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Abstract
In this paper, we deal with nonsmooth robust semi-infinite multiobjective optimiza-
tion problems. Both necessary and sufficient optimality conditions are established.We
also investigate Mond–Weir-type dual problems under assumptions of generalized
convexity. Applications to nonsmooth robust fractional semi-infinite multiobjective
optimization problems and nonsmooth robust semi-infinite minimax optimization
problems are also provided. Some remarks and examples are provided to illustrate
our results.

Keywords Optimality condition · Duality theorem · Positively properly efficient
solution · Robust semi-infinite multiobjective optimization · Generalized convexity

Mathematics Subject Classification 90C26 · 90C34 · 90C46 · 90C47 · 90C90

1 Introduction

A semi-infinite multiobjective optimization problem is the simultaneous minimiza-
tion with a finite number of objective functions and an infinite number of inequality
constraints. Recently, characterizations of the solution set, optimality conditions and
duality for semi-infinite multiobjective optimization problems have been investigated
by many authors. We refer the readers to the papers [7, 9, 10, 20, 24, 27, 30, 32,
36–40, 42, 45, 47, 50, 51, 54, 55] and the references therein. By using the Mor-
dukhovich/limiting subdifferential, Chuong andKimestablished optimality conditions
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and duality theorems for efficient solutions of a semi-infinite multiobjective optimiza-
tion problem (SIMP) in [9]. Chuong and Yao obtained optimality conditions and
duality for isolated solutions and positively properly efficient efficient solutions of
the problem (SIMP) in [10]. Optimality conditions and duality theorems for efficient
solutions of a fractional semi-infinite multiobjective optimization problem were given
in [7, 47]. Optimality conditions for a convex problem (SIMP) were obtained in [20].
In [24], authors studied optimality conditions and mixed-type duality for a problem
(SIMP). Khanh and Tung established Karush–Kuhn–Tucker optimality conditions for
Borwein-proper/firm solutions of a problem (SIMP) with mixed constraints in [30].
Authors investigated approximate optimality conditions, approximate duality theo-
rems and approximate saddle point theorems for a problem (SIMP) in [32]. Optimality
conditions for approximate solutions of a problem (SIMP) were studied in [50]. The
Karush-Kuhn-Tucker optimality conditions and duality for a problem (SIMP) were
given in [54]. The strong Karush-Kuhn-Tucker optimality conditions for a Borwein
properly solution of a problem (SIMP) were obtained in [55].

On the other hand, robust optimization has emerged as a remarkable deterministic
framework for studying optimization problems with uncertain data (see, e.g., [2, 3]).
By using robust optimization, theoretical and applied aspects in the area of optimiza-
tion problems with data uncertainty have been investigated by many researchers (see,
e.g., [4, 6, 8, 13–16, 21, 22, 29, 31, 33–35, 41, 52, 53] and the references therein).
But only a few publications focus on the optimality conditions and the duality theo-
rems for semi-infinite optimization problems with data uncertainty. The robust strong
duality theorems for a convex nonlinear semi-infinite optimization problem with data
uncertainty in constraints were given in [13]. In [14], authors obtained necessary and
sufficient conditions for stable robust strong duality of a robust linear semi-infinite
programming problem. A duality theory for semi-infinite linear programming prob-
lems with data uncertainty in constraints was introduced in [21]. In [22], authors
established dual characterizations of robust solutions for a multiobjective linear semi-
infinite program problem with data uncertainty in constraints. Optimality conditions
and duality theorems for the semi-infinite multiobjective optimization problems with
data uncertainty were studied in [33]. Approximate optimality conditions and approx-
imate duality theorems for a convex semi-infinite programming problem with data
uncertainty were considered in [34]. By using the Clarke subdifferential, approximate
optimality conditions and approximate duality theorems for the nonsmooth semi-
infinite programming problems with data uncertainty were given in [31, 52]. On the
other hand, the local isolated efficient solutions are originally called “strongly unique
solutions” in [12] and after that, “strictly local (efficient solutions) Pareto minimums”
in [25] and “strongly isolated solutions” in [10]. Furthermore, these solutions are not
necessarily isolated points due to [28] (Example 1.1). Besides, there were many stud-
ies on isolated efficient solutions and properly efficient solutions for multiobjective
optimization problems (see, e.g., [5, 17, 19, 23, 26, 43, 44, 48, 49] and the refer-
ences therein). Recently, the authors have studied norm-based robustness for a general
vector optimization problem, and in particular, problems with conic constraints and
semi-infinite optimization problems in [43, 44]. In these papers, they have addressed
the relationship between norm-based robust efficiency and isolated/proper efficiency.
However, quite few papers consider isolated efficient solutions and properly efficient
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solutions for nonsmooth semi-infinite multiobjective optimization problems (see, e.g.,
[10, 30, 42, 45]). As far as we know, up to now, there is no paper devoted to isolated
solutions and properly efficient solutions for nonsmooth robust semi-infinite multiob-
jective optimization problems.

Inspired by the above observations, we provide some new results for optimality
conditions and duality theorems for isolated solutions and positively properly efficient
solutions of nonsmooth robust semi-infinite multiobjective optimization problems in
terms of the Clarke subdifferentials. The rest of the paper is organized as follows. Sec-
tions1, and2 present introduction, notations and preliminaries. In Sect. 3, we establish
optimality conditions for strongly isolated solutions and positively properly efficient
solutions in nonsmooth robust semi-infinite multiobjective optimization problems. In
Sect. 4, we study Mond–Weir-type dual problems with respect to nonsmooth robust
semi-infinitemultiobjective optimization problems. In Sect. 5, we provide applications
to nonsmooth robust fractional semi-infinite multiobjective problems and nonsmooth
robust semi-infinite minimax optimization problems. Finally, conclusions are given in
Sect. 6.

2 Preliminaries

Throughout the paper, we use the standard notation of variational analysis in [11, 46].
Let us first recall some notations and preliminary results whichwill be used throughout
this paper. LetRn denote the n−dimensional Euclidean space equipped with the usual
Euclidean norm || · ||. The notation 〈·, ·〉 signifies the inner product in the space R

n .
Let D be a nonempty subset of R

n . The closure and the interior of D are denoted by
clD and intD. The symbol B stands for the closed unit ball in R

n . As usual, the polar
cone of D is the set

D◦ := {
y ∈ R

n | 〈y, x〉 ≤ 0,∀x ∈ D
}
.

Besides, the nonnegative (resp., nonpositive) orthant cone of Euclidean space R
n

is denoted by R
n+ = {(x1, · · · , xn) | xi ≥ 0, i = 1, · · · , n} (resp., R

n−) for n ∈ N :=
{1, 2, · · · }, while intRn+ is used to indicate the topological interior of R

n+.
Let f : R

n → R. We say that f is locally Lipschitz function, if for any x̄ ∈ R
n ,

there exist a positive constant L > 0 and a neighborhood U ⊆ R
n of x̄ , such that

| f (x1) − f (x2)| ≤ L||x1 − x2||,∀x1, x2 ∈ U .

The Clarke generalized directional derivative of f at x̄ ∈ R
n in the direction d ∈ R

n

is defined as follows:

f C (x̄; d) := lim sup
x→x̄,t↓0

f (x + td) − f (x)

t
.
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The Clarke subdifferential of f at x̄ ∈ R
n is defined as follows:

∂C f (x̄) := {y ∈ R
n | f C (x̄; d) ≥ 〈y, d〉 ,∀d ∈ R

n}.

Let S be a nonempty closed subset of R
n . The Clarke tangent cone to S at x̄ ∈ S is

defined by

TC (x̄; S) := {v ∈ R
n | dCS (x̄; v) = 0},

where dS denotes the distance function to S. The Clarke normal cone to S at x̄ ∈ S is
defined by

NC (x̄; S) := TC (x̄; S)◦.

