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Abstract

We study a nonlinear g (m)-Kirchhoff-type problems under Dirichlet boundary con-
dition with nonlocal terms and logarithmic nonlinearity, in the setting of "variable
exponents" Sobolev spaces in compact Riemannian manifolds. Using the Mountain
Pass Theorem, the Fountain and Dual Fountain Theorem, we discuss the existence and
multiplicity of three notions of solutions: nontrivial weak solutions, large energy solu-
tions and small negative energy solutions. One of the main difficulties and innovations
of the present paper is the presence of nonlocal terms and logarithmic nonlinearity.
Our results extend and generalize some recent works in the existing literature.
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1 Introduction

Let (M, g) is a smooth compact Riemannian N-manifolds. In this paper, we investi-
gate the following nonlinear g (m)-Kirchhoff-type problems with Dirichlet boundary
condition and with nonlocal terms and logarithmic nonlinearity

Vi |90
@( Ldvg (m)) ( - Aq(m)u) + g(m)|u|?P™ 2y In |u|
M qim)

= |u|P™ "2y 4 w(f F(m, u)dvg(m)>f(m, u) in M, .1
M

u=20 onT,

where A and 6 are strictly positive real parameters, p(m),q(m) € C(M) and
t
F(n,t) = / f(m,s)ds where dvy, = /det(g;j)dm is the Riemannian volume

0
element on (M, g), with the g;; being the components of the Riemannian metric g in
the chart and dm is the Lebesgue volume element of RV .

The operator Aynyu = div<|Vu|‘1(”’)_2u> is referred to as the g (m)-Laplacian

and changes into the g-Laplacian when g (m) = ¢ (a constant). The g-Laplacian oper-
ator is (¢ — 1)-homogeneous, meaning that for every p > 0, A, (uu) = ud1 Ay(u),
whereas the g (m)-Laplacian operator is not homogeneous when g (m) is not a constant.

The ability to model various phenomena that emerge in the study of elastic mechan-
ics, electrorheological fluids [21] and image restoration provides a strong motivation
for the study of problems involving variable exponent growth conditions [3, 4, 6, 10,
11, 14, 16-19, 24, 25].

The problem (1.1) is a generalization of a Kirchhoff model. More specifically,
Kirchhoff proposed a model given by the equation

ou 2d 9%u 0 (1.2)
m| — =0, .
om?

52 \u Ty |am

9%u Py, E [L
+
h o 2L ),

where L is the length of the string, / is the area of the cross section, E is the Young mod-
ulus of the material, p is the mass density and Py is the initial tension. A distinguishing
feature of Kirchhoff equation (1.2) is that the equation contains a nonlocal coefficient
Py E (L|oul? 2

— — dm, and th
h+2L o |om m, and then

the equation is no longer a pointwise identity.
The problem (1.1) is known as a bi-nonlocal due to the terms

ou
om

1 L
dm which depends on the average — /
2L Jy

|V |40m
oS

[ dvg(m)> and \IJ(/M F(m, u)dvg(m)),

which means that (1.1) is no longer a pointwise identity. This phenomenon poses
some mathematical difficulties that are particularly fascinating to study.
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The contributions to the paper are as follows. We show that the problem (1.1)
admits at least nontrivial weak solutions. We prove also the existence and multiplicity
of large energy solutions and small negative energy solutions to the problem (1.1). The
arguments are based on the Mountain Pass Theorem, the Fountain and Dual Fountain
Theorem and some variational techniques.

The paper consists of four sections. Section 2 contains some important results about
Sobolev spaces on Riemannian manifolds. In Sect. 3, we recall the theorems that will
be used in the proof of our main results. Section4 presents our main results, and the
proofs of the main results are given in Sect.5.

2 Preliminaries

In this section, we present some important results about variable exponents Sobolev
spaces on Riemannian manifolds, which will be used in the rest of this paper. For
more details about Sobolev spaces, fractional function spaces and special functions,
we refer to [1, 2, 5, 7-9, 12, 13, 15, 20].

Definition 2.1 [12] Given (M, g) a smooth Riemannian manifolds and V the Levi-
Civita connection, for u € C°° (M), then Vku denotes the k-th covariant derivative
of u. The norm of k-th covariant derivative in local chart is given by the following
formula

‘Vku‘z = gt glkik (Vku). _ (Vku) o,
iy i

where the summation convention of Einstein is used.

Definition 2.2 [12] Let (M, g) be a smooth Riemannian manifolds, and y : [¢, d] —>
M be a curve of class C'. The length of y is

d
Ly) = /\/gw)) i) y)

and for z, y € M, we define the distance d by

de(z,y) =1inf{L(y) : ¥ : [c,d] — M such that y(c) =z and y (d) = y}.

Definition 2.3 [12] The variable exponents Sobolev space Wham (M) consists of
such functions u € L4 (M) for which V/u € L1 (M) for j = 1,2,--- ,n. The
norm of u in W40 (M) is defined by

n
lul1.gm) = lulgm) + Z ‘V’u‘

= q(m)

The space Wé’q(m) (M) is defined as the closure of C2° (M) in w4 (M) with respect
to the norm | - |1 4 (m)-
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We note P (M) the set of all measurable functions g(.) : M — [1, oo].

