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Abstract
Suppose thatG is a graph and φ is a proper edge-coloring ofG. For a vertex v ∈ V (G),
let Cφ(v) denote the set of colors assigned to the edges incident with v. The graph G
is local neighbor-distinguishing with respect to the coloring φ if for any two adjacent
vertices x and y of degree at least two, it holds that Cφ(x) � Cφ(y) and Cφ(y) �
Cφ(x). The local neighbor-distinguishing index, denoted χ ′

lnd(G), of G is defined as
the minimum number of colors in a local neighbor-distinguishing edge-coloring of
G. For n ≥ 2, let Hn denote the graph obtained from the bipartite graph K2,n by
inserting a 2-vertex into one edge. In this paper, we show the following results: (1)
For any graph G, χ ′

lnd(G) ≤ 3� − 1; (2) suppose that G is a planar graph. Then
χ ′
lnd(G) ≤ �2.8�� + 4; and moreover χ ′

lnd(G) ≤ 2� + 10 if G contains no 4-cycles;
χ ′
lnd(G) ≤ � + 23 if G is 3-connected; and χ ′

lnd(G) ≤ � + 6 if G is Hamiltonian.
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1 Introduction

Only simple graphs are considered in this paper. Let G be a graph with vertex set
V (G), edge set E(G), minimum degree δ(G) and maximum degree �(G) (for short,
�). For a vertex v ∈ V (G), let dG(v) denote the degree of v in G. Set |G| = |V (G)|
and ||G|| = |E(G)|. A k-vertex, k−-vertex, and k+-vertex of G are a vertex with
degree k, at most k, and at least k, respectively. A graph G is normal if it contains
no isolated edges, and formal if it contains no leaves. A graph G is called planar if
it can be embedded in the plane such that all edges intersect in their end-vertices. A
plane graph is a particular drawing of a planar graph in the plane. For two nonnegative
integers p, q with p < q, we use [p, q] to denote the set of all integers between p
and q (including p and q).

An edge-k-coloring of a graph G is a mapping φ from the edge set E(G) to the
color set {1, 2, . . . , k} such that no two adjacent edges get same color. Here two edges
are said to be adjacent if they share at least one common end vertex. The chromatic
index χ ′(G) of the graph G is defined as the smallest integer k such that G admits
an edge-coloring using k colors. Given an edge-k-coloring φ of G and for a vertex
v ∈ V (G), we useCφ(v) to denote the set of colors assigned to the edges incident with
v. Suppose that x, y are any pair of adjacent vertices in G. We say that φ is neighbor-
distinguishing if Cφ(x) �= Cφ(y), strict neighbor-distinguishing if Cφ(x) � Cφ(y)
and Cφ(y) � Cφ(x), and local neighbor-distinguishing if Cφ(x) � Cφ(y) and
Cφ(y) � Cφ(x) whenever dG(x), dG(y) ≥ 2. The neighbor-distinguishing index
χ ′
a(G) (strict neighbor-distinguishing index χ ′

snd(G), local neighbor-distinguishing
index χ ′

lnd(G), respectively) of G is the smallest k such that G has a neighbor-
distinguishing edge-k-coloring (a strict neighbor-distinguishing edge-k-coloring, a
local neighbor-distinguishing edge-k-coloring, respectively).

As an easy observation, a graph G has a neighbor-distinguishing edge-coloring if
and only if G is normal, and G has a strict neighbor-distinguishing edge-coloring if
and only if G is formal. But the local neighbor-distinguishing edge-coloring is well
defined for any graph G.

It is evident that χ ′
snd(G) ≥ χ ′

a(G) ≥ � for any formal graph G. Moreover, the
following propositions hold obviously.

Proposition 1 If G is a graph with δ(G) ≥ 2, then χ ′
lnd(G) = χ ′

snd(G).

Proposition 2 If G is an r (≥ 2)-regular graph, then χ ′
lnd(G) = χ ′

snd(G) = χ ′
a(G).

Zhang et al. [23] introduced the neighbor-distinguishing edge-coloring of graphs
and proposed the following challenging conjecture.

Conjecture 1 Every normal graph G, other than a 5-cycle, has χ ′
a(G) ≤ � + 2.

Akbari et al. [1] proved that every normal graphG satisfiesχ ′
a(G) ≤ 3�. This result

was gradually improved to χ ′
a(G) ≤ 2.5� byWang et al. [21], and to χ ′

a(G) ≤ 2�+2
by Vučković [17]. In 2005, using probabilistic analysis, Hatami [10] showed that every
normal graph G with � > 1020 has χ ′

a(G) ≤ � + 300. Recently, this result was
improved, by Joret and Lochet [13], to that χ ′

a(G) ≤ � + 19 for a normal graph

123



Local Neighbor-Distinguishing Index of Graphs Page 3 of 16 83

with sufficiently large �. Suppose that G is a normal planar graph. It was shown in
[11] that if � ≥ 12 then χ ′

a(G) ≤ � + 2. Moreover, Wang and Huang [20] showed
that if � ≥ 16, then � ≤ χ ′

a(G) ≤ � + 1, and χ ′
a(G) = � + 1 if and only if G

contains adjacent �-vertices. This result was improved in [19] to that if � ≥ 14,
then � ≤ χ ′

a(G) ≤ � + 1, and χ ′
a(G) = � + 1 if and only if G contains adjacent

�-vertices.
The strict neighbor-distinguishing edge-coloring of graphs was studied in [24]

(named there the Smarandachely adjacent vertex edge coloring). Let Hn (n ≥ 2)
denote the graph obtained from the bipartite graph K2,n by inserting a 2-vertex into
one edge. It is easy to show that χ ′

snd(Hn) = 2n + 1 = 2�(Hn) + 1. Based on this
fact, Gu et al. [8] raised the following conjecture.

Conjecture 2 Every connected formal graphG, different from H�, hasχ ′
snd(G) ≤ 2�.

Because χ ′
snd(K2,n) = 2n = 2�(K2,n), the upper bound 2� in Conjecture 2 is

sharp. Conjecture 2 remains open, but it was confirmed for graphs with � ≤ 3 in [8]
and K4-minor-free graphs in [9].

In this paper, we continue to study the strict neighbor-distinguishing edge-coloring
of graphs, in particular, for the class of planar graphs. As a helpful tool, we consider
its relaxed form, i.e., local neighbor-distinguishing edge-coloring of graphs. Our main
results in this paper are stated as follows:

• χ ′
lnd(G) ≤ 3� − 1 for any simple graph G;

• χ ′
lnd(G) ≤ �2.8�� + 4 for a planar graph G;

• χ ′
lnd(G) ≤ 2� + 10 for a planar graph G without 4-cycles;

• χ ′
lnd(G) ≤ � + 23 for a 3-connected planar graph G;

• χ ′
lnd(G) ≤ � + 6 for a Hamiltonian planar graph G.

2 An Upper Bound

Let G be a graph and φ be a local neighbor-distinguishing edge-k-coloring of G. For
the sake of briefness, φ is called a k-LNDE-coloring ofG. Two adjacent vertices u and
v are exclusive in φ if Cφ(u) � Cφ(v) and Cφ(v) � Cφ(u). To give an upper bound
of the local neighbor-distinguishing index of a graph, we need to use the following
result:

Lemma 2.1 ([23]) For a cycle Cn with n ≥ 3,

χ ′
a(Cn) =

⎧
⎨

⎩

3, if n = 3;
5, if n = 5;
4, if n �= 3, 5.

