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Abstract
We introduce the Exel-Pardo ∗-algebra EPR(G,�) associated to a self-similar k-graph
(G,�, ϕ). We also prove the Z

k-graded and Cuntz–Krieger uniqueness theorems for
such algebras and investigate their ideal structure. In particular, we modify the graded
uniqueness theorem for self-similar 1-graphs and then apply it to present EPR(G,�)

as a Steinberg algebra and to study the ideal structure.

Keywords Self-similar k-graph · Exel-Pardo algebra · Groupoid algebra · Ideal
structure

Mathematics Subject Classification 16D70 · 16W50

1 Introduction

To give a unified framework like graph C∗-algebras for the Katsura’s [11] and Nekra-
shevyche’s algebras [17, 18], Exel and Pardo introduced self-similar graphs and their
C∗-algebras in [7]. They then associated an inverse semigroup and groupoid model
to this class of C∗-algebras and studied structural features by underlying self-similar
graphs. Note that although only finite graphs are considered in [7], many of arguments
and results may be easily generalized for countable row-finite graphs with no sources
(see [8, 10] for example). Inspired from [7], Li and Yang in [15, 16] introduced self-
similar action of a discrete countable group G on a row-finite k-graph �. They then
associated a universal C∗-algebra OG,� to (G,�) satisfying specific relations.
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The algebraic analogues of Exel-Pardo C∗-algebras, denoted by Oalg
(G,E) in [6] and

by LR(G, E) in [9], were introduced and studied in [6, 9]. In particular, Hazrat et
al. proved a Z-graded uniqueness theorem and gave a model of Steinberg algebras
for LR(G, E) [9]. The initial aims to write the present paper are to give a much
easier proof for [9, Theorem B] (a groupoid model for LR(G, E)) using the Z-graded
uniqueness theorem and then to study the ideal structure. However, we do these here,
among others, for a more general class of algebras associated to self-similar higher
rank graphs (G,�), which is introduced in Sect. 2.

This article is organized as follows. Let R be a unital commutative ∗-ring. In Sect. 2,
we introduce a universal∗-algebraEPR(G,�) of a self-similar k-graph (G,�) satisfy-
ing specific properties, which is called theExel-Pardo algebra of (G,�). Our algebras
are the higher rank generalization of those in [9, Theorem 1.6] and the algebraic ana-
logue of OG,� [15, 16]. Moreover, this class of algebras includes many important
known algebras such as the algebraic Katsura algebras [9], Kumjian-Pask algebras [2],
and the quotient boundary algebras Qalg

R (� �� G) of a Zappa-Szép product � �� G
introduced in Sect. 3. In Sect. 3, we give a specific example of Exel-Pardo algebras
using boundary quotient algebras of semigroups. Indeed, for a single-vertex self-
similar k-graph (G,�), the Zappa-Szép product � �� G is a cancellative semigroup.
We prove that the quotient boundary algebra Qalg

R (� �� G) (defined in Definition
3.1) is isomorphic to EPR(G,�). Section4 is devoted to proving a graded uniqueness
theorem for the Exel-Pardo algebras. Note that using the description in Proposition
2.7, there is a natural Z

k-grading on EPR(G,�). Then, in Theorem 4.2, a Z
k-graded

uniqueness theorem is proved for EPR(G,�)which generalizes and modifies [9, The-
orem A]. In particular, we will see in Sects. 5 and 6 that this modification makes it
more applicable.

In Sects. 5 and 6, we assume that our self-similar k-graphs are pseudo-free (Defini-
tion 5.1). In Sect. 5, we prove that every Exel-Pardo algebra EPR(G,�) is isomorphic
to the Steinberg algebra AR(GG,�), where GG,� is the groupoid introduced in [15].
We should note that the proof of this result is completely different from that of [9,
Theorem B]. Indeed, the main difference between the proof of Theorem 5.5 and
that of [9, Theorem B] is due to showing the injectivity of defined correspondence.
In fact, in [9, Theorem B], the authors try to define a representation for S(G,E) in
EPR(G, E) while we apply our graded uniqueness theorem, Theorem 4.2. This gives
us an easier proof for Theorem 5.5, even in the 1-graph case. Finally, in Sect. 6, we
investigate the ideal structure of EPR(G,�). Using the Steinberg algebras, we can
define a conditional expectation E on EPR(G,�) and then characterize basic, Z

k-
graded, diagonal-invariant ideals of EPR(G,�) by G-saturated G-hereditary subsets
of �0. These ideals are exactly basic, Q(Nk,G) �T Z

k-graded ideals of EPR(G,�).

1.1 Notation and Terminology

Let N = {0, 1, 2, . . .}. For k ≥ 1, we regard N
k as an additive semigroup with the

generators e1, . . . , ek . We use ≤ for the partial order on N
k given by m ≤ n if and

only if mi ≤ ni for 1 ≤ i ≤ k. We also write m ∨ n and m ∧ n for the coordinate-wise
maximum and minimum, respectively.
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A k-graph is a countable small category � = (�0,�, r , s) equipped with a degree
functor d : � → N

k satisfying the unique factorization property: for μ ∈ � and
m, n ∈ N

k with d(μ) = m + n, then there exist unique α, β ∈ � such that d(α) = m,
d(β) = n, and μ = αβ. We usually denote μ(0,m) := α and μ(m, d(μ)) := β. We
refer to �0 as the vertex set and define �n := {μ ∈ � : d(μ) = n} for every n ∈ N

k .
For A, B ⊆ �, define AB = {μν : μ ∈ A, ν ∈ B, and s(μ) = r(ν)}. Also, for
μ, ν ∈ �, define �min(μ, ν) = {(α, β) ∈ �×� : μα = νβ, d(μα) = d(μ)∨d(ν)}.

We say that � is row-finite if v�n is finite for all n ∈ N
k and v ∈ �0. A source in

� is a vertex v ∈ �0 such that v�ei = ∅ for some 1 ≤ i ≤ k.
Standing assumption. Throughout the article, we work only with row-finite k-

graphs without sources.
Let �k := {(m, n) ∈ N

k × N
k : m ≤ n}. By defining (m, n).(n, l) := (m, l),

r(m, n) := (m,m), and s(m, n) := (n, n), then �k is a row-finite k-graph without
sources. A graph homomorphism x : �k → � is called an infinite path of � with the
range r(x) = x(0, 0), and we write �∞ for the set of all infinite paths of �.

2 Exel-Pardo Algebras of Self-Similar k-Graphs

In this section, we associate a ∗-algebra to a self-similar k-graph as the algebraic
analogue of [16, Definition 3.9]. Let us first review some definitions and notations.

Following [9], we consider ∗-algebras over ∗-rings. Let R be a unital commutative
∗-ring. Recall that a ∗-algebra over R is an algebra A equipped with an involution
such that (a∗)∗ = a, (ab)∗ = b∗a∗, and (ra + b)∗ = r∗a∗ + b∗ for all a, b ∈ A
and r ∈ R. Then p ∈ A is called a projection if p2 = p = p∗, and s ∈ A a partial
isometry if s = ss∗s.