Proposition 2.4 [7](Hélder’s inequality) If g (.) € P(M), then foreveryu € L1 (M)
and v € L1 (M) the following inequality holds

[ g m = 2l - ol
M

Proposition 2.5 [7] Ifu € L1" (M), {u,} C L1" (M), then we have

(1) lulgmy < 1(resp. =1,> 1) &= pgm)(u) < 1(resp. =1,> 1).
(2) Foru e L™ (M)\{O}, [ulgum) = * <> pgom) (%) = 1.

+ —
(3) |u|q(m) <1l= |M|Z(m) = pq(m)(u) =< |u|Z(m)-

- +
4) |u|q(m) >1= |M|Z(m) = pq(m)(u) = |"‘|Z(m)'
(5) limy s oo [ty — ulq(m) =0 = limy— yo0 Pg(m) (Un —u) = 0.

Theorem 2.6 [/2] Let M be a compact Riemannian manifolds with a smooth boundary
or without boundary and q(m), p(m) € C(M) N L°°(M). Assume that

Nq(
pim) <N, p(m)< )form eM.

q(m

Then,
Wl’q(m)(M) s Lp(m)(M),

is a continuous and compact embedding.
Proposition 2.7 [1] If (M, g) is complete, then W40 (M) = wk q(m)(M)

Remark 2.8 On the Sobolev space Wé 4m) (M), we can consider the equivalent norm

lull = [Vulgm)-

3 Mathematical tools

In this section, we recall the theorems that will be used in the proof of our main results.
Let X be a reflexive and separable Banach space. Therefore, there exist {e,} C X and
{ex} € X* such that

X =span{e,,n € N}, X*=span{e},n e N}, <en,ej-‘> =38,

where §; ; denotes the Kronecker symbol. For j € N, we put

ég
=

J
X; =Rej = span {e;} '=1_[

W
I
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Definition 3.1 A function E is said to satisfy the Palais—Smale condition (PS), if any
sequence (u,) € X such that (E(u,)) is bounded and E’(u,) — 0 in X* has a
convergent subsequence.

Theorem 3.2 [22](Mountain Pass Theorem). Let X be a Banach space, E € C' (X, R)
and e € X with |le|| > r for some r > 0. Assume that

inf E(u) > E(0) > E(e).

llull=r
If E satisfies the (P S) condition at level c, then, c is a critical value of E, where

¢ = inf max E(y(t)), andT" ={y € C([0,1], X) : y(0) =0, y(1) = e}.
yel te[0,1]

Theorem 3.3 [22](Fountain Theorem)Assume that E € C(X, R) is an even functional
satisfying the (PS) condition. Moreover, for each j € N, there exist y;j > rj > 0 such
that

I aj =maxuey;, u|=y; Eu) < 0.
ii bj = 1nfuer,||u||:r_,- E(u) — o0, as j — oo.

Then, E has a sequence of critical points {uj} such that E (u]) — oQ.

Definition 3.4 A function E is said to satisfy the (PS)} condition (with respect to
(Y,,) ), if any sequence (u,) C X such that n — oo,u, € Y,, E (u,) — c and
(E |Y”)/ (un) — 0, contains a subsequence converging to a critical point of E.

Theorem 3.5 [22](Dual Fountain Theorem) Assume that E € CY(X,R) satisfies
E(—u) = E(u), and for every j > jo, there exist p;j > r; > 0 such that

(B1) ¢j =infuez; jjujx=p; E(u) = 0.

(B2) dj = maxyey,, |uljx=r; Eu) <O.

(B3) sj =infuezy julx<p; E@) >0 as  j— oo.
(Bs) E satisfies (PS)} condition for every c € [s},, 0).

Then E has a sequence of negative critical values converging to 0.

4 Hypotheses and main results

In order to ensure the existence and multiplicity of solutions for the problem (1.1), we
assume the following hypotheses:

(Hy) g: M — Ris a continuous function and satisfies the following condition
by < g(m) < b,
for some positive constants by and bs.
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(Hy) @ : (0,400) — (0, +00) is a continuous function and satisfies the following
condition

ait® ' < (1) < a7,

for all + > 0 and ay, ap real numbers such thatay > a; > Oand o > 1.
. . . . .. +
(H3) V¥ : R — Risacontinuous function and there exists positive constant § > O;L,
such that

r<W@) <iP, forr eR, “4.1)
and

U(r) < W), fort > 0, 4.2)

t

where W (¢) =/ W (z)dz.

0
(Hy) The function f : M x R — R is continuous such that there exist € > 0
satisfying

| f(m, 1)| < €|t|”™~ forall m,1) € M x R,

with pT < ag™.
(Hs) There existn > 0 and A > 0, such that

t
0< F(m,t) < —f(m,t), for|t| > Aandm € M,
n

e pept
with > max ((xq+, ax(q )" ba26p )

ai(g)* by
(He)
Ng(m) if (m) < N
P ’ * — ] N—q(m) 4 '
p(m), p(m) < q~(m) [oo it  g(m) =N,
and

l<p <p<pr<Op <bp<pT <(1+0)p <U+0p<(+6)p" <ag” <ag<ag™.
(H7) f(m,—t)=—f(m,t)forallt e Randm € M.
Now, we state our main results of this paper.

