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Abstract
Consider the generalized Poisson and the negative binomial model with mean
parameter equal to kb, where k ≥ 0 is a count parameter and 0 < b < 1 is a hyper-
parameter. We show that conditioning on counts from both models and assuming a
uniform prior for k lead to the following Bayesian posterior distributions: (i) geomet-
ric for conditioning value of 0; (ii) extended negative binomial for conditioning value
of 1; (iii) approximately extended Hurwitz–Lerch zeta distribution for conditioning
value of 2 or more. Kullback–Leibler divergence for measuring the quality of the
approximating distributions for some combinations of b and the mean–variance ratio
is given.

Keywords Approximation · Generalized Poisson distribution · Hurwitz–Lerch zeta
distribution · Negative binomial distribution · Posterior distribution

Mathematics Subject Classification 62E17 · 62F15

1 Introduction

The family of generalized Poisson (GP) distribution [1] has been used for more than
40 years to model count data that may be overdispersed or underdispersed. Some of
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its interesting theoretical properties include a Poisson mixture interpretation [2], and
a heavier tail compared to the negative binomial distribution [2, 3]. Various chance
mechanisms have been found to generate the GP distribution [4]. Numerous applica-
tions are given in [5]. In bioinformatics, theGP distribution has been used formodeling
RNA-Seq count data [6–10].

The negative binomial (NB) distribution has a long history of use in the analy-
sis of biological count data [11–13]. In bioinformatics, it is the primary model for
modelling RNA-Seq count data and forms the basis of statistical tests of differential
gene expression [14–17].

Low et al. [10] pointed out that the observed gene counts in RNA-Seq experiments
are the consequence of stochastic variation acting on true gene counts. They proposed
to view the true gene count as a count parameter k. Under theGPmodel, the expectation
of the observed gene counts given k is equal to the product of k and a hyperparameter
b. Thus, the modeling focus shifts to finding the posterior distribution of k, assuming a
specific prior distribution. Since posterior distributions often have complicated forms
that make further analysis difficult and computationally expensive, finding appropriate
approximations to them is important to improve their applied value in statistics.

Wefirst introduce theGPmodel. Let X be a randomvariable following aGP(λ1, λ2)

distribution. Its probability mass function (pmf) is given by

P(X = x |λ1, λ2) = λ1(λ1 + xλ2)x−1e−(λ1+xλ2)

x ! , (1)

where x = 0, 1, 2, . . ., λ1 > 0 and max{−1,−λ1
4 } < λ2 < 1. Negative values

of λ2 correspond to overdispersion, positive values to underdispersion, and λ2 = 0
reduces Eq. (1) to the Poisson distribution with mean λ1. Consider the following
parametrisation: λ2 = 1 − √

m, λ1 = kb
√
m, where k = 0, 1, 2, . . . is the count

parameter, 0 < b < 1 is a hyperparameter, and m > 0 is the mean–variance ratio.
Under this parametrisation, the mean and the variance of the GP model are given
by E(X |k) = λ1/(1 − λ2) = kb, and Var(X |k) = E(X |k)/(1 − λ2)

2 = kb/m,
respectively.

Now, consider a random variable Y that has an NB distribution with parameters r
(the number of failures until y successes) and p (the probability of success). Its pmf
is given by

P(Y = y|r , p) = �(y + r)

�(y + 1)�(r)
py(1 − p)r , (2)

for y = 0, 1, 2, . . .. The mean and the variance of Y are given by E(Y |k) = pr/(1 −
p) = kb, and Var(Y |k) = pr/(1− p)2 = kb/m, respectively, where k = 0, 1, 2, . . .,
0 < b < 1, 0 < m < 1, and m is the mean-variance ratio. Thus, r = kbm/(1−m) =
kτ , where τ = bm/(1 − m).

