of J .

Lemma 3.5 Let I be a quasi-squarefree polymatroidal ideal. Then, A(I )∗ is also a
polymatroidal ideal.

Proof Suppose that w,w′ ∈ A(I ) are quasi-squarefree monomials in the minimal set
of monomial generators of A(I ), and suppose that degi w > degi w

′ for some i . We
show that there exists p ∈ [n] such that degp w′ > degp w and (w/xi )xp is a quasi-
squarefree element of A(I ). By Theorem 3.1, we know that A(I ) is polymatroidal, and
consequently, the exchange property of polymatroidal ideals guarantees the existence
of j such that deg j w

′ > deg j w and (w/xi )x j ∈ A(I ). If (w/xi )x j is a quasi-
squarefree monomial, we are done. Otherwise, assume that (w/xi )x j is not quasi-
squarefree. While w is quasi-squarefree, this implies that degree of (w/xi )x j in two
distinct variables is two. Hence, one has

• deg j w = 1;
• degi w = 1;
• There exists t such that degt w = 2.

If d(w,w′) = 1, then (w/xi )x j = w′ which contradicts our assumption that
(w/xi )x j is not quasi-squarefree. So d(w,w′) ≥ 2. On the other hand, w and w′ are
of the same degree. Hence there exists p �= j such that degp w′ > degp w. Since w′
is quasi-squarefree, and 1 = deg j w < deg j w

′, we conclude that degp w′ = 1. Thus,
degp w = 0. Let

w̃ = (w/xi )x j = x2j x
2
t x�1 . . . x�k

such that j, t, �1, . . . , �k are pairwise distinct. Since w̃ belongs to A(I ), there exist
adjacent monomials u, u′ ∈ G(I ) such that w̃ = lcm(u, u′). Regarding the fact that u
and u′ are quasi-squarefree, we set

u = x j x
2
t x�1 . . . x�k
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and

u′ = x2j xt x�1 . . . x�k

Considering the symmetric exchange property of polymatroidal ideals for u ∈ G(I )
with degp u ≤ degp w = 0 and an element of G(I ) divisible by xp, one deduces
that (u/xr )xp ∈ G(I ) for some r ∈ { j, t, �1, . . . , �k}. On the other hand, (u/xr )xp is
adjacent to u. Moreover,

lcm((u/xr )xp, u) = uxp = (w/xi )xp.

Hence, the quasi-squarefree monomial (w/xi )xp belongs to A(I ), as desired. ��
Notice that while the adjacency ideal of a polymatroidal ideal is polymatroidal as

well by Theorem 3.1, in Lemma 3.5 we cannot replace A(I ) with the ideal I itself, as
the following example shows.

Example 3.6 Consider the polymatroidal ideal

I = (xyz2, xyzw, y2z2, y2zw) ⊆ k[x, y, z, w].

One can see that its quasi-squarefree part

I ∗ = (xyz2, xyzw, y2zw)

is not polymatroidal anymore. However, A(I ) and the quasi-squarefree part of A(I )

A(I )∗ = (xy2zw, xyz2w)

are polymatroidal.

The next lemma states that by taking iterated adjacency ideals and then quasi-
squarefree part, one after another, one can obtain homological shift ideals of a
polymatroidal ideal generated in degree 2.

Lemma 3.7 Let I be a polymatroidal ideal generated in degree two. Then, HSi (I )
is obtained by taking successively i times iterated adjacency ideals and then quasi-
squarefree part starting from I .

Proof Assume that the elements of I are ordered decreasingly in the lexicographical
order with respect to x1 > · · · > xn . By [12, Theorem 1.3], the ideal I has linear
quotients with respect to this ordering of generators. We first show that HSi+1(I ) is
a subset of A(HSi (I ))∗, that is, the quasi-squarefree part of the adjacency ideal of
HSi (I ). Let ux�1 . . . x�i+1 be an element of G(HSi+1(I )) with u ∈ G(I ) and

x�1 , . . . , x�i+1 ∈ set(u).
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Notice that if u = x2j for some j ∈ [n], then x j /∈ set(u). Hence, ux�1 . . . x�i+1 is
a quasi-squarefree monomial. On the other hand, this element is the least common
multiple of the adjacent monomials ux�1 . . . x�i and ux�1 . . . x�i−1x�i+1 in G(HSi (I )).
So

HSi+1(I ) ⊆ A(HSi (I ))
∗.

Next, we show that

A(HSi (I ))
∗ ⊆ HSi+1(I ). (9)

For this purpose, letw andw′ be two adjacent elements ofHSi (I ) forwhich lcm(w,w′)
is a quasi-squarefree monomial. We are going to show that lcm(w,w′) ∈ HSi+1(I ).
If w and w′ are both squarefree monomials, then w,w′ ∈ HSi (I )≤1 where 1 =
(1, . . . , 1) ∈ Z

n ; see Sect. 2 for the definition of 1-bounded part HSi (I )≤1 of HSi (I ).
But HSi (I )≤1 = HSi (I≤1) by [9, Corollary 1.10]. On the other hand, for matroidal
ideal I≤1 by [1, Corollary 3.3] one has

HSi+1(I
≤1) = A(HSi (I

≤1)).

Hence,

lcm(w,w′) ∈ A(HSi (I
≤1) = HSi+1(I

≤1) ⊆ HSi+1(I ).