A function f : R
n → R is said to be convex if for all x, y ∈ R

n and all λ ∈ [0, 1],
then

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

If f is a convex function and x̄ ∈ R
n

∂C f (x̄) = {y ∈ R
n | f (x) − f (x̄) ≥ 〈y, x − x̄〉 ,∀x ∈ R

n}.

Suppose that S is a nonempty closed convex subset ofRn and x̄ ∈ S. Then, NC (x̄; S)

coincides with the cone of normal in the sense of convex analysis and

N (x̄; S) := {z ∈ R
n | 〈z, y − x̄〉 ≤ 0,∀y ∈ S}.

Let T be a nonempty infinite index set and Vt ⊆ R
q , t ∈ T be convex compact

sets. Let gt : R
n × Vt → R for all t ∈ T . We say that gt , t ∈ T are locally Lipschitz

functions with respect to x̄ uniformly in t ∈ T , if for any x̄ ∈ R
n , there exist a positive

constant L > 0, a neighborhood U ⊆ R
n of x̄ and vt ∈ Vt such that

|gt (x1, vt ) − gt (x2, vt )| ≤ L||x1 − x2||,∀x1, x2 ∈ U ,∀vt ∈ Vt , t ∈ T .

The following lemmas will be used in the sequel.

Lemma 1 (See [11], Corollary page 52) Let S be a nonempty subset of R
n and x̄ ∈ S.

Suppose that f : R
n → R is locally Lipschitz function near x̄ and attains a minimum

over S at x̄ . Then,

0 ∈ ∂C f (x̄) + NC (x̄; S).

Lemma 2 (See [11], Propositions 2.3.1 and 2.3.3) Suppose that fk : R
n → R, k =

1, · · · ,m are locally Lipschitz functions around x̄ ∈ R
n. Then, we have the following

inclusions:
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(i) ∂C (α fk)(x̄) = α∂C fk(x̄),∀α ∈ R.
(ii) ∂C ( f1 + · · · + fm)(x̄) ⊂ ∂C f1(x̄) + · · · + ∂C fm(x̄).

Lemma 3 (See [11], Proposition 2.3.12 and [50], Lemma 2.3) Suppose that fk : R
n →

R, k = 1, · · · ,m are locally Lipschitz functions around x̄ ∈ R
n. Then, the function

ϕ(·) := max{ fk(·) | k = 1, · · · ,m} is locally Lipschitz function around x̄ and one
has

∂Cϕ(x̄) ⊂ ⋃{
m∑

k=1

αk∂
C fk(x̄) | (α1, · · · , αm) ∈ R

m+,

m∑

k=1

αk = 1,

αk [ fk(x̄) − ϕ(x̄)] = 0}.

Lemma 4 (See [11], Proposition 2.3.14) Let f , g : R
n → R be locally Lipschitz

functions around x̄ ∈ R
n, and suppose that g(x̄) = 0. Then

f

g
is locally Lipschitz

function near x̄ ∈ R
n and one has

∂C
(

f

g

)
(x̄) ⊂ g(x̄)∂C f (x̄) − f (x̄)∂Cg(x̄)

g2(x̄)
.

In this paper, we consider a nonsmooth semi-infinite multiobjective optimization
problem with data uncertainty in constraints:

(USIMP)
min f (x) := ( f1(x), · · · , fm(x)) ,

s.t. gt (x, vt ) ≤ 0,∀t ∈ T ,∀x ∈ �,

where T is a nonempty infinite index set, � is a nonempty closed subset of R
n ,

fk : R
n → R, k = 1, · · · ,m are locally Lipschitz functions with f := ( f1, · · · , fm).

Let gt : R
n×Vt → R, t ∈ T be locally Lipschitz functionswith respect to x uniformly

in t ∈ T and let vt ∈ Vt , t ∈ T be uncertain parameters, where Vt ⊆ R
q , t ∈ T are

the convex compact sets.
The uncertainty set-valued mapping V : T ⇒ R

q is defined as V(t) := Vt for
all t ∈ T . The notation v ∈ V means that v is a selection of V , i.e., v : T → R

q

and vt ∈ Vt for all t ∈ T . So, the uncertainty set is the graph of V , that is, gphV :=
{(t, vt ) | vt ∈ Vt , t ∈ T }.

The robust counterpart of the problem (USIMP) is as follows:

(RSIMP)
min f (x) := ( f1(x), · · · , fm(x)) ,

s.t. gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T ,∀x ∈ �.

The feasible set of the problem (RSIMP) is defined by

F := {x ∈ � | gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T }.
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Definition 1 A point x̄ ∈ F is called

(i) ([10]) a local efficient solution of the problem (RSIMP) if there exists a neighbor-
hood U ⊆ R

n of x̄ such that

f (x) − f (x̄) /∈ −R
m+\{0},∀x ∈ U ∩ F .

(ii) ([18]) a local isolated efficient solution of the problem (RSIMP) if there exist a
neighborhood U ⊆ R

n of x̄ and a constant ν > 0 such that

max
1≤k≤m

{ fk(x) − fk(x̄)} ≥ ν||x − x̄ ||,∀x ∈ U ∩ F .

(iii) ([10]) a local positively properly efficient solution of the problem (RSIMP) if there
exist a neighborhood U ⊆ R

n of x̄ and β := (β1, · · · , βm) ∈ intRm+ such that

〈β, f (x)〉 ≥ 〈β, f (x̄)〉 ,∀x ∈ U ∩ F .

WhenU := R
n , one has the concepts of a global efficient solution, a global isolated

efficient solution and a global positively properly efficient solution for the problem
(RSIMP).

Let R
(T ) be the linear space given below

R
(T ) := {λ = (λt )t∈T | λt = 0 for all t ∈ T but only finitely many λt = 0}.

Let R
(T )
+ be the positive cone in R

(T ) defined by

R
(T )
+ :=

{
λ = (λt )t∈T ∈ R

(T ) | λt ≥ 0 for all t ∈ T
}

.

With λ ∈ R
(T ), its supporting set, T (λ) := {t ∈ T | λt = 0}, is a finite subset of T .

Given {zt } ⊂ Z , t ∈ T , Z being a real linear space, we understand that

∑

t∈T
λt zt =

⎧
⎨

⎩

∑

t∈T (λ)

λt zt , if T (λ) = ∅,

0, if T (λ) = ∅.

For gt , t ∈ T ,

∑

t∈T
λt gt =

⎧
⎨

⎩

∑

t∈T (λ)

λt gt , if T (λ) = ∅,

0, if T (λ) = ∅.
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3 Robust Optimality Conditions for Isolated Efficient Solution and
Properly Efficient Solution

In this section, we establish optimality conditions for local isolated efficient solutions
and local positively properly efficient solutions of the problem (RSIMP).

The following constraint qualification is an extension of Definition 3.2 in [52].

Definition 2 Let x̄ ∈ F . We say that the following robust constraint qualification
(RCQ) is satisfied at x̄ if

NC (x̄; F) ⊆
⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�),

where
A(x̄) := {λ ∈ R

(T )
+ | λt gt (x̄, vt ) = 0,∀vt ∈ Vt ,∀t ∈ T } (1)

is set of active constraint multipliers at x̄ ∈ �.

Now, we propose a necessary optimality condition for a local isolated efficient
solution of the problem (RSIMP) under the qualification condition (RCQ).

Theorem 1 Let x̄ ∈ F be a local isolated efficient solution of the problem (RSIMP) for
some ν > 0. Suppose that fk : R

n → R, k = 1, · · · ,m are convex functions and the
qualification condition (RCQ) at x̄ holds. Then, there exist α := (α1, · · · , αm) ∈ R

m+

with
m∑

k=1

αk = 1, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1) such that

νB ⊂
m∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).