Theorem 4.1 Assume that the hypotheses (Hy)-(Hg) are satisfied, then there exists
A* > 0 such that for any A € (0, 1*) the problem (1.1) admits at least nontrivial weak
solutions.

@ Springer



Variable exponent g(m)-Kirchhoff-type... Page70f21 97

Theorem 4.2 If the conditions (Hy)-(H7) hold, then for any ). > 0 the problem (1.1)
possesses infinitely many large energy solutions.

Theorem 4.3 [f the conditions (Hy)-(H7) hold, then for any ). > 0 the problem (1.1)
possesses infinitely many small negative energy solutions.
5 Proofs of the main results

First, let us give the definition of a weak solution to the problem (1.1).

Definition 5.1 A function u € W, ?"" (M) is a weak solution of the problem (1.1) iff

|Vu|9(m)
o
M q(m)

+/ g(m)|M|9p(m)72u1nIulwdvg(m)
M

dvg(m))/ |Vul1™ =2V uVwdvg (m)
M

— /M |u|p(m)_2uwdvg(m) —AW(/M F(m,u)dvg(m)) /M f(m, u)ywdvg(m) =0,

forallu, w e Wol’q(m)(M).

Next, considering the energy function E : WOI”N")(M ) — R associated to problem
(1.1) defined by

(m) 0 p(m)
E<u>=&>( [Vul” dvg<m>)+ J e L
M

M q(m) 0 p(m)
g(m)|ul?Pm) Jua|PO) -
_/M deg(m)—/M iy ) —w(/M F(m,u)dvg(m)),
R t R t
where ® (1) = f O(s)ds and W (r) = W (s)ds.
0

0
Using some simple computations, we can show that the functional E is well defined
and belongs to C! (WO1 4 pry, R) .Furthermore, u € Wé’q(m) (M) is a weak solution

of the problem (1.1) if and only if u is a critical point of this problem.
The next lemmas give a helpful estimate for logarithmic nonlinear term, which are
crucial to our proof.

Lemma5.2 [23] Let p(m) € C4+ (M). Hence, the following estimate holds:

1 1
Int < ——P™ < —— P forallt € [1, +00).
ep(m) ep

@ Springer



97 Page8of 21 H.Bouaam et al.

Proposition 5.3 Letu € Wol’q(m)(M) and p(m), 0 p(m) € C. (M), then
1 1+60)p* 14+6)p~
/ ul”P " In uldvg (m) < Cvol (M) + ep {|“|5110;5(m)’ |”|E110;1€<m)} ’
M

where C is positive constant and 0 p(m) < (1 + 0)p(m) < g*(m).

Proof Let My = {m € M : lu(m)| < 1} and M> = {m € M : |u(m)| > 1}. Then,

/|u|9p(m)1n|u|dvg(m):/ |u|9p(m>1n|u|dvg(m)+/ |u|?P™) n |u|dvg (m).
M M,

M,

Since |u(m)| < 1, thereexist A > Oand B > 0 such that |u|??™ < AandlIn |u| < B.
Then,

/ |u|?P"™ n |u|dvg (m) < Cvol(M).
M,

Using Lemma 5.2, we get

1
/ )P 1n Ju|dvg (m) < — Ju|7PDEPI dy (1)
M ep M»>
1 A+0)p* | (+0)p~
= {|“|<1+9>p<m>’|”|<1+9)p(m> :

This implies that

1 + -
6 p(m) (1+0)p (14+6)p
A |I/l| In |“|dvg(m) = CUOI(M) + ep— max {|u|(1+9)p(m)'|”|(1+0)p(m)} .

5.1 Proof of Theorem 4.1

In this subsection, we will use Theorem 3.2 in order to prove the existence of nontrivial
solutions. The proof of Theorem 4.1 is divided into several lemmas.

Lemma 5.4 Assume that the conditions (Hy)-(Hy) and (Hg) hold, then there exist
A* >0, p>0and o > 0such that E(u) > o if |u|| = p for any A € (0, L*).

Proof From (Hy), we get

|F(m,1)| < %w’("’) forall (m, 1) € M x R. (5.1
pumn

Letu € Wy"" (M) suchthat |u|| = p € (0, 1). By (Ha), (4.1), (5.1) and Proposition
3, we get
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([ IV ) ul?P0 n ]
E(")_q)(fM 2(m) d”g(’")>+/M opemy e

g (m)|ul POV
_/M @pemy 1

T gy — /F( )dvg (m)
MP() vg(m ( m,u vgm>

- a(q+>W</ vl (m)) - Gy [ o

-— /M || 7™ dvg (m)

p
Eﬂ p(m) P
—xp-)ﬂ(/M'“" dvg<m>)

1 B
——=—CP ||u|?P — —CP u|P” —A—cﬁp llu )PP

I \%

)™

Ol(q+)“ ~©p ‘)2 P~ ()P
ap + by 0 - 1 ef _
> pd @ COP™ pfr™ — P pP” — p—— PP pPP
alghH” COp)? p- (p)F
ai by 0 4 b
> — cor _|_ C” > P -aq ]p —Aicf’l’ PP,
[fx(qﬂ“ <(9p‘)2 (p)P