Definition 2.1 ([2, Definition 3.1]) Let � be a row-finite k-graph without sources. A
Kumjian-Pask �-family is a collection {sμ : μ ∈ �} of partial isometries in a ∗-algebra
A such that

(KP1) {sv : v ∈ �0} is a family of pairwise orthogonal projections;
(KP2) sμν = sμsν for all μ, ν ∈ � with s(μ) = r(ν);
(KP3) s∗

μsμ = ss(μ) for all μ ∈ �; and
(KP4) sv = ∑

μ∈v�n sμs∗
μ for all v ∈ �0 and n ∈ N

k .

2.1 Self-Similar k-Graphs and Their Algebras

Let � be a row-finite k-graph without sources. An automorphism of � is a bijection
ψ : � → � such thatψ(�n) ⊆ �n for all n ∈ N

k with the properties s◦ψ = ψ◦s and
r ◦ψ = ψ ◦ r . We denote by Aut(�) the group of automorphisms on �. Furthermore,
if G is a countable discrete group, an action of G on � is a group homomorphism
g �→ ψg from G into Aut(�).

Definition 2.2 ([15]) Let � be a row-finite k-graph without sources and G a discrete
group with identity eG . We say that a triple (G,�, ϕ) is a self-similar k-graph when-
ever the following properties hold:
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(1) G acts on � by a group homomorphism g �→ ψg . We prefer to write g · μ for
ψg(μ) to ease the notation.

(2) ϕ : G × � → G is a 1-cocycle for the action G � � such that for every g ∈ G,
μ, ν ∈ � and v ∈ �0 we have

(a) ϕ(gh, μ) = ϕ(g, h · μ)ϕ(h, μ) (the 1-cocycle property),
(b) g · (μν) = (g · μ)(ϕ(g, μ) · ν) (the self-similar equation),
(c) ϕ(g, μν) = ϕ(ϕ(g, μ), ν), and
(d) ϕ(g, v) = g.

For convenience, we usually write (G,�) instead of (G,�, ϕ).

Remark 2.3 In [15], the authors used the notation g|μ for ϕ(g, μ). However, we would
prefer to follow [7–9] for writing ϕ(g, μ).

Remark 2.4 If in equation (2)(a) of Definition 2.2, we set g = h = eG , then we
get ϕ(eG , μ) = eG for every μ ∈ �. Moreover, [15, Lemma 3.5(ii)] shows that
ϕ(g, μ) · v = g · v for all g ∈ G, v ∈ �0, and μ ∈ �.

Now we generalize the definition of Exel-Pardo ∗-algebras [9] to the k-graph case.
Definition 2.5 Let (G,�) be a self-similar k-graph. An Exel-Pardo (G,�)-family (or
briefly (G,�)-family) is a set

{sμ : μ ∈ �} ∪ {uv,g : v ∈ �0, g ∈ G}

in a ∗-algebra satisfying
(1) {sμ : μ ∈ �} is a Kumjian-Pask �-family,
(2) uv,eG = sv for all v ∈ �0,
(3) u∗

v,g = ug−1·v,g−1 for all v ∈ �0 and g ∈ G,
(4) uv,gsμ = δv,g·r(μ)sg·μug·s(μ),ϕ(g,μ) for all v ∈ �0, μ ∈ �, and g ∈ G,
(5) uv,guw,h = δv,g·wuv,gh for all v,w ∈ �0 and g, h ∈ G.

Then the Exel-Pardo algebra EPR(G,�) is the universal ∗-algebra over R generated
by a (G,�)-family {sμ, uv,g}.

Recall that the universality of EPR(G,�) means that for every (G,�)-family
{Sμ,Uv,g} in a ∗-algebra A, there exists a ∗-homomorphism φ : EPR(G,�) → A
such that φ(sμ) = Sμ and φ(uv,g) = Uv,g for all v ∈ �0, μ ∈ �, and g ∈ G. (See
Sect. 2.2 for the construction of EPR(G,�).) Throughout the paper, we will denote
by {sμ, uv,g} the (G,�)-family generating EPR(G,�).

2.2 The Construction of EPR(G,3)

Let (G,�) be a self-similar k-graph as in Definition 2.2. The following is a standard
construction of a universal algebra EPR(G,�) subject to desired relations. Consider
the set of formal symbols

S =
{
Sμ, S∗

μ,Uv,g,U
∗
v,g : μ ∈ �, v ∈ �0, g ∈ G

}
.
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Let X = w(S) be the collection of finite words in S. We equip the free R-module

FR(X) :=
{ l∑

i=1

ri xi : l ≥ 1, ri ∈ R, xi ∈ X

}

with the multiplication

( l∑

i=1

ri xi

)( l ′∑

j=1

s j y j

)

:=
∑

i, j

ri s j xi y j ,

and the involution
(∑

ri xi

)∗
:=

( ∑
r∗
i x

∗
i

)

where x∗ = s∗
l . . . s∗

1 for each x = s1 . . . sl . Then FR(X) is a ∗-algebra over R. If I is
the (two-sided and self-adjoint) ideal ofFR(X) containing the roots of relations (1)-(5)
in Definition 2.5, then the quotient FR(X)/I is the Exel-Pardo algebra EPR(G,�)

with the desired universal property. Let us define sμ := Sμ + I and uv,g := Uv,g + I
for every μ ∈ �, v ∈ �0, and g ∈ G. In case (G,�) is pseudo-free (Definition 5.1),
Theorem 4.2 insures that all generators {sμ, uv,g} of EPR(G,�) are nonzero.

Proposition 2.7 describes the elements of EPR(G,�). First, see a simple lemma.

Lemma 2.6 Let (G,�) be a self-similar graph (as in Definition 2.2) and {S,U } a
(G,�)-family. If SμUv,gS∗

ν �= 0 where μ, ν ∈ �, v ∈ �0 and g ∈ G, then s(μ) =
v = g · s(ν).

Proof If a = SμUv,gS∗
ν is nonzero, then by Definition 2.5 we can write

SμUv,gS
∗
ν = Sμ(Ss(μ)Uv,g)S

∗
ν

= Sμ(Us(μ),eGUv,g)S
∗
ν

= Sμ(δs(μ),eG ·vUs(μ),g)S
∗
ν .

Now, the hypothesis a �= 0 forces s(μ) = v. On the other hand, a similar computation
gives

a = Sμ(Uv,gSs(ν))S
∗
ν

= Sμ(Uv,gUs(ν),eG )S∗
ν

= Sμ(δv,g·s(ν)Uv,g)S
∗
ν ,

and thus v = g · s(ν). ��
Proposition 2.7 Let (G,�) be a self-similar graph. Then

EPR(G,�) = spanR{sμus(μ),gs
∗
ν : g ∈ G, μ, ν ∈ �, and s(μ) = g · s(ν)}.(2.1)
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Proof Define M := spanR{sμus(μ),gs∗
ν : g ∈ G, μ, ν ∈ �}. For every g, h ∈ G and

μ, ν, α, β ∈ � with α = να′ for some α′ ∈ �, the relations of Definition 2.5 imply
that

(

sμus(μ),gs
∗
ν

)(

sαus(α),hs
∗
β

)

= sμus(μ),g(s
∗
ν sα)us(α),hs

∗
β

= sμus(μ),g(sα′)us(α),hs
∗
β

= sμ

(

δs(μ),g·r(α′)sg·α′ug·s(α′),ϕ(g,α′)us(α),h

)

s∗
β

= δs(μ),g·s(ν)sμ(g·α′)
(

δg·s(α′),ϕ(g,α′)·s(α)ug·s(α′),ϕ(g,α′)h

)

s∗
β

(as r(α′) = s(ν)).