Proof Suppose that x̄ ∈ F is a local isolated efficient solution of the problem (RSIMP).
Let

ψ(x) := max
1≤k≤m

{ fk(x) − fk(x̄)} − ν||x − x̄ ||,∀x ∈ R
n .

Since x̄ ∈ F is a local isolated efficient solution of the problem (RSIMP), there exists
a neighborhood U ⊆ R

n of x̄ such that

ψ(x) ≥ ψ(x̄) = 0,∀x ∈ U ∩ F .

It follows easily that x̄ is a local minimizer of the following scalar problem

min
x∈F ψ(x).
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Note further that we have || ·−x̄ || is a convex function. Thus, using Corollary 1 in [1],
we deduce that

∂C (ν|| · −x̄ ||) (x̄) ⊂ ∂C
(

max
1≤k≤m

{ fk(·) − fk(x̄)}
)

(x̄) + NC (x̄; F).

From ∂C (ν|| · −x̄ ||) (x̄) = νB,∀ν > 0, one follows

νB ⊂ ∂C
(

max
1≤k≤m

{ fk(·) − fk(x̄)}
)

(x̄) + NC (x̄; F). (2)

Thank to Lemma 3, we have

∂C
(

max
1≤k≤m

{ fk(·) − fk(x̄)}
)

(x̄)

⊂
{

m∑

k=1

αk∂
C fk(x̄) | αk ≥ 0, k = 1, · · · ,m,

m∑

k=1

αk = 1

}

.

(3)

Because the qualification condition (RCQ) holds at x̄ ∈ F .
So, one implies

NC (x̄; F) ⊆
⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�), (4)

where

A(x̄) :=
{
λ ∈ R

(T )
+ | λt gt (x̄, vt ) = 0,∀vt ∈ Vt ,∀t ∈ T

}
.

It yields from (2) to (4) that

νB ⊂
{

m∑

k=1

αk∂
C fk(x̄) | αk ≥ 0, k = 1, · · · ,m,

m∑

k=1

αk = 1

}

+ ⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]
+ NC (x̄;�).

Therefore, there exist α ∈ R
m+ with

m∑

k=1

αk = 1, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined

in (1) such that

νB ⊂
m∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).
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The proof is complete. ��
The following simple example shows that the qualification condition (RCQ) is

essential in Theorem 1.

Example 1 Let f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

f1(x) = f2(x) = x2, x ∈ R.

Take T = [0, 1], vt ∈ Vt = [2− t, 2+ t], t ∈ T and let gt : R×Vt → R be given by

gt (x, vt ) = vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By simple
computation, one has F = {0}. Now, take x̄ = 0 ∈ F . Then, it is easy to see that x̄ is
a global isolated efficient solution of the problem (RSIMP). Indeed, we have

max
1≤k≤2

{ fk(x) − fk(x̄)} = x2 ≥ ν|x | = ν||x − x̄ ||,∀ν > 0,∀x ∈ F .

Besides, take x̄ = 0, B = [−1, 1], ν = 1 > 0, α = (α1, α2) ∈ R
2+ with α1 + α2 = 1,

we have NC (x̄;�) = NC (x̄; (−∞, 0]) = [0,+∞), ∂C fk(x̄) = {0}, k = 1, 2 and
∂Cx gt (x̄, vt ) = {0}, for any vt ∈ Vt , t ∈ T . It is easy to see that

νB = [−1, 1] ⊂ [0,+∞) =
2∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

for any λ ∈ A(x̄), vt ∈ Vt , t ∈ T . The reason is that the qualification condition (RCQ)
is not satisfied at x̄ = 0. Indeed, one has

⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�) = [0,+∞).

However, NC (x̄; F) = NC (x̄; {0}) = R. Clearly, the qualification condition (RCQ)
does not hold at x̄ .

The following simple example proves that, in general, a feasible point may satisfy
the qualification condition (RCQ), but if this point is not a global isolated efficient
solution of the problem (RSIMP), then

νB ⊂
m∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�)

does not hold.
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Example 2 Let f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

f1(x) = f2(x) = x + 1, x ∈ R.

Take T = [0, 1], vt ∈ Vt = [2− t, 2+ t], t ∈ T and let gt : R×Vt → R be given by

gt (x, vt ) = −vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By sim-
ple computation, one has F = (−∞, 0]. By Choosing x̄ = 0 ∈ F , it is easy to
see that NC (x̄;�) = NC (x̄; (−∞, 0]) = [0,+∞), ∂C fk(x̄) = {0}, k = 1, 2 and
∂Cx gt (x̄, vt ) = {0},∀vt ∈ Vt , t ∈ T . Therefore, we have

⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�) = [0,+∞).

Moreover, we have NC (x̄; F) = NC (x̄; (−∞, 0]) = [0,+∞). Clearly, the qualifi-
cation condition (RCQ) holds at x̄ = 0. Besides, take x̄ = 0, B = [−1, 1], ν = 1 >

0, α = (α1, α2) ∈ R
2+ with α1 + α2 = 1, one implies ∂C fk(x̄) = {1}, k = 1, 2 and

νB = [−1, 1] ⊂ [1,+∞) = {1} + [0,+∞)

=
2∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).

Hence, condition

νB ⊂
2∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�)

does not hold. The reason is that x̄ = 0 is a global isolated efficient solution of the
problem (RSIMP). Indeed, we can choose x = −2 ∈ F = (−∞, 0]. Clearly,

max
1≤k≤2

{ fk(x) − fk(x̄)} = x + 1 − 1 = −2 < 2ν = ν||x − x̄ ||,∀ν > 0.

Now, we propose a necessary optimality condition for a local positively property
efficient solution of the problem (RSIMP) under the qualification condition (RCQ).

Theorem 2 Let x̄ ∈ F be a local positively property efficient solution of the problem
(RSIMP). Suppose that the qualification condition (RCQ) at x̄ holds. Then, there exist
β ∈ intRm+, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1) such that

0 ∈
m∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).
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Proof Let x̄ ∈ F be a local positively property efficient solution of the problem
(RSIMP). Then there exist a neighborhood U ⊆ R

n of x̄ and β := (β1, · · · , βm) ∈
intRm+ such that

〈β, f (x)〉 ≥ 〈β, f (x̄)〉 ,∀x ∈ U ∩ F .

Then, ∀x ∈ U ∩ F ,
m∑

k=1

βk fk(x) =
m∑

k=1

βk fk(x̄). (5)

For any x ∈ R
n , set


(x) :=
m∑

k=1

βk fk(x).

Applying (5) we deduce that x̄ is a local minimizer of the following problem

min
x∈F 
(x).

Since function 
 is locally Lipschitz at x̄ , so we deduce from Lemma 1 that

0 ∈ ∂C
(x̄) + NC (x̄; F). (6)

According to Lemma 2, we have

∂C
(x̄) = ∂C

(
m∑

k=1

βk fk(·)
)

(x̄) =
m∑

k=1

βk∂
C fk(x̄). (7)

Because the qualification condition (RCQ) holds at x̄ ∈ F . So, one implies

NC (x̄; F) ⊆
⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�), (8)

where

A(x̄) := {λ ∈ R
(T )
+ | λt gt (x̄, vt ) = 0,∀vt ∈ Vt ,∀t ∈ T }.

It yields from (6) to (8) that

0 ∈
m∑

k=1

βk∂
C fk(x̄) +

⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�).
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Therefore, there exist β ∈ intRm+, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1) such
that

0 ∈
m∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).

The proof is complete. ��
Now, we introduce a concept of the robust (KKT) condition for the problem

(RSIMP).

