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Abstract
Weestablish two-point distortion theorems for sense-preserving planar harmonicmap-
pings f = h + g in the unit disk D which satisfy harmonic versions of the univalence
criteria due to Becker and Nehari. In addition, we also find two-point distortion theo-
rems for the cases when h is a normalized convex function and, more generally, when
h(D) is a c-linearly connected domain.

Keywords Two-point distortion · Harmonic mappings · Univalence criterion

Mathematics Subject Classification Primary 30C45 · 30C99; Secondary 31C05

1 Introduction

To a large extent, the two-point distortion theorems provide us quantitative information
on “how injective" a conformal function is, in the sense of estimating the distance
(Euclidean or hyperbolic) between the images of any two points. That is, we seek lower
and upper bounds for the distance between f (a) and f (b) for all a and b in the unit disk
D, and these bounds should involve, in some sense, ρ(a, b) =| (a−b)/(1−ab) | and
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the derivative of the function f . The first two-point distortion theorem was introduced
by Blatter in [5], who proved that if f is a conformal mapping, then

| f (a) − f (b)|2 ≥ sinh2(2d(a, b))

8(cosh(4d(a, b)))

(
R(a)2 + R(b)2

)
.

Here, d(a, b) = tanh−1(ρ(a, b)) and R(z) = (1−|z|2)| f ′(z)|.Moreover, for different
subclasses of univalent functions, such as convex, starlike, etc., there are two-point
distortion theorems in which the bounds are more accurate. For instance, the authors
in [16] show different two-point distortion theorems for bounded boundary rotation
functions, among other related results.

In particular, for conformal maps onto convex domains, Kim and Minda in [17]
(see the corollary of Theorem 3) proved the following result:

Theorem A. If f : D → C is a conformal convex mapping, then for all p ≥ 1 and all
a, b in D we have that

| f (a) − f (b)| ≥ sinh(d(a, b))

2(cosh(pd(a, b)))1/p
(
R(a)p + R(b)p

)1/p
. (1.1)

On the other hand, univalence criteria involving both the pre-Schwarzian and
Schwarzian derivatives of locally univalent functions defined in D are well known
and also provide their two-point distortion theorems. Let f be a locally univalent
mapping, its Schwarzian derivative is defined by:

S f =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= P f ′ − 1

2
P f 2, (1.2)

here, P f = f ′′/ f ′ is named pre-Schwarzian derivative of f . Nehari in [22] showed
that ‖S f ‖ := sup{|S f (z)|(1−|z|2)2 : z ∈ D} ≤ 2 implies that f is univalent in D. To
see more univalence criteria that involve the Schwarzian derivative, we can see the p-
criterion due to Nehari in [23]. In this context (every convex mappings satisfies that its
Schwarzian norm is bounded by 2), Chuaqui and Pommerenke [7] gave a quantitative
version of Nehari’s theorem by showing that the condition ‖S f ‖ ≤ 2 implies that f
has the two-point distortion property

| f (a) − f (b)| ≥ d(a, b)
√
R(a)R(b). (1.3)

This result was extended to the mentioned p-criterion of univalence by Ma et al. in
[21].

This paper aims to obtain two-point distortion theorems associated with different
univalence criteria for complex-valued harmonic mappings defined inD. These injec-
tivity criteria are associated with both the pre-Schwarzian and Schwarzian derivatives
and also with harmonic mappings whose analytic part is convex, see [6].
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The manuscript is organized as follows: Sect. 2 deals with the preliminaries on
complex-valued harmonic mappings and includes the above-mentioned univalence
criteria, namely Theorems B, C, and D. Sections3.1 and 3.2 are devoted to the two-
point distortion theorems associated with the harmonic versions of the Becker and
Nehari criteria, respectively. Special attention is paid in Sect. 3.3, since we not only
deal with the case when the analytic part is convex, but also when it conformally maps
the disk onto a linearly connected domain which means geometrically that it has no
inward cusps. Indeed, we prove that these mappings form a linearly invariant family
from which the two-point distortion theorem follows.