Theorem 2.2 Every graph with � ≥ 2 has χ ′
lnd(G) ≤ 3� − 1.

Proof The proof is by induction on the edge number ||G||. If ||G|| ≤ 3� − 1, then
the result holds trivially since we can color the edges of G with distinct colors. Let
G be a graph with ||G|| ≥ 3� ≥ 6. Without loss of generality, assume that G is
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connected. So, it follows that � ≥ 2 and δ(G) ≥ 1. In the following, we write simply
K = 3� − 1 and let C = [1, K ] denote the set of K colors.

First assume that δ(G) = 1. Let v be a vertex adjacent to leaves x1, . . . , xl and 2+-
vertices y1, . . . , yk , where l ≥ 1 and k ≥ 0. Let H = G − x1. Then H is a graph with
||H || < ||G|| and �(H) ≤ �. By the induction hypothesis, H admits a K -LNDE-
coloring φ using the color set C . For i ∈ [1, k], since v and yi are exclusive in φ, there
exists a color ri ∈ Cφ(yi )\Cφ(v). Set R(v) = {r1, . . . , rk}, which is called the second-
level forbidden set of vertex v. Obviously, |R(v)| ≤ k. Based on φ, we color vx1 with
a color a ∈ C\(Cφ(v)∪ R(v)). Since |C\(Cφ(v)∪ R(v))| ≥ 3�−1−|Cφ(v)|− k ≥
3� − 1− (� − 1) − (� − 1) = � + 1 ≥ 3, a exists and so the coloring is available.
It is easy to check that the resultant coloring is a K -LNDE-coloring of G.

Next assume that δ(G) ≥ 2. If � = 2, then G is a cycle. By Lemma 2.1 and
Proposition 2, χ ′

lnd(G) = χ ′
a(G) ≤ 5 = 3� − 1. So assume that � ≥ 3. The proof is

split into two cases as follows, depending on the size of δ(G).
Case I.δ(G) = 2.
Let v be a 2-vertex with neighbors v1, v2 such that dG(v1) ≤ dG(v2). Without loss

of generality, we may suppose that dG(v2) ≥ 3 by the assumption that � ≥ 3. The
proof is split into two subcases as follows.

• dG(v1) = 2. Let u1 be the neighbor of v1 other than v. If u1 = v2, then H =
G−vv1 is a graphwith ||H || < ||G|| and�(H) = �. By the induction hypothesis,
H admits a K -LNDE-coloring φ using the color set C . Based in φ, it suffices to
color vv1 with some color in C \ Cφ(v2). If u1 �= v2, then let H = G − v, which
has a K -LNDE-coloring φ using the color set C by the induction hypothesis. We
first color vv2 with a ∈ C\(Cφ(v2) ∪ R(v2) ∪ {φ(v1u1)}), where R(v2) is the
second-level forbidden set of vertex v2, as defined before. Then we color vv1 with
b ∈ C\(Cφ(u1)∪Cφ(v2)∪{a}). For short, we writeC+

φ (v2) = Cφ(v2)∪ R(v2) in

the following discussion. Since |C\(C+
φ (v2)∪{φ(v1u1)})| ≥ 3�−1−2(dG(v2)−

1)− 1 ≥ � ≥ 2 and |C\(Cφ(u1)∪Cφ(v2)∪ {a})| ≥ 3�− 1− 2� ≥ �− 1 ≥ 1,
both a and b exist and hence φ is extended to G.

• dG(v1) ≥ 3. Let H = G−v, which admits a K -LNDE-coloring φ usingC . Based
onφ, we color vv1 with a ∈ C\(C+

φ (v1)∪Cφ(v2)), and vv2 with b ∈ C\(C+
φ (v2)∪

Cφ(v1)∪{a}). Since |C\(C+
φ (v1)∪Cφ(v2))| ≥ 3�−1−2(�−1)− (�−1) ≥ 2

and |C\(C+
φ (v2) ∪Cφ(v1) ∪ {a})| ≥ 3� − 1− 2(� − 1) − (� − 1) − 1 ≥ 1, a, b

exist and φ is extended to G.

Case II. δ(G) ≥ 3.
Take a vertex v ∈ V (G)with dG(v) = δ(G) ≥ 3. Let v0, . . . , vk−1 be the neighbors

of v in G, where k = dG(v). Let H = G − v. Then H is a graph with δ(H) ≥
2, �(H) ≤ �, and ||H || < ||G||. By the induction hypothesis, H admits a K -
LNDE-coloring φ using C . Let x1, . . . , xm be the neighbors of v0 in H , where m =
dG(v0) − 1 ≥ 2. For i ∈ [1,m], there exists a color ri ∈ Cφ(xi )\Cφ(v0) since
v0 and xi are exclusive in φ. Let R(v0) = {r1, . . . , rm}. Similarly, we can define
R(v1), . . . , R(vk−1). Let Ui = C+

φ (vi ) for i ∈ [0, k − 1]. Then |Ui | = |Cφ(vi ) ∪
R(vi )| ≤ |Cφ(vi )| + |R(vi )| ≤ (� − 1) + (� − 1) = 2� − 2.
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To extend φ to G, we design a coloring procedure as following.
Step 0. Color vv0 with a color c0 ∈ C\(U0 ∪ Cφ(v1)), and then set B0 = {c0}.
Step 1. For i ∈ [1, k − 1], we do the following operation, where all indices are taken
modulo k:

• If Bi−1 ⊆ Cφ(vi+1), then we color vvi with a color ci ∈ C \ (Ui ∪ Cφ(vi+1));
otherwise, we color vvi with a color ci ∈ C\(Ui ∪ Bi−1).

• Set Bi = Bi−1 ∪ {ci }.
Step 2. If i = k − 1, stop. Otherwise, set i = i + 1, then go to Step 1.

Let π denote the resultant edge-coloring of G after the above iterative process is
ended. Let B = Bk−1. Then B = Cπ (v). We will show that π is a K -LNDE-coloring
of G.
Claim 1. π is a proper edge-K -coloring of G.

Proof We first prove the existence of the color ci for i ∈ [0, k − 1]. In fact, since
|C\(U0∪Cφ(v1))| ≥ |C |−|U0|−|Cφ(v1)| ≥ (3�−1)−(2�−2)−(�−1) = 2, c0
exists. Assume that 1 ≤ i ≤ k−1. If Bi−1 ⊆ Cφ(vi+1), then ci ∈ C \(Ui ∪Cφ(vi+1))

by Step 1. Since |C\(Ui ∪ Cφ(vi+1))| ≥ (3� − 1) − (2� − 2) − (� − 1) = 2, ci
exists. Otherwise, Bi−1 � Cφ(vi+1). By Step 1, ci ∈ C\(Ui ∪ Bi−1). Since |Bi−1| ≤
i ≤ k − 1 = dG(v) − 1 = δ(G) − 1 ≤ � − 2, it follows that |C\(Ui ∪ Bi−1)| ≤
(3� − 1) − (2� − 2) − (� − 2) = 3; thus, ci exists. Next, we need to show that
c0, c1, . . . , ck−1 are mutually distinct. Actually, this is true from the definition of Bi ’s.
Hence, π is a proper edge-K -coloring of G. ��
Claim 2. π is local neighbor-distinguishing.