We are interested in the posterior distribution of k conditioned on observations from
these two models, using an improper uniform prior P(k) = 1, k = 0, 1, 2, . . .. The
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posterior distribution of k under a GP model (Eq. (1)) is given by

P(k|X = x) = k(bk
√
m + x(1 − √

m))x−1e−bk
√
m

∑∞
j=x j(bj

√
m + x(1 − √

m))x−1e−bj
√
m

= k(k + g(x))x−1e−bk
√
m

∑∞
j=x j( j + g(x))x−1e−b

√
m j

,

(3)

for k ≥ x , where 0 < m < min
{
(1 − b)−2, 4

}
and g(x) = {(1 − √

m)/(b
√
m)}x .

Then, the posterior distribution of k under an NB model (Eq. (2)) is given by

P(k|Y = y) =
�(y+kτ)

�(y+1)�(kτ)
(1 − m)ymkτ

∑∞
j=y

�(y+ jτ)
�(y+1)�( jτ)

(1 − m)ym jτ

=
�(y+kτ)

�(kτ)
mkτ

∑∞
j=y

�(y+ jτ)
�( jτ)

m jτ
,

(4)

for k ≥ y.
The posterior distributions (Eq. (3) and (4)) are proper even though an improper uni-

form prior distribution is used. The aim of this paper is to find their exact distributions,
and where this is not possible, approximating distributions that are mathematically
tractable. By doing so, their mean and variance can be determined directly from the
theoretical properties of the approximating distribution.

2 Results

We first show that when the GP and the NB models have count of 0 or 1, the posterior
distribution of k is geometric, and extended NB, respectively.

Theorem 1 The posterior distribution of k is (i) geometric with mean e−b
√
m(1 −

e−b
√
m)−1 and variance e−b

√
m(1 − e−b

√
m)−2 for k ≥ 0, when x = 0 for the GP

model; and with mean mτ (1 − mτ )−1 and variance mτ (1 − mτ )−2 for k ≥ 0, when
y = 0 for the NB model; (ii) extended NB with mean

(
1 + e−b

√
m
)(
1 − e−b

√
m
)−1

and variance 2e−b
√
m
(
1 − e−b

√
m
)−2

for k ≥ 1, when x = 1 for the GP model; and
with mean (1 + mτ )(1 − mτ )−1 and variance 2mτ (1 − mτ )−2 for k ≥ 1, when y = 1
for the NB model.

Proof We only show the proof for the GP model with x = 0, 1 since the proof for the
NB model with y = 0, 1 is similar with mτ = e−b

√
m .

(i) When x = 0:

P(k|X = 0) = e−bk
√
m

∑∞
j=0 e

−bj
√
m

= (
e−b

√
m)k(1 − e−b

√
m)

,
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where k = 0, 1, . . .. Hence, the posterior distribution of k is geometricwith success
probability p = 1 − e−b

√
m . The mean and the variance follow from standard

results.
(ii) When x = 1:

P(k|X = 1) = ke−bk
√
m

∑∞
j=1 je−bj

√
m

=
(
k

1

)
(
1 − e−b

√
m)2

(
e−b

√
m)k−1

,

where k = 1, 2, . . .. Therefore, the posterior distribution of k is extended NB with
parameters p = e−b

√
m and r = 2. The mean and the variance are

E(k|X = 1) =
∞∑

k=1

kP(k|X = 1) = 1 + e−b
√
m

1 − e−b
√
m

,

Var(k|X = 1) =
∞∑

k=1

k2P(k|X = 1) − [
E(k|X = 1)

]2 = 2e−b
√
m

(
1 − e−b

√
m
)2 ,

respectively. ��
Corollary 1 The cumulative distribution function (cdf) of the posterior distribution of
k is

(i) Fk|X=0(k) = 1 − e−b
√
m(k+1) for k ≥ 0;

(ii) Fk|X=1(k) = 1 − [
k(1 − e−b

√
m) + 1

]
e−b

√
mk for k ≥ 1;

(iii) Fk|Y=0(k) = 1 − mτ(k+1) for k ≥ 0;
(iv) Fk|Y=1(k) = 1 − [

k(1 − mτ ) + 1
]
mτk for k ≥ 1.