Definition 3 A point x̄ ∈ F is said to satisfy the robust (KKT) condition with respect
to the problem (RSIMP) if there exist β ∈ intRm+, vt ∈ Vt , t ∈ T and λ ∈ A(x̄)
defined in (1) such that

0 ∈
m∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).

The following simple example proves that a point satisfying the robust (KKT) con-
dition is not necessarily a global positively properly efficient solution of the problem
(RSIMP) even in the smooth case.

Example 3 Let f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

f1(x) = f2(x) = x3, x ∈ R.

Take T = [0, 1], vt ∈ Vt = [2− t, 2+ t], t ∈ T and let gt : R×Vt → R be given by

gt (x, vt ) = −vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By simple
computation, one has F = (−∞, 0]. By choosing x̄ = 0 ∈ F , we have NC (x̄;�) =
NC (x̄; (−∞, 0]) = [0,+∞) and ∂C fk(x̄) = {0}, k = 1, 2, ∂Cx gt (x̄, vt ) = {0}, vt ∈
Vt , t ∈ T . On the other hand, take β = (β1, β2) ∈ intR2+, it is easy to see that

0 ∈ [0,+∞) =
2∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

for all λ ∈ A(x̄), vt ∈ Vt , t ∈ T . Thus, the robust (KKT) condition is satisfied at
x̄ . However, x̄ = 0 ∈ F is not a global positively properly efficient solution of the
problem (RSIMP). To see this, we can choose x = −1 ∈ F andβ = (β1, β2) ∈ intR2+.
Then, it is easy to see that

2∑

k=1

βk fk(x) = −(β1 + β2) < 0 =
2∑

k=1

βk fk(x̄).
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Before we discuss sufficient condition for a global positively properly efficient
solution of the problem (RSIMP), we introduce the concepts of convexity, which are
inspired by [37].

Definition 4 We say that gt : R
n × Vt → R, t ∈ T are quasiconvex on � at x̄ ∈ � if

for all x ∈ �,

gt (x, vt ) ≤ gt (x̄, vt ) ⇒ 〈xt , x − x̄〉 ≤ 0,∀xt ∈ ∂Cx gt (x̄, vt ),∀vt ∈ Vt ,∀t ∈ T .

Definition 5 We say that f := ( f1, · · · , fm) is pseudoconvex on � at x̄ ∈ � if for all
x ∈ �, there exist xk ∈ ∂C fk(x̄), k = 1, · · · ,m such that

〈xk, x − x̄〉 ≥ 0 ⇒ fk(x) ≥ fk(x̄), k = 1, · · · ,m.

Now, we will give a sufficient condition for a global positively properly efficient
solution of the problem (RSIMP).

Theorem 3 Assume that � is a convex set and x̄ ∈ F satisfies the robust (KKT)
condition. If f is pseudoconvex on � at x̄ and functions gt , t ∈ T are quasiconvex
on � at x̄ , then x̄ ∈ F is a global positively properly efficient solution of the problem
(RSIMP).

Proof Since x̄ ∈ F satisfies the robust (KKT) condition, there exist β ∈ intRm+ and
xk ∈ ∂C fk(x̄), k = 1, · · · ,m, xt ∈ ∂Cx gt (x̄, vt ), vt ∈ Vt , t ∈ T , λ ∈ A(x̄) defined in
(1), as well as w ∈ NC (x̄;�) such that

m∑

k=1

βk xk +
∑

t∈T
λt xt + w = 0,

which is equivalent to

〈
m∑

k=1

βk xk, x − x̄

〉

+
〈
∑

t∈T
λt xt , x − x̄

〉

+ 〈w, x − x̄〉 = 0. (9)

Since � is a convex set and w ∈ NC (x̄;�), it follows that, for any x ∈ �,

〈w, x − x̄〉 ≤ 0.

From (9) it follows that

〈
m∑

k=1

βk xk, x − x̄

〉

+
〈
∑

t∈T
λt xt , x − x̄

〉

≥ 0,

which means that
〈

m∑

k=1

βk xk, x − x̄

〉

≥ −
〈
∑

t∈T
λt xt , x − x̄

〉

. (10)
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Moreover, for any λ ∈ A(x̄), then λt gt (x̄, vt ) = 0,∀t ∈ T . Note that for any x ∈ F ,
then λt gt (x, vt ) ≤ 0 for any vt ∈ Vt , t ∈ T . It follows that

λt gt (x, vt ) ≤ 0 = λt gt (x̄, vt ),∀t ∈ T .

By gt is quasiconvex on � at x̄ and xt ∈ ∂Cx gt (x̄, vt ), vt ∈ Vt , for all t ∈ T , we obtain
〈λt xt , x − x̄〉 ≤ 0,∀t ∈ T . It is easy to imply that

〈
∑

t∈T
λt xt , x − x̄

〉

≤ 0. (11)

Combining (10) and (11), we can assert that

〈
m∑

k=1

βk xk, x − x̄

〉

≥ 0.

Since f is pseudoconvex on � at x̄ , it follows that

m∑

k=1

βk fk(x) ≥
m∑

k=1

βk fk(x̄).

Therefore, x̄ is a global positively properly efficient solution of the problem (RSIMP).
The proof is complete. ��

Now, we present an example to show the importance of the pseudoconvexity in
Theorem 3.

Example 4 Let x ∈ R and f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

fk(x) =
{
x2 cos

1

x
, if x = 0,

0, if x = 0,

k = 1, 2. Take T = [0, 1], vt ∈ Vt = [2 − t, 2 + t], t ∈ T and let gt : R × Vt → R

be given by

gt (x, vt ) = −vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RSIMP) with m = 2 and � = [0,+∞) ⊂ R. By simple
computation, one has F = [0,+∞). By selecting x̄ = 0 ∈ F , one has NC (x̄;�) =
NC (x̄; [0,+∞)) = (−∞, 0),

∂C fk(x̄) = [−1, 1], k = 1, 2 and ∂Cx gt (x̄, vt ) = {0},∀vt ∈ Vt , t ∈ T .
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It can be verified that x̄ = 0 ∈ F satisfies the robust (KKT) condition. Indeed, let us
select β = (β1, β2) ∈ intR2+ with β1 + β2 = 1, it is easy to imply that

0 ∈ (−∞, 1] = [−1, 1] + (−∞, 0]
=

2∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

for all λ ∈ A(x̄) and vt ∈ Vt , t ∈ T . However, x̄ = 0 is not a global positively
properly efficient solution of the problem (RSIMP). In order to see this, let us take

x̂ = 1

π
∈ F = [0,+∞) and β = (β1, β2) ∈ intR2+ with β1 + β2 = 1. Then,

2∑

k=1

βk fk(x̂) = − 1

π2 < 0 =
2∑

k=1

βk fk(x̄).

The reason is that f is not pseudoconvex on � at x̄ = 0. Indeed, take x = 1

3π
∈ � =

[0,+∞) and xk = 0 ∈ ∂C fk(x̄) = [−1, 1], k = 1, 2. Clearly,

〈xk, x − x̄〉 = 0 ≥ 0, k = 1, 2.

However,

fk(x) = − 1

9π2 < 0 = fk(x̄), k = 1, 2.

4 Robust Duality for Properly Efficient Solution

In this section, we consider the Mond–Weir-type dual problem (MWD) with respect
to the problem (RSIMP).

For x ∈ R
n , a nonempty and closed set � ⊆ R

n , β := (β1, · · · , βm) ∈ intRm+ with
m∑

k=1

βk = 1 and λ ∈ R
(T )
+ , vt ∈ Vt , t ∈ T , f := ( f1, · · · , fm), gT := (gt )t∈T , let us

denote a vector function L := (L1, · · · , Lm) by

L(x, β, λ) := f (x).