2 Preliminaries

Complex-valued harmonic functions f in a simply connected domain � are those
who satisfy that � f = ∂2 f /∂z∂z = 0, which is equivalent to f = u + iv where
u and v are real harmonic functions defined in �. These functions have a canonical
representation f = h+g, where h and g are analytic functions in�, that is unique up to
an additive constant. When � = D, it is convenient to choose the additive constant so
that g(0) = 0. The representation f = h+g is then unique and is called the canonical
representation of f . A result of Lewy [18] states that f is locally univalent if and only
if it’s Jacobian J f = |h′|2 − |g′|2 does not vanish in �. Thus, harmonic mappings
are either sense-preserving or sense-reversing depending on the conditions J f > 0
or J f < 0 throughout the domain � where f is locally univalent, respectively. Since
J f > 0 if and only if J f < 0, throughout this work we will consider sense-preserving
mappings in D. In this case, the analytic part h is locally univalent in D since h′ �= 0,
and the second complex dilatation of f , ω = g′/h′, is an analytic function in D with
|ω| < 1. The reader can find an elegant reference for this topic in [8].

Let SH denote the family of sense-preserving univalent harmonic mappings f =
h + g normalized by h(0) = g(0) = 0, and h′(0) = 1. A family F ∈ SH is said to be
linearly invariant if f ∈ F implies that, for all a ∈ D,

f

(
z + a

1 + az

)
− f (a)

(1 − |a|2)h′(a)
∈ F .

The family F is affine invariant if f ∈ F implies that, for all ε ∈ D,

f + ε f

1 + εg′(0)
∈ F .

The order of the family F is define by α = sup{|h′′(0)|/2 : f ∈ F}. For more details
on analytic linear invariant families, see [24], and [8] for affine and linear invariant
families in the context of harmonic mappings.

Duren et al. in [10] showed, among other results, that if f ∈ F then

| f (a) − f (b)| ≥ 1

2α
(1 − exp(−2αd(a, b)))max{R(a), R(b)},
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where R(z) = (1 − |z|2)(|h′(z)| − |g′(z)|). Moreover, they also proved that

| f (a) − f (b)| ≤ 1

2α
(exp(2αd(a, b) − 1))min{Q(a), Q(b)},

where Q(z) = (1 − |z|2)(|h′(z)| + |g′(z)|). The above two inequalities represent the
harmonic version of Blatter’s theorem. Note that in the analytic case, α = 2, however,
in the harmonic case, the size of α is unknown. In fact, the best known bound, when
ω(0) = 0, is α ≤ 20.9197. See [1, Thm. 1].

Hernández and Martín [12], defined the harmonic pre-Schwarzian and Schwarzian
derivatives for sense-preserving harmonic mappings f = h + g. Using those defini-
tions, they generalized different results regarding analytic mappings to the harmonic
case (see [12–15]). The reader can find in [11, 19, 20] relations of these operators with
the order of an affine and linearly invariant family, and also necessary and sufficient
conditions for which the norm of the pre-Schwarzian is bounded, among other results.

The pre-Schwarzian and Schwarzian derivatives of a sense-preserving harmonic
mapping f are defined by

Pf = h′′

h′ − ω̄ω′

1 − |ω|2 = Ph − ω̄ω′

1 − |ω|2 = ∂

∂z
log(J f ),

S f = ∂

∂z
Pf − 1

2
(Pf )

2 = Sh + ω

1 − |ω|2
(

ω′ h′′

h′ − ω′′
)

− 3

2

(
ω′ω

1 − |ω|2
)2

,

where Ph and Sh are the standard pre-Schwarzian and Schwarzian derivatives, respec-
tively, which are given by Eq. (1.2). It is easy to see that if f is analytic (ω is constant)
then Pf = h′′/h′ and S f = Sh, recovering the classical definition of these opera-
tors. In [12], the authors proved that S f = 0 if and only if f is a harmonic Möbius
transformation, which is given by f = h + αh with α ∈ D and h is an analytic
Möbius mapping. To motivate the two-point distortion theorems in the setting of har-
monic mappings, notice that any harmonic Möbius mappings, f = h + αh, satisfy
the relation

| f (a) − f (b)| = √|h′(a)||h′(b)||a − b||1 + λα|, λ = h(a) − h(b)

h(a) − h(b)
, a �= b.

