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Abstract
Awide range of parameters of domination in graphs can be defined and studied through
a common approach that was recently introduced in [https://doi.org/10.26493/1855-
3974.2318.fb9] under the name of w-domination, where w = (w0, w1, . . . , wl) is a
vector of non-negative integers such that w0 ≥ 1. Given a graph G, a function f :
V (G) −→ {0, 1, . . . , l} is said to be a w-dominating function if

∑
u∈N (v) f (u) ≥ wi

for every vertex v with f (v) = i , where N (v) denotes the open neighbourhood of
v ∈ V (G). The weight of f is defined to be ω( f ) = ∑

v∈V (G) f (v), while the w-
domination number ofG, denoted by γw(G), is defined as theminimumweight among
all w-dominating functions on G. A wide range of well-known domination param-
eters can be defined and studied through this approach. For instance, among others,
the vector w = (1, 0) corresponds to the case of standard domination, w = (2, 1)
corresponds to double domination, w = (2, 0, 0) corresponds to Italian domination,
w = (2, 0, 1) corresponds to quasi-total Italian domination,w = (2, 1, 1) corresponds
to total Italian domination, w = (2, 2, 2) corresponds to total {2}-domination, while
w = (k, k − 1, . . . , 1, 0) corresponds to {k}-domination. In this paper, we show that
several domination parameters of lexicographic product graphs G ◦ H are equal to
γw(G) for some vector w ∈ {2} × {0, 1, 2}l and l ∈ {2, 3}. The decision on whether
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the equality holds for a specific vectorw will depend on the value of some domination
parameters of H . In particular, we focus on quasi-total Italian domination, total Italian
domination, 2-domination, double domination, total {2}-domination, and double total
domination of lexicographic product graphs.

Keywords w-domination · (Total) Italian domination · Quasi-total Italian
domination · 2-domination · Double domination · Lexicographic product graph

Mathematics Subject Classification 05C69 · 05C76

1 Introduction

The lexicographic product of twographsG and H is the graphG◦H whose vertex set is
V (G◦H) = V (G)×V (H) and (g, h)(g′, h′) ∈ E(G◦H) if and only if gg′ ∈ E(G) or
g = g′ and hh′ ∈ E(H). For simplicity, the neighbourhood of (x, y) ∈ V (G)×V (H)

will be denoted by N (x, y) instead of N ((x, y)). Analogously, for any function f on
G ◦ H , the image of (x, y) ∈ V (G) × V (H) will be denoted by f (x, y) instead of
f ((x, y)). For basic properties of the lexicographic product of two graphs, we cite
the books [18, 23]. In particular, for results on domination theory of lexicographic
product graphs we suggest the following works: standard domination [25, 26], Roman
domination [27], weak Roman domination [6, 24, 29], total Roman domination [8,
12], total weakRoman domination [6, 11], rainbow domination [28], super domination
[14], Italian domination [5], secure domination [6, 24], secure total domination [6, 11],
double domination [9] and doubly connected domination [2].

In particular, the next theorem merges two results obtained in [27] and [30]. The
result states that the domination number of G ◦ H equals the domination number of
G whenever H has domination number equal to one, while the domination number of
G ◦ H equals the total domination number of G for the remaining cases.

Theorem 1 ([27] and [30])For any graphG with no isolated vertex and any non-trivial
graph H,

γ (G ◦ H) =
{

γ (G), if γ (H) = 1,
γt (G), if γ (H) ≥ 2.

Another interesting result obtained in [11] concerns the case of total domination.

Theorem 2 [11] For any graph G with no isolated vertex and any non-trivial graph
H,

γt (G ◦ H) = γt (G).

These two theorems suggest to consider the following problem.

Problem 1 Let G be a graph and let γy be a domination parameter well defined on
G ◦ H for any non-trivial graph H. Determine if for each graph H, there exists a
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domination parameter γx such that

γy(G ◦ H) = γx (G).