We now show that the extended Hurwitz–Lerch zeta distribution [18] is an appro-
priate approximation for the posterior distribution of k under theGPmodel with x ≥ 2.

Theorem 2 The posterior distribution of k, given X = x has a GP distribution with
mean kb and variance kb/m, can be approximated by an extended Hurwitz–Lerch
zeta distribution with mean x/b + 1/(b

√
m) and variance (x + 1)/(b2m) for some

k ≥ l where x ≥ 2 is the conditioning value, and l ≥ x.

Proof First, we note that the denominator in Eq. (3) can be written as

∞∑

j=x

( j + g(x))xe−b
√
m j − g(x)

∞∑

j=x

( j + g(x))x−1e−b
√
m j .

The Lerch transcendent �(u, s, v) (see [19]) is given by

�(u, s, v) =
∞∑

k=0

uk

(v + k)s
,
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where u is complex and |u| < 1, v �= 0,−1,−2, . . ., and s �= 1, 2, . . .. Representing
the denominator using the Lerch transcendent, we get

e−b
√
mx�(e−b

√
m,−x, wx) − (w − 1)xe−b

√
mx�(e−b

√
m,−(x − 1), wx), (5)

where w = 1 + (1 − √
m)/(b

√
m).

The following identity (Eq.1.11(11) in [19]) relates the Lerch transcendent to the
Bernoulli polynomials for s = −h:

�(u,−h, v) = h!
uv

(

log
1

u

)−(h+1)

− 1

uv

∞∑

r=0

Bh+r+1(v)(log u)r

r !(h + r + 1)
, (6)

where |log u| < 2π , v �= 0,−1,−2, . . ., h �= −1,−2, . . ., and Bn(v) is the nth
Bernoulli polynomial with argument v. The Bernoulli polynomial is defined as

Bn(v) =
n∑

j=0

(
n

j

)

Bn− j (0)v
j ,

where Bi (0) is the i th Bernoulli number.
If we substitute u = e−b

√
m , h = x , v = wx into Eq. (6), and then multiply both

sides by e−bw
√
mx , we obtain

e−bw
√
mx�(e−b

√
m,−x, wx) = �(x + 1)

(b
√
m)x+1

−
∞∑

r=0

Bx+r+1(wx)(−b
√
m)r

r !(x + r + 1)
. (7)

We can approximate Eq. (7) as

e−bw
√
mx�(e−b

√
m,−x, wx) ≈ �(x + 1)

(b
√
m)x+1

, (8)

provided that

∣
∣
∣
∣

∞∑

r=0

Bx+r+1(wx)(−b
√
m)r

r !(x + r + 1)

∣
∣
∣
∣ = o

(
�(x + 1)

(b
√
m)x+1

)

,

as x → ∞, o being the little o notation. To show this, we use an identity involving
the Bernoulli polynomials and the sum of x th powers (Eq. 1.13(10) in [19]):

Bx+1(z) − Bx+1(0)

x + 1
=

z−1∑

t=0

t x ,
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for x = 2, 3, . . . and z ∈ Z
+. For sufficiently large z, Bx+1(z) is positive and dominates

Bx+1(0). Suppose wx is a positive integer that is sufficiently large, then

Bx+r+1(wx)

x + r + 1
≈

wx−1∑

t=0

t x+r ,

if Bx+r+1(0) > 0 and for some b and m such that Bx+r+1(wx) � Bx+r+1(0); if
Bx+r+1(0) ≤ 0, we have

0 <
Bx+r+1(wx)

x + r + 1
≤

wx−1∑

t=0

t x+r .