Thus, we can re-write this equation in terms of d to get

| f (a) − f (b)| = √
Rh(a)Rh(b) sinh(d(a, b))|1 + λα|, Rh(z) = |h′(z)|(1 − |z|2).

In addition, the authors in [12] proved that Pf +a f = Pf for all a ∈ D, which is the
key to prove the extension of Becker’s criterion of univalence for harmonic mappings,
contained in the following theorem:
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Theorem B. Let f = h + g be a locally univalent and sense-preserving harmonic
function in the unit disk D with dilatation ω. If for all z ∈ D

(1 − |z|2)|zPf (z)| + |zω′(z)|(1 − |z|2)
1 − |ω(z)|2 ≤ 1,

then f is univalent. The constant 1 is sharp.

The classical Becker’s criterion can be found in [4] and is obtained by settingω ≡ 0
in theorem B.

In addition, in [15] the authors proved S f +a f = S f for all a ∈ D and the following
generalization of Nehari’s classical univalence criterion:

Theorem C. Let f = h + g be a locally univalent and sense-preserving harmonic
function in the unit disk D with dilatation ω. Then, there exists ε > 0 such that

(1 − |z|2)2|S f (z)| ≤ ε

implies that f is univalent.
The classical result, due toNehari, is obtained by takingω = 0, inwhich case ε = 2.

Unfortunately, the value of ε is still unknown for the planar harmonicmappings setting.
From the proof of this theorem (see [15]), we can see that this value ε is small enough
to have ‖Sh‖ ≤ 2, i.e., h satisfies Nehari’s classical univalence criterion. Moreover,
since S f is invariant under the post-composition with affine harmonic mappings, we
have that h + ag satisfies Nehari’s criterion for all a ∈ D.

The last criterion that we will consider in this manuscript appears in [6] and says
the following:

Theorem D. Let f = h + g be a locally univalent and sense-preserving harmonic
function in the unit disk D with dilatation ω. If h is a convex mapping, then f is
univalent. More generally, when h(D) is c-linearly connected domain, if ‖ω‖∞ :=
sup{|ω(z)| : z ∈ D} < 1/c, then f is also univalent in the unit disk.

In the same spirit, Abu Muhana and Ponnusamy in [2] obtained that f = h + g is
close to convex (in particular univalent) under other assumptions on the analytic part
h.

3 Harmonic two-point distortion theorems

Throughout the section, we set ϕ as a locally univalent analytic mapping in D, and
let f = h + g be a locally univalent and sense-preserving harmonic mapping with
dilatation ω defined in the unit disk. Recall that the fact that f is locally univalent
and sense-preserving implies that h′ �= 0 and ω(D) ⊂ D. Additionally, we define
Rϕ(z) = (1 − |z|2)|ϕ′(z)| and R(z) = (1 − |z|2)(|h′(z)| − |g′(z)|), and Q(z) =
(1 − |z|2)(|h′(z)| + |g′(z)|).
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3.1 Functions satisfying the Becker criterion of univalence

Let ϕ be a normalized locally univalent analytic mapping defined in D. Its order is
given by:

ord〈ϕ〉 = sup
z∈D

∣∣Aϕ(z)
∣∣ = sup

a∈D

⎧⎪⎪⎨
⎪⎪⎩
1

2
|ϕ′′

a (0)| : ϕa(z) =
ϕ

(
z + a

1 + az

)
− ϕ(a)

(1 − |a|2)ϕ′(a)

⎫⎪⎪⎬
⎪⎪⎭

,

where

Aϕ(z) = 1

2
(1 − |z|2)ϕ

′′

ϕ′ (z) − z.