We consider the Mond–Weir-type dual problem (MWD) with respect to the primal
problem (RSIMP) as follows:
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(MWD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max L(y, β, λ)

s.t. 0 ∈
m∑

k=1

βk∂
C fk(y) +

∑

t∈T
λt∂

C
x gt (y, vt ) + NC (y;�),

∑

t∈T
λt gt (y, vt ) ≥ 0, vt ∈ Vt , t ∈ T ,

y ∈ �,β ∈ intRm+,

m∑

k=1

βk = 1, λ ∈ R
(T )
+ .

The feasible set of the problem (MWD) is defined by

FMWD =
{

(y, β, λ) ∈ � × intRm+ × R
(T )
+ | 0 ∈

m∑

k=1

βk∂
C fk(y) +

∑

t∈T
λt∂

C
x gt (y, vt )

+NC (y;�),
∑

t∈T
λt gt (y, vt ) ≥ 0, vt ∈ Vt , t ∈ T ,

m∑

k=1

βk = 1

}

.

In what follows, we use the following notation for convenience:

u � v ⇔ u − v ∈ −R
m+\{0}, u � v is the negation of u � v.

Now, we will introduce the following definitions for a global efficient solution and
a global positively properly efficient solution of the problem (MWD).

Definition 6 A point (ȳ, β̄, λ̄) ∈ FMWD is called

(i) A global efficient solution of the problem (MWD) if

L(y, β, λ) − L(ȳ, β̄, λ̄) /∈ R
m+\{0},∀(y, β, λ) ∈ FMWD.

(ii) A global positively properly efficient solution of the problem (MWD) if there
exists θ := (θ1, · · · , θm) ∈ −intRm+ such that

〈θ, L(y, β, λ)〉 ≥ 〈
θ, L(ȳ, β̄, λ̄)

〉
,∀(y, β, λ) ∈ FMWD.

Motivated by the definition of the generalized convexity due to [9, 10], we will
introduce a concept of the generalized convexity as follows:

Definition 7 We say that ( f , gT ) is generalized convex on � at x̄ ∈ �, if for any
x ∈ �, xk ∈ ∂C fk(x̄), k = 1, · · · ,m and xt ∈ ∂Cx gt (x̄, vt ), vt ∈ Vt , t ∈ T , there
exists w ∈ TC (x̄;�) such that

fk(x) − fk(x̄) ≥ 〈xk, w〉 , k = 1, · · · ,m,

gt (x, vt ) − gt (x̄, vt ) ≥ 〈xt , w〉 ,∀t ∈ T .

Remark 1 Note that, if � is a convex set and fk(·), k = 1, · · · ,m, gt (·, vt ), vt ∈
Vt , t ∈ T are convex functions, then ( f , gT ) is generalized convex on � at any x̄ ∈ �

with w := x − x̄ for each x ∈ �.
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The next example shows that the class of the generalized convex functions is prop-
erly larger than the one of the convex functions.

Example 5 Let f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

f1(x) = x4, f2(x) = x2, x ∈ R.

Take T = [0, 1], vt ∈ Vt = [0, 2 − t],∀t ∈ T and let gt : R × Vt → R be given by

gt (x, vt ) = vt x
2, x ∈ R, vt ∈ Vt\{0}, t ∈ T and g0(x, 0) =

{ x

3
, if x ≥ 0,

x, if x < 0.

Consider � = R, x̄ = 0 ∈ �, one has NC (x̄;�) = NC (x̄; R) = {0}, TC (x̄;�) =
TC (x̄; R) = R. It is easy to see that ( f , gT ) is generalized convex on� at x̄ . However,
g0(·, 0) is not a convex function. Indeed, let x1 = 1, x2 = −1 ∈ R, and choose

λ = 1

2
∈ [0, 1], we have

g0(λx1 + (1 − λ)x2, 0) = 0 > −1

3
= λg0(x1, 0) + (1 − λ)g0(x2, 0).

In the line of [15], we will introduce a concept of the generalized convexity as
follows:

Definition 8 We say that ( f , gT ) is pseudogeneralized convex on � at x̄ ∈ �, if for
any x ∈ �, xk ∈ ∂C fk(x̄), k = 1, · · · ,m and xt ∈ ∂Cx gt (x̄, vt ), vt ∈ Vt , t ∈ T , there
exists w ∈ TC (x̄;�) such that

〈xk, w〉 ≥ 0 ⇒ fk(x) ≥ fk(x̄), k = 1, · · · ,m,

gt (x, vt ) ≤ gt (x̄, vt ) ⇒ 〈xt , w〉 ≤ 0,∀t ∈ T .

Remark 2 If ( f , gT ) is generalized convex on � at x̄ ∈ �, then ( f , gT ) is pseudogen-
eralized convex on � at x̄ ∈ �.

The next example shows that the class of the pseudogeneralized convex functions
is properly larger than the one of the generalized convex functions.

Example 6 Let f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

f1(x) =
{ x

3
, if x ≥ 0,

x, if x < 0,
f2(x) =

{
x, if x ≥ 0,
0, if x < 0.

Take T = [0, 1], vt ∈ Vt = [0, 2−t],∀t ∈ T and let gt : R×Vt → R, t ∈ T = [0, 1]
be given by

gt (x, vt ) = vt x
2, x ∈ R, vt ∈ Vt\{0}, t ∈ T and g0(x, 0) :=

{
− x

3
, if x < 0,

−x, if x ≥ 0.
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Consider � = R, x̄ = 0 ∈ �, one has NC (x̄;�) = NC (x̄; R) = {0}, TC (x̄;�) =
TC (x̄; R) = R. It is easy to see that ( f , gT ) is pseudogeneralized convex on � at x̄ .
Meanwhile, ( f , gT ) is not generalized convex function on � at x̄ .

Now, we establish the following weak duality theorem, which describes relation
between the problem (RSIMP) and the problem (MWD).

Theorem 4 Suppose that x ∈ F and (y, β, λ) ∈ FMWD. If ( f , gT ) is pseudogeneral-
ized convex on � at y, then

f (x) � L(y, β, λ).

Proof Since (y, β, λ) ∈ FMWD, there exist xk ∈ ∂C fk(y), k = 1, · · · ,m, β ∈ intRm+

with
m∑

k=1

βk = 1 and xt ∈ ∂Cx gt (y, vt ), vt ∈ Vt , t ∈ T , λ ∈ R
(T )
+ such that

−
(

m∑

k=1

βk xk +
∑

t∈T
λt xt

)

∈ NC (y;�) (12)

and ∑

t∈T
λt gt (y, vt ) ≥ 0. (13)

Let x ∈ F . Suppose on contrary that

f (x) � L(y, β, λ).

Hence 〈β, f (x) − f (y)〉 < 0 due to β ∈ intRm+ with
m∑

k=1

βk = 1. Thus,

m∑

k=1

βk fk(x) <

m∑

k=1

βk fk(y). (14)

Note that, for x ∈ F , we have gt (x, vt ) ≤ 0 for any t ∈ T . It yields that

∑

t∈T
λt gt (x, vt ) ≤ 0. (15)

From (13) together with (15)

∑

t∈T
λt gt (x, vt ) ≤

∑

t∈T
λt gt (y, vt ). (16)

By the pseudogeneralized convexity of ( f , gT ) on � at y ∈ � and (14), (16), for such
x ∈ F ⊆ �, xk ∈ ∂C fk(y), k = 1, · · · ,m, xt ∈ ∂Cx gt (y, vt ), vt ∈ Vt , t ∈ T , there
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exists w ∈ TC (y;�) such that

m∑

k=1

βk 〈xk, w〉 < 0 (17)

and ∑

t∈T
λt 〈xt , w〉 ≤ 0. (18)

Combining (17) with (18), we can assert that

m∑

k=1

βk 〈xk, w〉 +
∑

t∈T
λt 〈xt , w〉 < 0. (19)

On the other side, we yield from (12) and the relation w ∈ TC (y;�) that

m∑

k=1

βk 〈xk, w〉 +
∑

t∈T
λt 〈xt , w〉 ≥ 0,

which contradicts (19). Thus, f (x) � L(y, β, λ). The proof is complete. ��

The following example shows that the pseudogeneralized convexity of ( f , gT ) on
� imposed in Theorem 4 cannot be removed.