We proceed to show other cases for which this problem has been solved. To this
end, we need to formalize the notion of w-domination introduced in [5], where w =
(w0, w1, . . . , wl) is a vector of non-negative integers such that w0 ≥ 1. Given a graph
G, a function f : V (G) −→ {0, 1, . . . , l} is said to be a w-dominating function if∑

u∈N (v) f (u) ≥ wi for every vertex v with f (v) = i , where N (v) denotes the open
neighbourhood of v ∈ V (G). For every i ∈ {0, . . . , l}, we define Vi = {v ∈ V (G) :
f (v) = i}, and we will identify the function f with the subsets V0, . . . , Vl associated
with it. So, we will use the unified notation f (V0, . . . , Vl) for the function and these
associated subsets. The weight of f is defined to be ω( f ) = ∑

v∈V (G) f (v), while
thew-domination number of G, denoted by γw(G), is defined as the minimumweight
among all w-dominating functions on G. A w-dominating function of weight γw(G)

will be called a γw(G)-function.
It was shown in [5] that a wide range of well-known domination parameters can

be defined and studied through this approach. For instance, the vector w = (1, 0)
corresponds to standard domination, w = (1, 1) corresponds to total domination,
w = (2, 0, 0) corresponds to Italian domination, w = (2, 0, 1) corresponds to quasi-
total Italian domination, w = (2, 1, 1) corresponds to total Italian domination, while
w = (k, k − 1, . . . , 1, 0) corresponds to {k}-domination.

As the next result shows, Problem1was solved for the case of the Italian domination
number, which is awell-known parameter introduced in [13] under the name of Roman
{2}-domination number. As mentioned above, in terms of w-domination, the Italian
domination number of a graph G is defined as γI (G) = γ

(2,0,0) (G).

Theorem 3 [5] For any graph G with no isolated vertex and any non-trivial graph H,

γI (G ◦ H) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ
(2,1,0) (G) if γ (H) = 1,

γ
(2,2,0) (G) if γ2(H) = γ (H) = 2,

γ
(2,2,1) (G) if γ2(H) > γ (H) = 2,

γ
(2,2,2,0) (G) if γI (H) = γ (H) = 3,
γ

(2,2,2) (G) if γI (H) �= 3 and γ (H) ≥ 3.

In addition, Problem 1was solved for the case of the {2}-domination number, which
was introduced in [15]. In terms of w-domination, the {2}-domination number of a
graph G is defined as γ{2}(G) = γ

(2,1,0) (G).

Theorem 4 [4] For any graph G with no isolated vertex and any non-trivial graph
H,

γ{2}(G ◦ H) =
⎧
⎨

⎩

γ
(2,1,0) (G) if γ (H) = 1,

γ
(2,2,1) (G) if γ (H) = 2,

γ
(2,2,2) (G) if γ (H) ≥ 3.
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We refer the reader to [5] for general results onw-domination, as well as for specific
results on the domination parameters given in Theorems 3 and 4.

In this paper, we solve Problem 1 for the particular cases in which γy corresponds
to the following parameters. Although we will use the standard notation for these
parameters, we will define them in terms of w-domination.

• The k-domination number of a graph G, introduced in [16, 17], can be defined
as γk (G) = γ

(k,0) (G). In this paper, we are interested in the case k = 2, which is
probably the most studied. In this case, if f (V0, V1) is a γ(2,0)(G)-function, then
we will say that V1 is a γ2(G)-set.

• The double domination number of a graph G with no isolated vertex is defined to
be γ×2(G) = γ

(2,1) (G). If f (V0, V1) is a γ
(2,1) (G)-function, then we will say that

V1 is a γ×2(G)-set. This parameter was introduced in two different papers [19, 20].
Moreover, the general version of this parameter, the k-tuple domination number,
is defined to be γ×k (G) = γ

(k,k−1) (G).
• The double total domination number of a graphG withminimumdegree δ(G) ≥ 2
is defined to be γ×2,t (G) = γ

(2,2) (G). If f (V0, V1) is a γ
(2,2) (G)-function, then we

will say that V1 is a γ×2,t (G)-set. This domination parameter was introduced in
[21], and its general version is the k-tuple total domination number, which is
defined to be γ×k,t (G) = γ

(k,k) (G).
• The quasi-total Italian domination number of a graph G, recently introduced in
[7], is defined to be γI∗ (G) = γ

(2,0,1) (G). A (2, 0, 1)-dominating function ofweight
γI∗ (G) will be called a γI∗ (G)-function.

• The total Italian domination number of a graph G with no isolated vertex is
defined to be γt I (G) = γ

(2,1,1) (G). This parameter was introduced in [3], and
independently in [1], under the name of total Roman {2}-domination number. A
(2, 1, 1)-dominating function of weight γt I (G) will be called a γt I (G)-function.