Let us consider,

1

- |: ap ]p —agt
P = .
b Op— 1 -
2a(q+)“<(9p2)2C Pt Ccr >

Hence, for any u € Wol’p(m)(M) such that |u|| = p € (max(O, 5, 1), since p~ <

aq™, we obtain

al by P 1 ) o ] P 5 8o
E(u) > - COP P ) g’ | et p PP phr
= [a(qﬂ“ <<ep—>2 - P or 7

B
a gt Bp~ Br~
> ———p% — —C P
2a(gt)™ (p7)P
B
al € — +
> - chr )p“‘f .
<201(q+)°‘ (p7)P

. -8
Hence, if A < A* := — 4P ) then E(u) > o > 0. m]
20(qgt)*ePCPP

Lemma 5.5 Assume that the conditions (Hi)-(Hg) hold, then there exist w €
Wy 4" (M) such that |w|| > 0 and E(w) < 0.
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Proof Letu € W, (M)\{0}. From (Hs), we obtain
/ F(m,u)dvg(m) > c/ |u|'7dvg(m), 5.2)
M lu|>A

for some ¢ > 0.
By (Hy), (H>), (4.1) and (5.2), we have

s | V|20 g(m)|u|”P In |u|

g(m)[u|?Pm)
- /M @pemy? “vem

l”™ A | F d
- [, By teetm =25 f o oaveom)

by
< |Vul?™ dy, (m)) + —/ 1P In |u|dv, (m)
a(q )“(/ 0p~ Ju ¢

_ p_+ /M |u|P(m)dvg(m) — )»c/ll i |M|"dvg(m).
u|>

Then fixing # # 0 and choosing ¢ > 1, we obtain

«p
E(tu) < —2 (/ |Vtu|‘1(m)dvg(m)> +—2f |eul®P In |tu|dvg (m)
al@g)* \Ju Op~ Jm

1
- —+/ ltu|P ™ dvg (m) —c/ |u|"dvg (m)
Pt Im [tul>A

" “ byt  Ing
< (_‘;ﬁ,< / |Vu|‘1<’">dvg(m)) L / P dvy ()
alq

b2’9 0p(m) (m)
+ = | |”PY 1n Juldvg (m) — + lu|P™ dvg (m)
M

—Acz"/ lu|"dvg (m)
tu]> A

Int by
<o [ ([, rmeminn )+ e 2 [ rdn o
M

p—ag*
[ wrmavon
M

b
+ t9p+_aq+ 2 / | |9p(m) In |u|dvg(m)

— Act"™¥ / |u|”dvg(m)],
|tu|>A

with/ lu|"dvg(m) —> p,(u) ast —> +o0. Since n > aq™t, g™ > Op™ and
|[tu|>A

,anlrnfeﬁ —> 0ast —> 400, we deduce that E (fu) —> —oo ast —> +00. Hence,

for ¢ > 1 sufficiently large, we can let w = fu such that E(w) < 0. O
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Lemma 5.6 Suppose that the conditions in Theorem 4.1 hold, then the functional E
satisfies the (PS) condition.

Proof Let u, be a Palais—Smale sequence, i.e.,
*
E(uy) is bounded and E'(u,) — 0 in (Wol’q(’")(M)> . (5.3)

We proceed in two steps to prove Lemma 5.6.

Step 1: By contradiction, we will prove that u,, is bounded in Wé 4 Y Let |luy || —
+o00, hence |lu,| > 1. From (H})-(H>), we get

1
E(u,) — ;(E/(Mn), Up)

A 1 g(m) |, |77 In Juyy |
_ q(m)
=o (/M e )|Vu n(m)| dvg(m)> /M 8 pom) dvg(m)
g(m)|u, |7P0™) |1y, |PO) R
e = [ om0 [ Fonndvem)

L (/ ! ——|Vu, (m)|‘1<’">dug(m)>/ |V, |1 dvg (m)
n m g(m)

1
- = / g(m>|un|9"<’">ln|un|dvg(m)+f / |t |7 dvg (m)
nJm nJm

+%‘~IJ(/ F(m,u,,)dvg(m)>/ fm, up)uydvg (m)
M

a q(m)
z(a(q+)a n(q )a ; (/ [V, |7 dv (m)>

b
+ (9# - —) / 1|70 0 | | d g ()

(91) )2/ u ”|0p(m)dv (m) + (* - 7)/ [t |p(m)dv (m)

+7\11</ F(m,un)dvg(m)>/ f(m,un)undvg(m)—klil(/ F(m,un)dvg(m)).
n M M M

According to (Hs), we obtain

0 </ F(m, up)dvg(m) < l/ S, up)u,dvg(m).
M nJm

Moreover, by (4.2)

‘i’(/ F(m,u,,)dvg(m)> < \I/(/ F(m,un)dvg(m)>/ F(m, uy)dvg(m)
M M M

< lllf(/ F(m,un)dvg(m)>/ S, uy)updvg(m).
n M M
5.4
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ara(gt)* bop*
ai(@ )’ b

Then, from (5.4) and since n > max ( ) andn > agt > p~, we

get

1 ay az - by op+ op+
E(uy) — —(E'(up), up) > ( — )IIMII‘“’ - ——C"" |u|"?
n alghH  n(g)e! (Op~)?