Example 7 Let f : R → R
2 be defined by

f (x) = ( f1(x), f2(x)) ,

where f1(x) = f2(x) = x3, x ∈ R. Take T = [0, 1], vt ∈ Vt = [2 − t, 2 + t] and let
gt : R × Vt → R be given by

gt (x, vt ) = −vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By simple
computation, one has F = (−∞, 0]. Let us select x̄ = −1 ∈ F . Now, consider
the dual problem (MWD). By choosing ȳ = 0 ∈ �, β̄ = (β̄1, β̄2) ∈ intR2+ with

β̄1 + β̄2 = 1, λ̄ ∈ R
(T )
+ , we have NC (ȳ;�) = NC (ȳ; (−∞, 0]) = [0,+∞) and

∂C fk(ȳ) = {0}, k = 1, 2, ∂Cx gt (ȳ, vt ) = {0}, vt ∈ Vt , t ∈ T . It is easy to see that

0 ∈ [0,+∞) =
2∑

k=1

β̄k∂
C fk(ȳ) +

∑

t∈T
λ̄t∂

C
x gt (ȳ, vt ) + NC (ȳ;�)
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and β̄1 + β̄2 = 1,
∑

t∈T
λ̄t gt (ȳ, vt ) = 0, vt ∈ Vt , t ∈ T . Thus, (ȳ, β̄, λ̄) ∈ FMWD.

However, if x̄ = −1 ∈ F , then

f (x̄) = ( f1(x̄), f2(x̄)) = (−1,−1) � (0, 0) = (L1(ȳ, β̄, λ̄), L2(ȳ, β̄, λ̄))

= L(ȳ, β̄, λ̄).

The reason is that ( f , gT ) is not pseudogeneralized convex on� at ȳ = 0. To see this,
we can choose y = −3 ∈ � and xk ∈ ∂C fk(ȳ) = {0}, k = 1, 2. Then, it is easy to
see that TC (ȳ;�) = TC (ȳ; (−∞, 0]) = (−∞, 0] and

〈xk, w〉 = 0 ≥ 0,∀w ∈ TC (ȳ;�), k = 1, 2.

However,

fk(y) = −27 < 0 = fk(ȳ), k = 1, 2.

Now, we establish the following strong duality theorem, which describes relation
between the problem (RSIMP) and the problem (MWD).

Theorem 5 Suppose that x̄ ∈ F is a local positively properly efficient solution of the
problem (RSIMP) such that the qualification condition (RCQ) is satisfied at x̄ . Then
there exists (β̄, λ̄) ∈ intRm+×R

(T )
+ such that (x̄, β̄, λ̄) ∈ FMWD and f (x̄) = L(x̄, β̄, λ̄).

If in addition ( f , gT ) is pseudogeneralized convex on � at y ∈ �, then (x̄, β̄, λ̄) is a
global efficient solution of the problem (MWD).

Proof According to Theorem 2, there exist β ∈ intRm+ and vt ∈ Vt , t ∈ T , λ ∈ A(x̄)
defined in (1) such that

0 ∈
m∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�). (20)

Putting

β̄k := βk
m∑

k=1

βk

, k = 1, · · · ,m, λ̄t := λt
m∑

k=1

βk

, t ∈ T ,

one has β̄ := (β̄1, · · · , β̄m) ∈ intRm+ with
m∑

k=1

β̄k = 1, and λ̄ := (λ̄t )t∈T ∈ R
(T )
+ .

Furthermore, the assertion in (20) is also valid when βk’s and λt ’s are replaced by β̄k’s
and λ̄t ’s, respectively. Besides, since λ ∈ A(x̄) defined in (1), we have λt gt (x̄, vt ) =
0,∀t ∈ T , it implies that

∑

t∈T
λ̄t gt (x̄, vt ) = 0 ≥ 0. Therefore, one has (x̄, β̄, λ̄) ∈
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FMWD. It is easy to imply that

f (x̄) = L(x̄, β̄, λ̄).

Because ( f , gT ) is pseudogeneralized convex on � at any y ∈ �, so we apply the
result of Theorem 4 to deduce that

L(x̄, β̄, λ̄) = f (x̄) � L(y, β, λ),

for any (y, β, λ) ∈ FMWD. Therefore, one has

L(y, β, λ) − L(x̄, β̄, λ̄) /∈ R
m+\{0},∀(y, β, λ) ∈ FMWD.

This means that (x̄, β̄, λ̄) is a global efficient solution of the problem (MWD). The
proof is complete. ��
Remark 3 Note that our strong duality result appeared in Theorem 5 in not in an ordi-
nary way; that is, the solution of the dual problem is not guaranteed to be positively
properly efficient, only efficient, although the solution to the primal one is local posi-
tively properly efficient. As shown by [5] (Example 4.6), for the case when Vt , t ∈ T
are singletons and T is a finite set, we cannot gain in general a positively properly
efficient solution for the dual problem, even in the convex framework.

The next example asserts the importance of the qualification condition (RCQ)
imposed in Theorem 5. More precisely, if x̄ is a global positively properly efficient
solution of the problem (RSIMP) at which the qualification condition (RCQ) is not
satisfied, then we may not find out a pair (β̄, λ̄) ∈ intRm+ × R

(T )
+ such that (x̄, β̄, λ̄)

belongs to the feasible set FMWD of the dual problem (MWD).

Example 8 Let f : R → R
2 be defined by f (x) = ( f1(x), f2(x)), where

f1(x) = f2(x) = x, x ∈ R.

Take T = [0, 1], vt ∈ Vt = [2 − t, 2 + t] and let gt : R × Vt → R be given by

gt (x, vt ) = vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By simple
computation, one has F = {0}. Now, take x̄ = 0 ∈ F, β̄ = (β̄1, β̄2) ∈ intR2+ with
β̄1 + β̄2 = 1. Then, it is easy to show that x̄ is a global positively properly efficient
solution of the problem (RSIMP). Indeed, we have

2∑

k=1

β̄k fk(x) = x ≥ 0 =
2∑

k=1

β̄k fk(x̄),∀x ∈ F .
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Now, consider the dual problem (MWD). By choosing x̄ = 0 ∈ �, λ̄ ∈ R
(T )
+ , β̄ =

(β̄1, β̄2) ∈ intR2+ with β̄1 + β̄2 = 1, we have

NC (x̄;�) = NC (x̄; (−∞, 0]) = [0,+∞)

and ∂C fk(x̄) = {1}, k = 1, 2, ∂Cx gt (x̄, vt ) = {0}, vt ∈ Vt ,∀t ∈ T . It is easy to see
that

0 /∈ [1,+∞) = {1} + [0,+∞)

=
2∑

k=1

β̄k∂
C fk(x̄) +

∑

t∈T
λ̄t∂

C
x gt (x̄, vt ) + NC (x̄;�).

Thus, (x̄, β̄, λ̄) /∈ FMWD. The reason is that the qualification condition (RCQ) is not
satisfied at x̄ = 0 ∈ F . Indeed, we have NC (x̄;�) = NC (x̄; (−∞, 0]) = [0,+∞)

and ∂Cx gt (x̄, vt ) = {0} for any vt ∈ Vt , t ∈ T ,

⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�) = [0,+∞).