Proof It suffices to show that for any edge xy ∈ E(G), we have

Cπ (x) � Cπ (y) and Cπ (y) � Cπ (x)(∗)

By symmetry, we consider the following three possibilities.
Case 1. x, y /∈ {v, v0, . . . , vk−1}.
Note that π(e) = φ(e) for each edge e incident with x or y in G. This implies that

Cπ (x) = Cφ(x) and Cπ (y) = Cφ(y). Since Cφ(x) � Cφ(y) and Cφ(y) � Cφ(x),
(∗) holds.

Case 2. y /∈ {v, v0, . . . , vk−1} and x = vi for some i ∈ [0, k − 1].
By symmetry, suppose that i = 0, i.e., x = v0. ThenCπ (y) = Cφ(y) andCπ (v0) =

Cφ(v0) ∪ {c0}. Since Cφ(v0) � Cφ(y), it is immediate to derive that Cπ (v0) =
Cφ(v0) ∪ {c0} � Cφ(y) = Cπ (y). Conversely, there is a color b ∈ R(v0) such that
b ∈ Cφ(y)\Cφ(v0) and c0 �= b. This implies that Cπ (y) � Cπ (v0). Hence, (∗) holds.

Case 3. x = v and y = vi for some i ∈ [0, k − 1].
Then Cπ (v) = B and Cπ (vi ) = Cφ(vi ) ∪ {ci }. Let i ∈ [0, k − 1]. Since dG(v) =

k = δ(G) ≤ dG(vi ), it is easy to derive that Cπ (vi ) �⊂ Cπ (v) = B. Conversely,
suppose that B ⊂ Cπ (vi ). We discuss three possibilities to get a contradiction.

• i = 0. Since Bk−2 = {c0, . . . , ck−2} ⊂ B ⊂ Cπ (v0), it follows that ck−1 ∈
C\(Uk−1∪Cφ(v0)) by Step 1. This implies that ck−1 /∈ Cφ(v0), which contradicts
the assumption that ck−1 ∈ Bk−1 = B ⊂ Cπ (v0).
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Fig. 1 a B(x, y;m) with xy /∈ E(G); b B(x, y;m) with xy ∈ E(G)

• i = 1. Step 0 implies that c0 ∈ C\(U0 ∪ Cφ(v1)). Thus, c0 /∈ Cπ (v1). Since
c0 ∈ B, it follows that B �⊂ Cπ (v1), which is a contradiction.

• i ∈ [2, k − 1]. Note that Bi−2 = {c0, . . . , ci−2} ⊂ B ⊂ Cπ (vi ). By Step 1,
ci−1 ∈ C \ (Ui−1 ∪ Cφ(vi )), implying ci−1 /∈ Cφ(vi ), which contradicts the
assumption that ci−1 ∈ Bi−1 ⊂ B ⊂ Cπ (vi ).

By Claims 1 and 2, π is a K -LNDE-coloring of G. ��
Theorem 2.3 follows immediately from Theorem 2.2 and Proposition 1:

Theorem 2.3 Every formal graph G has χ ′
snd(G) ≤ 3� − 1.

3 General Planar Graphs

Assume that G is a plane graph. A cycle C∗ of G is called a separating cycle if there
exist at least one vertex in the interior and exterior of C∗, respectively.

A bunch B(x, y;m) of length m ≥ 3 with x and y as poles is defined as m paths
Q1, Q2, . . . , Qm having the following properties, as shown in 1:

(a) Each Qi has length 1 or 2 and joins x and y;
(b) For each i ∈ [1,m − 1], the cycle formed by Qi and Qi+1 is not separating;
(c) This sequence of paths ismaximal, that is, there does not exist a path Q0 (or Qm+1)

that can be added to B(x, y;m) with conditions (a) and (b) preserved.

If the length of Qi is 2, say Pi = xzi y, then zi is called a brother. If Qi = xy,
then xy is called a parental edge. Assume that zi exists. We further say that zi is an
external brother if i ∈ {1,m}, an internal brother if i ∈ [2,m − 1], and a strictly
internal brother if i ∈ [3,m − 2]. It is easy to see that each internal brother is of
degree 2, 3, or 4 and adjacent only to the poses and possibly to one or two of brothers.

Borodin et al. [4] introduced the concept of the bunch in a plane graph and estab-
lished a structural theorem on plane graphs. For our purposes, we only give the
following simplified version of their theorem.
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Lemma 3.1 ([4]) Every plane graph G with δ(G) ≥ 2 contains one of the following
configurations:

(A1) a k-vertex v, k ∈ [2, 5], with neighbors v1, . . . , vk such that dG(vi ) ≤ 25 for
all i ∈ [1, k − 1], and dG(v1) + · · · + dG(vk−1) ≤ 38;
(A2) a bunch B(x, y;m) with dG(x) ≥ 26 and m ≥ 0.2dG(x).

Using Lemma 3.1, we can obtain an upper bound of the local neighbor-
distinguishing index of planar graphs.

Theorem 3.2 If G is a planar graph, then χ ′
lnd(G) ≤ �2.8�� + 4.

Proof The proof proceeds by induction on ||G||. If ||G|| ≤ �2.8��+4, then the result
holds trivially. Let G be a planar graph with ||G|| ≥ �2.8�� + 5 ≥ 5. Without loss
of generality, suppose that G is connected and embedded in the plane. If � ≤ 29,
then χ ′

lnd(G) ≤ 3� − 1 ≤ �2.8�� + 4 by Theorem 2.2. So suppose that � ≥ 30,
which implies that ||G|| ≥ �2.8�� + 4 ≥ 88. In what follows, let C = [1, K ], where
K = �2.8�� + 4, be the set of K colors.

If G contains a 1-vertex v, then the graph G − v admits a K -LNDE-coloring φ

using the color set C by the induction hypothesis. Similarly to the proof of Theorem
2.2, φ can be extended to G.

So suppose that δ(G) ≥ 2. By Lemma 3.1, G contains the configurations (A1) or
(A2). Our proof is split into the following cases.

Case 1. G contains a k-vertex v, k ∈ [2, 5], with neighbors v1, . . . , vk such that
dG(vi ) ≤ 25 for all i ∈ [1, k − 1], and dG(v1) + · · · + dG(vk−1) ≤ 38.

Without loss of generality, assume that dG(v1) ≤ · · · ≤ dG(vk). Depending on the
size of k, we have some subcases to be considered below.

Case 1.1. k = 2.
Note that dG(v1) ≤ 25. Let H = G−v, which admits a K -LNDE-coloring φ using

C . Based on φ, we color vv2 with a color a ∈ C \(C+
φ (v2)∪Cφ(v1)), whereC

+
φ (v2) =

Cφ(v2)∪ R(v2) as defined in 2, and vv1 with a color b ∈ C\(C+
φ (v1)∪Cφ(v2)∪{a}).