1 1
+ (— -~ —)C"*uuu"*.
n )4

Since pt < OpT < ag~ then 0 > +o0, we obtain a contradiction. Then u, is
necessarily bounded in Wé 4y,

Step 2: Let us now study the strong convergence of u, in Wy (M). Since u,
is bounded in Wé’q(m)(M), there exists a subsequence of u,, noted u,, such as

u,—u weakly in W(} 4m) (M). On the other hand, from the compact embeddings, we
obtain

un, —> u strongly in LP™ (M), p(m) < ¢*(m). (5.5)
u, —> u strongly in LAFOPM Ay (9 + Dp(m) < g*(m). (5.6)
By (5.3), we get
(E"(up), un —u) — 0. (5.7)
Moreover,
|V, (m)|40m (m)—2
[ ————dvg(m) |Vu,|? Vu, (Vu, — Vu)dvg(m)
M q(m) M

= (E'(up), un — u) + / [t [P 21y (0, — w)dvg (m)
M
- / gm) [ |7 210y In | (uy — w)dvg (m)
M

+)»‘-Il</ F(m, un)dvg(m)>/ S, uy)(u, — u)dvg(m).
M M

Using the Holder inequality, we get

' / |Mn|p(m)72’4n (y — u) dvg(m)
M

5/ it 1P (i — u) |dvg (m)
M

—1
< 20un P o tn — e pom)
p(m)—1

-1 -1
=< 2<|Mn|£(m) + |u”|Z(m) )lun - ulp(m)a
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then, by (5.5)
‘/ [un P20, (uy — u) dvg(m)' — 0asn — +oo. (5.8)
M
Similarly, from (Hy), (4.1) and (5.5), we get

‘W([ F(m, u,,)dvg(m))/ f(m, uy) (U, —u) dvg(m)‘ —> 0asn — +4o0.
M M
5.9

On the other hand, we have

/.
[
+ /Mz

< Cvol(M) +/

M

(1+0) p(m)
T+ pmy—1
Op(m)—2 dvg(m)

|1tn | up In Juy|

(146) p(m)
(1+6)p(m)—1

|t 7P 200, T | dvg(m)

(146) p(m)
T+ p(m)—1

4 7P 200, T | dvg(m)

(1+6) p(m)
(I14+6)p(m)—1

|un|9p(m)72un In [u,| dvg(m),

where M| = {m € M, |u,| < 1} and My = {m € M, |u,| > 1}. We can deduce from
the continuous embedding Wé’q(m) (M) — LU+Drm a1y and Lemma 5.2 that

p(m)—
/ Iunlep(m)izun ln |un| dvg(m)
M
1

< Cvol(M) + W/ 10| EFDPE Gy ) 510

(ep—)(1+e)p*—1

_ _ . .

< Cvol(M) + o (C(”")” ||un||(1+9)p + cU+op ||u,,||(1+9)” )

(ep—)(1+€)p’—1

The inequality (5.10) implies that

[P~ I |

(5.11)

<
(14+0)pm) —
(14+6)p(m)—1
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Using the Holder inequality, (Hj), (5.6) and (5.11), we get

‘ / g(m) | |7 2, 0 futy |y — u)dvg<m>'
M (5.12)

(140) p(m) lun — ul(1+6)p(m) —> 0 as n — +o0.

(140) p(m)—1

< 261 [ |7 10 |

From (5.7), (5.8), (5.9) and (5.12), we get

@ (/ qun(m)w(’")dug(m))/ Vit |12V, (Vuy, — Vu)dvg (m) —> 0.
M q(@m) M

From condition (H>), we get

/M IVun |72V u, (Vu, — Vu)dvg(m) —> 0as n —> +o00.
Similarly, we have

/M |Vu|?"™ =2V u(Vu, — Vu)dvg(m) —> 0asn —s +o0.

According to the following inequalities

2—s

o < e [l u =P 2 o) = w)]F (ul +10l) T 1 <s <2,
e (e =l ) (=) s > 2,

(5.13)

for all u, v € RV, where ¢; and ¢, are positive constants depending only on s, we
obtain

/ Vg — Vu|1™ duvg(m)
M
< / (|wn|‘1<m>—2 Vi, — |Vu|q<m>—2w) (Vg — Vi) dog (m).
M
Hence, 1, —> u strongly in W(} M) (A1), Thus, E satisfies the Palais—Smale condi-
tion in Wy 1" (M). o

Finally, Lemma 5.4, Lemma 5.5 and Lemma 5.6 lead us to the conclusion that E
satisfy the all conditions of the Mountain Pass Theorem. Then, E has at least one
nontrivial critical point, i.e., problem (1.1) has a nontrivial weak solutions.
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5.2 Proof of Theorem 4.2

We will prove Theorem 4.2 with the help of the Fountain Theorem. According to
(H7) and Lemma 5.6, E € C! W, q(m)(M ), R) is an even functional and satisfies

the Palais—Smale condition. Now, we shall verify that E satisfies the conditions (i)
and (ii) of Theorem 3.3.