ϕa is named the Koebe Transform of ϕ. It is not difficult to see that |Aϕa (z)| =
|Aϕ((z + a)/(1 + az))| (see [3, Eq. (4)]) which implies that the ord〈ϕa〉 = ord〈ϕ〉.
A well-known result (see [24]) asserts that if ϕ is a univalent mapping defined in the
unit disk, normalized to ϕ(0) = 0 and ϕ′(0) = 1, and its order is α, then

1

2α

((
1 + |z|
1 − |z|

)α

− 1

)
≥ |ϕ(z)| ≥ 1

2α

(
1 −

(
1 − |z|
1 + |z|

)α)
, z ∈ D. (3.1)

In terms of hyperbolic metric d, this equation can be re-written as

1

2α
(exp (2αd(z, 0)) − 1) ≥ |ϕ(z) − ϕ(0)| ≥ 1

2α
(1 − exp (−2αd(z, 0))) .

Thus, by applying this inequality to ϕa and taking b = (z+a)/(1+az), we have that

1

2α
(exp (2αd(a, b)) − 1) ≥

∣∣∣∣
ϕ(b) − ϕ(a)

(1 − |a|2)|ϕ′(a)|
∣∣∣∣ ≥ 1

2α
(1 − exp (−2αd(a, b))) .

Since these inequalities hold for all a and b in D, we can swap a with b to obtain that

|ϕ(a) − ϕ(b)| ≥ 1

2α
(1 − exp (−2αd(a, b)))max{Rϕ(a), Rϕ(b)},

|ϕ(a) − ϕ(b)| ≤ 1

2α
(exp (2αd(a, b)) − 1))min{Rϕ(a), Rϕ(b)}.

(3.2)

The following theorem is an application of (3.2) when ϕ satisfies the Becker’s
criterion [4]. We haven’t been able to find any reference on this, so we include a proof.
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Theorem 3.1 Let ϕ : D → C be a locally univalent mapping with ϕ(0) = 0 and
ϕ′(0) = 1 such that |Pϕ(z)|(1 − |z|2) ≤ 1. Then, for all a, b ∈ D we have that

|ϕ(a) − ϕ(b)| ≥ 1 − exp(−3d(a, b))

3
max{Rϕ(a), Rϕ(b)},

|ϕ(a) − ϕ(b)| ≤ exp(3d(a, b)) − 1

3
min{Rϕ(a), Rϕ(b)}.

(3.3)

Proof We note that ϕ is univalent and its order satisfies that

α = ord〈ϕ〉 = sup
z∈D

∣∣∣∣
1

2
(1 − |z|2)ϕ

′′

ϕ′ (z) − z

∣∣∣∣ ≤ 1

2
+ |z| ≤ 3

2
.

Since the real function (ξα − 1)/α is increasing and (ξ−α − 1)/α is decreasing in α

for any ξ > 1, using α ≤ 3/2 and inequality (3.2) again, the proof is complete. ��
Note that, under the hypothesis of Theorem B, the analytic part of f = h + g

satisfies that |Ph(z)|(1 − |z|2) ≤ 1 and, therefore, it satisfies the Becker’s criterion
for analytic mappings in D. Since Pf+λ f = Pf , it follows that ψλ = h + λg satisfies
Becker’s univalence criterion for all λ ∈ D; moreover, taking limits when |λ| → 1, we
can assert that Becker’s criterion holds for |λ| ≤ 1, which is the key for the following
theorem:

Theorem 3.2 Let f = h + g be a sense-preserving harmonic mapping defined in D

satisfying the hypothesis of Theorem B. Then,

| f (a) − f (b)| ≥ 1

3
(1 − exp(−3d(a, b)))max{R(a), R(b)},

and

| f (a) − f (b)| ≤ 1

3
(exp(3d(a, b)) − 1)min{Q(a), Q(b)}.