Thus,

(b
√
m)x+1

�(x + 1)

∣
∣
∣
∣

∞∑

r=0

Bx+r+1(wx)(−b
√
m)r

r !(x + r + 1)

∣
∣
∣
∣

<
1

x ! (b
√
m)x+1

∞∑

r=0

[
(b

√
m)r

r !
∣
∣
∣
Bx+r+1(wx)

x + r + 1

∣
∣
∣

]

� 1

x ! (b
√
m)x+1

∞∑

r=0

[
(b

√
m)r

r !
wx−1∑

t=0

t x+r

]

<
1

x ! (b
√
m)x+1

∞∑

r=0

[
(b

√
m)r

r !
∫ wx

0
t x+r dt

]

= 1

x ! (b
√
m)x+1

∞∑

r=0

[
(b

√
m)r

r !
(wx)x+r+1

x + 1

]

= (bw
√
mx)x+1

(x + 1)! ebw
√
mx .

Applying Stirling’s approximation for x !, the right-hand-side simplifies to U =
(c/

√
2πx)(cec+1)x , where c = bw

√
m. For 0 < cec+1 ≤ 1, U converges to 0 as

x → ∞. Therefore, 0 < c ≤ W (e−1) ≈ 0.2785, where W (·) is the Lambert W
function. Thus, for min{[1 − W (e−1)]2(1 − b)−2, 4} ≤ m < min{(1 − b)−2, 4}, Eq.
(8) should give reasonably good approximation.

Subsequently, we can approximate Eq. (5) using Eq. (8):

e−b
√
mx�(e−b

√
m,−x, wx) − (w − 1)xe−b

√
mx�(e−b

√
m,−(x − 1), wx)

≈ e−b
√
mxebw

√
mx �(x + 1)

(b
√
m)x+1

− (w − 1)xe−b
√
mxebw

√
mx �(x)

(b
√
m)x
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= e(1−√
m)x

√
m �(x + 1)

(b
√
m)x+1

≈ e(1−√
m)x√me−bw

√
mx�(e−b

√
m,−x, wx)

= √
me−b

√
mx�(e−b

√
m,−x, wx). (9)

Substituting Eq. (9) for the denominator in Eq. (3), we obtain

P(k|X = x) ≈ k(k + g(x))x−1e−b
√
mk

√
m�(e−b

√
m,−x, wx)e−b

√
mx

= (e−b
√
m)k−x

�(e−b
√
m,−x, wx)(k − x + wx)−x

︸ ︷︷ ︸
A

× k√
m(k + g(x))

︸ ︷︷ ︸
B

.
(10)

To see that A is the pmf of an extended Hurwitz–Lerch zeta distribution with extended
parameter space [20], we start with the pmf of the Hurwitz–Lerch zeta distribution:

qk = 1

θ�(θ, s + 1, a + 1)

θk

(k + a)s+1 , (11)

for k = 1, 2, . . ., where a > −1 and s ∈ R if 0 < θ < 1 or s > 0 if θ = 1. Shifting
the support to k = x, x + 1, . . ., Eq. (11) becomes

qk = θk−x

�(θ, s + 1, a + 1)(k − x + 1 + a)s+1 , (12)

for k = x, x + 1, . . ., where x ≥ 2. Taking θ = e−b
√
m , s + 1 = −x , a + 1 = wx and

substituting them into Eq. (12) leads to A in Eq. (10).
For some combinations of b and m, there exists an l ≥ x such that k ≥ l results in√
m(k + g(x)) = k + o(k). In this case, B of Eq. (10) becomes approximately 1, thus

P(k|X = x) ≈ (e−b
√
m)k−x

�(e−b
√
m,−x, wx)(k − x + wx)−x

, (13)

which is the pmf of the extended Hurwitz–Lerch zeta distribution with parameters
θ = e−b

√
m , s + 1 = −x , a + 1 = wx .

To derive the mean and the variance of the extended Hurwitz–Lerch distribution
(Eq. (13)), we first note that the latter is a special case of the modified power series
distribution [21], which has pmf

P(Z = z) = A(z)[g(θ)]z
f (θ)

, z ∈ B,
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where B ⊂ Z
+, A(z) > 0, and f (θ), g(θ) are positive, finite and differentiable

functions of θ . In this case, we have

g(θ) = θ, f (θ) = θ x�(θ, s + 1, a + 1), A(z) = 1

(z − x + 1 + a)s+1 .