So we are done in the case that w and w′ are both squarefree.
Next assume thatw is not squarefree. Suppose thatw = ux�1 . . . x�i with u ∈ G(I ),

and x�1 , . . . , x�i are elements of set(u). We are going to show that lcm(w,w′) can be
written as a product of an element of G(I ) and i + 1 distinct elements of its set which
implies the desired inclusion (9). Since w and w′ are of the same degree and adjacent,
the monomial w′ : w is of degree one, say

w′ : w = w′

gcd(w,w′)
= x f . (10)

Hence,

lcm(w,w′) = wx f .

Regarding our assumption that w is not squarefree, there exists j ∈ [n] such that
deg j w = 2. There are two cases to consider:

Case 1. Let u = x2j . Besides, there exist monomials in G(I ) divided by each variable
x�1 , . . . , x�i and x f ; a pairwise distinct sequence of variables as discussed
below. Applying the exchange property of polymatroidal ideals for u = x2j
and themonomials divisible by thesementioned variables, one concludes that
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x j x�1 , . . . , x j x�i and x j x f are elements of G(I ). Now consider the following
elements of G(I ):

x2j , x j x�1 , . . . , x j x�i , x j x f . (11)

These elements are pairwise distinct because

• x�1 , . . . , x�i ∈ set(u) are pairwise distinct by Remark 2.1;
• the ideal I is generated in degree two. This implies that x j /∈ set(x2j ).
Consequently, x j /∈ {x�1 , . . . , x�i };

• x j �= x f . Otherwise, regarding (10), deg f w′ = 3 which contradicts the
fact that w′ is quasi-squarefree;

• x f /∈ {x�1 , . . . , x�i }. Otherwise, deg f w = 1 and consequently, deg f w′ =
2 by (10). So x2f and x2j both divide lcm(w,w′), a contradiction to the
assumption that lcm(w,w′) is quasi-squarefree.

Let v be the maximum element in (11) with respect to the lexicographical
order induced by x1 > · · · > xn . By considering ṽ : v for each

ṽ ∈ {x2j , x j x�1 , . . . , x j x�i , x j x f }\{v},

one obtains i + 1 distinct variables xk1 , . . . , xki+1 in set(v). One can see that

vxk1 . . . xki+1 = x2j x�1 . . . x�i x f = lcm(w,w′).

Thus, lcm(w,w′) ∈ HSi+1(I ).
Case 2. Let u = x j x p for some p �= j , and x j ∈ {x�1, . . . , x�i }. We first discuss why

in this case x�1 , . . . , x�i , xp, x f are pairwise distinct. For this purpose, we
notice that

• x�1 , . . . , x�i ∈ set(u) are pairwise distinct as we have seen in Case 1.
• xp /∈ {x�1, . . . , x�i }. Otherwise, x2p and x2j both divide w, a contradiction
to the fact that w is quasi-squarefree.

• x f /∈ {x�1, . . . , x�i }. Otherwise, deg f w = 1, and consequently
deg f w′ = 2 by (10). This implies that lcm(w,w′) is divisible by x2f
and x2j while j �= f regarding the degree of w and w′ in these variables.
As a result, lcm(w,w′) is not quasi-squarefree, a contradiction.

• x f �= xp. Otherwise, deg f w′ = 1 + deg f w = 2. On the other hand,
f �= j as discussed above.As a result distinctmonomials, x2j and x

2
f divide

lcm(w,w′) which contradicts its property of being quasi-squarefree.

Basedon this discussion, x�1 , . . . , x�i , xp, x f are pairwise distinct. Since x j ∈
{x�1 , . . . , x�i } ⊆ set(x j x p), we deduce that x2j ∈ I . On the other hand, for
each variable x�1 , . . . , x�i and x f , there exists a monomial which is divisible
by that variable. Applying the exchange property of polymatroidal ideals for
x2j and those monomials, we conclude that x j x�1 , . . . , x j x�i , x j x f ∈ G(I ).
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Recall that u = x j x p also belongs to G(I ). Furthermore,

x j x�1 , . . . , x j x�i , x j x f , x j x p

are pairwise distinct as discussed above. Suppose that v is the maximum
element of {x j x�1 , . . . , x j x�i , x j x f , x j x p}with respect to the lexicographical
order induced by x1 > · · · > xn . Now by considering

ṽ : v for each ṽ ∈ {x j x�1 , . . . , x j x�i , x j x f , x j x p}\{v},

we obtain i + 1 distinct variables xk1 , . . . , xki+1 in set(v). Moreover,

vxk1 . . . xki+1 = (x j x p)x�1 . . . x�i x f = lcm(w,w′),

as desired.

��
Theorem 3.8 Let I be a polymatroidal ideal generated in degree two. Then,

HSi+ j (I ) ⊆ HSi (HS j (I ))

for each i, j .

Proof It is enough to notice that by Lemmas 3.5 and 3.7, the ideal HS j (I ) is polyma-
troidal for each j . Thus, the assertion follows from Theorem 2.2. ��

As an immediate consequence of Lemmas 3.5 and 3.7, we have

Corollary 3.9 [6, Theorem 4.5] Let I be a polymatroidal ideal generated in degree
two. Then, the ideal HSi (I ) is also a polymatroidal ideal for all i .

Proposition 3.10 [5, Proposition 2.4] Let I be a matroidal ideal. Then,

HSi+ j (I ) = HSi (HS j (I ))

for each i, j .

Proof By [1, Corollary 3.3], the ideal HSi+ j (I ) can be obtained by taking i + j times
iterated adjacency ideals starting from I for each i, j . On the other hand, HS j (I ) is
also a matroidal ideal by [1, Theorem 3.2]. So one obtains HSi (HS j (I )) by taking
first j times and next i more times adjacency ideals starting from I . ��
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