

Local Neighbor-Distinguishing Index of Graphs

Weifan Wang¹ · Puning Jing2 · Jing Gu³ · Yiqiao Wang4

Received: 14 November 2022 / Revised: 26 January 2023 / Accepted: 3 February 2023 / Published online: 1 March 2023 © The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2023

Abstract

Suppose that *G* is a graph and ϕ is a proper edge-coloring of *G*. For a vertex $v \in V(G)$, let $C_{\phi}(v)$ denote the set of colors assigned to the edges incident with v. The graph *G* is local neighbor-distinguishing with respect to the coloring ϕ if for any two adjacent vertices *x* and *y* of degree at least two, it holds that $C_{\phi}(x) \nsubseteq C_{\phi}(y)$ and $C_{\phi}(y) \nsubseteq$ $C_{\phi}(x)$. The local neighbor-distinguishing index, denoted $\chi'_{\text{ind}}(G)$, of *G* is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of *G*. For $n \geq 2$, let H_n denote the graph obtained from the bipartite graph $K_{2,n}$ by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph *G*, $\chi'_{\text{ind}}(G) \leq 3\Delta - 1$; (2) suppose that *G* is a planar graph. Then $\chi'_{\text{ind}}(G) \leq [2.8\Delta] + 4$; and moreover $\chi'_{\text{ind}}(G) \leq 2\Delta + 10$ if *G* contains no 4-cycles; $\chi'_{\text{Ind}}(G) \leq \Delta + 23$ if *G* is 3-connected; and $\chi'_{\text{Ind}}(G) \leq \Delta + 6$ if *G* is Hamiltonian.

Keywords Local neighbor-distinguishing index · Strict neighbor-distinguishing index · Edge-coloring · Planar graph · Factor

Mathematics Subject Classification 05C15

Communicated by Xueliang Li.

Research supported by NSFC (Nos. 12031018; 12226303) Research supported partially by NSFC (Nos. 12071048; 12161141006).

 \boxtimes Yiqiao Wang yqwang@bucm.edu.cn

¹ School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China

- ² Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
- ³ Department of Mathematics, Changzhou University, Changzhou 213164, China
- ⁴ School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

1 Introduction

Only simple graphs are considered in this paper. Let *G* be a graph with vertex set $V(G)$, edge set $E(G)$, minimum degree $\delta(G)$ and maximum degree $\Delta(G)$ (for short, Δ). For a vertex $v \in V(G)$, let $d_G(v)$ denote the degree of v in *G*. Set $|G| = |V(G)|$ and $||G|| = |E(G)|$. A *k*-*vertex*, *k*⁻-*vertex*, and *k*⁺-*vertex* of *G* are a vertex with degree k , at most k , and at least k , respectively. A graph G is *normal* if it contains no isolated edges, and *formal* if it contains no leaves. A graph *G* is called *planar* if it can be embedded in the plane such that all edges intersect in their end-vertices. A *plane graph* is a particular drawing of a planar graph in the plane. For two nonnegative integers p, q with $p < q$, we use $[p, q]$ to denote the set of all integers between p and q (including p and q).

An *edge-k-coloring* of a graph *G* is a mapping ϕ from the edge set $E(G)$ to the color set $\{1, 2, \ldots, k\}$ such that no two adjacent edges get same color. Here two edges are said to be *adjacent* if they share at least one common end vertex. The *chromatic index* $\chi'(G)$ of the graph *G* is defined as the smallest integer *k* such that *G* admits an edge-coloring using *k* colors. Given an edge-*k*-coloring ϕ of *G* and for a vertex $v \in V(G)$, we use $C_{\phi}(v)$ to denote the set of colors assigned to the edges incident with *v*. Suppose that *x*, *y* are any pair of adjacent vertices in *G*. We say that ϕ is *neighbor* $distinguishing$ if $C_{\phi}(x) \neq C_{\phi}(y)$, *strict neighbor-distinguishing* if $C_{\phi}(x) \nsubseteq C_{\phi}(y)$ and $C_{\phi}(y) \nsubseteq C_{\phi}(x)$, and *local neighbor-distinguishing* if $C_{\phi}(x) \nsubseteq C_{\phi}(y)$ and $C_{\phi}(y) \nsubseteq C_{\phi}(x)$ whenever $d_G(x), d_G(y) \geq 2$. The *neighbor-distinguishing index* χ ^a(*G*) (*strict neighbor-distinguishing index* χ snd(*G*), *local neighbor-distinguishing index* $\chi'_{\text{Ind}}(G)$, respectively) of *G* is the smallest *k* such that *G* has a neighbordistinguishing edge-*k*-coloring (a strict neighbor-distinguishing edge-*k*-coloring, a local neighbor-distinguishing edge-*k*-coloring, respectively).

As an easy observation, a graph *G* has a neighbor-distinguishing edge-coloring if and only if *G* is normal, and *G* has a strict neighbor-distinguishing edge-coloring if and only if *G* is formal. But the local neighbor-distinguishing edge-coloring is well defined for any graph *G*.

It is evident that $\chi'_{\text{snd}}(G) \geq \chi'_{\text{a}}(G) \geq \Delta$ for any formal graph *G*. Moreover, the following propositions hold obviously.

Proposition 1 *If G is a graph with* $\delta(G) \geq 2$ *, then* $\chi'_{\text{Ind}}(G) = \chi'_{\text{snd}}(G)$ *.*

Proposition 2 If G is an $r \geq 2$)-regular graph, then $\chi'_{\text{Ind}}(G) = \chi'_{\text{snd}}(G) = \chi'_{\text{d}}(G)$.

Zhang et al. [\[23](#page-15-0)] introduced the neighbor-distinguishing edge-coloring of graphs and proposed the following challenging conjecture.

Conjecture 1 *Every normal graph G, other than a 5-cycle, has* $\chi'_a(G) \leq \Delta + 2$ *.*

Akbari et al. [\[1\]](#page-14-0) proved that every normal graph *G* satisfies $\chi_a'(G) \leq 3\Delta$. This result was gradually improved to $\chi'_{\mathfrak{a}}(G) \leq 2.5\Delta$ by Wang et al. [\[21](#page-15-1)], and to $\chi'_{\mathfrak{a}}(G) \leq 2\Delta + 2$ by Vučković [\[17\]](#page-15-2). In 2005, using probabilistic analysis, Hatami [\[10](#page-15-3)] showed that every normal graph *G* with $\Delta > 10^{20}$ has $\chi'_{\rm a}(G) \leq \Delta + 300$. Recently, this result was improved, by Joret and Lochet [\[13\]](#page-15-4), to that $\chi'_a(G) \leq \Delta + 19$ for a normal graph

with sufficiently large Δ . Suppose that *G* is a normal planar graph. It was shown in [\[11](#page-15-5)] that if $\Delta \ge 12$ then $\chi'_{\rm a}(G) \le \Delta + 2$. Moreover, Wang and Huang [\[20\]](#page-15-6) showed that if $\Delta \geq 16$, then $\Delta \leq \chi_0'(G) \leq \Delta + 1$, and $\chi_0'(G) = \Delta + 1$ if and only if G contains adjacent Δ -vertices. This result was improved in [\[19](#page-15-7)] to that if $\Delta \geq 14$, then $\Delta \leq \chi'_{a}(G) \leq \Delta + 1$, and $\chi'_{a}(G) = \Delta + 1$ if and only if *G* contains adjacent Δ -vertices.

The strict neighbor-distinguishing edge-coloring of graphs was studied in [\[24\]](#page-15-8) (named there the Smarandachely adjacent vertex edge coloring). Let H_n ($n \geq 2$) denote the graph obtained from the bipartite graph $K_{2,n}$ by inserting a 2-vertex into one edge. It is easy to show that $\chi'_{\text{snd}}(H_n) = 2n + 1 = 2\Delta(H_n) + 1$. Based on this fact, Gu et al. $[8]$ $[8]$ raised the following conjecture.

Conjecture 2 Every connected formal graph G, different from H_{Δ} , has $\chi'_{\text{snd}}(G) \leq 2\Delta$.

Because $\chi'_{\text{snd}}(K_{2,n}) = 2n = 2\Delta(K_{2,n})$, the upper bound 2Δ in Conjecture 2 is sharp. Conjecture 2 remains open, but it was confirmed for graphs with $\Delta \leq 3$ in [\[8\]](#page-15-9) and *K*4-minor-free graphs in [\[9\]](#page-15-10).

In this paper, we continue to study the strict neighbor-distinguishing edge-coloring of graphs, in particular, for the class of planar graphs. As a helpful tool, we consider its relaxed form, i.e., local neighbor-distinguishing edge-coloring of graphs. Our main results in this paper are stated as follows:

- $\chi'_{\text{ind}}(G) \leq 3\Delta 1$ for any simple graph *G*;
- $\chi'_{\text{ind}}(G) \leq [2.8\Delta] + 4$ for a planar graph *G*;
- $\chi'_{\text{Ind}}(G) \leq 2\Delta + 10$ for a planar graph *G* without 4-cycles;
- $\chi'_{\text{ind}}(G) \leq \Delta + 23$ for a 3-connected planar graph *G*;
- $\chi'_{\text{Ind}}(G) \leq \Delta + 6$ for a Hamiltonian planar graph *G*.