Proof For a and b inD, it follows that f (a)− f (b) = h(a)−h(b)+(g(a) − g(b)), and
thus, if g(a) �= g(b), then there exists a unimodular constantλ such that f (a)− f (b) =
ψλ(a) − ψλ(b). In the case, when g(a) = g(b), we can consider λ = 0. In any case,
ψλ satisfies Becker’s criterion; thus, we can apply inequalities (3.3) and the fact that
|h′| + |g′| ≥ |ψ ′

λ| ≥ |h′| − |g′| the proof is complete. ��

3.2 Functions satisfying Nehari’s criterion

Let f = h + g be a sense-preserving harmonic mapping with dilatation ω. In [15],
the authors show that there exists ε > 0 such that if ‖S f ‖ = sup{(1 − |z|2)2|S f (z)| :
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z ∈ D} ≤ ε, then f is univalent in D. Moreover, they show that there exists a constant
k > 0 such that

‖Sh‖ ≤ ε + kWε + 3

2
W 2

ε ,

where

Wε = sup{‖ω∗‖ := sup
z∈D

|ω′(z)|(1 − |z|2)
1 − |ω(z)|2 : ω ∈ Aε}.

We say that an analytic mapping ω belongs to Aε if and only there exists f = h + g
with dilatation ω and ‖S f ‖ ≤ ε. By Schwarz–Pick lemma, we have that Wε ≤ 1.
Moreover, in [15] it has been proved that Wε → 0 when ε → 0. We can assume that
ε is given by

ε = sup{δ : δ + kWδ + 3

2
W 2

δ ≤ 2};

thus, Theorem C asserts that ‖S f ‖ ≤ ε is a sufficient condition for univalence for
sense-preserving harmonicmappings. From the proof of TheoremC, it follows that for
λ ∈ D, the locally univalent analytic mapping ψλ = h + λg satisfies that ‖Sψλ‖ ≤ ε

since fλ = f + λ f has the same Schwarzian derivative. Thus, we can assert the
following lemma:

Lemma 3.3 Let f = h + g be a sense-preserving harmonic mapping defined in D

such that ‖S f ‖ ≤ ε. Then, for any λ ∈ D, the corresponding mapping ψλ satisfies
that ‖Sψλ‖ ≤ 2.

In [21, Thm. 1.1 part a)], the authors proved that if ‖Sϕ‖ ≤ 2t with t ∈ [0, 1], then

|ϕ(a) − ϕ(b)| ≤
√

Rϕ(a)Rϕ(b)

1 + t
sinh

(√
1 + t d(a, b)

)
, (3.4)

which together with the inequality (1.3), [7, Thm. 2], are the key points to prove the
following theorem.

Theorem 3.4 Let f = h + g be a sense-preserving harmonic mapping defined in D.
If ‖S f ‖ ≤ ε, where ε is as in Theorem C, then

√
Q(a)Q(b)

2
sinh

(√
2 d(a, b)

)
≥ | f (a) − f (b)| ≥ d(a, b)

√
R(a)R(b).

Proof For any a and b in the unit disk, it follows that f (a) − f (b) = h(a) − h(b) +
(g(a) − g(b)), and thus, if g(a) �= g(b), then there exists an unimodular constant λ

such that f (a) − f (b) = ψλ(a) − ψλ(b). In the case, when g(a) = g(b), we can
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consider λ = 0. Using inequality (1.3) we get the lower bound and inequality (3.4) to
the upper bound, we have that

Rψλ(a)Rψλ(b)

2
sinh2

(√
2 d(a, b)

)
≥ |ψλ(a) − ψλ(b)|2 ≥ d(a, b)2Rψλ(a)Rψλ(b).