• The total {2}-domination number of a graph G of minimum degree δ(G) ≥ 2 is
defined as γ{2},t (G) = γ

(2,2,2) (G). This parameter was studied in [22].

We will show that the above-mentioned domination parameters of lexicographic
product graphs G ◦ H are equal to γw(G) for some vector w ∈ {2} × {0, 1, 2}l and
l ∈ {2, 3}. The decision on whether the equality holds for a specific vector w will
depend on the value of some domination parameters of H .

Notice that if G is a graph with no isolated vertex and H is a non-trivial graph,
then the following domination chain is deduced by the definition of the parameters
involved in it.

γI (G ◦ H) ≤ γI∗ (G ◦ H) ≤ γ2(G ◦ H) ≤ γ×2(G ◦ H) ≤ γ×2,t (G ◦ H). (1)

Furthermore, the equality γt I (G ◦ H) = γ×2(G ◦ H) was deduced in [9], while
the equality γI∗ (G ◦ H) = γ2(G ◦ H) will be proved in Sect. 2 and the equality
γ{2},t (G ◦ H) = γ×2,t (G ◦ H) will be proved in Sect. 4. Therefore, the following
domination chain holds whenever G is a graph with no isolated vertex and H is a
non-trivial graph.

γI (G ◦ H)

≤ γI∗ (G ◦ H) = γ2(G ◦ H)

≤ γt I (G ◦ H) = γ×2(G ◦ H)

≤ γ{2},t (G ◦ H) = γ×2,t (G ◦ H).

(2)
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2 Double Domination and Total Italian Domination

To get our results, we need to set up some tools and introduce some known results.

Lemma 1 Let G be a graph with no isolated vertex and H a non-trivial graph. If
γ×2(H) = 2, then γ×2(G ◦ H) ≤ γ

(2,1,0) (G).

Proof Let S = {v1, v2} be a γ×2(H)-set and g(W0,W1,W2) a γ
(2,1,0) (G)-function.

SinceW = (W1 ×{v1})∪ (W2 × S) is a double dominating set of G ◦ H , we conclude
that γ×2(G ◦ H) ≤ |W | = ω(g) = γ

(2,1,0) (G). ��
Notice that for any u ∈ V (G) the subgraph of G ◦ H induced by {u} × V (H) is

isomorphic to H . For simplicity, we will denote this subgraph by Hu .

Theorem 5 [9] The following statements hold for any graph G with no isolated vertex
and any non-trivial graph H.

(i) γ×2(G ◦ H) = γt I (G ◦ H).

(ii) If γ2(H) ≥ 3 and γ (H) = 1, then γ×2(G ◦ H) = γt I (G).

(iii) There exists a γ×2(G ◦H)-set S such that |S∩V (Hu)| ≤ 2, for every u ∈ V (G).

By Theorem 5 (i), we will restrict the proof of the next result to obtain the values
of γ×2(G ◦ H).

Theorem 6 For any graph G with no isolated vertex and any non-trivial graph H,

γ×2(G ◦ H) = γt I (G ◦ H) =

⎧
⎪⎪⎨

⎪⎪⎩

γ
(2,1,0) (G) if γ×2(H) = 2,

γ
(2,1,1) (G) if γ2(H) ≥ 3 and γ (H) = 1,

γ
(2,2,1) (G) if γ (H) = 2,

γ
(2,2,2) (G) if γ (H) ≥ 3.

Proof First, we assume that γ (H) = 1. Since γI (G◦H) ≤ γ×2(G◦H), if γ×2(H) = 2,
then Theorem 3 and Lemma 1 lead to γ

(2,1,0) (G) = γI (G ◦ H) ≤ γ×2(G ◦ H) ≤
γ

(2,1,0) (G). Therefore, in this case we conclude that γ×2(G ◦ H) = γ
(2,1,0) (G). Now, if

γ2(H) ≥ 3, then Theorem 5 (ii) leads to γ×2(G ◦ H) = γt I (G) = γ
(2,1,1) (G).

From now on we assume that γ (H) ≥ 2. Let S be a γ×2(G ◦ H)-set which satisfies
Theorem5 (iii). Let f (X0, X1, X2) be the function defined onG by Xi = {x ∈ V (G) :
|S ∩ V (Hx )| = i} for every i ∈ {0, 1, 2}. Notice that γ×2(G ◦ H) = |S| = ω( f ). We
claim that f is a γ

(2,2,w)
(G)-function, where w ∈ {1, 2}. In order to prove this claim

and find the exact value of w, we differentiate the following two cases.