2 An Upper Bound

Let *G* be a graph and ϕ be a local neighbor-distinguishing edge-*k*-coloring of *G*. For the sake of briefness, φ is called a *k*-LNDE-coloring of *G*. Two adjacent vertices *u* and *v* are *exclusive* in ϕ if $C_{\phi}(u) \nsubseteq C_{\phi}(v)$ and $C_{\phi}(v) \nsubseteq C_{\phi}(u)$. To give an upper bound of the local neighbor-distinguishing index of a graph, we need to use the following result:

Lemma 2.1 ([\[23](#page-15-0)]) *For a cycle* C_n *with* $n \geq 3$ *,*

$$
\chi'_a(C_n) = \begin{cases} 3, \text{ if } n = 3; \\ 5, \text{ if } n = 5; \\ 4, \text{ if } n \neq 3, 5. \end{cases}
$$

Theorem 2.2 *Every graph with* $\Delta \geq 2$ *has* $\chi'_{\text{Ind}}(G) \leq 3\Delta - 1$ *.*

Proof The proof is by induction on the edge number $||G||$. If $||G|| \leq 3\Delta - 1$, then the result holds trivially since we can color the edges of *G* with distinct colors. Let *G* be a graph with $||G|| \geq 3\Delta \geq 6$. Without loss of generality, assume that *G* is

connected. So, it follows that $\Delta \geq 2$ and $\delta(G) \geq 1$. In the following, we write simply $K = 3\Delta - 1$ and let $C = [1, K]$ denote the set of *K* colors.

First assume that $\delta(G) = 1$. Let v be a vertex adjacent to leaves x_1, \ldots, x_l and 2^+ vertices y_1, \ldots, y_k , where $l > 1$ and $k > 0$. Let $H = G - x_1$. Then *H* is a graph with $||H|| < ||G||$ and $\Delta(H) < \Delta$. By the induction hypothesis, *H* admits a *K*-LNDEcoloring ϕ using the color set *C*. For $i \in [1, k]$, since v and y_i are exclusive in ϕ , there exists a color $r_i \in C_\phi(y_i) \setminus C_\phi(v)$. Set $R(v) = \{r_1, \ldots, r_k\}$, which is called the *secondlevel forbidden set* of vertex v. Obviously, $|R(v)| \leq k$. Based on ϕ , we color vx_1 with a color $a \in C \setminus (C_{\phi}(v) \cup R(v))$. Since $|C \setminus (C_{\phi}(v) \cup R(v))| \geq 3\Delta - 1 - |C_{\phi}(v)| - k$ $3\Delta - 1 - (\Delta - 1) - (\Delta - 1) = \Delta + 1 \ge 3$, *a* exists and so the coloring is available. It is easy to check that the resultant coloring is a *K*-LNDE-coloring of *G*.

Next assume that $\delta(G) \geq 2$. If $\Delta = 2$, then *G* is a cycle. By Lemma [2.1](#page-2-0) and Proposition 2, $\chi'_{\text{Ind}}(G) = \chi'_{\text{a}}(G) \le 5 = 3\Delta - 1$. So assume that $\Delta \ge 3$. The proof is split into two cases as follows, depending on the size of $\delta(G)$.

 $Case I. \delta(G) = 2.$

Let v be a 2-vertex with neighbors v_1 , v_2 such that $d_G(v_1) \leq d_G(v_2)$. Without loss of generality, we may suppose that $d_G(v_2) \geq 3$ by the assumption that $\Delta \geq 3$. The proof is split into two subcases as follows.

- $d_G(v_1) = 2$. Let u_1 be the neighbor of v_1 other than v. If $u_1 = v_2$, then $H =$ $G-vv_1$ is a graph with $||H|| < ||G||$ and $\Delta(H) = \Delta$. By the induction hypothesis, *H* admits a *K*-LNDE-coloring ϕ using the color set *C*. Based in ϕ , it suffices to color vv_1 with some color in $C \setminus C_{\phi}(v_2)$. If $u_1 \neq v_2$, then let $H = G - v$, which has a *K*-LNDE-coloring ϕ using the color set *C* by the induction hypothesis. We first color vv_2 with $a \in C \setminus (C_{\phi}(v_2) \cup R(v_2) \cup {\phi}(v_1u_1))$, where $R(v_2)$ is the second-level forbidden set of vertex v_2 , as defined before. Then we color vv_1 with *b* ∈ *C* \(*C*_{ϕ}(*u*₁)∪ *C*_{ϕ}(*v*₂)∪{*a*}). For short, we write $C^+_{\phi}(v_2) = C_{\phi}(v_2) \cup R(v_2)$ in the following discussion. Since $|C \setminus (C^+_{\phi}(v_2) \cup {\phi(v_1u_1)})| \geq 3\Delta - 1 - 2(d_G(v_2) -$ 1) – 1 ≥ Δ ≥ 2 and $|C \setminus (C_{\phi}(u_1) \cup C_{\phi}(v_2) \cup \{a\})|$ ≥ 3 Δ – 1 – 2 Δ ≥ Δ – 1 ≥ 1, both *a* and *b* exist and hence ϕ is extended to *G*.
- $d_G(v_1) \geq 3$. Let $H = G v$, which admits a *K*-LNDE-coloring ϕ using *C*. Based on ϕ , we color vv_1 with $a \in C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2))$, and vv_2 with $b \in C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1))$ $C_{\phi}(v_1) \cup \{a\}$). Since $|C \setminus (C_{\phi}^+(v_1) \cup C_{\phi}(v_2))|$ ≥ 3∆ − 1 − 2(∆ − 1) − (∆ − 1) ≥ 2 and $|C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup \{a\})| \geq 3\Delta - 1 - 2(\Delta - 1) - (\Delta - 1) - 1 \geq 1, a, b$ exist and ϕ is extended to *G*.

Case II. $\delta(G) \geq 3$.

Take a vertex $v \in V(G)$ with $d_G(v) = \delta(G) \geq 3$. Let v_0, \ldots, v_{k-1} be the neighbors of v in *G*, where $k = d_G(v)$. Let $H = G - v$. Then *H* is a graph with $\delta(H) \ge$ 2, $\Delta(H) \leq \Delta$, and $||H|| < ||G||$. By the induction hypothesis, *H* admits a *K*-LNDE-coloring ϕ using *C*. Let x_1, \ldots, x_m be the neighbors of v_0 in *H*, where $m =$ $d_G(v_0) - 1 \geq 2$. For $i \in [1, m]$, there exists a color $r_i \in C_\phi(x_i) \setminus C_\phi(v_0)$ since v_0 and x_i are exclusive in ϕ . Let $R(v_0) = \{r_1, \ldots, r_m\}$. Similarly, we can define *R*(*v*₁), ..., *R*(*v*_{*k*−1}). Let *U_i* = $C^+_{\phi}(v_i)$ for *i* ∈ [0, *k* − 1]. Then $|U_i|$ = $|C_{\phi}(v_i)$ ∪ $R(v_i)| \leq |C_{\phi}(v_i)| + |R(v_i)| \leq (\Delta - 1) + (\Delta - 1) = 2\Delta - 2.$

To extend ϕ to *G*, we design a coloring procedure as following.

Step 0. Color vv_0 with a color $c_0 \in C \setminus (U_0 \cup C_{\phi}(v_1))$, and then set $B_0 = \{c_0\}$.

Step 1. For $i \in [1, k-1]$, we do the following operation, where all indices are taken modulo *k*:

- If $B_{i-1} \subseteq C_{\phi}(v_{i+1})$, then we color vv_i with a color $c_i \in C \setminus (U_i \cup C_{\phi}(v_{i+1}))$; otherwise, we color vv_i with a color $c_i \in C \setminus (U_i \cup B_{i-1})$.
- Set $B_i = B_{i-1} \cup \{c_i\}.$

Step 2. If $i = k - 1$, stop. Otherwise, set $i = i + 1$, then go to Step 1.

Let π denote the resultant edge-coloring of *G* after the above iterative process is ended. Let $B = B_{k-1}$. Then $B = C_{\pi}(v)$. We will show that π is a *K*-LNDE-coloring of *G*.

Claim 1. π *is a proper edge*-*K*-*coloring of G*.

Proof We first prove the existence of the color c_i for $i \in [0, k - 1]$. In fact, since $|C \setminus (U_0 \cup C_\phi(v_1))|$ ≥ $|C| - |U_0| - |C_\phi(v_1)|$ ≥ $(3\Delta - 1) - (2\Delta - 2) - (\Delta - 1) = 2$, *c*₀ exists. Assume that $1 \le i \le k-1$. If $B_{i-1} \subseteq C_{\phi}(v_{i+1})$, then $c_i \in C \setminus (U_i \cup C_{\phi}(v_{i+1}))$ by Step 1. Since $|C \setminus (U_i \cup C_{\phi}(v_{i+1}))|$ ≥ (3Δ − 1) − (2Δ − 2) − (Δ − 1) = 2, c_i exists. Otherwise, $B_{i-1} \nsubseteq C_{\phi}(v_{i+1})$. By Step 1, $c_i \in C \setminus (U_i \cup B_{i-1})$. Since $|B_{i-1}|$ ≤ $i \leq k - 1 = d_G(v) - 1 = \delta(G) - 1 \leq \Delta - 2$, it follows that $|C \setminus (U_i \cup B_{i-1})| \leq$ $(3\Delta - 1) - (2\Delta - 2) - (\Delta - 2) = 3$; thus, c_i exists. Next, we need to show that $c_0, c_1, \ldots, c_{k-1}$ are mutually distinct. Actually, this is true from the definition of B_i 's. Hence, π is a proper edge-*K*-coloring of *G*. 