The expectation of Z is

E(Z) = g(θ) f
′
(θ)

f (θ)g′
(θ)

= θ

θ x�(θ, s + 1, a + 1)

∂

∂θ
θ x�(θ, s + 1, a + 1), (14)

and the variance is

Var(Z) = g(θ)

g′
(θ)

∂

∂θ
E(Z). (15)

Note that

∂

∂θ
�(θ, s, a) = 1

θ
�(θ, s − 1, a) − a

θ
�(θ, s, a). (16)

Therefore,

∂

∂θ
θ x�(θ, s+1, a+1) = θ x−1[(x − a − 1)�(θ, s+1, a+1) + �(θ, s, a + 1)

]
.

(17)

Let θ = e−b
√
m , s + 1 = −x and a + 1 = wx . Substituting Eq. (17) into Eq. (14)

yields

E(k|X = x) ≈ �(e−b
√
m,−x − 1, wx)

�(e−b
√
m,−x, wx)

− (1 − √
m)x

b
√
m

. (18)

Then, substituting Eq. (18) into Eq. (15) and using Eq. (16) yields

Var(k|X = x) ≈ �(e−b
√
m,−x − 2, wx)

�(e−b
√
m,−x, wx)

−
[

�(e−b
√
m,−x − 1, wx)

�(e−b
√
m,−x, wx)

]2

. (19)

Eq. (18) can be further approximated by applying Eq. (8):

E(k|X = x) ≈
�(x+2)

(b
√
m)x+2

�(x+1)
(b

√
m)x+1

− 1 − √
m

b
√
m

x = x + 1

b
√
m

− (1 − √
m)x

b
√
m

= x

b
+ 1

b
√
m

.
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Similarly, Eq. (19) can be further approximated as

Var(k|X = x) ≈
�(x+3)

(b
√
m)x+3

�(x+1)
(b

√
m)x+1

−
⎡

⎣

�(x+2)
(b

√
m)x+2

�(x+1)
(b

√
m)x+1

⎤

⎦

2

= (x + 2)(x + 1)

(b
√
m)2

− (x + 1)2

(b
√
m)2

= x + 1

b2m
.

��
For the NB model with y ≥ 2, we again find that the posterior distribution of k is

approximately given by the extended Hurwitz–Lerch zeta distribution.

Theorem 3 Let Y have an NB distribution with pmf given by Eq. (2). The posterior
distribution of k given Y = y approximately follows the extended Hurwitz–Lerch
zeta distribution with mean −(y + 1)/(τ logm) − (y − 1)/(2τ) and variance (y +
1)/(τ logm)2, for k ≥ y, where y ≥ 2.

Proof For non-negative real α, β such that α �= β, Laforgia & Natalini [22] give the
following approximation for the quotient of gamma functions:

�(y + α)

�(y + β)
≈ 1

(y + c)β−α
, (20)

when y → ∞, with c = (α + β − 1)/2. Applying Eq. (20) in Eq. (4) yields

P(k|Y = y) ≈
(
kτ + y−1

2

)y
mkτ

∑∞
j=y

(
jτ + y−1

2

)y
m jτ

=
(
k + y−1

2τ

)y
mkτ

∑∞
j=y

(
j + y−1

2τ

)y
m jτ

,

(21)

as kτ, jτ → ∞, for k ≥ y. Then, representing the denominator of Eq. (21) using the
Lerch transcendent, we obtain

∞∑

j=y

(

j + y − 1

2τ

)y

m jτ = mτ y�

(

mτ ,−y,

(
1

2τ
+ 1

)

y − 1

2τ

)

. (22)

Hence, Eq. (21) can be expressed as

P(k|Y = y) ≈
(
k + y−1

2τ

)y
mτ(k−y)

�
(
mτ ,−y, ( 1

2τ + 1)y − 1
2τ

) , (23)

where k = y, y + 1, . . .. Eq. (23) is just Eq. (12) with θ = mτ , s + 1 = −y,
a + 1 = ( 1