In the case ν = αν′ for some ν′ ∈ �, the above multiplication may be computed
similarly, and otherwise is zero. Hence, M is closed under multiplication. Also, we
have

(

sμus(μ),gs
∗
ν

)∗
= sνug−1·s(μ),g−1s∗

μ,

so M∗ ⊆ M . Since

sμ = sμus(μ),eG s
∗
s(μ) and uv,g = svuv,gs

∗
g·v

for all g ∈ G, v ∈ �0, and μ ∈ �, it follows that M is a ∗-subalgebra of EPR(G,�)

containing the generators of EPR(G,�). In light of Lemma 2.6, this concludes the
identification (2.1). ��

2.3 The Unital Case

In case � is a k-graph with finite �0, we may give a better description for Definition
2.5. Note that this case covers all unital Exel-Pardo algebras EPR(G,�).

Lemma 2.8 Let (G,�) be a self-similar k-graph and let sv be nonzero in EPR(G,�)

for every v ∈ �0. Then EPR(G,�) is a unital algebra if and only if the vertex set �0

is finite.

Proof If �0 = {v1, . . . , vl} is finite, then using identification (2.1), P = ∑l
i=1 svi is

the unit of EPR(G,�). Conversely, if �0 is infinite, then the set {sv : v ∈ �0} ⊆
EPR(G,�) contains infinitely many mutually orthogonal projections. Now again by
(2.1), there is no element of EPR(G,�) which acts as an identity on each element of
{sv : v ∈ �0}. ��
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Note that if {s, u} is a (G,�)-family in a ∗-algebra A, then for each g ∈ G we
may define ug := ∑

v∈�0 uv,g as an element of the multiplier algebra M(A) with
the property svug = uv,g for all v ∈ �0 (relations (2) and (5) of Definition 2.5 yield
svuw,g = δv,wuv,g). (See [1] for the definition of multiplier algebras.) Thus relations
(3) and (5) of Definition 2.5 imply that u : G → M(A), defined by g �→ ug , is a
unitary ∗-representation of G onM(A). In particular, in case �0 is finite, ug’s lie all
in A, and we may describe Definition 2.5 as the following:

Proposition 2.9 Let (G,�) be a self-similar k-graph. Suppose also that �0 is finite.
Then EPR(G,�) is the universal ∗-algebra generated by families {sμ : μ ∈ �} of
partial isometries and {ug : g ∈ G} of unitaries satisfying
(1) {sμ : μ ∈ �} is a Kumjian-Pask �-family;
(2) u : G → EPR(G,�), by g �→ ug, is a unitary ∗-representation of G on

EPR(G,�), in the sense that

(a) uguh = ugh for all g, h ∈ G, and
(b) u∗

g = u−1
g = ug−1 for all g ∈ G;

(3) ugsμ = sg·μuϕ(g,μ) for all g ∈ G and μ ∈ �.

3 An example: The Zappa-Szép Product3 �� G and its ∗-Algebra
Let (G,�) be a self-similar k-graph such that |�0| = 1. The C∗-algebra and quotient
boundary C∗-algebra associated to the Zappa-Szép product � �� G as a semigroup
were studied in [4, 14]. In this section, we first defineQalg

R (S) as the algebraic analogue
of the quotient boundary C∗-algebra Q(S) of a cancellative semigroup S. Then we
show that Qalg

R (� �� G) is isomorphic to the Exel-Pardo algebra EPR(G,�).
Let us recall some terminology from [4, 13]. Let S be a left-cancellative semigroup

with an identity. Given X ⊆ S and s ∈ S, define sX := {sx : x ∈ X} and s−1X :=
{r ∈ S : sr ∈ X}. Also, the set of constructible right ideals in S is defined as

J (S) := {s−1
1 r1 . . . s−1

l rl S : l ≥ 1, si , ri ∈ S} ∪ {∅}.

Then, a foundation set in J (S) is a finite subset F ⊆ J (S) such that for each Y ∈
J (S), there exists X ∈ F with X ∩ Y �= ∅.

The following is the algebraic analogue of [13, Definition 2.2].

Definition 3.1 Let S be a left-cancellative semigroup and R be a unital commutative
∗-ring. The boundary quotient ∗-algebra of S is the universal unital ∗-algebraQalg

R (S)

over R generated by a set of isometries {ts : s ∈ S} and a set of projections {qX : X ∈
J (S)} satisfying
(1) ts tr = tsr ,
(2) tsqX t∗s = qsX ,
(3) qS = 1 and q∅ = 0,
(4) qXqY = qX∩Y , and moreover
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(5)
∏

X∈F (1 − qX ) = 0

for all s, r ∈ S, X ,Y ∈ J (S), and foundation sets F ⊆ J (S).

Let � be a k-graph such that �0 = {v}. Then μν is composable for all μ, ν ∈ �,
and hence � may be considered as a semigroup with the identity v. Also, the unique
factorization property implies that � is cancellative.

Definition 3.2 ([4, Definition 3.1]) Let (G,�) is a single-vertex self-similar k-graph.
Ifwe consider� as a semigroup, then theZappa-Szép product � �� G is the semigroup
� × G with the multiplication

(μ, g)(ν, h) := (μ(g · ν), ϕ(g, ν) · h) (μ, ν ∈ � and g, h ∈ G).

Remark 3.3 If � is a single-vertex k-graph, then [14, Lemma 3.2 (iv)] follows that

J (�) =
{ l⋃

i=1

μi� : l ≥ 1, μi ∈ �, d(μ1) = · · · = d(μl)

}

.

In order to prove Theorem 3.6, the following lemmas are useful.

Lemma 3.4 Let (G,�) be a self-similar k-graph with �0 = {v}. Suppose that for
each μ ∈ �, the map g �→ ϕ(g, μ) is surjective. Then

(1) J (� �� G) = J (�) × {G}, where ∅ × G := ∅.
(2) A finite subset F ⊆ J (�) is a foundation set if and only if F ′ = F × {G} is a

foundation set in J (� �� G).

Proof Statement (1) is just [14, Lemma 2.13]. For (2), suppose that F ⊆ J (�) is
a foundation set, and let Y × G ∈ J (� �� G). Then there exists X ∈ F such that
X ∩ Y �= ∅. Thus (X × G) ∩ (Y × G) �= ∅, from which we conclude that F × {G} is
a foundation set in J (� �� G). The converse may be shown analogously. ��

In the following, for μ ∈ � and E ⊆ � we define

Ext(μ; E) := {α : (α, β) ∈ �min(μ, ν) for some ν ∈ E}.