Claim 2. π *is local neighbor-distinguishing.*

Proof It suffices to show that for any edge $xy \in E(G)$, we have

$$
C_{\pi}(x) \nsubseteq C_{\pi}(y)
$$
 and $C_{\pi}(y) \nsubseteq C_{\pi}(x)(*)$

By symmetry, we consider the following three possibilities.

Case 1. *x*, *y* ∉ {*v*, *v*₀, . . . , *v*_{*k*−1}}.

Note that $\pi(e) = \phi(e)$ for each edge *e* incident with *x* or *y* in *G*. This implies that $C_{\pi}(x) = C_{\phi}(x)$ and $C_{\pi}(y) = C_{\phi}(y)$. Since $C_{\phi}(x) \nsubseteq C_{\phi}(y)$ and $C_{\phi}(y) \nsubseteq C_{\phi}(x)$, (∗) holds.

Case 2. *y* ∉ {*v*, *v*₀, ..., *v*_{*k*−1}} and *x* = *v*_{*i*} for some *i* ∈ [0, *k* − 1].

By symmetry, suppose that $i = 0$, i.e., $x = v_0$. Then $C_\pi(y) = C_\phi(y)$ and $C_\pi(v_0) = C_\phi(v)$ $C_{\phi}(v_0) \cup \{c_0\}$. Since $C_{\phi}(v_0) \nsubseteq C_{\phi}(y)$, it is immediate to derive that $C_{\pi}(v_0) =$ $C_{\phi}(v_0) \cup \{c_0\} \nsubseteq C_{\phi}(y) = C_{\pi}(y)$. Conversely, there is a color $b \in R(v_0)$ such that $b \in C_{\phi}(y) \setminus C_{\phi}(v_0)$ and $c_0 \neq b$. This implies that $C_{\pi}(y) \nsubseteq C_{\pi}(v_0)$. Hence, (*) holds. **Case 3.** *x* = *v* and *y* = *v_i* for some *i* ∈ [0, *k* − 1].

Then $C_{\pi}(v) = B$ and $C_{\pi}(v_i) = C_{\phi}(v_i) \cup \{c_i\}$. Let $i \in [0, k - 1]$. Since $d_G(v) =$ $k = \delta(G) \leq d_G(v_i)$, it is easy to derive that $C_\pi(v_i) \not\subset C_\pi(v) = B$. Conversely, suppose that $B \subset C_{\pi}(v_i)$. We discuss three possibilities to get a contradiction.

• *i* = 0. Since $B_{k-2} = \{c_0, \ldots, c_{k-2}\} \subset B \subset C_{\pi}(v_0)$, it follows that $c_{k-1} \in$ $C\setminus (U_{k-1}\cup C_\phi(v_0))$ by Step 1. This implies that $c_{k-1}\notin C_\phi(v_0)$, which contradicts the assumption that $c_{k-1} \in B_{k-1} = B \subset C_{\pi}(v_0)$.

Fig. 1 a $B(x, y; m)$ with $xy \notin E(G)$; **b** $B(x, y; m)$ with $xy \in E(G)$

- $i = 1$. Step 0 implies that $c_0 \in C \setminus (U_0 \cup C_\phi(v_1))$. Thus, $c_0 \notin C_\pi(v_1)$. Since $c_0 \in B$, it follows that $B \not\subset C_\pi(v_1)$, which is a contradiction.
- $i \in [2, k-1]$. Note that $B_{i-2} = \{c_0, \ldots, c_{i-2}\} \subset B \subset C_{\pi}(v_i)$. By Step 1, *c*_{i−1} ∈ *C* \ (*U*_{*i*−1} ∪ $C_{\phi}(v_i)$), implying $c_{i-1} \notin C_{\phi}(v_i)$, which contradicts the assumption that $c_{i-1} \in B_{i-1} \subset B \subset C_{\pi}(v_i)$.

By Claims 1 and 2, π is a *K*-LNDE-coloring of *G*. Theorem [2.3](#page-5-0) follows immediately from Theorem [2.2](#page-2-1) and Proposition 1:

Theorem 2.3 *Every formal graph G has* $\chi'_{\text{snd}}(G) \leq 3\Delta - 1$ *.*

3 General Planar Graphs

Assume that *G* is a plane graph. A cycle *C*∗ of *G* is called a *separating cycle* if there exist at least one vertex in the interior and exterior of *C*∗, respectively.

A *bunch* $B(x, y; m)$ of length $m \geq 3$ with x and y as *poles* is defined as m paths Q_1, Q_2, \ldots, Q_m having the following properties, as shown in [1:](#page-5-1)

- (a) Each Q_i has length 1 or 2 and joins *x* and *y*;
- (b) For each $i \in [1, m 1]$, the cycle formed by Q_i and Q_{i+1} is not separating;
- (c) This sequence of paths is maximal, that is, there does not exist a path Q_0 (or Q_{m+1}) that can be added to $B(x, y; m)$ with conditions (a) and (b) preserved.

If the length of Q_i is 2, say $P_i = x z_i y$, then z_i is called a *brother*. If $Q_i = xy$, then *xy* is called a *parental edge*. Assume that z_i exists. We further say that z_i is an *external brother* if $i \in \{1, m\}$, an *internal brother* if $i \in [2, m - 1]$, and a *strictly internal brother* if $i \in [3, m - 2]$. It is easy to see that each internal brother is of degree 2, 3, or 4 and adjacent only to the poses and possibly to one or two of brothers.

Borodin et al. [\[4\]](#page-15-11) introduced the concept of the bunch in a plane graph and established a structural theorem on plane graphs. For our purposes, we only give the following simplified version of their theorem.

Lemma 3.1 *(* $[4]$ *)* Every plane graph G with $\delta(G) \geq 2$ contains one of the following *configurations:*

(A1) a k-vertex v, k \in [2, 5]*, with neighbors* v_1, \ldots, v_k *such that* $d_G(v_i) \le 25$ *for all i* ∈ [1, *k* − 1]*, and* $d_G(v_1)$ + ··· + $d_G(v_{k-1}) \leq 38$ *; (A2) a bunch B*(*x*, *y*; *m*) *with* $d_G(x) \ge 26$ *and* $m \ge 0.2d_G(x)$ *.*

Using Lemma [3.1,](#page-5-2) we can obtain an upper bound of the local neighbordistinguishing index of planar graphs.

Theorem 3.2 If G is a planar graph, then $\chi'_{\text{Ind}}(G) \leq [2.8\Delta] + 4$.

Proof The proof proceeds by induction on $||G||$. If $||G|| \leq [2.8\Delta] + 4$, then the result holds trivially. Let *G* be a planar graph with $||G|| \geq [2.8\Delta] + 5 \geq 5$. Without loss of generality, suppose that *G* is connected and embedded in the plane. If $\Delta \leq 29$, then $\chi'_{\text{Ind}}(G) \leq 3\Delta - 1 \leq [2.8\Delta] + 4$ by Theorem [2.2.](#page-2-1) So suppose that $\Delta \geq 30$, which implies that $||G|| \geq [2.8\Delta] + 4 \geq 88$. In what follows, let $C = [1, K]$, where $K = [2.8\Delta] + 4$, be the set of *K* colors.

If *G* contains a 1-vertex v, then the graph $G - v$ admits a *K*-LNDE-coloring ϕ using the color set *C* by the induction hypothesis. Similarly to the proof of Theorem [2.2,](#page-2-1) ϕ can be extended to *G*.

So suppose that $\delta(G) \geq 2$. By Lemma [3.1,](#page-5-2) *G* contains the configurations (A1) or (A2). Our proof is split into the following cases.

Case 1. *G* contains a *k*-vertex $v, k \in [2, 5]$, with neighbors v_1, \ldots, v_k such that $d_G(v_i)$ ≤ 25 for all $i \in [1, k - 1]$, and $d_G(v_1) + \cdots + d_G(v_{k-1})$ ≤ 38.

Without loss of generality, assume that $d_G(v_1) \leq \cdots \leq d_G(v_k)$. Depending on the size of *k*, we have some subcases to be considered below.

Case 1.1. $k = 2$.

Note that $d_G(v_1) \leq 25$. Let $H = G - v$, which admits a *K*-LNDE-coloring ϕ using *C*. Based on ϕ , we color vv_2 with a color $a \in C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1))$, where $C^+_{\phi}(v_2) =$ $C_{\phi}(v_2) \cup R(v_2)$ as defined in [2,](#page-2-2) and vv_1 with a color $b \in C \setminus (C_{\phi}^+(v_1) \cup C_{\phi}(v_2) \cup \{a\})$. Since $|C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1))| \geq [2.8 \Delta] + 4 - 2(d_G(v_2) - 1) - (d_G(v_1) - 1) \geq$ $2.8\Delta + 7 - 2\Delta - 25 = 0.8\Delta - 18 \ge 6$ and $|C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{a\})|$ $[2.8\Delta] + 4 - 2(25 - 1) - (\Delta - 1) - 1 \ge 1.8\Delta - 44 \ge 10$, both *a* and *b* exist and hence ϕ is extended to *G*.

By Case 1.1, we may assume that $d_G(v_i) \geq 3$ for all $i \in [1, k]$ in the subsequent discussion.

Case 1.2. $k = 3$.