2τ + 1
)
y − 1

2τ . Therefore, we conclude that the pmf of the extended
Hurwitz–Lerch zeta distribution approximates the posterior distribution of k under
NB model for y ≥ 2.
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By the same approach used in Theorem 2 to derive the mean and the variance of
the posterior distribution of k, we obtain

E(k|Y = y) ≈ �
(
mτ ,−y − 1,

( 1
2τ + 1

)
y − 1

2τ

)

�
(
mτ ,−y,

( 1
2τ + 1

)
y − 1

2τ

) − y − 1

2τ
, (24)

Var(k|Y = y) ≈�
(
mτ ,−y − 2,

( 1
2τ + 1

)
y − 1

2τ

)

�
(
mτ ,−y,

( 1
2τ + 1

)
y − 1

2τ

)

−
[

�
(
mτ ,−y − 1,

( 1
2τ + 1

)
y − 1

2τ

)

�
(
mτ ,−y,

( 1
2τ + 1

)
y − 1

2τ

)

]2

,

(25)

for k ≥ y, where y ≥ 2. By similar argument leading to Eq. (8), we obtain

mτg(y)�
(
mτ ,−y, g(y)

) ≈ �(y + 1)

(−τ logm)y+1 , (26)

where g(y) = ( 1
2τ + 1)y − 1

2τ . Using Eq. (26), Eq. (24) can be approximated as

E(k|Y = y) ≈
�(y+2)

(−τ logm)y+2

�(y+1)
(−τ logm)y+1

− y − 1

2τ
= − y + 1

τ logm
− y − 1

2τ
.

Similarly, we can use Eq. (26) to approximate Eq. (25) as

Var(k|Y = y) ≈
�(y+3)

(−τ logm)y+3

�(y+1)
(−τ logm)y+1

−
( y + 1

−τ logm

)2

= (y + 2)(y + 1)

(τ logm)2
− (y + 1)2

(τ logm)2

= y + 1

(τ logm)2
.

��

The results of Theorem 2 and Theorem 3 lead us to the following corollary.

Corollary 2 The cdf of the posterior distribution of k is approximately

(i) Fk|X=x (k) ≈ 1−e−b
√
m(k−x+1)�(e−b

√
m,−x, k+wx−x+1)/�(e−b

√
m,−x, wx),

for k ≥ x, where x ≥ 2, for the GP model;
(ii) Fk|Y=y(k) ≈ 1 − mτ(k−y+1)�(mτ ,−y, k + y−1

2τ + 1)/�(mτ ,−y, y−1
2τ + y), for

k ≥ y, where y ≥ 2, for the NB model.
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Table 1 Kullback–Leibler
divergence for Eq. (3) versus Eq.
(13)