Since |C\(C+
φ (v2) ∪ Cφ(v1))| ≥ �2.8�� + 4 − 2(dG(v2) − 1) − (dG(v1) − 1) ≥

2.8� + 7 − 2� − 25 = 0.8� − 18 ≥ 6 and |C\(C+
φ (v1) ∪ Cφ(v2) ∪ {a})| ≥

�2.8�� + 4 − 2(25 − 1) − (� − 1) − 1 ≥ 1.8� − 44 ≥ 10, both a and b exist and
hence φ is extended to G.

By Case 1.1, we may assume that dG(vi ) ≥ 3 for all i ∈ [1, k] in the subsequent
discussion.

Case 1.2. k = 3.
Note that dG(v2) ≤ 25, and since dG(v1) + dG(v2) ≤ 38, we derive that dG(v1) ≤

19. Let H = G − {vv1, vv2}, which has a K -LNDE-coloring φ using C . Suppose
that φ(vv3) = 1. We color vv2 with a ∈ C\(C+

φ (v2) ∪ Cφ(v1) ∪ {1}) and vv1 with

b ∈ C\(C+
φ (v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ {a}). It is easy to calculate that |C\(C+

φ (v2) ∪
Cφ(v1)∪{1})| ≥ �2.8��+4−2(�−1)− (dG(v1)−1)−1 ≥ 0.8�+6−dG(v1) ≥
0.8� + 6 − 19 ≥ 11 and |C\(C+

φ (v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ {a})| ≥ �2.8�� + 4 −
2(dG(v1)− 1)− (dG(v2)− 1)−�− 1 ≥ 1.8�+ 6− (dG(v1)+ dG(v2))− dG(v1) ≥
1.8� + 6 − 38 − 19 ≥ 3. Hence, both a and b exist. Let φ′ denote the resultant
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coloring after vv1 and vv2 are colored. Obviously, φ′ is a proper edge-K -coloring of
G. Note that Cφ′(v) = {1, a, b}, a /∈ Cφ′(v1), b /∈ Cφ′(v2), and a, b /∈ Cφ′(v3). Since
dG(vi ) ≥ 3 for i ∈ [1, 3], v is exclusive with each of its neighbors. Consequently, φ′
is a K -LNDE-coloring of G.

Case 1.3. k = 4.
Since dG(v1) + dG(v2) + dG(v3) ≤ 38 and dG(vi ) ≥ 3 for i ∈ [1, 4], it follows

that dG(v1) ≤ 12, dG(v2) ≤ 17, and dG(v3) ≤ 25. Let H = G − {vv1, vv2, vv3},
which has a K -LNDE-coloring φ using C and with φ(vv4) = 1. We color vv3 with
a ∈ C\(C+

φ (v3)∪Cφ(v1)∪Cφ(v2)∪{1}),vv2 withb ∈ C\(C+
φ (v2)∪Cφ(v1)∪Cφ(v3)∪

Cφ(v4)∪{a}), and vv1 with c ∈ C\(C+
φ (v1)∪Cφ(v2)∪Cφ(v3)∪Cφ(v4)∪{a, b}). It

is easy to check that |C\(C+
φ (v3) ∪Cφ(v1) ∪Cφ(v2) ∪ {1})| ≥ 88− 2(dG(v3) − 1) −

(dG(v2) − 1) − (dG(v1) − 1) − 1 = 91 − dG(v3) − (dG(v1) + dG(v2) + d(v3)) ≥
91−25−38 = 28, |C\(C+

φ (v2)∪Cφ(v1)∪Cφ(v3)∪Cφ(v4)∪{a})| ≥ �2.8��+4−
2(dG(v2)−1)−(dG(v1)−1)−(dG(v3)−1)−�−1 ≥ 1.8�+7−dG(v2)−(dG(v1)+
dG(v2)+ dG(v3)) ≥ 1.8�+ 7− 17− 38 ≥ 6, and |C\(C+

φ (v1)∪Cφ(v2)∪Cφ(v3)∪
Cφ(v4)∪{a, b})| ≥ �2.8��+4−2(dG(v1)−1)−(dG(v2)−1)−(dG(v3)−1)−�−2 ≥
1.8� + 6 − dG(v1) − (dG(v1) + dG(v2) + dG(v3)) ≥ 1.8� + 6 − 12 − 38 ≥ 10.
Hence, vv1, vv2, vv3 can be colored properly. Let φ′ denote the resultant coloring of
G. It is easy to observe that Cφ′(v) = {1, a, b, c}, and b, c /∈ Cφ′(v4), b, c /∈ Cφ′(v3),
a, c /∈ Cφ′(v2), and a, b /∈ Cφ′(v1). Since dG(vi ) ≥ 3 for i ∈ [1, 4], v is exclusive
with each of its neighbors in φ′. Consequently, φ′ is a K -LNDE-coloring of G.

Case 1.4. k = 5.
Since dG(v1) + · · · + dG(v4) ≤ 38 and dG(vi ) ≥ 3 for i ∈ [1, 5], it is immediate

to deduce that dG(v1) ≤ 9, dG(v2) ≤ 11, dG(v3) ≤ 16, and dG(v4) ≤ 25. Let
H = G − {vv1, vv2, vv3, vv4}, which has a K -LNDE-coloring φ using C such that

φ(vv5) = 1. Define the sets M4 =
4⋃

i=1
Cφ(vi ) and M5 = M4 ∪ Cφ(v5). We have to

consider two possibilities as follows.
Case 1.4.1. dG(v5) ≥ 4.
We color vv4 with a ∈ C\(M4∪R(v4)∪{1}), vv3 with b ∈ C\(M4∪R(v3)∪{1, a}),

vv2 with c ∈ C \ (M5∪ R(v2)∪{a, b}) and vv1 with d ∈ C \ (M5∪ R(v1)∪{a, b, c}).
It is easy to calculate that |C\(M4 ∪ R(v4)∪{1})| ≥ 88−2(dG(v4)−1)− (dG(v1)−
1)− (dG(v2)−1)− (dG(v3)−1)−1 = 92−dG(v4)− (dG(v1)+dG(v2)+dG(v3)+
dG(v4)) ≥ 92 − 25 − 38 = 29, |C\(M4 ∪ R(v3) ∪ {1, a})| ≥ 88 − 2(dG(v3) −
1) − (dG(v1) − 1) − (dG(v2) − 1) − (dG(v4) − 1) − 2 = 91 − dG(v3) − (dG(v1) +
dG(v2) + dG(v3) + dG(v4)) ≥ 91 − 16 − 38 = 37, |C\(M5 ∪ R(v2) ∪ {a, b})| ≥
�2.8��+4−2(dG(v2)−1)−(dG(v1)−1)−(dG(v3)−1)−(dG(v4)−1)−dG(v5)−2 ≥
1.8�+7−dG(v2)−(dG(v1)+dG(v2)+dG(v3)+dG(v4)) ≥ 1.8�+7−11−38 ≥ 12,
and |C\(M5 ∪ R(v1) ∪ {a, b, c})| ≥ �2.8�� + 4 − 2(dG(v1) − 1) − (dG(v2) − 1) −
(dG(v3)−1)−(dG(v4)−1)−dG(v5)−3 ≥ 1.8�+6−dG(v1)−(dG(v1)+dG(v2)+
dG(v3)+dG(v4)) ≥ 1.8�+6−9−38 ≥ 13. Thus, the resultant coloring, denotedφ′, is
a proper edge-K -coloring of G. Observe that Cφ′(v) = {1, a, b, c, d}, c, d /∈ Cφ′(v5),
c, b, d /∈ Cφ′(v4), a, c, d /∈ Cφ′(v3), a, b, d /∈ Cφ′(v2), and a, b, c /∈ Cφ′(v1). Since
dG(v5) ≥ 4 and dG(vi ) ≥ 3 for i ∈ [1, 4], v is exclusive with each of its neighbors in
φ′. Hence, φ′ is a K -LNDE-coloring of G.
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Case 1.4.2. dG(v5) = 3.
It follows that dG(vi ) = 3 for all i ∈ [1, 4]. It is evident that |M5| ≤ 2×4+3 = 11.