Lemma 3.5 Let (G,�) be a self-similar k-graph with �0 = {v}. For every X =
∪l
i=1μi� and Y = ∪l ′

j=1ν j� in J (�), we have

X ∩ Y = ∪{μiα� : 1 ≤ i ≤ l, α ∈ Ext(μi ; {νi , . . . , νl ′ })}.

Proof For any λ ∈ X ∩ Y , there are α, β ∈ �, 1 ≤ i ≤ l, and 1 ≤ j ≤ l ′ such that
λ = μiα = ν jβ. Define

α′ := α(0, d(μi ) ∨ d(ν j ) − d(μi )) and β ′ := β(0, d(μi ) ∨ d(ν j ) − d(ν j )).

Then the factorization property implies that λ = μiα
′λ′ = ν jβ

′λ′ where d(μiα
′) =

d(ν jβ
′) = d(μi )∨d(ν j ) and λ′ = λ(d(μi )∨d(ν j ), d(λ)). It follows that λ ∈ μiα

′�
with α′ ∈ Ext(μi ; {ν j }) as desired. The reverse containment is trivial. ��
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The following result is inspired by [14, Theorem 3.3].

Theorem 3.6 Let (G,�) be a self-similar k-graph with �0 = {v} and let {sμ, ug}
be the (G,�)-family generating EPR(G,�) as in Proposition 2.9. Suppose that for
every μ ∈ � the map g �→ ϕ(g, μ) is surjective. If the family {t(μ,g), qX : (μ, g) ∈
� �� G, X ∈ J (� �� G)} generates Qalg

R (� �� G), then there exists an R-algebra

∗-isomorphism π : EPR(G,�) → Qalg
R (� �� G) such that π(sμ) = t(μ,eG ) and

π(ug) = q(v,g) for all μ ∈ � and g ∈ G.

Proof For every μ ∈ � and g ∈ G, define

Sμ := t(μ,eG ) and Ug := t(v,g).

We will show that {S,U } is a (G,�)-family in Qalg
R (� �� G), which is described in

Proposition 2.9. First, for each g ∈ G we have

UgU
∗
g = t(v,g) q���G t∗(v,g) = q(v,g)���G = q���G = 1Qalg

R (���G)
.

So, g �→ Ug is a unitary ∗-representation of G into Qalg
R (� �� G). Moreover, (KP1)-

(KP3) can be easily checked, so we verify (KP4) for {sμ : μ ∈ �}. Fix some n ∈ N
k .

Then {μ� : μ ∈ �n} is a foundation set in J (�), and thus so is F = {μ�×G : μ ∈
�n} in J (� �� G) by Lemma 3.4. Hence we have

1 −
∑

μ∈�n

SμS
∗
μ =

∏

μ∈�n

(1 − SμS
∗
μ) (because SμS

∗
μs are pairwise orthogonal)

=
∏

μ∈�n

(1 − t(μ,eG ) q���G t∗(μ,eG ))

=
∏

μ∈�n

(1 − qμ�×G) (by eq. (2) of Definition 3.1)

=
∏

X∈F
(1 − qX ) = 0 (by eq. (5) of Definition 3.1).

Because Sv = UeG = 1, (KP4) is verified, and therefore {Sμ : μ ∈ �} is a Kumjian-
Pask �-family. Since for each μ ∈ � and g ∈ G,

UgSμ = t(v,g)t(μ,eG ) = t(v,g)(μ,eG ) = t(g·μ,ϕ(g,μ)) = Sg·μUϕ(g,μ),

and so we have shown that {S,U } is a (G,�)-family in Qalg
R (� �� G). Now the

universality implies that the desired ∗-homomorphism π : EPR(G,�) → Qalg
R (� ��

G) exists.
Now we prove that π is an isomorphism. In order to do this, it suffices to find a

homomorphism ρ : Qalg
R (� �� G) → EPR(G,�) such that ρ ◦ π = idEPR(G,�) and

π ◦ ρ = idQalg
R (���G)

. For any (μ, g) ∈ � �� G and X = (∪l
i=1μi�) × G ∈ J (� ��
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G), we define

T(μ,g) := sμug and QX :=
l∑

i=1

sμi s
∗
μi

.

Wewill show that the family {T , Q} satisfies theproperties ofDefinitions 3.1.Relations
(1)-(3) easily hold by the (G,�)-relations for {s, u}. Also, for every X = (∪l

i=1μi�)×
G and Y = (∪l ′

j=1ν j�) × G in J (� �� G), we have

QX QY =
( l∑

i=1

sμi s
∗
μi

)( l ′∑

j=1

sν j s
∗
ν j

)

=
∑

i, j

sμi (s
∗
μi
sν j )s

∗
ν j

=
∑

i, j

sμi

( ∑

(α,β)∈�min(μi ,ν j )

sαs
∗
β

)

s∗
ν j

(by [1,Lemma 3.3])

=
∑

i, j

∑

μiα=ν jβ

d(μiα)=d(μi )∨d(ν j )

sμiαs
∗
ν jβ

= QX∩Y (by Lemma 3.5).

For eq. (5) of Definition 3.1, let F = {Xi × G := ∪ti
j=1μi j� × G : 1 ≤ i ≤ l}

be a foundation set in J (� �� G). Then F ′ = {Xi = ∪ti
j=1μi j�}li=1 is a foundation

set in J (�) by Lemma 3.4(2). Defining n := ∨
i, j d(μi j ), we claim that the set

M = {μi jα : α ∈ �n−d(μi j ), 1 ≤ i ≤ l, 1 ≤ j ≤ ti } coincides with �n . Indeed,
if on the contrary there exists some λ ∈ �n \ M , then �min(λ, μi j ) = ∅, and hence
λ� ∩ μi j� = ∅ for all i and j . This yields that λ� ∩ Xi = ∅ for every Xi ∈ F ′,
contradicting that F ′ is a foundation set in J (�).

Now one may compute

∏

Xi×G∈F
(1 − QXi×G) =

l∏

i=1

(1 −
ti∑

j=1

sμi j s
∗
μi j

)

=
l∏

i=1

(

1 −
ti∑

j=1

sμi j (
∑

α∈�
n−d(μi j )

sαs
∗
α)s∗

μi j

)

=
l∏

i=1

(

1 −
ti∑

j=1

∑

α∈�
n−d(μi j )

sμi jαs
∗
μi jα

)

(�).

Observe that the projections sμi jαs
∗
μi jα

are pairwise orthogonal because d(μi jα) = n
for all i, j (see [2, Remark 3.2(c)]). Hence, using the above claim, expression (�)
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equals to

(�) = 1 −
∑

λ∈�n

sλs
∗
λ = 0 (by (KP4)).