Case 1. γ (H) = 2. Assume that x ∈ X0 ∪ X1. Since γ (H) = 2, there exists a
vertex z ∈ V (H) such that (x, z) /∈ S and |S ∩ N (x, z) ∩ V (Hx )| = 0. Hence,
|S∩ (N (x, z)\V (Hx ))| ≥ 2, which implies that f (N (x)) ≥ 2. Now, assume that x ∈
X2. In this case, there exists a vertex y ∈ V (H) such that |S∩ N (x, y)∩V (Hx )| ≤ 1,
and so f (N (x)) ≥ 1. Therefore, f is a (2, 2, 1)-dominating function on G and, as a
consequence, γ×2(G ◦ H) = |S| = ω( f ) ≥ γ

(2,2,1) (G).
Moreover, let h(Y0,Y1,Y2) be a γ

(2,2,1) (G)-function and S = {v1, v2} a γ (H)-set.
Notice that the set Y = (Y1 × {v1}) ∪ (Y2 × S) is a double dominating set of G ◦ H ,
which implies that γ×2(G ◦ H) ≤ |Y | = ω(h) = γ

(2,2,1) (G).
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Case 2. γ (H) ≥ 3. Let x ∈ V (G). Since γ (H) ≥ 3, there exists y ∈ V (H) such
that (x, y) /∈ S and |S ∩ N (x, y) ∩ V (Hx )| = 0, which implies that |S ∩ (N (x, y) \
V (Hx ))| ≥ 2, and so f (N (x)) ≥ 2. Therefore, f is a (2, 2, 2)-dominating function
on G and, as a consequence, γ×2(G ◦ H) = |S| = ω( f ) ≥ γ

(2,2,2) (G).
It remains to show that γ×2(G◦H) ≤ γ

(2,2,2) (G). To see this we only need to observe
that for anyγ

(2,2,2) (G)-function g(W0,W1,W2) and anypair of verticesv1, v2 ∈ V (H),
the setW = (W2×{v1, v2})∪ (W1×{v1}) is a double dominating set of G ◦H , which
implies that γ×2(G ◦ H) ≤ |W | = ω(g) = γ

(2,2,2) (G), as required. ��

3 Quasi-total Italian Domination and 2-Domination

To begin this section, we will introduce some basic tools.

Lemma 2 For any graph G with no isolated vertex and any non-trivial graph H with
γ (H) = 1, there exists a γ2(G ◦ H)-set D satisfying that |D ∩ V (Hu)| ≤ 2 for every
u ∈ V (G).

Proof Given a γ2(G ◦H)-set D, we define the set RD = {x ∈ V (G) : |D∩V (Hx )| ≥
3}. Now, we assume that D is a γ2(G ◦ H)-set such that |RD| is minimum among all
γ2(G ◦ H)-sets. Suppose that |RD| ≥ 1. Let v be a universal vertex of H and u ∈ RD .
Now, we take u′ ∈ N (u) and v′ ∈ N (v), and consider a set D′ ⊆ V (G) × V (H)

satisfying the following properties.

• D′ ∩ V (Hu) = {(u, v), (u, v′)};
• |D′ ∩ V (Hu′)| = min{2, |D ∩ V (Hu′)| + 1};
• D′ ∩ V (Hx ) = D ∩ V (Hx ) for every x ∈ V (G)\{u, u′}.

Observe that D′ is a 2-dominating set ofG◦H satisfying |D′| ≤ |D| and |RD′ | < |RD|,
which is a contradiction. Therefore, RD = ∅, as required. ��
Lemma 3 Let G be a graph with no isolated vertex and H a non-trivial graph. If
γ2(H) ≥ 3 and γ (H) = 1, then γ2(G ◦ H) ≥ γ

(2,1,1) (G).