We color vv4 with a ∈ C\(M5 ∪ R(v4)), vv3 with b ∈ C\(M5 ∪ R(v3) ∪ {a}), vv2
with c ∈ C\(M5∪R(v2)∪{a, b}), and vv1 with d ∈ C\(M5∪R(v1)∪{a, b, c}). Then
|C\(M5∪R(v4))| ≥ 88−11−2 = 75, |C\(M5∪R(v3)∪{a})| ≥ 88−11−2−1 = 74,
|C\(M5 ∪ R(v2) ∪ {a, b})| ≥ 88− 11− 2− 2 = 73, |C\(M5 ∪ R(v1) ∪ {a, b, c})| ≥
88 − 11 − 2 − 3 = 72. It is easy to check that the extended coloring is a K -LNDE-
coloring of G.

Case 2. G contains a bunch B(x, y;m) with dG(x) ≥ 26 and m ≥ 0.2dG(x).
Here we use directly the notation in the definition of B(x, y;m), as shown in 1.

Since dG(x) ≥ 26, it follows that m ≥ 6. We need to deal with the following two
subcases.

Case 2.1. There exist two adjacent vertices u and w such that 3 ≤ dG(u) ≤
dG(w) ≤ 4.

Case 2.1.1. dG(u) = 3.
Let s, t be the neighbors of u other than w. In view of the proof of Case 1.1, we

may assume that dG(s), dG(t) ≥ 3. Let H = G − {uw, us}, which has a K -LNDE-
coloring φ using C such that φ(ut) = 1. We color us with a ∈ C\(C+

φ (s) ∪Cφ(w) ∪
{1}) and uw with b ∈ C\(C+

φ (w) ∪ Cφ(s) ∪ Cφ(t) ∪ {a}). It is easy to check that

|C\(C+
φ (s) ∪ Cφ(w) ∪ {1})| ≥ �2.8�� + 4 − 2(dG(s) − 1) − (dG(w) − 1) − 1 ≥

0.8� + 6− dG(w) ≥ 0.8� + 6− 4 = 26 and |C\(C+
φ (w) ∪Cφ(s) ∪Cφ(t)∪ {a})| ≥

�2.8��+4−2(dG(w)−1)−(dG(s)−1)−dG(t)−1 ≥ 0.8�+6−2×4 ≥ 22. Hence,
the resultant coloring φ′ is a proper edge-K -coloring of G. Since Cφ′(u) = {1, a, b},
a /∈ Cφ′(w), and b /∈ Cφ′(s) ∪ Cφ′(t), u is exclusive with each of its neighbors in φ.
Thus, φ is extended to G.

Case 2.1.2. dG(u) = dG(w) = 4.
Let s, t, z be the neighbors of u other than w. By Case 2.1.1, assume that

dG(s), dG(t), dG(z) ≥ 4. Let H = G − {uw, us}, which has a K -LNDE-coloring
φ using C such that φ(ut) = 1 and φ(uz) = 2. Since dH (u) = 2, we see that
1 /∈ Cφ(z) and 2 /∈ Cφ(t). We color us with a ∈ C\(C+

φ (s) ∪ Cφ(w) ∪ {1, 2}) and
uw with b ∈ C\(C+

φ (w)∪Cφ(s)∪ {1, 2, a}). Since |C\(C+
φ (s)∪Cφ(w)∪ {1, 2})| ≥

�2.8��+4−2(dG(s)−1)−(dG(w)−1)−2 ≥ 0.8�+5−dG(w) = 0.8�+5−4 ≥ 25
and |C\(C+

φ (w)∪Cφ(s)∪{1, 2, a})| ≥ �2.8��+4−2(dG(w)−1)−(dG(s)−1)−3 ≥
1.8�+4−2×4 ≥ 50, uw and us can be colored properly. Denote by φ′ the resultant
coloring. Noting that Cφ′(u) = {1, 2, a, b}, 1 /∈ Cφ′(z), 2 /∈ Cφ′(t), a /∈ Cφ′(w), and
b /∈ Cφ′(s), we obtain a K -LNDE-coloring of G.

Case 2.2. All strictly internal brothers are of degree 2 in G.
Let S denote the set of brothers zi ’s with dG(zi ) = 2 in B(x, y;m). Obviously,

S contains all strictly internal brothers of B(x, y;m). Since dG(x) ≥ 26 and m ≥
0.2dG(x) > 5, B(x, y;m) has at least one strictly internal brother. Thus, s := |S| ≥
m − 5 ≥ 1. Let H = G − S, which has a K -LNDE-coloring φ using C . Let Ex =
{wx | w ∈ S} and Ey = {wy | w ∈ S}. For each edge ex ∈ Ex and each edge ey ∈ Ey ,
we define a list assignment L as follows:

L(ex ) = C \ (C+
φ (x) ∪ Cφ(y)), L(ey) = C \ (C+

φ (y) ∪ Cφ(x)).
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First suppose that xy /∈ E(G). Then s ≥ m − 4 ≥ 2. It is easy to compute that
|L(ey)| ≥ �2.8�� + 4− 2(dG(y) − s) − (dG(x) − s) ≥ 2.8� + 4+ 3 s − 2dG(y) −
dG(x) ≥ 0.8�+ 4+ s + 2 s − dG(x) ≥ 0.8�+ 4+ s + 2(m − 4)− dG(x) ≥ 0.8�−
4+ s+2× (0.2dG(x))−dG(x) = 0.8�−4+ s−0.6dG(x) ≥ 0.2�−4+ s ≥ s+2,
and |L(ex )| ≥ �2.8�� + 4 − 2(dG(x) − s) − (dG(y) − s) ≥ 1.8� + 4 + 2 s + s −
2dG(x) ≥ 1.8� + 4 + 2 s + (m − 4) − 2dG(x) = 1.8� + 2 s + m − 2dG(x) ≥
1.8� + 2 s + 0.2dG(x) − 2dG(x) ≥ 2 s.