Note that $d_G(v_2) \le 25$, and since $d_G(v_1) + d_G(v_2) \le 38$, we derive that $d_G(v_1) \le$ 19. Let $H = G - \{vv_1, vv_2\}$, which has a *K*-LNDE-coloring ϕ using *C*. Suppose that $\phi(vv_3) = 1$. We color vv_2 with $a \in C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup \{1\})$ and vv_1 with $b \in C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup C_{\phi}(v_3) \cup \{a\})$. It is easy to calculate that $|C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_3))|$ $C_{\phi}(v_1) \cup \{1\})$ | ≥ $\lceil 2.8\Delta \rceil + 4 - 2(\Delta - 1) - (d_G(v_1) - 1) - 1 \ge 0.8\Delta + 6 - d_G(v_1) \ge$ $0.8\Delta + 6 - 19 \ge 11$ and $|C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup C_{\phi}(v_3) \cup \{a\})|$ ≥ [2.8∆] + 4 − $2(d_G(v_1) - 1) - (d_G(v_2) - 1) - \Delta - 1 \ge 1.8\Delta + 6 - (d_G(v_1) + d_G(v_2)) - d_G(v_1) \ge$ $1.8\Delta + 6 - 38 - 19 \geq 3$. Hence, both *a* and *b* exist. Let ϕ' denote the resultant coloring after vv_1 and vv_2 are colored. Obviously, ϕ' is a proper edge-K-coloring of *G*. Note that $C_{\phi}(v) = \{1, a, b\}$, $a \notin C_{\phi}(v_1)$, $b \notin C_{\phi}(v_2)$, and $a, b \notin C_{\phi}(v_3)$. Since $d_G(v_i) \geq 3$ for $i \in [1, 3]$, v is exclusive with each of its neighbors. Consequently, ϕ' is a *K*-LNDE-coloring of *G*.

Case 1.3. $k = 4$.

Since $d_G(v_1) + d_G(v_2) + d_G(v_3) \leq 38$ and $d_G(v_i) \geq 3$ for $i \in [1, 4]$, it follows that $d_G(v_1) \leq 12$, $d_G(v_2) \leq 17$, and $d_G(v_3) \leq 25$. Let $H = G - \{vv_1, vv_2, vv_3\}$, which has a *K*-LNDE-coloring ϕ using *C* and with $\phi(vv_4) = 1$. We color vv₃ with *a* ∈ *C*\($C^+_{\phi}(v_3) \cup C_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{1\}$), *vv*₂ with *b* ∈ *C*\($C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup C_{\phi}(v_3) \cup C_{\phi}(v_4)$ *C*_{ϕ}(*v*₄)∪{*a*}), and *vv*₁ with *c* ∈ *C*\(*C*⁺_{ϕ}(*v*₁)∪*C*_{ϕ}(*v*₂)∪*C*_{ϕ}(*v*₃)∪*C*_{ϕ}(*v*₄)∪{*a*, *b*}). It is easy to check that $|C \setminus (C^+_{\phi}(v_3) \cup C_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{1\})| \ge 88 - 2(d_G(v_3) - 1) (d_G(v_2) - 1) - (d_G(v_1) - 1) - 1 = 91 - d_G(v_3) - (d_G(v_1) + d_G(v_2) + d(v_3))$ ≥ 91−25−38 = 28, $|C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup C_{\phi}(v_3) \cup C_{\phi}(v_4) \cup \{a\})|$ ≥ [2.8∆] +4− 2($d_G(v_2)$ −1)−($d_G(v_1)$ −1)−($d_G(v_3)$ −1)− Δ −1 ≥ 1.8 Δ +7− $d_G(v_2)$ −($d_G(v_1)$ + *d_G*(*v*₂) + *d_G*(*v*₃)) ≥ 1.8∆ + 7 − 17 − 38 ≥ 6, and $|C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup C_{\phi}(v_3) \cup C_{\phi}(v_4)$ $C_{\phi}(v_4) \cup \{a, b\}$)| ≥ $[2.8\Delta]$ +4−2($d_G(v_1)$ −1)−($d_G(v_2)$ −1)−($d_G(v_3)$ −1)− Δ −2 ≥ $1.8\Delta + 6 - d_G(v_1) - (d_G(v_1) + d_G(v_2) + d_G(v_3)) \geq 1.8\Delta + 6 - 12 - 38 \geq 10.$ Hence, vv_1 , vv_2 , vv_3 can be colored properly. Let ϕ' denote the resultant coloring of *G*. It is easy to observe that $C_{\phi}(v) = \{1, a, b, c\}$, and $b, c \notin C_{\phi}(v_4), b, c \notin C_{\phi}(v_3)$, $a, c \notin C_{\phi}(v_2)$, and $a, b \notin C_{\phi}(v_1)$. Since $d_G(v_i) \geq 3$ for $i \in [1, 4]$, v is exclusive with each of its neighbors in ϕ' . Consequently, ϕ' is a *K*-LNDE-coloring of *G*.

Case 1.4. $k = 5$.

Since $d_G(v_1) + \cdots + d_G(v_4) \leq 38$ and $d_G(v_i) \geq 3$ for $i \in [1, 5]$, it is immediate to deduce that $d_G(v_1) \le 9$, $d_G(v_2) \le 11$, $d_G(v_3) \le 16$, and $d_G(v_4) \le 25$. Let $H = G - \{vv_1, vv_2, vv_3, vv_4\}$, which has a *K*-LNDE-coloring ϕ using *C* such that $\phi(vv_5) = 1$. Define the sets $M_4 = \bigcup_{k=1}^{4} M_k$ *i*=1 $C_{\phi}(v_i)$ and $M_5 = M_4 \cup C_{\phi}(v_5)$. We have to consider two possibilities as follows.

Case 1.4.1. $d_G(v_5) \geq 4$.

We color vv_4 with $a \in C \setminus (M_4 \cup R(v_4) \cup \{1\})$, vv_3 with $b \in C \setminus (M_4 \cup R(v_3) \cup \{1, a\})$, *vv*₂ with $c \in C \setminus (M_5 \cup R(v_2) \cup \{a, b\})$ and vv₁ with $d \in C \setminus (M_5 \cup R(v_1) \cup \{a, b, c\})$. It is easy to calculate that $|C \setminus (M_4 \cup R(v_4) \cup \{1\})|$ ≥ 88 – 2($d_G(v_4)$ – 1) – ($d_G(v_1)$ – 1)−($d_G(v_2)$ −1)−($d_G(v_3)$ −1)−1 = 92− $d_G(v_4)$ −($d_G(v_1)$ + $d_G(v_2)$ + $d_G(v_3)$ + $d_G(v_4)$) ≥ 92 – 25 – 38 = 29, $|C \setminus (M_4 \cup R(v_3) \cup \{1, a\})|$ ≥ 88 – 2($d_G(v_3)$ – $1) - (d_G(v_1) - 1) - (d_G(v_2) - 1) - (d_G(v_4) - 1) - 2 = 91 - d_G(v_3) - (d_G(v_1) +$ $d_G(v_2) + d_G(v_3) + d_G(v_4)$) ≥ 91 − 16 − 38 = 37, $|C \setminus (M_5 \cup R(v_2) \cup \{a, b\})|$ ≥ $[2.8\Delta]$ +4−2($d_G(v_2)$ −1)−($d_G(v_1)$ −1)−($d_G(v_3)$ −1)−($d_G(v_4)$ −1)− $d_G(v_5)$ −2 ≥ 1.8∆+7−*d_G*(v₂)−(*d_G*(v₁)+*d_G*(v₂)+*d_G*(v₃)+*d_G*(v₄)) ≥ 1.8∆+7−11−38 ≥ 12, and $|C \setminus (M_5 \cup R(v_1) \cup \{a, b, c\})| \geq [2.8 \Delta] + 4 - 2(d_G(v_1) - 1) - (d_G(v_2) - 1) (d_G(v_3)-1)-(d_G(v_4)-1)-d_G(v_5)-3 \geq 1.8\Delta+6-d_G(v_1)-(d_G(v_1)+d_G(v_2)+3)$ $d_G(v_3)+d_G(v_4) \geq 1.8\Delta+6-9-38 \geq 13$. Thus, the resultant coloring, denoted ϕ' , is a proper edge-*K*-coloring of *G*. Observe that $C_{\phi}(v) = \{1, a, b, c, d\}, c, d \notin C_{\phi}(v_5)$, *c*, *b*, *d* ∉ $C_{\phi'}(v_4)$, *a*, *c*, *d* ∉ $C_{\phi'}(v_3)$, *a*, *b*, *d* ∉ $C_{\phi'}(v_2)$, and *a*, *b*, *c* ∉ $C_{\phi'}(v_1)$. Since $d_G(v_5) \geq 4$ and $d_G(v_i) \geq 3$ for $i \in [1, 4]$, v is exclusive with each of its neighbors in ϕ' . Hence, ϕ' is a *K*-LNDE-coloring of *G*.

Case 1.4.2. $d_G(v_5) = 3$.

It follows that $d_G(v_i) = 3$ for all $i \in [1, 4]$. It is evident that $|M_5| < 2 \times 4 + 3 = 11$. We color vv_4 with $a \in C \setminus (M_5 \cup R(v_4))$, vv_3 with $b \in C \setminus (M_5 \cup R(v_3) \cup \{a\})$, vv_2 with $c \in C \setminus (M_5 \cup R(v_2) \cup \{a, b\})$, and vv_1 with $d \in C \setminus (M_5 \cup R(v_1) \cup \{a, b, c\})$. Then |*C*\(*M*5∪*R*(v4))| ≥ 88−11−2 = 75, |*C*\(*M*5∪*R*(v3)∪{*a*})| ≥ 88−11−2−1 = 74, $|C \setminus (M_5 \cup R(v_2) \cup \{a, b\})|$ ≥ 88 − 11 − 2 − 2 = 73, $|C \setminus (M_5 \cup R(v_1) \cup \{a, b, c\})|$ ≥ $88 - 11 - 2 - 3 = 72$. It is easy to check that the extended coloring is a *K*-LNDEcoloring of *G*.