Besides, one has NC (x̄; F) = NC (x̄; 0) = R. Therefore, the qualification condition
(RCQ) is not satisfied at x̄ .

Finally, we establish the following converse duality theorem, which describes rela-
tion between the problem (RSIMP) and the problem (MWD).

Theorem 6 Assume that (x̄, β̄, λ̄) ∈ FMWD. If x̄ ∈ F and ( f , gT ) is pseudogeneral-
ized convex on � at x̄ , then x̄ is a global positively properly efficient solution of the
problem (RSIMP).

Proof Since (x̄, β̄, λ̄) ∈ FMWD, there exist xk ∈ ∂C fk(x̄), k = 1, · · · ,m, β̄ :=
(β̄1, · · · , β̄m) ∈ intRm+ with

m∑

k=1

β̄k = 1 and xt ∈ ∂Cx gt (x̄, v̄t ), v̄t ∈ Vt , t ∈ T ,

λ̄ := (λ̄t )t∈T ∈ R
(T )
+ such that

−
(

m∑

k=1

β̄k xk +
∑

t∈T
λ̄t xt

)

∈ NC (x̄;�) (21)

and ∑

t∈T
λ̄t gt (x̄, v̄t ) ≥ 0. (22)

Let x̄ ∈ F . Suppose on contrary that x̄ ∈ F is not a global positively properly efficient
solution of the problem (RSIMP). For such β̄ := (β̄1, · · · , β̄m) ∈ intRm+, it then
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follows that there exists x̂ ∈ F such that

〈
β̄, f (x̂)

〉
<

〈
β̄, f (x̄)

〉
.

Thus,
m∑

k=1

β̄k fk <

m∑

k=1

β̄k fk(x̄). (23)

Note that, for x̂ ∈ F we have gt (x̂, v̄t ) ≤ 0 for any t ∈ T . It yields that

∑

t∈T
λ̄t gt (x̂, v̄t ) ≤ 0. (24)

From (22) together with (24)

∑

t∈T
λ̄t gt (x̂, v̄t ) ≤

∑

t∈T
λ̄t gt (x̄, v̄t ). (25)

By the pseudogeneralized convexity of ( f , gT ) on � at x̄ ∈ � and (23), (25), for such
x̂ ∈ F ⊆ �, xk ∈ ∂C fk(x̄), k = 1, · · · ,m, xt ∈ ∂Cx gt (x̄, v̄t ), v̄t ∈ Vt , t ∈ T , there
exists w ∈ TC (x̄;�) such that

m∑

k=1

β̄k 〈xk, w〉 < 0 (26)

and ∑

t∈T
λ̄t 〈xt , w〉 ≤ 0. (27)

Combining (26) with (27), we can assert that

m∑

k=1

β̄k 〈xk, w〉 +
∑

t∈T
λ̄t 〈xt , w〉 < 0. (28)

On the other hand, we yield from (21) and the relation w ∈ TC (x̄;�) that

m∑

k=1

β̄k 〈xk, w〉 +
∑

t∈T
λ̄t 〈xt , w〉 ≥ 0,

which contradicts (28). This means that x̄ ∈ F is a global positively properly efficient
solution of the problem (RSIMP). The proof is complete. ��
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5 Application

5.1 Application to Semi-infinite Multiobjective Fractional Problem

In this section, we consider a nonsmooth fractional semi-infinite multiobjective opti-
mization problem with data uncertainty in the constraints:

(UFSIMP)
min f (x) :=

(
p1(x)

q1(x)
, · · · ,

pm(x)

qm(x)

)
,

s.t. gt (x, vt ) ≤ 0,∀t ∈ T ,∀x ∈ �,

where T is a nonempty infinite index set, � is a nonempty closed subset of R
n ,

pk, qk : R
n → R, k = 1, · · · ,m are locally Lipschitz functions. For the sake of

convenience, we further assume that qk(x) > 0, k = 1, · · · ,m for all x ∈ � and
that pk(x̄) ≤ 0, k = 1, · · · ,m for the reference point x̄ ∈ �. In what follows,

we also use the notation f := ( f1, · · · , fm), where fk := pk
qk

, k = 1, · · · ,m. Let

gt : R
n × Vt → R, t ∈ T be locally Lipschitz functions with respect to x uniformly

in t ∈ T and let vt ∈ Vt , t ∈ T be uncertain parameters, where Vt ⊆ R
q , t ∈ T are

the convex compact sets.
The robust counterpart of the problem (UFSIMP) is as follows:

(RFSIMP)
min f (x) :=

(
p1(x)

q1(x)
, · · · ,

pm(x)

qm(x)

)
,

s.t. gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T ,∀x ∈ �.

The feasible set of the problem (RFSIMP) is defined by

F := {x ∈ � | gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T }.

Definition 9 A point x̄ ∈ F is called a local positively properly efficient solution of
the problem (RFSIMP) if there exist a neighborhood U ⊆ R

n of x̄ and β ∈ intRm+
such that

〈β, f (x)〉 ≥ 〈β, f (x̄)〉 ,∀x ∈ U ∩ F .

When U := R
n , one has the concept of a global positively properly efficient solution

for the problem (RFSIMP)

Theorem 7 Let x̄ ∈ F be a local positively properly efficient solution of the problem
(RFSIMP). Suppose that the qualification condition (RCQ) at x̄ holds. Then, there
exist β ∈ intRm+, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1) such that

0 ∈
m∑

k=1

μk

(
∂C pk(x̄) − pk(x̄)

qk(x̄)
∂Cqk(x̄)

)
+

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

μk := βk

qk(x̄)
, k = 1, · · · ,m.

(29)
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Proof Suppose that x̄ ∈ F is a local positively properly efficient solution of the
problem (RFSIMP), then x̄ is a local positively properly efficient solution of the

problem (RSIMP) with fk := pk
qk

, k = 1, · · · ,m. According to Theorem 2, there

exist β ∈ intRm+, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1) such that

0 ∈
m∑

k=1

βk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�). (30)

Thanks to Lemma 4, for k = 1, · · · ,m, one has

∂C fk(x̄) = ∂C
(
pk
qk

)
(x̄) ⊂ qk(x̄)∂C pk(x̄) − pk(x̄)∂Cqk(x̄)

[qk(x̄)]2

= 1

qk(x̄)

(
∂C pk(x̄) − pk(x̄)

qk(x̄)
∂Cqk(x̄)

)
.

(31)

Combining (30) with (31), we can assert that

0 ∈
m∑

k=1

βk

qk(x̄)

(
∂C pk(x̄) − pk(x̄)

qk(x̄)
∂Cqk(x̄)

)
+

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�).

Now, by letting μk := βk

qk(x̄)
for k = 1, · · · ,m, we get

0 ∈
m∑

k=1

μk

(
∂C pk(x̄) − pk(x̄)

qk(x̄)
∂Cqk(x̄)

)
+

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

where λ ∈ A(x̄) defined in (1). The proof of Theorem 7 is complete. ��
The following simple example shows that the qualification condition (RCQ) is

essential in Theorem 7.

Example 9 Let f : R → R
2 be defined by

f (x) =
(
p1(x)

q1(x)
,
p2(x)

q2(x)

)
,

where p1(x) = p2(x) = x, q1(x) = q2(x) = x2 + 1, x ∈ R. Take T = [0, 1], vt ∈
Vt = [2 − t, 2 + t]. Let gt : R × Vt → R be given by

gt (x, vt ) = vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RFSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By simple
computation, one has F = {0}. Now, take x̄ = 0 ∈ F and β = (β1, β2) ∈ intR2+
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with β1 + β2 = 1. Then, it is easy to show that x̄ = 0 is a global positively properly
efficient solution of the problem (RFSIMP). Indeed, we have

2∑

k=1

βk fk(x) = x

x2 + 1
≥ 0 =

2∑

k=1

βk fk(x̄),∀x ∈ F .