Therefore, the family {T , Q} satisfies the relations of Definition 3.1, and by the univer-
sality there exists an algebra ∗-homomorphism ρ : Qalg

R (� �� G) → EPR(G,�) such
that ρ(t(μ,g)) = T(μ,g) and ρ(qX ) = QX for (μ, g) ∈ � �� G and X ∈ J (� �� G).
It is clear that ρ ◦ π = idEPR(G,�) and π ◦ ρ = idQalg

R (���G)
because they fix the

generators of EPR(G,�) and Qalg
R (� �� G), respectively. Consequently, π is an

isomorphism, completing the proof. ��

4 A Graded Uniqueness Theorem

In this section, we prove a graded uniqueness theorem for EPR(G,�) which gener-
alizes and modifies [9, Theorem A] for self-similar k-graphs. This modification, in
particular, helps us to prove Theorems 5.5 and 6.8.

Let us first recall some definitions. Let � be a group and A be an algebra over
a ring R. A is called �-graded (or briefly, graded whenever the group is clear) if
there is a family of R-submodules {Aγ : γ ∈ �} of A such that A = ⊕

γ∈� Aγ

and Aγ Aγ ′ ⊆ Aγ γ ′ for all γ, γ ′ ∈ �. Then each set Aγ is called a γ -homogeneous
component of A. In this case, we say an ideal I of A is�-graded if I = ⊕

γ∈�(I∩Aγ ).
Note that an ideal I of A is �-graded if and only if it is generated by a subset of⋃

γ∈� Aγ , the homogeneous elements of A.
Furthermore, if A and B are two �-graded algebras over R, a homomorphism

φ : A → B is said to be a graded homomorphism if φ(Aγ ) ⊆ Bγ for all γ ∈ �.
Hence the kernel of a graded homomorphism is always a graded ideal. Also, if I is
a graded ideal of A, then there is a natural �-grading (Aγ + I )γ∈� on the quotient
algebra A/I , and thus the quotient map A → A/I is a graded homomorphism.

Lemma 4.1 Let (G,�) be a self-similar k-graph. If for every n ∈ Z
k , we define

EPR(G,�)n := spanR

{

sμus(μ),gs
∗
ν : g ∈ G, μ, ν ∈ �, and d(μ) − d(ν) = n

}

,

then (EPR(G,�)n)n∈Zk is a Z
k-grading on EPR(G,�).

Proof Consider the free ∗-algebra FR(X) and its ideal I as in Sect. 2.2. If we define

θ(Sμ) := d(μ), θ(S∗
μ) := −d(μ), and θ(Uv,g) := 0

for all g ∈ G, v ∈ �0 and μ ∈ �, then θ induces a Z
k-grading on FR(X). Also, since

the generators of I are all homogenous, I is a graded ideal. Therefore, EPR(G,�) ∼=
FR(X)/I is a Z

k-graded algebra, and Proposition 2.7 concludes the result. ��
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Theorem 4.2 (Graded Uniqueness) Let (G,�) be a self-similar k-graph. Let φ :
EPR(G,�) → B be a Z

k-graded R-algebra ∗-homomorphism into a Z
k-graded

∗-algebra B. If φ(a) �= 0 for every nonzero element of the form a = ∑l
i=1 ri uv,gi

with v ∈ �0 and g−1
i · v = g−1

j · v for 1 ≤ i, j ≤ l, then φ is injective.

Proof For convenience, we write A = EPR(G,�). Since A = ⊕
n∈Zk An and φ

preserves the grading, it suffices to show that φ is injective on each An . So, fix some
b ∈ An , and assume φ(b) = 0. By equation (2.1), we can write

b =
l∑

i=1

ri sμi uwi ,gi s
∗
νi

(4.1)

where wi = s(μi ) = gi · s(νi ) and d(μi ) − d(νi ) = n for 1 ≤ i ≤ l. Define
n′ = ∨1≤i≤ld(μi ). Then, for each i ∈ {1 . . . l}, (KP4) says that

swi =
∑

λ∈wi�
n′−d(μi )

sλs
∗
λ,

and we can write

sμi uwi ,gi s
∗
νi

= sμi (ss(μi ))uwi ,gi s
∗
νi

=
∑

sμi (sλs
∗
λ)uwi ,gi s

∗
νi

=
∑

sμiλ

(

sνi u
∗
wi ,gi sλ

)∗

=
∑

sμiλ

(

sνi ug−1
i ·wi ,g

−1
i
sλ

)∗

=
∑

sμiλ

(

sνi sg−1
i ·λug−1

i ·s(λ),ϕ(g−1
i ,λ)

)∗

=
∑

sμiλuϕ(g−1
i ,λ)−1g−1

i ·s(λ),ϕ(g−1
i ,λ)−1s

∗
νi (g

−1
i ·λ)

where the above summations are on λ ∈ wi�
n′−d(μi ). So, in each term of (4.1), we

may assume d(μi ) = n′ and d(νi ) = n′ − n. Now, for any 1 ≤ j ≤ l, (KP3) yields
that

s∗
μ j
bsν j = s∗

μ j

( l∑

i=1

ri sμi uwi ,gi s
∗
νi

)

sν j =
∑

i∈[ j]
ri uwi ,gi ,

where [ j] := {1 ≤ i ≤ l : (μi , νi ) = (μ j , ν j )}. Thus

φ

( ∑

i∈[ j]
ri uwi ,gi

)

= φ(s∗
μ j

)φ(b)φ(sν j ) = 0
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and hypothesis forces
∑

i∈[ j] ri uwi ,gi = 0. Therefore,

∑

i∈[ j]
ri sμi uwi ,gi s

∗
νi

= sμ j

( ∑

i∈[ j]
ri uwi ,gi

)

s∗
ν j

= 0.

Since the index set {1, . . . , l} is a disjoint union of [ j]’s, we obtain b = 0. It follows
that φ is injective. ��

5 EPR(G,3) as a Steinberg Algebra

In this section, wewant to prove an Steinberg algebra model for EPR(G,�). Although
our result will be the k-graph generalization of [9, Theorem B], note that our proof
relies on the graded uniqueness theorem, Theorem 4.2, and is completely different
from that of [9, Theorem B]. This gives us a much easier and shorter proof.

Let us first review some terminology about groupoids; see [19] for more details.
A groupoid is a small category G with inverses. For each α ∈ G, we may define the
range r(α) := αα−1 and the source s(α) := α−1α satisfying r(α)α = α = αs(α).
It follows that for every α, β ∈ G, the composition αβ is well defined if and only if
s(α) = r(β). The unit space of G is G(0) := {α−1α : α ∈ G}. Throughout the paper
we work with topological groupoids, which are ones equipped with a topology such
that the maps r and s are continuous. Then a bisection is a subset B ⊆ G such that
both restrictions r |B and s|B are homeomorphisms. In case G has a basis of compact
open bisections, G is called an ample groupoid.