Case 2. *G* contains a bunch $B(x, y; m)$ with $d_G(x) \ge 26$ and $m \ge 0.2d_G(x)$.

Here we use directly the notation in the definition of $B(x, y; m)$, as shown in [1.](#page-5-1) Since $d_G(x) > 26$, it follows that $m > 6$. We need to deal with the following two subcases.

Case 2.1. There exist two adjacent vertices *u* and w such that $3 \leq d_G(u) \leq$ $d_G(w) \leq 4$.

Case 2.1.1. $d_G(u) = 3$.

Let s, t be the neighbors of u other than w . In view of the proof of Case 1.1, we may assume that $d_G(s)$, $d_G(t) \geq 3$. Let $H = G - \{uw, us\}$, which has a *K*-LNDEcoloring ϕ using *C* such that $\phi(ut) = 1$. We color *us* with $a \in C \setminus (C^+_{\phi}(s) \cup C_{\phi}(w) \cup C_{\phi}(s))$ {1}) and *uw* with $b \in C \setminus (C^+_{\phi}(w) \cup C_{\phi}(s) \cup C_{\phi}(t) \cup \{a\})$. It is easy to check that $|C\setminus (C^+_{\phi}(s) \cup C_{\phi}(w) \cup \{1\})|$ ≥ [2.8∆] + 4 – 2($d_G(s)$ – 1) – ($d_G(w)$ – 1) – 1 ≥ $0.8\Delta + 6 - d_G(w) \ge 0.8\Delta + 6 - 4 = 26$ and $|C \setminus (C^+_{\phi}(w) \cup C_{\phi}(s) \cup C_{\phi}(t) \cup \{a\})|$ ≥ $[2.8\Delta$ ¹+4−2($d_G(w)$ −1)−($d_G(s)$ −1)− $d_G(t)$ −1 ≥ 0.8 Δ +6−2×4 ≥ 22. Hence, the resultant coloring ϕ' is a proper edge-*K*-coloring of *G*. Since $C_{\phi'}(u) = \{1, a, b\}$, $a \notin C_{\phi}(w)$, and $b \notin C_{\phi}(s) \cup C_{\phi}(t)$, *u* is exclusive with each of its neighbors in ϕ . Thus, ϕ is extended to *G*.

Case 2.1.2. $d_G(u) = d_G(w) = 4$.

Let s, t, z be the neighbors of *u* other than *w*. By Case 2.1.1, assume that $d_G(s)$, $d_G(t)$, $d_G(z) \geq 4$. Let $H = G - \{uw, us\}$, which has a *K*-LNDE-coloring ϕ using *C* such that $\phi(ut) = 1$ and $\phi(uz) = 2$. Since $d_H(u) = 2$, we see that 1 ∉ $C_{\phi}(z)$ and 2 ∉ $C_{\phi}(t)$. We color *us* with $a \in C \setminus (C_{\phi}^{+}(s) \cup C_{\phi}(w) \cup \{1, 2\})$ and *uw* with *b* ∈ *C* \($C^+_{\phi}(w) \cup C_{\phi}(s) \cup \{1, 2, a\}$). Since $|C \setminus (C^+_{\phi}(s) \cup C_{\phi}(w) \cup \{1, 2\})|$ ≥ $[2.8\Delta]$ +4−2($d_G(s)$ -1)−($d_G(w)$ -1)−2 ≥ 0.8 Δ +5− $d_G(w)$ = 0.8 Δ +5−4 ≥ 25 and $|C \setminus (C^+_{\phi}(w) \cup C_{\phi}(s) \cup \{1, 2, a\})|$ ≥ [2.8∆] +4-2($d_G(w) - 1$) – ($d_G(s) - 1$) – 3 ≥ $1.8\Delta + 4-2\times 4 \ge 50$, *uw* and *us* can be colored properly. Denote by ϕ' the resultant coloring. Noting that $C_{\phi}(u) = \{1, 2, a, b\}, 1 \notin C_{\phi}(z), 2 \notin C_{\phi}(t), a \notin C_{\phi}(w)$, and $b \notin C_{\phi}(s)$, we obtain a *K*-LNDE-coloring of *G*.

Case 2.2. All strictly internal brothers are of degree 2 in *G*.

Let *S* denote the set of brothers z_i 's with $d_G(z_i) = 2$ in $B(x, y; m)$. Obviously, *S* contains all strictly internal brothers of *B*(*x*, *y*; *m*). Since $d_G(x) \ge 26$ and $m \ge 26$ $0.2d_G(x) > 5$, $B(x, y; m)$ has at least one strictly internal brother. Thus, $s := |S| \ge$ $m - 5 \ge 1$. Let $H = G - S$, which has a *K*-LNDE-coloring ϕ using *C*. Let E_x $\{wx \mid w \in S\}$ and $E_y = \{wy \mid w \in S\}$. For each edge $e_x \in E_x$ and each edge $e_y \in E_y$, we define a list assignment *L* as follows:

$$
L(e_x) = C \setminus (C^+_{\phi}(x) \cup C_{\phi}(y)), L(e_y) = C \setminus (C^+_{\phi}(y) \cup C_{\phi}(x)).
$$

First suppose that $xy \notin E(G)$. Then $s \geq m-4 \geq 2$. It is easy to compute that $|L(e_y)| \geq [2.8\Delta] + 4 - 2(d_G(y) - s) - (d_G(x) - s) \geq 2.8\Delta + 4 + 3s - 2d_G(y)$ $d_G(x) \geq 0.8\Delta + 4 + s + 2s - d_G(x) \geq 0.8\Delta + 4 + s + 2(m-4) - d_G(x) \geq 0.8\Delta 4+s+2\times(0.2d_G(x))-d_G(x) = 0.8\Delta-4+s-0.6d_G(x) \geq 0.2\Delta-4+s \geq s+2,$ and $|L(e_x)| \geq [2.8\Delta] + 4 - 2(d_G(x) - s) - (d_G(y) - s) \geq 1.8\Delta + 4 + 2s + s$ $2d_G(x) \geq 1.8\Delta + 4 + 2s + (m - 4) - 2d_G(x) = 1.8\Delta + 2s + m - 2d_G(x) \geq$ $1.8\Delta + 2s + 0.2d_G(x) - 2d_G(x) \geq 2s$.

Next suppose that $xy \in E(G)$. In this case, $s \ge m - 5 \ge 1$. Because $xy \in E(G)$, we have $\phi(xy) \in C_{\phi}(x) \cap C_{\phi}(y)$ and hence $|C_{\phi}(x) \cap C_{\phi}(y)| \ge 1$. So, $|L(e_y)| \ge$ $[2.8\Delta] + 4 - 2(d_G(y) - s) - (d_G(x) - s) + 1 \geq 2.8\Delta + 5 + 3s - 2d_G(y) - d_G(x) \geq$ $0.8\Delta + 5 + s + 2s - d_G(x) > 0.8\Delta + 5 + s + 2(m - 5) - d_G(x) > 0.8\Delta - 5 +$ $s + 2 \times (0.2d_G(x)) - d_G(x) = 0.8\Delta - 5 + s - 0.6d_G(x) \ge 0.2\Delta - 5 + s \ge s + 1$, and $|L(e_x)| \geq [2.8\Delta] + 4 - 2(d_G(x) - s) - (d_G(y) - s) + 1 \geq 1.8\Delta + 5 + 2s +$ $s - 2d_G(x) \geq 1.8\Delta + 5 + 2s + (m - 5) - 2d_G(x) = 1.8\Delta + 2s + m - 2d_G(x) \geq$ $1.8\Delta + 2s + 0.2d_G(x) - 2d_G(x) \geq 2s$.

In each of the above two cases, we first color the edges in E_y with distinct colors in $L(e_y)$ and then use C_y to denote the set of colors assigned to the edges in E_y . Then we color the edges in E_x with distinct colors in $L(e_x) \setminus C_y$. It is easy to check that the resultant coloring is a *K*-LNDE-coloring of *G*. 

By Proposition 1, we have the following:

Theorem 3.3 If G is a formal planar graph, then $\chi'_{\text{snd}}(G) \leq [2.8\Delta] + 4$.

4 Planar Graphs Without 4-Cycles

For the class of planar graphs without 4-cycles, we can show that Conjecture is almost true (away from a constant). To achieve this goal, we need to apply the following structural lemma.

Lemma 4.1 ([\[18](#page-15-12)]) Let G be a planar graph with $\delta(G) \geq 2$ and without 4-cycles. Then *G* contains a k-vertex v, $k \in [2, 4]$ *, whose neighbors* v_1, \ldots, v_k *satisfy one of the following conditions, assuming* $d_G(v_1) \leq \cdots \leq d_G(v_k)$ *:*

(1) $k = 2$ *and* $d_G(v_1) \le 11$ *; (2)* $k = 3$ *and* $d_G(v_1) + d_G(v_2) \le 14$ *;* (3) $k = 4$ *and* $d_G(v_1) + d_G(v_2) + d_G(v_3) \le 15$.