Next suppose that xy ∈ E(G). In this case, s ≥ m − 5 ≥ 1. Because xy ∈ E(G),
we have φ(xy) ∈ Cφ(x) ∩ Cφ(y) and hence |Cφ(x) ∩ Cφ(y)| ≥ 1. So, |L(ey)| ≥
�2.8��+4−2(dG(y)− s)− (dG(x)− s)+1 ≥ 2.8�+5+3 s−2dG(y)−dG(x) ≥
0.8� + 5 + s + 2 s − dG(x) ≥ 0.8� + 5 + s + 2(m − 5) − dG(x) ≥ 0.8� − 5 +
s + 2 × (0.2dG(x)) − dG(x) = 0.8� − 5 + s − 0.6dG(x) ≥ 0.2� − 5 + s ≥ s + 1,
and |L(ex )| ≥ �2.8�� + 4 − 2(dG(x) − s) − (dG(y) − s) + 1 ≥ 1.8� + 5 + 2 s +
s − 2dG(x) ≥ 1.8� + 5 + 2 s + (m − 5) − 2dG(x) = 1.8� + 2 s + m − 2dG(x) ≥
1.8� + 2 s + 0.2dG(x) − 2dG(x) ≥ 2 s.

In each of the above two cases, we first color the edges in Ey with distinct colors
in L(ey) and then use Cy to denote the set of colors assigned to the edges in Ey . Then
we color the edges in Ex with distinct colors in L(ex ) \Cy . It is easy to check that the
resultant coloring is a K -LNDE-coloring of G. ��

By Proposition 1, we have the following:

Theorem 3.3 If G is a formal planar graph, then χ ′
snd(G) ≤ �2.8�� + 4.

4 Planar GraphsWithout 4-Cycles

For the class of planar graphs without 4-cycles, we can show that Conjecture is almost
true (away from a constant). To achieve this goal, we need to apply the following
structural lemma.

Lemma 4.1 ([18]) Let G be a planar graph with δ(G) ≥ 2 and without 4-cycles. Then
G contains a k-vertex v, k ∈ [2, 4], whose neighbors v1, . . . , vk satisfy one of the
following conditions, assuming dG(v1) ≤ · · · ≤ dG(vk) :
(1) k = 2 and dG(v1) ≤ 11;
(2) k = 3 and dG(v1) + dG(v2) ≤ 14;
(3) k = 4 and dG(v1) + dG(v2) + dG(v3) ≤ 15.

Theorem 4.2 If G is a planar graph without 4-cycles, then χ ′
lnd(G) ≤ 2� + 10.

Proof The proof proceeds by induction on ||G||. If ||G|| ≤ 2� + 10, then the result
holds trivially. Let G be a connected planar graph with ||G|| ≥ 2� + 11 ≥ 11. If
� ≤ 11, then χ ′

lnd(G) ≤ 3� − 1 ≤ 2� + 10 by Theorem 2.2. So suppose that
� ≥ 12. Again, let K = 2� + 10 and C = [1, K ] denote a set of K colors. Hence,
|C | = K = 2� + 10 ≥ 34.

First assume that δ(G) = 1. Let u be a 1-vertex adjacent to a vertex v. Then
dG(v) ≥ 2 by the assumption. Let H = G − u, which has a K -LNDE-coloring φ
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using C . We color uv with a color a ∈ C\C+
φ (v). Since |C\C+

φ (v)| ≥ 2� + 10 −
2(dG(v) − 1) ≥ 2� + 10 − 2(� − 1) = 12, φ is extended to G.

Next assume that δ(G) ≥ 2. By Lemma 4.1, G contains a k-vertex v, k ∈ [2, 4],
whose neighbors v1, . . . , vk satisfy one of the conditions (1) to (3), where dG(v1) ≤
· · · ≤ dG(vk). By the above proof, we may assume that dG(vi ) ≥ 2 for all i ∈ [1, k].
Case 1. k = 2 and dG(v1) ≤ 11.

Let H = G − v, which admits a K -LNDE-coloring φ using C . We have to discuss
two possibilities.

• dG(v1) = 2. Let y be the neighbor of v1 other than v. We color vv2 with a ∈
C\(C+

φ (v2) ∪ {φ(yv1)}) and vv1 with b ∈ C\(Cφ(y) ∪ Cφ(v2) ∪ {a}). Since
|C\(C+

φ (v2)∪{φ(v1y)})| ≥ 2�+10−2(dG(v2)−1)−1 ≥ 11 and |C\(Cφ(y)∪
Cφ(v2) ∪ {a})| ≥ 2� + 10 − � − (� − 1) − 1 = 10, φ is extended to G.

• dG(v1) ≥ 3. We color vv2 with a ∈ C\(C+
φ (v2) ∪ Cφ(v1)) and vv1 with b ∈

C\(C+
φ (v1) ∪Cφ(v2) ∪ {a}). Since |C\(C+

φ (v2) ∪Cφ(v1))| ≥ 2� + 10− 2(� −
1)−10 ≥ 2 and |C\(C+

φ (v1)∪Cφ(v2)∪{a})| ≥ 2�+10−2(dG(v1)−1)−� ≥
� + 10 − 2 × 10 ≥ 2, φ is extended to G.

Now, by Case 1, we may assume that dG(vi ) ≥ 3 for all i ∈ [1, k] in the following
two situations.
Case 2. k = 3 and dG(v1) + dG(v2) ≤ 14.

It follows that dG(v1) ≤ 7 and dG(v2) ≤ 11. Let H = G − {vv1, vv2}, which
has a K -LNDE-coloring φ using C such that φ(vv3) = 1. We color vv2 with a ∈
C\(C+

φ (v2) ∪Cφ(v1) ∪ {1}) and vv1 with b ∈ C\(C+
φ (v1) ∪Cφ(v2) ∪Cφ(v3) ∪ {a}).

Since |C\(C+
φ (v2) ∪ Cφ(v1) ∪ {1})| ≥ 2� + 10 − 2(� − 1) − (dG(v1) − 1) − 1 ≥

12−(7−1)−1 = 5 and |C\(C+
φ (v1)∪Cφ(v2)∪Cφ(v3)∪{a})| ≥ 2�+10−2(dG(v1)−

1)−(dG(v2)−1)−�−1 ≥ �+12−dG(v1)−(dG(v1)+dG(v2)) ≥ 24−7−14 = 3,
both a and b exist. Let φ′ denote the resultant coloring. Then Cφ′(v) = {1, a, b},
a /∈ Cφ′(v1), and b /∈ Cφ′(v2)∪Cφ′(v3). Thus, v is exclusive with each of its neighbors
and hence φ is extended to G.
Case 3. k = 4 and dG(v1) + dG(v2) + dG(v3) ≤ 15.

Then dG(v1) ≤ 5, dG(v2) ≤ 6, and dG(v3) ≤ 9. Let H = G − {vv1, vv2, vv3},
which has a K -LNDE-coloring φ using C such that φ(vv4) = 1. We color vv3 with
a ∈ C\(C+

φ (v3)∪Cφ(v1)∪Cφ(v2)∪{1}),vv2 withb ∈ C\(C+
φ (v2)∪Cφ(v1)∪Cφ(v3)∪

Cφ(v4) ∪ {a}), and vv1 with c ∈ C\(C+
φ (v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ Cφ(v4) ∪ {a, b}).