Since NC (x̄;�) = NC (x̄; (−∞, 0]) = [0,+∞) and ∂Cx gt (x̄, vt ) = {0} at x̄ = 0 for
any vt ∈ Vt , t ∈ T , one has

⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�) = [0,+∞).

Moreover, NC (x̄; F) = NC (x̄; {0}) = R. Therefore, the qualification condition
(RCQ) is not satisfied at x̄ = 0. Now, take x̄ = 0 ∈ F and β = (β1, β2) ∈ intR2+
with β1 + β2 = 1. Then, it is easy to see that ∂C pk(x̄) = {1}, ∂Cqk(x̄) = {0}, μk =

βk

qk(x̄)
= βk, k = 1, 2,

0 /∈ [1,+∞) = {1} + [0,+∞)

=
2∑

k=1

μk

(
∂C pk(x̄) − pk(x̄)

qk(x̄)
∂Cqk(x̄)

)

+
∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

for any λ ∈ A(x̄), vt ∈ Vt , t ∈ T . This means that (29) does not hold. Hence, Theorem
7 is not valid.

The following simple example proves that, in general, a feasible point may satisfy
the qualification condition (RCQ), but if this point is not a global positively properly
efficient solution of the problem (RFSIMP), then (29) does not hold.

Example 10 Let f : R → R
2 be defined by

f (x) =
(
p1(x)

q1(x)
,
p2(x)

q2(x)

)
,

where p1(x) = p2(x) = x, q1(x) = q2(x) = x2 + 1, x ∈ R. Take T = [0, 1], vt ∈
Vt = [2 − t, 2 + t]. Let gt : R × Vt → R be given by

gt (x, vt ) = −vt x
2, x ∈ R, vt ∈ Vt , t ∈ T .

We consider the problem (RFSIMP) with m = 2 and � = (−∞, 0] ⊂ R. By simple
computation, one has F = (−∞, 0]. By choosing x̄ = 0 ∈ F , one has NC (x̄;�) =
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NC (x̄; (−∞, 0]) = [0,+∞) and ∂Cx gt (x̄, vt ) = {0},∀vt ∈ Vt , t ∈ T . Therefore, we
have

⋃

λ∈A(x̄)
vt∈Vt

[
∑

t∈T
λt∂

C
x gt (x̄, vt )

]

+ NC (x̄;�) = [0,+∞).

Moreover, we have NC (x̄; F) = NC (x̄; (−∞, 0]) = [0,+∞). Clearly, the qualifica-
tion condition (RCQ) holds at x̄ = 0. Now, take x̄ = 0 ∈ F and β = (β1, β2) ∈ intR2+
with β1 + β2 = 1. Then, it is easy to see that ∂C pk(x̄) = {1}, ∂Cqk(x̄) = {0}, μk =

βk

qk(x̄)
= βk, k = 1, 2,

0 /∈ [1,+∞) = {1} + [0,+∞)

=
2∑

k=1

μk

(
∂C pk(x̄) − pk(x̄)

qk(x̄)
∂Cqk(x̄)

)

+
∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

for any λ ∈ A(x̄), vt ∈ Vt , t ∈ T . Hence, condition (29) is not true. The reason is that
x̄ = 0 is not a global positively properly efficient solution of the problem (RFSIMP).
Indeed, we can choose x̄ = −1 ∈ F = (−∞, 0] and β = (β1, β2) ∈ intR2+ with
β1 + β2 = 1. Clearly,

2∑

k=1

βk fk(x) = x

x2 + 1
= −1

2
< 0 =

2∑

k=1

βk fk(x̄).

5.2 Application to Semi-infinite Minimax Problem

In this section, we consider a nonsmooth semi-infinite minimax optimization problem
with data uncertainty in the constraints:

(UMMP)
min max

1≤k≤m
fk(x),

s.t. gt (x, vt ) ≤ 0,∀t ∈ T ,∀x ∈ �,

where T is a nonempty infinite index set, � is a nonempty closed subset of R
n ,

fk : R
n → R, k = 1, · · · ,m are locally Lipschitz functions with f := ( f1, · · · , fm).

Let gt : R
n×Vt → R, t ∈ T be locally Lipschitz functionswith respect to x uniformly

in t ∈ T and let vt ∈ Vt , t ∈ T be uncertain parameters, where Vt ⊆ R
q , t ∈ T are

the convex compact sets.
The robust counterpart of the problem (UMMP) is as follows:

(RMMP)
min max

1≤k≤m
fk(x),

s.t. gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T ,∀x ∈ �.
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The feasible set of the problem (RMMP) is defined by

F := {x ∈ � | gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T }.

Definition 10 Let ϕ(x) := max
1≤k≤m

fk(x), x ∈ R
n . A point x̄ ∈ F is called a local

isolated efficient solution of the problem (RMMP) if there exist a neighborhood U ⊆
R
n of x̄ and a constant ν > 0 such that

ϕ(x) − ϕ(x̄) ≥ ν||x − x̄ ||,∀x ∈ U ∩ F\{x̄}.

When U := R
n , one has the concept of a global isolated efficient solution for the

problem (RMMP).

Theorem 8 Let x̄ ∈ F be a local isolated efficient solution of the problem (RMMP) for
some ν > 0. Suppose that fk : R

n → R, k = 1, · · · ,m are convex functions and the
qualification condition (RCQ) at x̄ holds. Then, there exist α := (α1, · · · , αm) ∈ R

m+

with
m∑

k=1

αk = 1, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1) such that

νB ⊂
m∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

αk

(
fk(x̄) − max

1≤k≤m
fk(x̄)

)
= 0, k = 1, · · · ,m.

Proof If x̄ ∈ F is a local isolated efficient solution of the problem (RMMP), then it is
also a local isolated efficient solution of the following problem

(RSIMP)
min ϕ(x),
s.t. gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T ,∀x ∈ �.

Theorem 1 says that there are ν > 0 and vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in (1)
such that

νB ⊂ ∂Cϕ(x̄) +
∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�). (32)

According to Lemma 3, one has

∂Cϕ(x̄) = ∂C
(

max
1≤k≤m

fk(x̄)

)

⊂
{

m∑

k=1

γk∂
C fk(x̄) | (γ1, · · · , γm) ∈ R

m+,

m∑

k=1

γk = 1,

γk

(
fk(x̄) − max

1≤k≤m
fk(x̄)

)
= 0

}
.

(33)
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By setting αk := γk, k = 1, · · · ,m. From (32) to (33), we deduce that there exist

α := (α1, · · · , αm) ∈ R
m+ with

m∑

k=1

αk = 1, vt ∈ Vt , t ∈ T and λ ∈ A(x̄) defined in

(1) such that

νB ⊂
m∑

k=1

αk∂
C fk(x̄) +

∑

t∈T
λt∂

C
x gt (x̄, vt ) + NC (x̄;�),

αk

(
fk(x̄) − max

1≤k≤m
fk(x̄)

)
= 0, k = 1, · · · ,m.

The proof is complete. ��

6 Conclusion

In this paper, we obtained some new results for robust optimality conditions and
robust duality theorems for isolated efficient solutions and positively properly efficient
solutions of nonsmooth robust semi-infinite multiobjective optimization problems by
Clarke subdifferentials. In addition, some of these results are applied to study robust
optimality conditions for nonsmooth robust fractional semi-infinite multiobjective
problems and nonsmooth robust semi-infinite minimax optimization problems. The
results obtained in this paper improve the corresponding results in the recent literature.
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