Proof Let D be a γ2(G ◦ H)-set which satisfies Lemma 2. Let f (X0, X1, X2) be
the function defined on G by Xi = {x ∈ V (G) : |D ∩ V (Hx )| = i} for every
i ∈ {0, 1, 2}. Notice that γ2(G ◦ H) = |D| = ω( f ). We claim that f is a (2, 1, 1)-
dominating function on G. Assume that x ∈ X0. Since D ∩ V (Hx ) = ∅, we have
that |D ∩ (N (x) × V (H)| ≥ 2, which implies that f (N (x)) ≥ 2. Now, assume that
x ∈ X1∪X2. Since |D∩V (Hx )| ≤ 2 and γ2(H) ≥ 3, there exists y ∈ V (H) such that
(x, y) /∈ D and |D∩V (Hx )∩N (x, y)| ≤ 1,which implies that |D∩(N (x)×V (H))| ≥
1, and so f (N (x)) ≥ 1. Therefore, f is a (2, 1, 1)-dominating function on G and, as
a consequence, γ2(G ◦ H) = |D| = ω( f ) ≥ γ

(2,1,1) (G). ��
Theorem 7 The following statements hold for any graph G with no isolated vertex
and any non-trivial graph H.

(i) γI∗ (G ◦ H) = γ2(G ◦ H).

(ii) If γ (H) ≥ 2, then γI∗ (G ◦ H) = γI (G ◦ H).
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Proof By definition, γI∗ (G ◦H) ≤ γ2(G ◦H). Hence, it remains to show that γI∗ (G ◦
H) ≥ γ2(G ◦ H). Let f (V0, V1, V2) be a γI∗ (G ◦ H)-function such that |V2| is
minimum among all γI∗ (G ◦ H)-functions. If V2 = ∅, then V1 is a 2-dominating set
of G ◦ H , and so γ2(G ◦ H) ≤ |V1| = γI∗ (G ◦ H). We assume that V2 �= ∅ and, in
that case, we differentiate the next two cases for a fixed vertex (u, v) ∈ V2. Obviously,
N (u, v) ∩ (V1 ∪ V2) �= ∅.
Case 1. N (u, v) ∩ (V1 ∪ V2) ⊆ V (Hu). In this case, for any (u′, v′) ∈ N (u) ×
V (H) we define the function f ′(V ′

0, V
′
1, V

′
2) where V ′

0 = V0 \ {(u′, v′)}, V ′
1 = V1 ∪

{(u, v), (u′, v′)} andV ′
2 = V2\{(u, v)}.Observe thatω( f ′) = ω( f ), every vertex inV ′

2
has a neighbour in V ′

1∪V ′
2 and every vertexw ∈ V ′

0 ⊆ V0 satisfies that f ′(N (w)) ≥ 2.
Hence, f ′ is a γI∗ (G ◦ H)-function and |V ′

2| < |V2|, which is a contradiction.
Case 2. (N (u) × V (H)) ∩ (V1 ∪ V2) �= ∅. If V (Hu) ⊆ V1 ∪ V2, then the function h,
defined by h(u, v) = 1 and h(x, y) = f (x, y)whenever (x, y) ∈ V (G ◦H)\{(u, v)},
is a quasi-total Italian dominating function on G ◦ H with ω(h) < ω( f ), which is a
contradiction. Hence, there exists v′ ∈ V (H) such that (u, v′) ∈ V0. In that case, let
f ′(V ′

0, V
′
1, V

′
2) be a function defined by V

′
0 = V0\{(u, v′)}, V ′

1 = V1∪{(u, v), (u, v′)}
and V ′

2 = V2\{(u, v)}. As in the previous case, ω( f ′) = ω( f ), every vertex in V ′
2 has

a neighbour in V ′
1 ∪ V ′

2 and every vertex w ∈ V ′
0 ⊆ V0 satisfies that f ′(N (w)) ≥ 2.

Thus, f ′ is a γI∗ (G ◦ H)-function with |V ′
2| < |V2|, which is a contradiction again.

According to the two cases above, we deduce that V2 = ∅, which implies that
γ2(G ◦ H) ≤ γI∗ (G ◦ H). Therefore, the proof of (i) is complete.

Finally, we proceed to prove (ii). By definition, γI (G ◦ H) ≤ γI∗ (G ◦ H). Thus, it
remains to show thatγI (G◦H) ≥ γI∗ (G◦H)wheneverγ (H) ≥ 2.Let g(W0,W1,W2)

be a γI (G◦H)-function such that |W2| is theminimum among all γI (G◦H)-functions.
Obviously, ifW2 = ∅ or N (u, v) � W0 for every (u, v) ∈ W2, then g is a γI∗ (G ◦H)-
function and we are done. Suppose to the contrary that there exists a vertex (u, v) ∈
W2 such that N (u, v) ⊆ W0. Notice that g(V (Hu)) ≥ 3, as γ (H) ≥ 2. Thus, we
differentiate the next two cases.