(i) In view of (H4) and (Hs), there exist two positive constants C; and C» such
that

|F(m, )| > Cy|t|" — Calt], for (m,1) € M x R. (5.14)

Letu € Y; such that ||u]| > 1. Hence, from (H}), (H>), (4.1), (5.14) and Proposition
5.3, we obtain

_ & |Vu] 1) g(m)|u|”P™ In |u]
R Ve R e

_f Mdv (m) — |u|p(m)dv (m)—)»‘i’</ F(m, u)dv (m))
o @pmn?z % w pm) wo

by
< Vul™ dy m) +—/ u|?P In Ju|dv, (m
a(q- )a(/l | ¢ (m) 0p- M|| luldvg (m)

—7/ Iulp(m)dvg(m)—kclf |u|"dug(m)+xc2/ |u|dvg (m)
M

by
Juee” T g Cvli + g (+0)pamy” 4l (110) pm)

. ;
_max{|u|“+”" ul{iy }

alg ‘)"‘

1 : Pt I n
= o i gy 1Ty [ = ACHIuL + ACaluls.

Because dimY; < oo, then all norms are equivalents, so there are four positive
constants C3, Cy4, Cs and Cg, such that

(14+0)p* 146 +
|u| < C3ull P wl? = Callull” Jul) = Csllull”, July < Collull.

(14+0)p(m) — p(m)
Then
b2 b2 146 + 1 -
E(u) < lul®” + —=Cvol (M) + ————C3|lu| "*P" — —Cylul?
( )"’ Op~ Op~ep~ Pt
— ACICs|lul| + AC2Cel|ull
+ ap by Cvol(M) by b4
< flu)*? [ — e ———C3ju||+P e
alg™) Op~ |ul|*e Op~ep

1 -
— ¥ Callull” 4" AC Csllu|"7" + Aczce,nunl—“f].

Since n > ag™ > land (1 +0)pt < ag™, we get E(u) —> —oo as |ju| —
+oo, forallu € Y;.
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Then, there exists y; = |lu]| large enough such that

aj = max  E(u) <0.
ueY;,llull=y;

So, the condition (i) of Theorem 3.3 is satisfied.
(ii) Let u € Z; such that [lu|| > 1. According to (H;), (H>), (4.1) and (5.1), we
get

- < | Va0 ) 2(m)|u|”P In Ju|
B =&( | = dvgm ) + / " dvy(m)
M

M qim 0 p(m)
g7 P .
_/M deg(m)— ; p(m) dvg(m)—w(/ F(m,u)dvg(m))

_ F/ |u|p(m)dvg(m)—)»%ﬂ</ IM|P(’”)dvg(m))

aj wg~ by 1
aqre M~ G gy 14y | = P 1y 4l

P
_ Ai( B max {lulp(m), |u|p(m)}

Put
oj = sup {|u|p(m>, lull =1,u € Z./}, (5.15)
and
u,-=sup{|u|ep<m),||u|| =1,uezj}. (5.16)
Hence,
ai by op* v ep -
E ag” _ 'P o0p , 'P op
w2 gl ) max{u_, el w57 Nl
1 — - + + Eﬂ - - + +
——,max{a}’ lll?”, o P ]} } A—ﬁmax{ P PP o B PP }
p (p)
B - b
a € Br*—aq g 2 opTy opT
> — — .
> [WW = o7 lul }nun Gp i Iul
1 +
_ 5P Pt
—of Jlull”".
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Let us define

I

ri= ( ai(p”)? )ﬂff—wf

;= .
Z)Leﬂaffa(qﬂ"‘

Since BpT > ag~ and lim; 4 x0; =0,thenr; — 400 as j —> +00. Hence,
for any u € Z; with [[u|| = r;, we get

aj 1 pt pt—aq~ by Gp —ap” | aq”
E(U)2|:2a(q—+)a_p__oj T _(9]7 )2“1 j rp T oo,

as j — oo, since pT < O0pt <aq” andoj, uj —> Oas j —> +oo.
Then infuezj,uuu:rj E(m) — 400 as j — oo. That is, condition (ii) of Theorem
3.3 is satisfied. This concludes the proof of Theorem 4.2.

5.3 Proof of Theorem 4.3

We will prove Theorem 4.3 with the help of the Dual Fountain Theorem. From condi-
tion (H7), we see that E € C! ( whatm oy, R) is an even functional. Now, we shall

verify that E satisfies the condltlons (B1)-(B4) of Theorem 3.5. (By) Forany u € Z;,
llu]| < 1, similarly of the proof of Theorem 4.2 (ii), we have

E(u) = a1

ai 2
algh)* ~0p)?