Theorem 4.2 If G is a planar graph without 4-cycles, then $\chi'_{\text{Ind}}(G) \leq 2\Delta + 10$.

Proof The proof proceeds by induction on $||G||$. If $||G|| \le 2\Delta + 10$, then the result holds trivially. Let *G* be a connected planar graph with $||G|| \ge 2\Delta + 11 \ge 11$. If $\Delta \leq 11$, then $\chi'_{\text{Ind}}(G) \leq 3\Delta - 1 \leq 2\Delta + 10$ by Theorem [2.2.](#page-2-1) So suppose that $\Delta \geq 12$. Again, let $K = 2\Delta + 10$ and $C = [1, K]$ denote a set of K colors. Hence, $|C| = K = 2\Delta + 10 \geq 34.$

First assume that $\delta(G) = 1$. Let *u* be a 1-vertex adjacent to a vertex *v*. Then $d_G(v) \geq 2$ by the assumption. Let $H = G - u$, which has a *K*-LNDE-coloring ϕ

using *C*. We color *uv* with a color $a \in C \setminus C^+_{\phi}(v)$. Since $|C \setminus C^+_{\phi}(v)| \ge 2\Delta + 10$ – $2(d_G(v) - 1) \ge 2\Delta + 10 - 2(\Delta - 1) = 12$, ϕ is extended to *G*.

Next assume that $\delta(G) \geq 2$. By Lemma [4.1,](#page-9-0) *G* contains a *k*-vertex $v, k \in [2, 4]$, whose neighbors v_1, \ldots, v_k satisfy one of the conditions (1) to (3), where $d_G(v_1) \leq$ $\cdots \leq d_G(v_k)$. By the above proof, we may assume that $d_G(v_i) \geq 2$ for all $i \in [1, k]$. **Case 1.** $k = 2$ and $d_G(v_1) \le 11$.

Let $H = G - v$, which admits a *K*-LNDE-coloring ϕ using *C*. We have to discuss two possibilities.

- $d_G(v_1) = 2$. Let y be the neighbor of v_1 other than v. We color vv_2 with $a \in$ $C \setminus (C^+_{\phi}(v_2) \cup {\phi(v_1)})$ and vv_1 with $b \in C \setminus (C_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{a\})$. Since $|C\setminus (C^+_{\phi}(v_2) \cup {\phi(v_1 y)})| \ge 2\Delta + 10 - 2(d_G(v_2) - 1) - 1 \ge 11$ and $|C\setminus (C_{\phi}(y) \cup$ $C_{\phi}(v_2) \cup \{a\}) \ge 2\Delta + 10 - \Delta - (\Delta - 1) - 1 = 10, \phi$ is extended to *G*.
- $d_G(v_1) \geq 3$. We color vv_2 with $a \in C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1))$ and vv_1 with $b \in$ *C*\($C_{\phi}^{+}(v_1) \cup C_{\phi}(v_2) \cup \{a\}$). Since $|C \setminus (C_{\phi}^{+}(v_2) \cup C_{\phi}(v_1))|$ ≥ 2∆ + 10 − 2(∆ − 1)−10 ≥ 2 and $|C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{a\})|$ ≥ 2 $\Delta + 10 - 2(d_G(v_1) - 1) - \Delta$ ≥ $\Delta + 10 - 2 \times 10 \geq 2$, ϕ is extended to *G*.

Now, by Case 1, we may assume that $d_G(v_i) \geq 3$ for all $i \in [1, k]$ in the following two situations.

Case 2. $k = 3$ and $d_G(v_1) + d_G(v_2) \le 14$.

It follows that $d_G(v_1) \leq 7$ and $d_G(v_2) \leq 11$. Let $H = G - \{vv_1, vv_2\}$, which has a *K*-LNDE-coloring ϕ using *C* such that $\phi(vv_3) = 1$. We color vv_2 with $a \in$ $C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup \{1\})$ and vv_1 with $b \in C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup C_{\phi}(v_3) \cup \{a\}).$ Since $|C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup \{1\})| \ge 2\Delta + 10 - 2(\Delta - 1) - (d_G(v_1) - 1) - 1 \ge$ 12−(7-1)−1 = 5 and $|C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup C_{\phi}(v_3) \cup \{a\})|$ ≥ 2∆+10−2($d_G(v_1)$ − 1)−($d_G(v_2)$ −1)− Δ −1 ≥ Δ +12− $d_G(v_1)$ −($d_G(v_1)$ + $d_G(v_2)$) ≥ 24−7−14 = 3, both *a* and *b* exist. Let ϕ' denote the resultant coloring. Then $C_{\phi}(v) = \{1, a, b\}$, $a \notin C_{\phi}(v_1)$, and $b \notin C_{\phi}(v_2) \cup C_{\phi}(v_3)$. Thus, v is exclusive with each of its neighbors and hence ϕ is extended to *G*.

Case 3. $k = 4$ and $d_G(v_1) + d_G(v_2) + d_G(v_3) \le 15$.

Then $d_G(v_1) \leq 5$, $d_G(v_2) \leq 6$, and $d_G(v_3) \leq 9$. Let $H = G - \{vv_1, vv_2, vv_3\}$, which has a *K*-LNDE-coloring ϕ using *C* such that $\phi(vv_4) = 1$. We color vv_3 with *a* ∈ *C*\($C^+_{\phi}(v_3) \cup C_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{1\}$), *vv*₂ with *b* ∈ *C*\($C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup C_{\phi}(v_3) \cup C_{\phi}(v_4)$ *C*_{ϕ}(*v*₄) ∪ {*a*}), and *vv*₁ with *c* ∈ *C*\(*C*⁺_{ϕ}(*v*₁) ∪ *C*_{ϕ}(*v*₂) ∪ *C*_{ϕ}(*v*₄) ∪ {*a*, *b*}). Noting that $|C \setminus (C^+_{\phi}(v_3) \cup C_{\phi}(v_1) \cup C_{\phi}(v_2) \cup \{a\})|$ ≥ 34 − 2($d_G(v_3)$ − 1) − ($d_G(v_2)$ − 1)−($d_G(v_1)$ -1)−1 = 37− $d_G(v_3)$ −($d_G(v_1)$ + $d_G(v_2)$ + $d_G(v_3)$) ≥ 37−9−15 = 13, $|C \setminus (C^+_{\phi}(v_2) \cup C_{\phi}(v_1) \cup C_{\phi}(v_3) \cup C_{\phi}(v_4) \cup \{a\})|$ ≥ 2∆+10−2($d_G(v_2)$ −1)−($d_G(v_1)$ − 1) – $(d_G(v_3) - 1) - \Delta - 1 \ge \Delta + 13 - d_G(v_2) - (d_G(v_1) + d_G(v_2) + d_G(v_3))$ ≥ $\Delta + 13 - 6 - 15 \ge 4$, and $|C \setminus (C^+_{\phi}(v_1) \cup C_{\phi}(v_2) \cup C_{\phi}(v_3) \cup C_{\phi}(v_4) \cup \{a, b\})|$ ≥ $2\Delta + 10 - 2(d_G(v_1) - 1) - (d_G(v_2) - 1) - (d_G(v_3) - 1) - \Delta - 2 \geq \Delta + 12$ $d_G(v_1) - (d_G(v_1) + d_G(v_2) + d_G(v_3)) \geq \Delta + 12 - 5 - 15 \geq 4$, vv_1, vv_2, vv_3 can be properly colored. Let ϕ' denote the resultant coloring. Since $C_{\phi'}(v) = \{1, a, b, c\}$, $a, b \notin C_{\phi}(v_1), a, c \notin C_{\phi}(v_2), c, b \notin C_{\phi}(v_3),$ and $b, c \notin C_{\phi}(v_4), \phi'$ is a *K*-LNDEcoloring of *G*.

By Proposition 1, the following theorem holds automatically.

Theorem 4.3 If G is a formal planar graph without 4-cycles, then $\chi'_{\text{snd}}(G) \leq 2\Delta + 10$.

5 Planar Graphs with [2*, ^k***]-Factors**

For two positive integers k_1, k_2 with $k_2 \geq k_1$, a spanning subgraph *F* of a graph *G* is called an $[k_1, k_2]$ -*factor* if $k_1 \leq d_F(v) \leq k_2$ for all $v \in V(G)$. Tutte [\[15\]](#page-15-13) showed that every 4-connected planar graph is Hamiltonian, i.e., it has a 2-connected [2, 2] factor. By relaxing the 4-connected condition, Gao [\[7\]](#page-15-14) showed that every 3-connected planar graph has a 2-connected [2, 6]-factor. Enomoto et al. [\[5\]](#page-15-15) extended this result by showing that every 3-connected planar graph *G* with $\delta(G) \geq 4$ has a 2-connected [2, 3]-factor. Both numbers 6 and 3 in these two results are best possible with respect to the required conditions.

The *core* G_{Δ} of a graph *G* is the subgraph of *G* induced by Δ -vertices.

Lemma 5.1 *Let* $k \geq 3$ *. If a connected graph G has a connected* [2, k]*-factor, then G contains a connected* [2, *k*]*-factor F whose core is acyclic.*

Proof Let *F* be a connected [2, *k*]-factor of *G* with the least number of edges. We claim that the core of *F* is acyclic. Suppose to the contrary that F_{Δ} contains a cycle *C*. Let $e = xy \in E(C)$ be an arbitrary edge, and set $F' = F - e$. Obviously, F' is a connected spanning subgraph of *G*. If $v \in V(G) \setminus \{x, y\}$, then $d_{F}(v) = d_{F}(v)$. If $v \in \{x, y\}$, then $d_{F}(v) = d_{F}(v) - 1 \ge k - 1 \ge 2$. It follows that *F'* is a connected [2, k]-factor of *G* with $||F'|| < ||F||$, which contradicts the choice of *F*.