Let (G,�) be a self-similar k-graph.We also recall the groupoidGG,� introduced in
[15]. LetC(Nk,G) be the group of all maps formN

k toG with the pointwise multipli-
cation. For f , g ∈ C(Nk,G), define the equivalence relation f ∼ g in case there exists
n0 ∈ N

k such that f (n) = g(n) for all n ≥ n0. Write Q(Nk,G) := C(Nk,G)/ ∼.
Also, for each z ∈ Z

k , let Tz : C(Nk,G) → C(Nk,G) be the automorphism defined
by

Tz( f )(n) =
{
f (n − z) n − z ≥ 0
eG otherwise

( f ∈ C(Nk,G), n ∈ N
k).

Then Tz induces an automorphism, denoted again by Tz , on Q(Nk,G), which is
Tz([ f ]) = [Tz( f )]. So, T : Z

k → AutQ(Nk,G) is a homomorphism andwe consider
the semidirect product group Q(Nk,G) �T Z

k .
Note that for every g ∈ G and x ∈ �∞, one may define ϕ(g, x) ∈ C(Nk,G) by

ϕ(g, x)(n) := ϕ(g, x(0, n)) (n ∈ N
k).

Moreover, [15, Lemma3.7] says that there exists a unique actionG � �∞ by defining

(g · x)(m, n) := ϕ(g, x(0,m)) · x(m, n) ((m, n) ∈ �k)

for every g ∈ G and x ∈ �∞.
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Definition 5.1 A self-similar k-graph (G,�) is said to be pseudo-free if for any g ∈ G
and μ ∈ �, g · μ = μ and ϕ(g, μ) = eG imply g = eG .

According to [15, Lemma 5.6], in case (G,�) is pseudo-free, then we have

g · μ = h · μ and ϕ(g, μ) = ϕ(h, μ) �⇒ g = h

for every g, h ∈ G and μ ∈ �.

Definition 5.2 Associated to (G,�) we define the subgroupoid

GG,� :=
{(

μ(g · x); Td(μ)([ϕ(g, x)]), d(μ) − d(ν); νx

)

: g ∈ G,

μ, ν ∈ �, s(μ) = g · s(ν)}

of �∞ ×
(

Q(Nk,G) �T Z
k
)

× �∞ with the range and source maps

r(x; [ f ], n − m; y) = x and s(x; [ f ], n − m; y) = y.

Note that if we set

Z(μ, g, ν) :=
{(

μ(g · x); Td(μ)([ϕ(g, x)]), d(μ) − d(ν); νx

)

: x ∈ s(ν)�∞
}

,

then the basis

BG,� := {Z(μ, g, ν) : μ, ν ∈ �, g ∈ G, s(μ) = g · s(ν)}

induces a topology on GG,�. In case (G,�) is pseudo-free, [16, Proposition 3.11]
shows that GG,� is a Hausdorff groupoid with compact open base BG,�.

Definition 5.3 Let (G,�) be a pseudo-free self-similar k-graph and R a unital com-
mutative ∗-ring. Then the Steinberg algebra associated to (G,�) is the R-algebra

AR(GG,�) := spanR{1B : B is a compact open bisection}

endowed with the pointwise addition, the multiplication f g(γ ) := ∑
αβ=γ f (α)g(β),

and the involution f ∗(γ ) := f (γ −1)∗ for all γ ∈ GG,�.

To prove Theorem 5.5, we need the following lemma.

Lemma 5.4 Let (G,�) be a pseudo-free self-similar k-graph. Let v,w ∈ �0 and
g, h ∈ G with g · v = h · v = w. Then Z(v, g, w) ∩ Z(v, h, w) = ∅ whenever g �= h.

Proof Suppose that (g · x; [ϕ(g, x)], 0; x) = (h · y, [ϕ(h, y)], 0; y) ∈ Z(v, g, w) ∩
Z(v, h, w) where x, y ∈ Z(w). Then y = x , g · x = h · x and [ϕ(g, x)] = [ϕ(h, x)].
Since (G,�) is pseudo-free, [15, Corollary 5.6] implies that g = h. ��
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Theorem 5.5 Let (G,�) be a pseudo-free self-similar k-graph. Then there is a
(unique) ∗-algebra isomorphism φ : EPR(G,�) → AR(GG,�) such that

φ(sμ) = 1Z(μ,eG ,s(μ)) and φ(uv,g) = 1Z(v,g,g−1·v)

for every μ ∈ �, v ∈ �0, and g ∈ G. In particular, the elements rsμ and ruv,g with
r ∈ R\{0} are all nonzero.
Proof For each v ∈ �0, μ ∈ � and g ∈ G, define

Sμ := 1Z(μ,eG ,s(μ)) and Uv,g := 1Z(v,g,g−1·v).

Since S∗
μ = 1Z(μ,eG ,s(μ))−1 = 1Z(s(μ),eG ,μ) and U∗

v,g = 1Z(v,g,g−1·v)−1 =
1Z(g−1·v,g−1,v), a long but straightforward computation shows that {Sμ,Uv,g} is a
(G,�)-family in AR(GG,�). Then, by the universal property, such ∗-homomorphism
φ exists.

[16, Proposition 3.11] says that GG,� is ample with compact open baseBG,�. Since
each element Z(μ, g, ν) of BG,� can be written as

Z(μ, g, ν) = Z(μ, eG , s(μ))Z(s(μ), g, s(ν))Z(ν, eG , s(ν))−1,

φ is surjective.
We will show the injectivity of φ by applying the graded uniqueness theorem. Note

that the continuous 1-cocycle c : GG,� → Z
k , defined by c(μ(g · x); [ f ], d(μ) −

d(ν); νx) := d(μ)− d(ν), induces a Z
k-grading on AR(GG,�). Also, φ preserves the

Z
k-grading because it does on the generators. Now, to apply Theorem 4.2, we assume

φ(a) = 0 for an element of the form a = ∑l
i=1 ri uv,gi with g−1

i · v = g−1
j · v for

1 ≤ i, j ≤ l. We may also assume that the gi ’s are distinct (otherwise, combine the
terms with same gi ’s). We then have

φ(a) =
l∑

i=1

ri1Z(v,gi ,g
−1
i ·v)

= 0.

Lemma 5.4 says that the bisections Z(v, gi , g
−1
i · v) are pairwise disjoint. Hence, for

each i , if we pick some α ∈ Z(v, gi , g
−1
i · v), then ri = φ(a)(α) = 0. Therefore

a = 0, and Theorem 4.2 concludes that φ is injective. We are done. ��
Combining [20, Theorem 6.7], [15, Theorem 5.9], and Theorem 5.5 gives the next

corollary. (Although in [15] it is supposed |�0| < ∞, but [15, Theorem 5.9] holds
also for � with infinitely many vertices.)

Corollary 5.6 Let (G,�) be a pseudo-free self-similar k-graph over an amenable
group G. Then the complex algebra EPC(G,�) is a dense subalgebra ofOG,� intro-
duced in [16].