Since |h′| + |g′| ≥ |ψ ′
λ| ≥ |h′| − |g′|, the proof is complete. ��

Note that if f is analytic, which is the case when ω = 0, then Wε = 0 and ε = 2,
and thus, the last theorem is a generalization of [7, Thm. 2].

3.3 Functions with convex analytic part

We know that f = h + g is univalent (in fact close to convex) [6, Thm. 1] in the unit
disk when h is a convex mapping. Moreover, this result can be extended to the case
when h maps conformally D onto a linearly connected domain, which is the subject
of sub-section 3.1.1.

Theorem 3.5 Let f = h + g be a sense-preserving normalized harmonic mapping
defined in D such that h is a convex function. Then, for all a, b ∈ D

| f (a) − f (b)| ≥ (1 − ‖ω‖∞) tanh(d(a, b))

(
Rh(a) + Rh(b)

2

)
,

and

| f (a) − f (b)| ≤ (1 + ‖ω‖∞) (exp (2d(a, b)) − 1))
min{Rh(a), Rh(b)}

2
.

Proof We note that

|h(a) − h(b)| + |g(a) − g(b)| ≥ | f (a) − f (b)| ≥ |h(a) − h(b)| − |g(a) − g(b)|.
(3.5)

Considering the curve γ = h−1(R), where R is the segment joining h(a) and h(b),
then for ζ = h−1(w) we have that h′(ζ )dζ = dw and

|g(a) − g(b)| =
∣∣∣∣
∫

γ
g′(ζ ) dζ

∣∣∣∣ =
∣∣∣∣
∫

R

g′(ζ )

h′(ζ )
dw

∣∣∣∣ ≤ ‖ω‖∞
∫

R
|dw| = ‖ω‖∞|h(a) − h(b)|.

Hence, substituting this inequality in (3.5) we obtain

(1 + ‖ω‖∞)|h(a) − h(b)| ≥ | f (a) − f (b)| ≥ (1 − ‖ω‖∞)|h(a) − h(b)|.

Therefore, using inequality (1.1) in TheoremA (with p = 1), the lower bound follows.
Now, since h is a normalized convex mapping, we can apply the upper bound in (3.2)
with α = 1. ��
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3.3.1 When the analytic part h is c-linearly connected

We will pay special attention to the case where h(D) is a linearly connected domain,
which means that for any a and b in D there exists a curve γ in h(D) that joins h(a)

with h(b), such that its length satisfies that

�γ ≤ c|h(a) − h(b)|. (3.6)

In this case, we say that h is a c-linearly connected mapping. Observe that c ≥ 1 and
c = 1 if and only if h(D) is a convex domain. Pommerenke said that the family of
normalized c-linearly connected mappings is linearly invariant (see [25, p. 105]), but
he did not provide any proof of this. Since we were not able to find a proof of this fact,
here we will give one.

Theorem 3.6 Let ϕ : D → C be a conformal and c-linearly connected mapping
defined in D. Then,

ϕa(z) =
ϕ

(
z + a

1 + az

)
− ϕ(a)

(1 − |a|2)ϕ′(a)
, a ∈ D,

is a c-linearly connected mapping.

Proof Let x and y be any twopoints inD andσa(z) = (z+a)/(1+az) an automorphism
of the unit disk. Let � be a curve in ϕ(D) whose length satisfies �� ≤ c|ϕ(σa(x)) −
ϕ(σa(y))|. Let γ = σ−1

a ◦ϕ−1(�) be a curve inDwhich joins x with y. Thus, the curve
�a = ϕa(γ ) is completely contained in ϕa(D) and joins ϕa(x) with ϕa(y). Moreover,
the length of this curve satisfies that

��a =
∫

γ

|ϕ′
a(z)||dz| = 1

(1 − |a|2)|ϕ′(a)|
∫

σa(γ )

|ϕ′(w)||dw| = ��

(1 − |a|2)|ϕ′(a)|
≤ c|ϕ(σa(x)) − ϕ(σa(y))|

(1 − |a|2)|ϕ′(a)| = c|ϕa(x) − ϕa(y)|.
��

This theorem asserts that for any c ≥ 1 the set Kc = {ϕ ∈ S : ϕ(D) is c −
linearly connected} is a linearly invariant family. Recall that S is the classical family
of normalized conformal maps and K1 the family of normalized convex mappings
(see [9]). Let β be the order of Kc, which depends on c and tends to 2 when c goes to
∞. Also, since Kc ⊂ S, we have that β < 2.