The following result can be derived from Lemma [5.1](#page-11-0) and the results in [\[5\]](#page-15-15) and [\[7](#page-15-14)].

Corollary 5.2 *Let G be a planar graph.*

- *(1) If G is* 3*-connected, then G contains a connected* [2, 6]*-factor F whose core is acyclic.*
- *(2) If G is 3-connected and* $\delta(G) \geq 4$ *, then G contains a connected* [2, 3]*-factor F whose core is acyclic.*

The celebrated Vizing's Theorem gives a tight upper bound for the chromatic index of a simple graph.

Theorem 5.3 ([\[16](#page-15-16)]) *Every simple graph G has* $\Delta \leq \chi'(G) \leq \Delta + 1$ *.*

A simple graph *G* is said to be *Class* 1 if $\chi'(G) = \Delta$ and *Class* 2 if $\chi'(G) = \Delta + 1$.

Theorem 5.4 ([\[6](#page-15-17)]) *If the core of a simple graph G is a forest, then G is Class* 1*.*

Theorem 5.5 ([\[14](#page-15-18)]) *If G is a planar graph with* $\Delta \geq 7$ *, then G is Class* 1*.*

An *edge-partition* of a graph *G* is a decomposition of *G* into subgraphs *G*1,..., *Gm* such that $E(G) = E(G_1) \cup \cdots \cup E(G_m)$ and $E(G_i) \cap E(G_i) = \emptyset$ for $i \neq j$.

Suppose that *H* is a subgraph of a graph *G*. A *restricted-strong edge-k-coloring* of *H* on *G* is an edge-coloring $\phi : E(H) \to [1, k]$ such that any two edges $e_1, e_2 \in E(H)$ having distance at most two in *G* get distinct colors. The *restricted-strong chromatic*

index of *H* on *G*, denoted $\chi_s(H|_G)$, is the smallest integer *k* such that *H* has a restricted-strong edge-*k*-coloring on *G*.

Since all planar graphs *G* considered in Theorems [5.6](#page-12-0) to [5.11](#page-14-1) contain a [2, *k*]-factor, it follows that $\delta(G) \geq 2$, which implies that $\chi'_{\text{Ind}}(G) = \chi'_{\text{snd}}(G)$ by Proposition 1.

Theorem 5.6 *Suppose that a connected graph G can be edge-partitioned into two graphs F and H such that F is a connected* $[2, k]$ *-factor of G with* $k \geq 2$ *. Then* $\chi'_{\text{snd}}(G) \leq \chi'(H) + \chi'_{\text{s}}(F|G).$

Proof Note that $2 \le \delta(F) \le \Delta(F) \le k$ and $\Delta(H) \le \Delta(G) - \delta(F) \le \Delta(G) - 2$. Let $\chi'(H) = l$ and $\chi'_{s}(F|G) = m$. Let ϕ be an edge-*l*-coloring of *H* using the color set $C_1 = [1, l]$ and π be a restricted-strong-edge-coloring of *F* on *G* using the color set $C_2 = [l+1, l+m]$. We define an edge-coloring *f* of *G* as follows: $f(e) = \phi(e)$ for $e \in$ $E(H)$, and $f(e) = \pi(e)$ for $e \in E(F)$. Obviously, f is a proper edge- $(l+m)$ -coloring of *G* using the color set $C_1 \cup C_2$. If we can show that *f* is strict neighbor-distinguishing, then it holds naturally that $\chi'_{\text{snd}}(G) \le l + m = \chi'(H) + \chi'_{\text{s}}(F|_G)$. In fact, for any edge *e* = *xy* ∈ *E*(*G*), since $d_F(x)$, $d_F(y)$ ≥ 2, there exist an edge e_x ∈ *E*(*F*) \{*e*} incident with *x* and an edge $e_y \in E(F) \setminus \{e\}$ incident with *y*. Since e_x and e_y have the distance 2 in *G*, it follows that $\pi(e_x) \notin C_{\pi}(y)$ and $\pi(e_y) \notin C_{\pi}(x)$. Because $C_1 \cap C_2 = \emptyset$, we have that $\pi(e_x) \notin C_f(y)$ and $\pi(e_y) \notin C_f(x)$, and so x and y are exclusive. have that $\pi(e_x) \notin C_f(y)$ and $\pi(e_y) \notin C_f(x)$, and so x and y are exclusive.

A family of graphs *G* is called *minor-closure* if it is closed under deleting vertices, deleting edges, or contracting edges. Let $\chi(G)$ denote the chromatic number of a graph *G*, which is defined as the smallest integer *k* for which the vertices of *G* can be colored using *k* colors such that no two adjacent vertices get same color. For a family of minor-closure graphs G , we define $\chi(G) = \max{\chi(G) | G \in G}$. It is easily seen that the family of planar graphs, denoted P , is minor-closure and $\chi(P) \leq 4$ by the Four-Color Theorem [\[2](#page-15-19)].

Lemma 5.7 ([\[22](#page-15-20)]) If F is a subgraph of a planar graph G, then $\chi'(F|_G) \leq 4\chi'(F)$.

Combining Theorem [5.6](#page-12-0) and Lemma [5.7,](#page-12-1) the following theorem holds automatically.

Theorem 5.8 *Let G be a connected planar graph with a connected* [2, *k*]*-factor F, and* $H = G - E(F)$ *. Then* $\chi'_{\text{snd}}(G) \leq \chi'(H) + 4\chi'(F)$ *.*

Theorem 5.9 *Let G be a planar graph. Then the following statements*(1) *and* (2) *hold.* (1) *If G is* 3*-connected, then* $\chi'_{\text{snd}}(G) \leq \Delta + 23$.

(2) *If G is* 3*-connected and* $\delta(G) \geq 4$ *, then* $\chi'_{\text{snd}}(G) \leq \Delta + 11$ *.*

Proof (1) Since *G* is 3-connected, it follows from Corollary [5.2\(](#page-11-1)1) that *G* has a connected [2, 6]-factor *F* whose core is acyclic. Let $H = G - E(F)$. Then *G* is edge-partitioned into two subgraphs *F* and *H*. If $\Delta(F) \le 5$, then $\chi'(F) \le 5 + 1 = 6$ by Theorem [5.3.](#page-11-2) If $\Delta(F) = 6$, then $\chi'(F) = 6$ by Theorem [5.4.](#page-11-3) Hence, it always holds that $\chi'(F) \leq 6$. On the other hand, since $\Delta(H) \leq \Delta(G) - 2$, we have $χ'(H)$ ≤ $Δ(G) - 2 + 1 = Δ - 1$ by Theorem [5.3.](#page-11-2) So, by Theorem [5.8,](#page-12-2) $\chi'_{\text{snd}}(G) \leq \chi'(H) + 4\chi'(F) \leq \Delta(H) + 4 \times 6 \leq \Delta - 1 + 24 = \Delta + 23.$

(2) By Corollary [5.2\(](#page-11-1)2), *G* has a connected [2, 3]-factor *F* whose core is acyclic. Let $H = G - E(F)$. Then *G* is edge-partitioned into two subgraphs *F* and *H*. If $\Delta(F) = 2$, then $\chi'(F) \leq 2 + 1 = 3$ by Theorem [5.3.](#page-11-2) If $\Delta(F) = 3$, then $\chi'(F) = 3$ by Theorem [5.4.](#page-11-3) Hence, we always have that $\chi'(F) \leq 3$. By The-orem [5.3,](#page-11-2) $\chi'(H) \leq \Delta(H) + 1 \leq \Delta(G) - 2 + 1 = \Delta - 1$. By Theorem [5.8,](#page-12-2) $\chi'_{\text{snd}}(G) \leq \chi'(H) + 4\chi'(F) \leq \Delta - 1 + 4 \times 3 = \Delta + 11.$

Theorem 5.10 If a planar graph G is Hamiltonian, then $\chi'_{\text{snd}}(G) \leq \Delta + 6$.

Proof Let $C = v_0v_1 \cdots v_{n-1}v_0$ be a Hamiltonian cycle of *G*, where $n = |V(G)|$. Let $H = G - E(C)$. Then $H \cup C$ is an edge-partition of *G* with $\Delta(H) \leq \Delta - 2$. Let $\chi'(H) = k$. First we give an edge-*k*-coloring of *H* using the color set $B_1 = [1, k]$. Then we define an edge-7-coloring π of *C* using the color set $B_2 = [k+1, k+7]$ in two ways below:

- Assume that *n* is even. Set $M = \{v_0v_1, v_2v_3, \ldots, v_{n-2}v_{n-1}\}$, and give a restrictedstrong edge-4-coloring of *M* on *G* using the colors in $[k+1, k+4]$. Afterward, if $n \equiv 0 \pmod{4}$, then we color alternatively $v_1v_2, v_3v_4, \ldots, v_{n-1}v_0$ with $k+5$ and $k + 6$. If $n \equiv 2 \pmod{4}$, then we color v_1v_2 with $k + 7$, and then color alternatively $v_3v_4, v_5v_6, \ldots, v_{n-1}v_0$ with $k+5$ and $k+6$.
- Assume that *n* is odd. Set $M = \{v_0v_1, v_2v_3, \ldots, v_{n-3}v_{n-2}\}$, and give a restrictedstrong edge-4-coloring of *M* on *G* using $[k + 1, k + 4]$. Then we color $v_{n-1}v_0$ with $k + 7$ and then color alternatively $v_1v_2, v_3v_4, \ldots, v_{n-2}v_{n-1}$ with $k + 5$ and $k + 6$.