In the following, we see that the Kumjian-Pask algebra KPR(�) from [2] can be
embedded in EPR(G,�).
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Corollary 5.7 Let (G,�) be a pseudo-free self-similar k-graph. Let the Kumjian-Pask
algebra KPR(�) be generated by a Kumjian-Pask �-family {tμ : μ ∈ �}. Then the
map tμ �→ sμ embeds KPR(�) into EPR(G,�) as a ∗-subalgebra.
Proof We know that KPR(�) is Z

k-graded by the homogenous components

KPR(�)n := spanR
{
tμt

∗
ν : μ, ν ∈ �, d(μ) − d(ν) = n

}
.

for all n ∈ Z
k . Then, the universal property of Kumjian-Pask algebras gives a graded

∗-algebra homomorphism φ : KPR(�) → EPR(G,�) such that φ(tμ) := sμ and
φ(t∗μ) := s∗

μ for every μ ∈ �. Moreover, Theorem 5.5 shows that φ(r tμ) = rsμ �= 0
for all r ∈ R\{0} and μ ∈ �. Therefore, the graded uniqueness theorem for Kumjian-
Pask algebras [2, Theorem 4.1] implies that φ is injective. ��
Definition 5.8 LetG be a topological groupoid.We say thatG is topologically principal
if the set of units with trivial isotropy group, that is {u ∈ G(0) : s−1(u)∩r−1(u) = {u}},
is dense in G(0).

The analogue of the topologically principal property for self-similar k-graphs is
G-aperiodicity (see [15, Proposition 6.5]).

Definition 5.9 Let (G,�) be a self-similar k-graph. Then � is said to be G-aperiodic
if for every v ∈ �0, there exists x ∈ v�∞ with the property that

x(p,∞) = g · x(q,∞) �⇒ g = eG and p = q (∀g ∈ G, ∀p, q ∈ N
k).

Theorem 5.10 (The Cuntz–Krieger uniqueness) Let (G,�) be a pseudo-free self-
similar k-graph. Let (G,�) be also G-aperiodic. Suppose thatφ : EPR(G,�) → A is
a ∗-algebra homomorphism fromEPR(G,�) into a ∗-algebra A such that φ(rsv) �= 0
for all 0 �= r ∈ R and v ∈ �0. Then φ is injective.

Proof First note that GG,� is a Hausdorff ample groupoid by [16, Proposition 3.11],
and that BG,� is a basis for GG,� consisting compact open bisections. Also, [16,
Lemma 3.12] says that GG,� is topologically principal (so is effective in particular).
So, we may apply [5, Theorem 3.2].

Denote by ψ : EPR(G,�) → AR(GG,�) the isomorphism of Theorem 5.5. If on
the contrary φ is not injective, then neither is φ̃ := φ ◦ ψ−1 : AR(GG,�) → A. Thus,
by [5, Theorem 3.2], there exists a compact open subset K ⊆ G(0)

G,� and r �= 0 such
that φ̃(r1K ) = 0. Since K is open, there is a unitU = Z(μ, eG , μ) ∈ BG,� such that
U ⊆ K . So we get

φ(rsμs
∗
μ) = φ̃(r1U ) = φ̃(r1U∩K ) = φ̃(r1K )φ̃(1U ) = 0,

and hence

φ(rss(μ)) = φ(s∗
μ)φ(rsμs

∗
μ)φ(sμ) = 0.

This contradicts the hypothesis, and therefore φ is injective. ��
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6 Ideal Structure

By an ideal we mean a two-sided and self-adjoint one. In this section, we characterize
basic, Z

k-graded and diagonal-invariant ideals of EPR(G,�), which are exactly all
basic Q(Nk,G) �T Z

k-graded ones.
Let (G,�) be a pseudo-free self-similar k-graph. Since GG,� is a Hausdorff

ample groupoid [15, Theorem 5.8], G(0)
G,� is both open and closed, and for every

f ∈ AR(GG,�) the restricted function f |G(0)
G,�

= f χG(0)
G,�

lies again in AR(GG,�).

Then AR(G(0)
G,�) is a ∗-subalgebra of AR(GG,�) and there is a conditional expectation

E : AR(GG,�) → AR(G(0)
G,�) defined by E( f ) = f |G(0)

G,�

for f ∈ AR(GG,�). Let

D := spanR{sμs∗
μ : μ ∈ �} be the diagonal of EPR(G,�). In light of Theorem 5.5,

it is easy to check that the expectation is E : EPR(G,�) → D defined by

E
(

sμus(μ),gs
∗
ν

)

= δμ,νδg,eG sμs
∗
μ (μ, ν ∈ �, s(μ) = g · s(ν)).

Definition 6.1 An ideal I ofEPR(G,�) is called diagonal-invariantwheneverE(I ) ⊆
I . Also, I is said to be basic if rsv ∈ I implies sv ∈ I for all v ∈ �0 and r ∈ R\{0}.
Definition 6.2 Let (G,�) be a self-similar k-graph. A subset H ⊆ �0 is called

(1) G-hereditary if r(μ) ∈ H �⇒ g · s(μ) ∈ H for all g ∈ G and μ ∈ �;
(2) G-saturated if v ∈ �0 and s(v�n) ⊆ H for some n ∈ N

k �⇒ v ∈ H .

In the following, given any H ⊆ �0, we denote by IH the ideal of EPR(G,�)

generated by {sv : v ∈ H}. Also, for each ideal I of EPR(G,�), we define HI :=
{v ∈ �0 : sv ∈ I }.

To prove Theorem 6.8 we need some structural lemmas about the ideals IH and
associated quotients EPR(G,�)/IH .

Lemma 6.3 If I is an ideal of EPR(G,�), then HI := {v ∈ �0 : sv ∈ I } is a
G-saturated G-hereditary subset of �0.

Proof The proof is straightforward. ��
Lemma 6.4 Let H be a G-saturated G-hereditary subset of �0 and IH the ideal of
EPR(G,�) generated by {sv : v ∈ H}. Then we have

IH = spanR
{
sμus(μ),gs

∗
ν : g ∈ G, s(μ) = g · s(ν) ∈ H

}
, (6.1)

and IH is a Z
k-graded diagonal-invariant ideal.

Proof Denote by J the right-hand side of (6.1). The identity

sμus(μ),gs
∗
ν = sμ(ss(μ))us(μ),gs

∗
ν
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yields J ⊆ IH . Also, using the description of EPR(G,�) in Proposition 2.7, it is
straightforward to check that J is an ideal of EPR(G,�). So, by sv = svuv,eG s

∗
v , J

contains all generators of IH , and we have proved (6.1).
Now, (6.1) says that IH is spanned by its homogenous elements, hence it is a graded

ideal. Moreover, let a = ∑l
i=1 sμi us(μi ),gi s

∗
νi

∈ IH such that s(μi ) = g · s(νi ) ∈ H .
Then, in particular, each term of a with gi = eG belongs to IH . Therefore, E(a) ∈ IH ,
and IH is diagonal-invariant. ��

Let H be a G-saturated G-hereditary subset of �0 and consider the k-subgraph
� \ �H . Then the restricted action G � � \ �H is well defined, and hence
(G,�\�H , ϕ|G×�\�H ) is also a self-similar k-graph. So we have:

Lemma 6.5 Let (G,�) be a pseudo-free self-similar k-graph. If H is a G-saturated
G-hereditary subset of �0, then (G,� \ �H) is a pseudo-free self-similar k-graph.