In [6], it was proved that if h(D) is a linearly connected domain with constant c
and ‖ω‖∞ < 1/c, then f is univalent in the unit disk. The following theorem is the
two-point distortion result for this criterion of univalence.

Theorem 3.7 Let f = h + g be a sense-preserving harmonic mapping defined in D

such that h is in Kc and its dilatation satisfies that ‖ω‖∞ < 1/c. Then, for any a and
b in D
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| f (a) − f (b)| ≥ (1 − c‖ω‖∞)
1

2β
(1 − exp(−2βd(a, b)))max{Rh(a), Rh(b)},

and

| f (a) − f (b)| ≤ (1 + c‖ω‖∞)
1

2β
(exp(2βd(a, b) − 1)min{Rh(a), Rh(b)},

where β is the order of h.

Proof For any a and b in D, there exists a curve γ ⊂ h(D) such that its length �γ

satisfies (3.6). Let � = h−1(γ ) ⊂ D. Thus, considering z = h−1(ζ ) with ζ ∈ γ , we
have that

|g(a) − g(b)| =
∣∣∣∣
∫

�

g′(z)dz
∣∣∣∣ ≤

∫

γ

|g′(z)|
|h′(z)| |dζ | ≤ ‖ω‖∞�γ ≤ c‖ω‖∞|h(a) − h(b)|.

As | f (a) − f (b)| = |h(a) − h(b) + (g(a) − g(b))|, we have that

(1 + c‖ω‖)∞|h(a) − h(b)| ≥ | f (a) − f (b)| ≥ (1 − c‖ω‖)∞|h(a) − h(b)|.(3.7)

Since h ∈ Kc with order β, applying (3.2), the proof follows. ��
By applying the same arguments as in [6, p. 1191], it can be seen that if h ∈ Kc

and the dilatation ω satisfies ‖ω‖∞ ≤ m < 1/c, then, for any λ with modulus 1, the
corresponding analytic function ψλ = h + λg is also a k-linearly connected mapping
with constant k given by k = c(1 + m)/(1 − mc). Since

ψ ′′
λ

ψ ′
λ

= h′′

h′ + λω′

1 + λω
,

the order of ψλ, namely βλ, satisfies that βλ ≤ min{2, β + ‖ω∗‖(1 + ‖ω‖∞)}. Thus,
we can assert the following corollary.

Corollary 3.8 Let f = h + g be a locally univalent and sense-preserving harmonic
mapping defined in D such that ω(0) = 0, h is in Kc and its dilatation satisfies that
‖ω‖∞ ≤ m < 1/c. Then, for any a and b in D

| f (a) − f (b)| ≥ 1

2βλ

(1 − exp(−2βλd(a, b)))max{Rψλ(a), Rψλ(b)},

and

| f (a) − f (b)| ≤ 1

2βλ

(exp(2βλd(a, b)) − 1)min{Rψλ(a), Rψλ(b)},

where λ = (g(a)−g(b))/(g(a) − g(b))when g(a)−g(b) �= 0, and otherwise, λ = 0.
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Proof Wefirst assume that g(a)−g(b) �= 0; hence, | f (a)− f (b)| = |ψλ(a)−ψλ(b)|.
Since ψλ is a k-linearly connected mapping, we can apply the inequality (3.2) and the
corollary follows. On the other hand, if g(a) − g(b) = 0, then | f (a) − f (b)| =
|h(a) − h(b)| and ψ0 = h. Again, we can apply inequality (3.2) to get the statement.

��
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