Noting that |C\(C+
φ (v3)∪Cφ(v1)∪Cφ(v2)∪{a})| ≥ 34−2(dG(v3)−1)−(dG(v2)−

1)−(dG(v1)−1)−1 = 37−dG(v3)−(dG(v1)+dG(v2)+dG(v3)) ≥ 37−9−15 = 13,
|C\(C+

φ (v2)∪Cφ(v1)∪Cφ(v3)∪Cφ(v4)∪{a})| ≥ 2�+10−2(dG(v2)−1)−(dG(v1)−
1) − (dG(v3) − 1) − � − 1 ≥ � + 13 − dG(v2) − (dG(v1) + dG(v2) + dG(v3)) ≥
� + 13 − 6 − 15 ≥ 4, and |C\(C+

φ (v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ Cφ(v4) ∪ {a, b})| ≥
2� + 10 − 2(dG(v1) − 1) − (dG(v2) − 1) − (dG(v3) − 1) − � − 2 ≥ � + 12 −
dG(v1) − (dG(v1) + dG(v2) + dG(v3)) ≥ � + 12 − 5 − 15 ≥ 4, vv1, vv2, vv3 can
be properly colored. Let φ′ denote the resultant coloring. Since Cφ′(v) = {1, a, b, c},
a, b /∈ Cφ′(v1), a, c /∈ Cφ′(v2), c, b /∈ Cφ′(v3), and b, c /∈ Cφ′(v4), φ′ is a K -LNDE-
coloring of G.

By Proposition 1, the following theorem holds automatically.
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Theorem 4.3 If G is a formal planar graph without 4-cycles, thenχ ′
snd(G) ≤ 2�+10.

5 Planar Graphs with [2, k]-Factors
For two positive integers k1, k2 with k2 ≥ k1, a spanning subgraph F of a graph G
is called an [k1, k2]-factor if k1 ≤ dF (v) ≤ k2 for all v ∈ V (G). Tutte [15] showed
that every 4-connected planar graph is Hamiltonian, i.e., it has a 2-connected [2, 2]-
factor. By relaxing the 4-connected condition, Gao [7] showed that every 3-connected
planar graph has a 2-connected [2, 6]-factor. Enomoto et al. [5] extended this result
by showing that every 3-connected planar graph G with δ(G) ≥ 4 has a 2-connected
[2, 3]-factor. Both numbers 6 and 3 in these two results are best possible with respect
to the required conditions.

The core G� of a graph G is the subgraph of G induced by �-vertices.

Lemma 5.1 Let k ≥ 3. If a connected graph G has a connected [2, k]-factor, then G
contains a connected [2, k]-factor F whose core is acyclic.

Proof Let F be a connected [2, k]-factor of G with the least number of edges. We
claim that the core of F is acyclic. Suppose to the contrary that F� contains a cycle
C . Let e = xy ∈ E(C) be an arbitrary edge, and set F ′ = F − e. Obviously, F ′ is
a connected spanning subgraph of G. If v ∈ V (G)\{x, y}, then dF ′(v) = dF (v). If
v ∈ {x, y}, then dF ′(v) = dF (v) − 1 ≥ k − 1 ≥ 2. It follows that F ′ is a connected
[2, k]-factor of G with ||F ′|| < ||F ||, which contradicts the choice of F . ��

The following result can be derived from Lemma 5.1 and the results in [5] and [7].

Corollary 5.2 Let G be a planar graph.

(1) If G is 3-connected, then G contains a connected [2, 6]-factor F whose core is
acyclic.

(2) If G is 3-connected and δ(G) ≥ 4, then G contains a connected [2, 3]-factor F
whose core is acyclic.

The celebrated Vizing’s Theorem gives a tight upper bound for the chromatic index of
a simple graph.

Theorem 5.3 ([16]) Every simple graph G has � ≤ χ ′(G) ≤ � + 1.

A simple graphG is said to beClass 1 if χ ′(G) = � andClass 2 if χ ′(G) = �+1.

Theorem 5.4 ([6]) If the core of a simple graph G is a forest, then G is Class 1.

Theorem 5.5 ([14]) If G is a planar graph with � ≥ 7, then G is Class 1.

An edge-partition of a graphG is a decomposition ofG into subgraphsG1, . . . ,Gm

such that E(G) = E(G1) ∪ · · · ∪ E(Gm) and E(Gi ) ∩ E(G j ) = ∅ for i �= j .
Suppose that H is a subgraph of a graph G. A restricted-strong edge-k-coloring of

H onG is an edge-coloringφ : E(H) → [1, k] such that any two edges e1, e2 ∈ E(H)

having distance at most two in G get distinct colors. The restricted-strong chromatic
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index of H on G, denoted χ ′
s(H |G), is the smallest integer k such that H has a

restricted-strong edge-k-coloring on G.
Since all planar graphsG considered in Theorems 5.6 to 5.11 contain a [2, k]-factor,

it follows that δ(G) ≥ 2, which implies that χ ′
lnd(G) = χ ′

snd(G) by Proposition 1.

Theorem 5.6 Suppose that a connected graph G can be edge-partitioned into two
graphs F and H such that F is a connected [2, k]-factor of G with k ≥ 2. Then
χ ′
snd(G) ≤ χ ′(H) + χ ′

s(F |G).

Proof Note that 2 ≤ δ(F) ≤ �(F) ≤ k and �(H) ≤ �(G)− δ(F) ≤ �(G)−2. Let
χ ′(H) = l and χ ′

s(F |G) = m. Let φ be an edge-l-coloring of H using the color set
C1 = [1, l] and π be a restricted-strong-edge-coloring of F on G using the color set
C2 = [l+1, l+m].We define an edge-coloring f ofG as follows: f (e) = φ(e) for e ∈
E(H), and f (e) = π(e) for e ∈ E(F). Obviously, f is a proper edge-(l+m)-coloring
ofG using the color setC1∪C2. If we can show that f is strict neighbor-distinguishing,
then it holds naturally that χ ′

snd(G) ≤ l+m = χ ′(H)+χ ′
s(F |G). In fact, for any edge

e = xy ∈ E(G), since dF (x), dF (y) ≥ 2, there exist an edge ex ∈ E(F)\{e} incident
with x and an edge ey ∈ E(F) \ {e} incident with y. Since ex and ey have the distance
2 in G, it follows that π(ex ) /∈ Cπ (y) and π(ey) /∈ Cπ (x). Because C1 ∩C2 = ∅, we
have that π(ex ) /∈ C f (y) and π(ey) /∈ C f (x), and so x and y are exclusive. ��

A family of graphs G is called minor-closure if it is closed under deleting vertices,
deleting edges, or contracting edges. Let χ(G) denote the chromatic number of a
graph G, which is defined as the smallest integer k for which the vertices of G can be
colored using k colors such that no two adjacent vertices get same color. For a family
of minor-closure graphs G, we define χ(G) = max{χ(G) |G ∈ G}. It is easily seen
that the family of planar graphs, denoted P , is minor-closure and χ(P) ≤ 4 by the
Four-Color Theorem [2].

Lemma 5.7 ([22]) If F is a subgraph of a planar graph G, then χ ′(F |G) ≤ 4χ ′(F).

Combining Theorem 5.6 and Lemma 5.7, the following theorem holds automati-
cally.

Theorem 5.8 Let G be a connected planar graph with a connected [2, k]-factor F,
and H = G − E(F). Then χ ′

snd(G) ≤ χ ′(H) + 4χ ′(F).