1 - — + +
——_max{a}’ lull? o ull? }
p

Opt . wopt  OpTy Op
max{uj NP, ™ Mull™”

B _
_ ¢ Bp gp~ _Bp*t Bpt
A( &, max{ o PP, o ul (5.17)
bz Op~ - € 1 - -
> +)a luf@s™ — (ep,)zu/’ lue])P =y PP ) PP —p—,a;’ lue])?
by op eP 1
= Ol( +)a ” ”aq [(ep,)zujp +)\«7( )ﬁo,jﬁﬂ +7O’ ”M”p

Since 0; and i ; are null sequences, then

ai Op) (pm)F %
—> Qas j — +o0.

1
20@H*( b e’ 1 P
pj :|: (q ) < 2 M@p +A _O_ﬁp + oP >i| 9t -r
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Then, there exists jo € N such that p; < 1forall j > jo. Hence, for allu € Z; with

lull = pj, j = jo, we have
agt
a i >,

E(u) > mp

This shows (By).
(By) Forw € Y; with [Jw|| =1and 0 <t < p; < 1, from (H}), (H2), (4.1), (5.1)

and Proposition 5.3, we get

0 p(m)
o )) /M gm)|tw|”? lnltwldvg(m)

A( |Viw]q0m
Eqw) =& [ 22—
M q(m) Op(m)
O p(m) (m) .
—/ glrwl P oy — wdugm—w([ F(m,tw)dvg(m)>
M M pm)

(0 p(m))?
1% “ bytP" Int
< @ (/ |Vw|q(m)dvg(m)) _{_H/ |w |<9P(m)dv (m)
a(g™)”
o

b t"l’
2 f lw|?Pm In |w|dvg (m) — 7/ |w|p(m)dv m)

ﬁtﬁp
425 (/ lep(m)dvg(m))
M

(p7)P
129" q, <f « bztep— Int 0
< [Vw|?™dv,(m) ) + 7/ [w|?P qv, (m)
alg™)” ¢ op~  Ju ¢
byt?P”
4+ 22 [cUoz(M)Jr—f Jw|TFOPE gy, (m):| - —/ lw| P dvg (m)

Bbr 5
fi(/ |w|p<m)dvg(m)) .
M

(p)P
Since all norms are equivalent, we obtain
EGuw) < @ by'r It L bat"" [C I(M) + — C] p+c Il
w) = 1 vo — 2= —L3 -z Y4
alg™)” Op~ Op~ ep” pT (p7)f
_ _ b 1
<[t 2o 1y 2oy O 22 ool (M) + —Cs
alg™) Op~ Op~ ep~
_ efcy
_ —C3 4 PP pt A— ],
pT (p)P

Let us put
Sy = @0 0" 2 oty P2 o ot B2 [ l(M)+—C2]
a(g™)” Op~ Op~
B
_ LQ L bty £ Cs _
pr (p7)k
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Because Bp~ > ag™ > 6p~ > p™T, then the function t —> S(¢) is strictly negative
in aneighborhood of zero. It follows that there existsar; € (0, p;) suchthat E(u) < 0,
forallu € Y; |lul| = r;. Hence, we get

max E(u) < 0.
ueYj, ull=r;

dj =
(B3) Since Y; NZ; #Wandr; < pj, we get

sj = max inf E(u) <d;j= max E(u)<0.
ueZj,llull<p; ueY;,llull=r;

By (5.17),forw € Z;, Jw| =1,0 <t < p; < 1 and u = tw, we obtain

1 + by  gp- 0p-
E(tw) > ltwl|* — ——=u;" ltw]”?

algt)e Op—)2/

¢ Bp~ Br~ L p P~
—)»Waj lzw]| ——o; rw]

_ B _ _
> AL jaqt _ & PALALL N S N

algh) ©Op)* (pH)F p=

by Op~ e’ Bp~ L -

©p) (r7) P

Thens; —> 0 as j —> +00. So (B3) holds. (B4) Let (u,) C Wy" (M) such
that u,, € Y,, E (u,) — ¢ and (E|y")/ (uy) — 0. The boundedness of ||u,|| can be
obtained in the same manner as in the proof of Lemma 5.6.

Let us prove

lim (E" (up) ., up —u)=0. (5.18)

n——+00

As X = U,Y,, we can choose v, € Y, such that v, — u strongly in Wé’q(m)(M).
Since EI/Y,. (up) — Oand u, — v, — 0inY,, (see [5, Proposition 3.5]), then we get

lim (E' (un), un — vp) = 0.

n—-+o0o
Hence, we obtain

HETOO(E’ (Un) , up — u) = ngrfoo(E’ (Un) , tn — vp) + ngTw(E’ (tn) , vy —u) =0.

Moreover,

(m)
® / DB g m) / |Vt #7072t (Vity, = Vi) dvg (m)
M q(m) M
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= (E'(un), un — u) + / 12417 21, (y, — u)dvg (m)
M
- f g(m) | )PP 20, 0 [y |y — w)dvg (m)
M

+A\IJ(/ F(m, u,,)dvg(m)> / fm,uy)(u, — u)dvg(m).
M M

From (5.7), (5.8),(5.9),(5.12), (5.13) and (H3), we getu,, — u.Moreover E’(u,) —>
E'(u).

Let’s now demonstrate below that E'(u) = 0. Taking arbitrarily v; € Y; and
observe that when n > j, we have

(E'u),vj) = (E'w) — E' (uy) , v;) + (E" (un) , v})
=(E'(u) — E" (up) , vj) + <(E|Yn)/ (uy) , vj> — 0asn — +oo0.