Case 1. g(V (Hu)) ≥ 4. Let u′ ∈ N (u) and v′ ∈ V (H) \ {v}. We define a function
g′(W ′

0,W
′
1,W

′
2) on G ◦ H as g′(u, v) = g′(u, v′) = g′(u′, v) = g′(u′, v′) = 1,

g′(V (Hu)\{(u, v), (u, v′)}) = g′(V (Hu′)\{(u′, v), (u′, v′)}) = 0 and g′(x, y) =
g(x, y) for every x ∈ V (G)\{u, u′} and y ∈ V (H). Notice that g′ is an Italian
dominating function on G ◦ H with ω(g′) ≤ ω(g) and |W ′

2| < |W2|, which is a
contradiction.

Case 2. g(V (Hu)) = 3. In this case, since γ (H) ≥ 2, we deduce that γI (H) =
3 and γ (H) = 2 by the minimality of W2. Let {v1, v2} be a γ (H)-set and u′ ∈
N (u). Consider the function g′(W ′

0,W
′
1,W

′
2) defined as g′(u, v1) = g′(u, v2) = 1,

g′(u, v) = 0 for every v ∈ V (H)\{v1, v2}, g′(V (Hu′)) = 1 and g′(x, y) = g(x, y)
for every x ∈ V (G)\{u, u′} and y ∈ V (H). Notice that g′ is an Italian dominating
function on G ◦ H with ω(g′) ≤ ω(g) and |W ′

2| < |W2|, which is a contradiction.
Therefore, either W2 = ∅ or every vertex in W2 has a neighbour in W1 ∪ W2, and

so γI∗ (G ◦ H) = γI (G ◦ H). ��
According to Theorem 7, we can restrict the proof of the next result to obtain the

values of γ2(G ◦ H).
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Theorem 8 For any graph G with no isolated vertex and any non-trivial graph H,

γ2(G ◦ H) = γI∗ (G ◦ H) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ
(2,1,0) (G) if γ×2(H) = 2,

γ
(2,1,1) (G) if γ2(H) ≥ 3 and γ (H) = 1,

γ(2,2,0)(G) if γ2(H) = γ (H) = 2,
γ

(2,2,1) (G) if γ2(H) > γ (H) = 2,
γ

(2,2,2,0) (G) if γI (H) = γ (H) = 3,
γ

(2,2,2) (G) if γI (H) �= 3 and γ (H) ≥ 3.

Proof Since γI (G ◦H) ≤ γ2(G ◦H), if γ×2(H) = 2, then by Lemma 1 and Theorem 3
we have that γ

(2,1,0) (G) = γI (G ◦ H) ≤ γ2(G ◦ H) ≤ γ
(2,1,0) (G). Therefore, in this

case we obtain γ2(G ◦ H) = γ
(2,1,0) (G).

Now, since γ2(G ◦ H) ≤ γ×2(G ◦ H), if γ2(H) ≥ 3 and γ (H) = 1, then Lemma 3
and Theorem 5 (ii) lead to γ

(2,1,1) (G) ≤ γ2(G ◦ H) ≤ γ×2(G ◦ H) = γ
(2,1,1) (G).

Therefore, γ2(G ◦ H) = γ
(2,1,1) (G).

Finally, if γ (H) ≥ 2, thenTheorem7 leads to γ2(G◦H) = γI∗ (G◦H) = γI (G◦H)

and so we complete the proof by Theorem 3. ��

4 Double Total Domination and Total {2}-Domination

Although in general, γ{2},t (G) ≤ γ×2,t (G), we show below that for the case of lexico-
graphic product graphs these parameters always coincide.

Theorem 9 For any graph G with no isolated vertex and any non-trivial graph H,

γ{2},t (G ◦ H) = γ×2,t (G ◦ H).