Theorem 5.9 Let G be a planar graph. Then the following statements (1) and (2) hold.
(1) If G is 3-connected, then χ ′

snd(G) ≤ � + 23.
(2) If G is 3-connected and δ(G) ≥ 4, then χ ′

snd(G) ≤ � + 11.

Proof (1) Since G is 3-connected, it follows from Corollary 5.2(1) that G has a
connected [2, 6]-factor F whose core is acyclic. Let H = G − E(F). Then G is
edge-partitioned into two subgraphs F and H . If �(F) ≤ 5, then χ ′(F) ≤ 5+ 1 = 6
by Theorem 5.3. If �(F) = 6, then χ ′(F) = 6 by Theorem 5.4. Hence, it
always holds that χ ′(F) ≤ 6. On the other hand, since �(H) ≤ �(G) − 2, we
have χ ′(H) ≤ �(G) − 2 + 1 = � − 1 by Theorem 5.3. So, by Theorem 5.8,
χ ′
snd(G) ≤ χ ′(H) + 4χ ′(F) ≤ �(H) + 4 × 6 ≤ � − 1 + 24 = � + 23.
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(2) By Corollary 5.2(2), G has a connected [2, 3]-factor F whose core is acyclic.
Let H = G − E(F). Then G is edge-partitioned into two subgraphs F and H .
If �(F) = 2, then χ ′(F) ≤ 2 + 1 = 3 by Theorem 5.3. If �(F) = 3, then
χ ′(F) = 3 by Theorem 5.4. Hence, we always have that χ ′(F) ≤ 3. By The-
orem 5.3, χ ′(H) ≤ �(H) + 1 ≤ �(G) − 2 + 1 = � − 1. By Theorem 5.8,
χ ′
snd(G) ≤ χ ′(H) + 4χ ′(F) ≤ � − 1 + 4 × 3 = � + 11. ��

Theorem 5.10 If a planar graph G is Hamiltonian, then χ ′
snd(G) ≤ � + 6.

Proof Let C = v0v1 · · · vn−1v0 be a Hamiltonian cycle of G, where n = |V (G)|. Let
H = G − E(C). Then H ∪ C is an edge-partition of G with �(H) ≤ � − 2. Let
χ ′(H) = k. First we give an edge-k-coloring of H using the color set B1 = [1, k].
Then we define an edge-7-coloring π of C using the color set B2 = [k + 1, k + 7] in
two ways below:

• Assume that n is even. SetM = {v0v1, v2v3, . . . , vn−2vn−1}, and give a restricted-
strong edge-4-coloring of M on G using the colors in [k + 1, k + 4]. Afterward, if
n ≡ 0 (mod 4), then we color alternatively v1v2, v3v4, . . . , vn−1v0 with k + 5 and
k+6. If n ≡ 2 (mod 4), then we color v1v2 with k+7, and then color alternatively
v3v4, v5v6, . . . , vn−1v0 with k + 5 and k + 6.

• Assume that n is odd. Set M = {v0v1, v2v3, . . . , vn−3vn−2}, and give a restricted-
strong edge-4-coloring of M on G using [k + 1, k + 4]. Then we color vn−1v0
with k + 7 and then color alternatively v1v2, v3v4, . . . , vn−2vn−1 with k + 5 and
k + 6.

Let f denote the resultant edge-(k + 7)-coloring of G formed by combining φ and
π , using the color set B1 ∪ B2. It is easy to inspect that f is proper, i.e., any two
adjacent edges having distinct colors. It remains to show that f is strict neighbor-
distinguishing. Let e = xy be an arbitrary edge of G. By the definition of M , at most
one of x and y is not incident with any edge in M .

First assume that each of x and y is incident with an edge in M , respectively. Since
M is a matching of G, there exist the unique ex ∈ M incident with x and the unique
ey ∈ M incident with y. We have two possibilities as follows.

• ex = ey , that is, e = ex = ey ∈ M , say e = vivi+1, where indices are
taken modulo n. Then vi−1vi , vi+1vi+2 ∈ E(C) \ M . By the definition of π ,
π(vi−1vi ), π(vi+1vi+2) ∈ [k + 5, k + 7] and π(vi−1vi ) �= π(vi+1vi+2). Noting
that π(vi−1vi ) /∈ C f (vi+1) and π(vi+1vi+2) /∈ C f (vi ), vi and vi+1 are exclusive
in f .

• ex �= ey . Since ex and ey have distance 2 in G, the definition of π implies that
π(ex ) �= π(ey) and π(ex ), π(ey) ∈ [k + 1, k + 4]. So, π(ex ) /∈ C f (y) and
π(ey) /∈ C f (x), and henceforth x and y are exclusive. Next assume that x is
not incident with any edge in M . Then x = vn−1. There are two subcases to be
considered.

• y ∈ {v0, vn−2}, say y = v0. Because v0v1 ∈ M satisfies π(v0v1) ∈ [k + 1, k + 4],
and vn−2vn−1 ∈ E(C)\M satisfies φ(vn−2vn−1) ∈ [k + 5, k + 7], it follows that
π(v0v1) /∈ C f (vn−1) and π(vn−2vn−1) /∈ C f (v0), and therefore, x and y are
exclusive.
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• y ∈ {v1, . . . , vn−2}, say y = vi for some i ∈ [1, n − 2]. Then exactly one of
vi−1vi and vivi+1 belongs to M , whose color is a ∈ [k + 1, k + 4]. Moreover,
assuming that π(vn−1v0) = b and π(vn−2vn−1) = c, then b, c ∈ [k + 5, k + 7].
Since a /∈ C f (vn−1) and at least one of b and c does not belong to C f (vi ), x and
y are exclusive.

The above analysis and Theorem 5.3 show that χ ′
snd(G) ≤ k + 4+ 3 ≤ � − 1+ 7 =

� + 6. ��
By Theorem 5.5 and the proof of Theorem 5.10, we can obtain the following better

result.

Theorem 5.11 If G is a Hamiltonian planar graph with |G| ≡ 0 (mod 4) and � ≥ 9,
then χ ′

snd(G) ≤ � + 4.

AHalin graph is a plane graphG = T ∪C , where T is a plane tree with no vertex of
degree two and at least one vertex of degree three or more, andC is a cycle connecting
the pendant vertices of T in the cyclic order determined by the drawing of T .

Halin graphs are 3-connected, but any of their proper subgraphs is not. Bondy and
Lovász [3] showed that Halin graphs are almost pancyclic with the possible exception
of an even cycle. In particular, Halin graphs are Hamiltonian.

By Theorem 5.10, we have the following:

Corollary 5.12 If G is a Halin graph, then χ ′
snd(G) ≤ � + 6.

6 Concluding Remarks

In this section, we are going to provide some open problems on the local neighbor-
distinguishing edge-coloring of graphs. In contrast toConjecture 2,wefirst put forward
the following conjecture:

Conjecture 3 Every connected graph G, different from H�, has χ ′
lnd(G) ≤ 2�.

Observing the local neighbor-distinguishing index of K2,n, we see that the upper
bound 2� in Conjecture 3 is tight if it were true.

Problem 1. Does every planar graph satisfy Conjecture 3 ?
Problem 2. Is it true that there exists a constant c such that every planar graph G
without 4-cycles has χ ′

lnd(G) ≤ � + c ?
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