Then, (E'(u), v;) = 0 for all v; € Y;. Therefore, E’(u) = 0. This proves that J
satisfies the (PS)} condition for every ¢ € R. So (By) is satisfied. Hence, the Dual
Fountain Theorem leads to the conclusion of Theorem 4.3.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Aubin, T.: Nonlinear Analysis on Manifolds, Monge-Ampere Equations. Springer-Verlag, New York,
Heidelberg Berlin (1982)

2. Aberqi, A., Bennouna, J., Benslimane, O., Ragusa, M.A.: Existence Results for Double Phase Problem
in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold. Mediterr. J. Math. 19(4),
158 (2022)

3. Acerbi, E., Mingione, G.: Gradient estimates for the p(x)—Laplacean system. J. fiir die reine und
angewandte mathematik. 584, 117-148 (2005)

4. Ayazoglu, R., Ekincioglu, I, Sener, S.S.: Approximating functions in the power-type weighted variable
exponent Sobolev space by the Hardy averaging operator. Filomat. 36(10), 3321-3330 (2022)

5. Brezis, H.: Funct. Anal. Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

6. Chen, Y., Levine, S., Rao, M.: Variable exponent linear growth functionals in image restoration. SIAM
J. Appl. Math. 66(4), 1383-1406 (2006)

7. Fu, Y., Guo, L.: Variable exponent spaces of differential forms on Riemannian manifold. J. Funct.
Spaces Appl. 2012, 575819 (2012)

8. Gaczkowski, M., Gérka, P.: Sobolev spaces with variable exponents on Riemannian manifolds. Non-
linear Anal. Theory Methods Appl. 92, 47-59 (2013)

9. Gaczkowski, M., Gorka, P., Pons, D.J.: Sobolev spaces with variable exponents on complete manifolds.
J. Funct. Anal. 270, 1379-1415 (2016)

10. Guariglia, E.: Riemann zeta fractional derivative-functional equation and link with primes. Adv. Differ.
Equ. 2019(1), 1-15 (2019)

11. Guariglia, E.: Fractional calculus, zeta functions and Shannon entropy. Open Math. 19(1), 87-100
(2021)

@ Springer



Variable exponent g(m)-Kirchhoff-type... Page210of21 97

12. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities: Sobolev Spaces and
Inequalities, vol. 5. Am. Math. Soc, Providence (2000)

13. Li, C., Dao, X., Guo, P.: Fractional derivatives in complex planes. Nonlinear Anal. 71(5-6), 1857-1869
(2009)

14. Omer, O.A., Saibi, K., Abidin, M.Z., Osman, M.: Parametric Marcinkiewicz integral and its higher-
order commutators on variable exponents Morrey-Herz spaces. J. Funct. Spaces. 2022, 7209977 (2022)

15. Polidoro, S., Ragusa, M.A.: Sobolev-Morrey spaces related to an ultraparabolic equation. Manuscripta
Mathemat. 96, 371-392 (1998)

16. Radulescu, V.D., Repoves, D.D.: Partial Differential Equations with Variable Exponents, Variational
Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca
Raton (2015)

17. Ragusa, M.A., Tachikawa, A.: Boundary regularity of minimizers of p(x) -energy functionals. Ann.
Inst. Henri Poincaré, Anal. Non Linéaire. 33(2), 451-476 (2016)

18. Ragusa, M.A., Tachikawa, A.: On continuity of minimizers for certain quadratic growth functionals. J
Math Soc Japan. 57(3), 691-700 (2005)

19. Ragusa, M.A., Tachikawa, A.: Regularity of Minimizers of some Variational Integrals with Disconti-
nuity. Zeitschrift fiir Anal und ihre Anwendungen. 27(4), 469—482 (2008)

20. Ragusa, M.A.: Commutators of fractional integral operators on Vanishing-Morrey spaces. J. Glob.
Optim. 40, 361-368 (2008)

21. Rajagopal, K.R., Ruzi¢ka, M.: Mathematical modeling of electrorheological materials. Continuum
Mech. Thermodynam. 13(1), 59-78 (2001)

22. Willem, M.: Minimax Theorems. Bierkhauser, Basel (1996)

23. Xiang, M., Hu, D., Yang, D.: Least energy solutions for fractional Kirchhoff problems with logarithmic
nonlinearity. Nonlinear Anal. 198, 111899 (2020)

24. Zhikov, V.V.E.: On variational problems and nonlinear elliptic equations with nonstandard growth
conditions. J. Math. Sci. 173, 463-570 (2011)

25. Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya
Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 50(4), 675-710 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Variable exponent q(m)-Kirchhoff-type problems with nonlocal terms and logarithmic nonlinearity on compact Riemannian manifolds
	Abstract
	1 Introduction
	2 Preliminaries
	3 Mathematical tools
	4 Hypotheses and main results
	5 Proofs of the main results
	5.1 Proof of Theorem 4.1 
	5.2 Proof of Theorem 4.2
	5.3 Proof of Theorem 4.3

	References