Proof By definition, γ{2},t (G ◦ H) ≤ γ×2,t (G ◦ H). Hence, it remains to show that
γ{2},t (G ◦ H) ≥ γ×2,t (G ◦ H). Let f (V0, V1, V2) be a γ{2},t (G ◦ H)-function such that
|V2| is minimum among all γ{2},t (G ◦ H)-functions. If V2 = ∅, then V1 is a double
total dominating set ofG ◦H , and so γ×2,t (G ◦H) ≤ |V1| = γ{2},t (G ◦H), as required.
We assume that V2 �= ∅ and, in that case, we differentiate the next two cases for a
fixed vertex (u, v) ∈ V2. Obviously, N (u, v) ∩ (V1 ∪ V2) �= ∅.
Case 1. N (u, v)∩ (V1 ∪ V2) ⊆ V (Hu). In this case, for any (u′, v), (u′, v′) ∈ N (u)×
V (H) we define the function f ′(V ′

0, V
′
1, V

′
2) where V

′
0 = V0 \ {(u′, v), (u′, v′)}, V ′

1 =
V1 ∪ {(u′, v), (u′, v′)} and V ′

2 = V2\{(u, v)}. Observe that ω( f ′) = ω( f ) and every
vertex (x, y) ∈ V (G ◦ H) satisfies that f ′(N (x, y)) ≥ 2. Hence, f ′ is a γ{2},t (G ◦ H)-
function and |V ′

2| < |V2|, which is a contradiction.
Case 2. (N (u) × V (H)) ∩ (V1 ∪ V2) �= ∅. If V (Hu) ⊆ V1 ∪ V2, then the function h,
defined by h(u, v) = 1 and h(x, y) = f (x, y)whenever (x, y) ∈ V (G ◦H)\{(u, v)},
is a double total dominating function on G ◦ H with ω(h) < ω( f ), which is a
contradiction. Hence, there exists v′ ∈ V (H) such that (u, v′) ∈ V0. In that case, let
f ′(V ′

0, V
′
1, V

′
2) be a function defined by V

′
0 = V0\{(u, v′)}, V ′

1 = V1∪{(u, v), (u, v′)}
and V ′

2 = V2\{(u, v)}. Notice thatω( f ′) = ω( f ) and every vertex (x, y) ∈ V (G ◦H)

satisfies that f ′(N (x, y)) ≥ 2. Thus, f ′ is a γ{2},t (G ◦ H)-function with |V ′
2| < |V2|,

which is a contradiction again.
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According to the two cases above, we deduce that V2 = ∅, which implies that V1
is a double total dominating set of G ◦ H , and so γ×2,t (G ◦ H) ≤ |V1| = γ{2},t (G ◦ H),
as required. Therefore, the proof is complete. ��

We are now in a position to formalize the tools which will allow us to calculate
γ×2,t (G ◦ H).

Lemma 4 For any graph G with no isolated vertex and any non-trivial graph H, there
exists a γ×2,t (G ◦ H)-set S satisfying that |S ∩ V (Hx )| ≤ 2 for every x ∈ V (G).

Proof Given a γ×2,t (G◦H)-set S, we define the set RS = {x ∈ V (G) : |S∩V (Hx )| ≥
3}. Assume that S is a γ×2,t (G ◦ H)-set such that RS has minimum cardinality among
all γ×2,t (G ◦ H)-sets. Suppose that RS �= ∅ and let x, y ∈ V (G) be two adjacent
vertices with x ∈ RS . Let Sx = S ∩ V (Hx ) and take (x, v1), (x, v2) ∈ Sx . Hence,
there exists a set S′ ⊆ V (G ◦ H) satisfying the following properties.

• S′ ∩ V (Hx ) = {(x, v1), (x, v2)}.
• |S′ ∩ V (Hy)| = min{2, |S ∩ V (Hy)| + |Sx | − 2}.
• S′ ∩ V (Hz) = S ∩ V (Hz) for every z ∈ V (G)\{x, y}.
Observe that S′ is a double total dominating set of G ◦ H with |S′| ≤ |S| and

|RS′ | < |RS|, which is a contradiction. Therefore, the result follows. ��
Proposition 1 For any graph G with no isolated vertex and any non-trivial graph H,

γ×2,t (G ◦ H) ≤ γ
(2,2,2) (G).

Furthermore, if H has isolated vertex or γt (H) ≥ 3, then the equality holds.

Proof The proof of the inequality is straightforward, as we only need to observe that
for any γ

(2,2,2) (G)-function g(W0,W1,W2) and any pair of vertices v1, v2 ∈ V (H),
the setW = (W2 × {v1, v2}) ∪ (W1 × {v1}) is a double total dominating set of G ◦ H ,
which implies that γ×2,t (G ◦ H) ≤ |W | = ω(g) = γ

(2,2,2) (G).
From now on, assume that either H has isolated vertex or γt (H) ≥ 3. Notice that

these assumptions imply that for any set S ⊆ V (H) of cardinality at most two, there
exists a vertex v ∈ V (H) such that N (v) ∩ S = ∅.