Proof The proof is straightforward. ��
Lemma 6.6 Let H be a G-saturated G-hereditary subset of�0. For every v ∈ �0 and
r ∈ R\{0}, rsv ∈ IH implies v ∈ H.

Proof Let {tμ,wv,g} be the generators of EPR(G,� \ �H). If we define

Sμ :=
{
tμ s(μ) /∈ H
0 otherwise

and Uv,g :=
{

wv,g v /∈ H
0 otherwise,

then {Sμ,Uv,g} is a (G,�)-family in EPR(G,�\�H), and by the universality, there is
a ∗-homomorphism ψ : EPR(G,�) → EPR(G,�\�H) such that ψ(sμ) = Sμ and
ψ(uv,g) = Uv,g for all μ ∈ �, v ∈ �0 and g ∈ G. Since ψ(sv) = 0 for every v ∈ H ,
we have IH ⊆ kerψ . On the other hand, Theorem 5.5 implies that all ψ(rsv) = r tv
are nonzero for v ∈ �0\H and r ∈ R\{0}.

Now assume rsv ∈ IH for some v ∈ �0 and r ∈ R\{0}. If v ∈ �0\H , then
ψ(rsv) = r tv �= 0, and we get rsv /∈ kerψ ⊇ IH , a contradiction. ��

In fact, Lemma 6.6 says that IH is a basic ideal with HIH = H for everyG-saturated
G-hereditary subset H of �0.

Proposition 6.7 Let H be a G-saturated G-hereditary subset of �0. Let {tμ,wv,g}
be the (G,� \ �H)-family generating EPR(G,� \ �H). Then the map ψ :
EPR(G,�\�H) → EPR(G,�)/IH defined by

ψ(tμws(μ),gt
∗
ν ) := sμus(μ),gs

∗
ν + IH (μ, ν ∈ � \ �H , g ∈ G)

is an (R-algebra) ∗-isomorphism.
Proof If we set Tμ := sμ + IH andWv,g := uv,g + IH for every v ∈ �0, μ ∈ �, and
g ∈ G, then {Tμ,Wv,g} is a (G,� \ �H)-family in EPR(G,�)/IH (the relations of
Definition 2.5 for {Tμ,Wv,g} immediately follow from those for {sμ, uv,g}). So, the
universality of EPR(G,� \ �H) gives such ∗-homomorphism ψ . Note that sμ ∈ IH
for each μ ∈ �H by (6.1), which gives the surjectivity of ψ .
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To prove the injectivity, we apply the graded uniqueness theorem, Theorem 4.2.
First, since IH is a Z

k-graded ideal, EPR(G,�)/IH has a natural Z
k-grading and ψ

is a graded homomorphism. Thus, we fix an element in EPR(G,� \ �H) of the form
a = ∑l

i=1 riwv,gi such that v ∈ �0\H and g−1
i · v = g−1

j · v for all 1 ≤ i, j ≤ l.
Without loss of generality, we may also suppose that the gi ’s are distinct. Ifψ(a) = 0,
then ψ(a) = ∑l

i=1 ri uv,gi + IH = IH and
∑l

i=1 ri uv,gi ∈ IH . Thus, for each
1 ≤ j ≤ l, we have

( l∑

i=1

ri uv,gi

)

ug−1
j ·v,g−1

j
=

l∑

i=1

ri uv,gi g
−1
j

∈ IH (by eq. (5) in Definition 2.5)

and since IH is diagonal-invariant,

r j sv = r j uv,eG = E
(

l∑

i=1

ri uv,gi g
−1
j

)

∈ IH .

As v /∈ H , Lemma 6.6 forces r j = 0 for each 1 ≤ j ≤ l, hence a = 0. Now Theorem
4.2 implies that ψ is an isomorphism. ��
Theorem 6.8 Let (G,�) be pseudo-free self-similar k-graph. Then H �→ IH is a one-
to-one correspondence between G-saturated G-hereditary subsets of �0 and basic,
Z
k-graded and diagonal-invariant ideals of EPR(G,�), with inverse I �→ HI .

Proof The injectivity of H �→ IH follows from Lemma 6.6. Indeed, if IH = IK
for G-saturated G-hereditary subsets H , K ⊆ �0, then Lemma 6.6 yields that H =
HIH = HIK = K .

To see the surjectivity, we take a basic, Z
k-graded and diagonal-invariant ideal I

of EPR(G,�), and then prove I = IHI . Write J := IHI for convenience. By Propo-
sition 6.7 we may consider EPR(G,� \ �HI ) ∼= EPR(G,�)/J as a ∗-R-algebra.
Let {sμ, uv,g} and {tμ,wv,g} be the generators of EPR(G,�) and EPR(G,�)/J ,
respectively. Since J ⊆ I , we may define the quotient map q : EPR(G,�)/J →
EPR(G,�)/I such that

q(tμ) = sμ + I and q(wv,g) = uv,g + I

for all μ ∈ �, v ∈ �0 and g ∈ G. Notice that q preserves the grading because I is
a Z

k-graded ideal. So, we can apply Theorem 4.2 to show that q is an isomorphism.
To do this, fix an element of the form a = ∑l

i=1 riwv,gi with v ∈ �0\HI such that
g−1
i · v = g−1

j · v for 1 ≤ i, j ≤ l and q(a) = 0. Then
∑l

i=1 ri uv,gi ∈ I . As before,
we may also assume that the gi ’s are distinct. Thus, for each 1 ≤ j ≤ l, we have

b j :=
( l∑

i=1

ri uv,gi

)(

ug−1
j ·v,g−1

j

)

=
l∑

i=1

ri uv,gi g
−1
j

∈ I .
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Since I is diagonal-invariant and basic, the case r j �= 0 yields r j sv = r j uv,eG =
E(b j ) ∈ I , and thus sv ∈ I and v ∈ HI , which contradicts the choice of v. It follows
that r j ’s are all zero, and hence a = 0. Now Theorem 4.2 implies that q is injective,
or equivalently I = J = IHI as desired. ��

In the end, we remark the following about Q(Nk,G) �T Z
k-graded ideals of

EPR(G,�).

Remark 6.9 Let (G,�) be a pseudo-free self-similar k-graph and GG,� be the asso-
ciated groupoid. Denote by � := Q(Nk,G) �T Z

k the group introduced in Sect. 5.
If we define c : GG,� → � by c(x; γ ; y) := γ , then c is a cocycle on GG,� because
c(αβ) = c(α) ∗� c(β) for all α, β ∈ GG,� with s(α) = r(β). Hence, it induces a
�-grading on AR(GG,�) = EPR(G,�) with the homogenous components

Aγ := spanR{1V : V ⊆ c−1(γ ) is a compact open bisection }

(see [6, Proposition 5.1] for example). By a similar argument as in [6, §6.5] and
combining Theorem 5.5 and [6, Theorem 5.3], we may obtain that the ideals of the
form IH , described in Theorem 6.8 above, are precisely the basic, �-graded ideals of
EPR(G,�).
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