Let *f* denote the resultant edge- $(k + 7)$ -coloring of *G* formed by combining ϕ and π , using the color set $B_1 \cup B_2$. It is easy to inspect that f is proper, i.e., any two adjacent edges having distinct colors. It remains to show that f is strict neighbordistinguishing. Let $e = xy$ be an arbitrary edge of G. By the definition of M, at most one of *x* and *y* is not incident with any edge in *M*.

First assume that each of *x* and *y* is incident with an edge in *M*, respectively. Since *M* is a matching of *G*, there exist the unique $e_x \in M$ incident with *x* and the unique $e_y \in M$ incident with *y*. We have two possibilities as follows.

- $e_x = e_y$, that is, $e = e_x = e_y \in M$, say $e = v_i v_{i+1}$, where indices are taken modulo *n*. Then $v_{i-1}v_i$, $v_{i+1}v_{i+2} \in E(C) \setminus M$. By the definition of π , $\pi(v_{i-1}v_i)$, $\pi(v_{i+1}v_{i+2}) \in [k+5, k+7]$ and $\pi(v_{i-1}v_i) \neq \pi(v_{i+1}v_{i+2})$. Noting that $\pi(v_{i-1}v_i) \notin C_f(v_{i+1})$ and $\pi(v_{i+1}v_{i+2}) \notin C_f(v_i)$, v_i and v_{i+1} are exclusive in *f* .
- $e_x \neq e_y$. Since e_x and e_y have distance 2 in *G*, the definition of π implies that $\pi(e_x) \neq \pi(e_y)$ and $\pi(e_x)$, $\pi(e_y) \in [k+1, k+4]$. So, $\pi(e_x) \notin C_f(y)$ and $\pi(e_y) \notin C_f(x)$, and henceforth *x* and *y* are exclusive. Next assume that *x* is not incident with any edge in *M*. Then $x = v_{n-1}$. There are two subcases to be considered.
- *y* ∈ {*v*₀, *v*_{*n*−2}}, say *y* = *v*₀. Because *v*₀*v*₁ ∈ *M* satisfies π (*v*₀*v*₁) ∈ [*k* + 1, *k* + 4], and $v_{n-2}v_{n-1} \in E(C) \backslash M$ satisfies $\phi(v_{n-2}v_{n-1}) \in [k+5, k+7]$, it follows that $\pi(v_0v_1) \notin C_f(v_{n-1})$ and $\pi(v_{n-2}v_{n-1}) \notin C_f(v_0)$, and therefore, *x* and *y* are exclusive.

• $y \in \{v_1, \ldots, v_{n-2}\},$ say $y = v_i$ for some $i \in [1, n-2]$. Then exactly one of $v_{i-1}v_i$ and v_iv_{i+1} belongs to *M*, whose color is $a \in [k+1, k+4]$. Moreover, assuming that $\pi(v_{n-1}v_0) = b$ and $\pi(v_{n-2}v_{n-1}) = c$, then $b, c \in [k+5, k+7]$. Since $a \notin C_f(v_{n-1})$ and at least one of *b* and *c* does not belong to $C_f(v_i)$, *x* and *y* are exclusive.

The above analysis and Theorem [5.3](#page-11-2) show that $\chi'_{\text{snd}}(G) \le k + 4 + 3 \le \Delta - 1 + 7 =$ $\Delta + 6$.

By Theorem [5.5](#page-11-4) and the proof of Theorem [5.10,](#page-13-0) we can obtain the following better result.

Theorem 5.11 *If G is a Hamiltonian planar graph with* $|G| \equiv 0 \pmod{4}$ *and* $\Delta \ge 9$ *, then* $\chi'_{\text{snd}}(G) \leq \Delta + 4$ *.*

A *Halin graph* is a plane graph $G = T \cup C$, where *T* is a plane tree with no vertex of degree two and at least one vertex of degree three or more, and *C* is a cycle connecting the pendant vertices of *T* in the cyclic order determined by the drawing of *T* .

Halin graphs are 3-connected, but any of their proper subgraphs is not. Bondy and Lovász [\[3\]](#page-15-21) showed that Halin graphs are almost pancyclic with the possible exception of an even cycle. In particular, Halin graphs are Hamiltonian.

By Theorem [5.10,](#page-13-0) we have the following:

Corollary 5.12 *If G is a Halin graph, then* $\chi'_{\text{snd}}(G) \leq \Delta + 6$ *.*

6 Concluding Remarks

In this section, we are going to provide some open problems on the local neighbordistinguishing edge-coloring of graphs. In contrast to Conjecture 2, we first put forward the following conjecture:

Conjecture 3 *Every connected graph G, different from H*_{\triangle}, *has* $\chi'_{\text{ind}}(G) \leq 2\Delta$. *Observing the local neighbor-distinguishing index of K*2,*n, we see that the upper bound* 2Δ *in Conjecture* 3 *is tight if it were true.*

Problem 1. *Does every planar graph satisfy Conjecture* 3 ? **Problem 2.** *Is it true that there exists a constant c such that every planar graph G without* 4-*cycles has* $\chi'_{\text{Ind}}(G) \leq \Delta + c$?

Declarations

Conflict of interest The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this paper.

References

1. Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong edge colorings of graphs. Discret. Math. **306**, 3005–3010 (2006)

- 2. Appel, K., Haken, W.: Every planar map is four colourable. Bull. Am. Math. Soc. **82**, 711–712 (1976)
- 3. Bondy, J.A., Lovász, L.: Length of cycles in Halin graphs. J. Graph Theory **8**, 397–410 (1985)
- 4. Borodin, O.V., Broersam, H.J., Glebov, A., den Heuvel, J.: Stars and bunches in planar graphs, Part II: general planar graphs and colorings. Diskretn. Anal. Issled. Oper. Ser. **18**(4), 9–33 (2001). (**in Russian**)
- 5. Enomoto, H., Iida, T., Ota, K.: Connected spanning subgraphs of 3-connected planar graphs. J. Comb. Theory Ser. B **68**, 314–323 (1996)
- 6. Fournier, J.C.: Coloration des arêtes d'un graphe. Cahiers du CERO (Bruxelles) **15**, 311–314 (1973)
- 7. Gao, Z.: 2-Connected coverings of bounded degree in 3-connected graphs. J. Graph Theory **20**, 327–338 (1995)
- 8. Gu, J., Wang, W., Wang, Y., Wang, Y.: Strict neighbor-distinguishing index of subcubic graphs. Graphs Comb. **37**, 355–368 (2021)
- 9. Gu, J., Wang, Y., Wang, W., Zheng, L.: Strict neighbor-distinguishing index of *K*4-minor-free graphs. Discret. Appl. Math. **329**, 87–95 (2023)
- 10. Hatami, H.: Δ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. Comb. Theory Ser. B **95**, 246–256 (2005)
- 11. Horňák, M., Huang, D., Wang, W.: On neighbor-distinguishing index of planar graphs. J. Graph Theory **76**, 262–278 (2014)
- 12. Jing, P., Wang, Y., Wang, W., Zheng, L.: Strict neighbor-distinguishing index of planar graphs. Sci. Sin. Math. **53**, 1–20 (2023). [https://doi.org/10.1360/SSM-2021-0178.](https://doi.org/10.1360/SSM-2021-0178) (**in Chinese**)
- 13. Joret, G., Lochet, W.: Progress on the adjacent vertex distinguishing edge coloring conjecture. SIAM J. Discret. Math. **34**, 2221–2238 (2020)
- 14. Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class I. J. Comb. Theory Ser. B **83**, 201–212 (2001)
- 15. Tutte, W.T.: A theorem on planar graphs. Trans. Am. Math. Soc. **82**, 99–116 (1956)
- 16. Vizing, V.G.: On an estimate of the chromatic index of a ρ-graph. Diskret. Anal. **3**, 25–30 (1964)
- 17. Vuˇckovi´c, B.: Edge-partitions of graphs and their neighbor-distinguishing index. Discret. Math. **340**, 3092–3096 (2017)
- 18. Wang, W., Wang, Y.: Linear coloring of planar graphs without 4-cycles. Graphs Comb. **29**, 1113–1124 (2013)
- 19. Wang, W., Xia, W., Huo, J., Wang, Y.: On the neighbor-distinguishing indices of planar graphs. Bull. Malays. Math. Sci. Soc. **45**, 677–696 (2022)
- 20. Wang, W., Huang, D.: A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree. SIAM J. Discret. Math. **29**, 2412–2431 (2015)
- 21. Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discret. Math. **338**, 2006–2013 (2015)
- 22. Wang, Y., Wang, W., Wang, Y.: Edge-partition and star chromatic index. Appl. Math. Comput. **333**, 480–489 (2018)
- 23. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. **15**, 623–626 (2002)
- 24. Zhu, E., Wang, Z., Zhang, Z.: On the Smarandachely adjacent vertex edge coloring of some double graphs. J. Shandong Univ. Nat. Sci. **44**(12), 25–29 (2009)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.