Now, let D be a γ×2,t (G ◦ H)-set satisfying Lemma 4. Since |D ∩ V (Hx )| ≤ 2
for every x ∈ V (G), from the assumptions above we have that there exists a vertex
v ∈ V (H) such that N (x, v) ∩ D ∩ V (Hx ) = ∅. Thus, |(N (x) × V (H)) ∩ D| ≥ 2
for every x ∈ V (G), which implies that any function f : V (G) −→ {0, 1, 2} such
that f (V (Hx )) = |D ∩ V (Hx )|, is a (2, 2, 2)-dominating function on G. Therefore,
γ

(2,2,2) (G) ≤ ω( f ) = |D| = γ×2,t (G ◦ H), as required. ��
According toTheorem9, in theproof of the following resultwe can restrict ourselves

to determining the value of γ×2,t (G ◦ H).

Theorem 10 For any graph G with no isolated vertex and any non-trivial graph H,

γ×2,t (G ◦ H) = γ{2},t (G ◦ H) =
{

γ
(2,2,1) (G) if γt (H) = 2,

γ
(2,2,2) (G) otherwise.
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Proof First we assume that γt (H) = 2. Let h(Y0,Y1,Y2) be a γ
(2,2,1) (G)-function and

let S = {v1, v2} be a γt (H)-set. Notice that the set Y = (Y1 × {v1}) ∪ (Y2 × S) is
a double total dominating set of G ◦ H , which implies that γ×2,t (G ◦ H) ≤ |Y | =
ω(h) = γ

(2,2,1) (G). Now, let S be a γ×2,t (G ◦ H)-set which satisfies Lemma 4 and let
f (X0, X1, X2) be the function defined on G by Xi = {x ∈ V (G) : |S ∩ V (Hx )| = i}
for every i ∈ {0, 1, 2}. Notice that γ×2,t (G ◦ H) = |S| = ω( f ). We claim that f is a
(2, 2, 1)-dominating function on G.

Let x ∈ X0 ∪ X1. Since γt (H) = 2, there exists a vertex z ∈ V (H) such that
(x, z) /∈ S and |S ∩ N (x, z) ∩ V (Hx )| = 0. Hence, as S is a γ×2,t (G ◦ H)-set,
|S ∩ (N (x, z)\V (Hx ))| ≥ 2, and so f (N (x)) ≥ 2.

Now, let x ∈ X2. Since γt (H) = 2 implies γ×2,t (H) ≥ 3, we have that there
exists a vertex y ∈ V (H) such that |S ∩ V (Hx ) ∩ N (x, y)| ≤ 1, which leads to
|S ∩ (N (x, z) \ V (Hx ))| ≥ 1, as S is a γ×2,t (G ◦ H)-set, and so f (N (x)) ≥ 1.

Therefore, f is a (2, 2, 1)-dominating function on G and, as a consequence,
γ×2,t (G ◦ H) = |S| = ω( f ) ≥ γ

(2,2,1) (G), concluding that γ×2,t (G ◦ H) = γ
(2,2,1) (G).

Finally, if γt (H) ≥ 3 or H has isolated vertex, then by Proposition 1 we have
γ×2,t (G ◦ H) = γ

(2,2,2) (G). ��
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27. Šumenjak, T.K., Pavlič, P., Tepeh,A.: On theRoman domination in the lexicographic product of graphs.

Discrete Appl. Math. 160(13–14), 2030–2036 (2012)
28. Šumenjak, T.K., Rall, D.F., Tepeh, A.: Rainbow domination in the lexicographic product of graphs.

Discrete Appl. Math. 161(13–14), 2133–2141 (2013)
29. Valveny, M., Pérez-Rosés, H., Rodríguez-Velázquez, J.A.: On the weak Roman domination number of

lexicographic product graphs. Discrete Appl. Math. 263, 257–270 (2019)
30. Zhang, X., Liu, J., Meng, J.: Domination in lexicographic product graphs. Ars Combin. 101, 251–256

(2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	From w-Domination in Graphs to Domination Parameters  in Lexicographic Product Graphs
	Abstract
	1 Introduction
	2 Double Domination and Total Italian Domination
	3 Quasi-total Italian Domination and 2-Domination
	4 Double Total Domination and Total {2}-Domination
	References