b m X = 2 X = 3 X = 10 X = 20 X = 50

0.2 0.2 0.0552 0.0546 0.0440 0.0324 0.0160

0.4 0.0278 0.0258 0.0157 0.0090 0.0035

0.6 0.0117 0.0101 0.0046 0.0023 0.0009

0.8 0.0028 0.0022 0.0008 0.0004 0.0001

1.2 0.0026 0.0017 0.0004 0.0002 0.0001

1.5 0.0131 0.0073 0.0018 0.0009 0.0003

0.4 0.2 0.0411 0.0391 0.0299 0.0231 0.0138

0.4 0.0185 0.0168 0.0110 0.0074 0.0035

0.6 0.0072 0.0062 0.0035 0.0021 0.0009

0.8 0.0016 0.0014 0.0007 0.0004 0.0001

1.2 0.0015 0.0011 0.0004 0.0002 0.0001

2.0 0.0304 0.0178 0.0046 0.0022 0.0009

0.6 0.2 0.0313 0.0286 0.0200 0.0152 0.0098

0.4 0.0128 0.0112 0.0070 0.0050 0.0029

0.6 0.0046 0.0039 0.0023 0.0016 0.0008

0.8 0.0010 0.0008 0.0004 0.0003 0.0001

1.2 0.0008 0.0006 0.0003 0.0002 0.0001

2.5 0.0311 0.0215 0.0070 0.0035 0.0014

0.8 0.2 0.0242 0.0214 0.0134 0.0096 0.0058

0.4 0.0091 0.0076 0.0043 0.0029 0.0017

0.6 0.0031 0.0025 0.0013 0.0009 0.0005

0.8 0.0006 0.0005 0.0003 0.0002 0.0001

1.2 0.0005 0.0004 0.0002 0.0001 0.0001

3.0 0.0207 0.0155 0.0064 0.0038 0.0018

3 Computational Validation

Table 1 shows how well the extended Hurwitz–Lerch zeta approximates the posterior
distribution of k under GP for different combinations of b and m. For a fixed b, the
approximation is best form in the neighborhood of 1. For a fixedm, the approximation
improves as b becomes closer to 1. Finally, for fixed m and b, the approximation
improves as x increases.

Table 2 shows that for a given y, the larger the values of m and b, the better the
extended Hurwitz–Lerch zeta distribution approximates the posterior distribution of k
under the NB model. For fixed m and b, the approximation deteriorates as y increases
up to 50. However, the Kullback–Leibler divergence remains well below 0.02 when
0.6 ≤ m < 1 for the b values considered.

Table 3 and 4 show results of approximating the mean and the standard deviation
of the posterior distribution of k given X = x has a GP distribution. Similar results for
the posterior distribution of k given Y = y has a NB distribution are given in Table 5
and 6. In general, the approximations have relative error that stays within 10% of the
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Table 2 Kullback–Leibler
divergence for Eq. (4) versus Eq.
(23)

m b Y = 2 Y = 3 Y = 10 Y = 20 Y = 50

0.2 0.2 0.0165 0.0287 0.1214 0.2928 0.8883

0.4 0.0105 0.0184 0.0802 0.2014 0.6834

0.6 0.0070 0.0122 0.0524 0.1292 0.4401

0.8 0.0048 0.0084 0.0343 0.0802 0.2494

0.4 0.2 0.0036 0.0064 0.0272 0.0557 0.1265

0.4 0.0017 0.0033 0.0172 0.0432 0.1225

0.6 0.0009 0.0018 0.0098 0.0267 0.0951

0.8 0.0005 0.0010 0.0054 0.0141 0.0503

0.6 0.2 0.0006 0.0010 0.0036 0.0061 0.0129

0.4 0.0002 0.0004 0.0024 0.0055 0.0129

0.6 0.0001 0.0002 0.0013 0.0036 0.0117

0.8 0.0000 0.0001 0.0006 0.0018 0.0066

0.8 0.2 0.0000 0.0001 0.0002 0.0002 0.0005

0.4 0.0000 0.0000 0.0001 0.0002 0.0005

0.6 0.0000 0.0000 0.0001 0.0002 0.0005

0.8 0.0000 0.0000 0.0000 0.0001 0.0003

true value when m ≥ 0.6, for the b and X ,Y values considered. Approximations that
use the Lerch transcendent function (e.g., Eq. (18), Eq. (19), Eq. (24) and Eq. (25) have
smaller relative error compared to the simpler equations in Theorem 2 and Theorem
3. However, for large values of X and Y , both approximations generally have similar
relative error for m ≥ 0.6. Since the Lerch transcendent cannot be evaluated for some
combinations of b and m for large X ,Y values, the use of the simpler equations in
these two theorems suffices.

4 Concluding Remarks

In this paper, we have clarified several theoretical properties of the posterior distribu-
tion of a count parameter k arising in the GP and the NBmodel. Thus, for conditioning
values of 0 and 1 from these two models, the posterior distribution of k is found to be
geometric and extended NB, respectively. For conditioning values of 2 or more, the
posterior distribution of k under either a GP or an NB model is approximated by the
extended Hurwitz–Lerch zeta distribution. To our knowledge, this is the first instance
where a connection between the Hurwitz–Lerch zeta distribution and a Bayesian pos-
terior distribution is demonstrated. The present results open up the possibility of using
the posterior mean to correct for observed gene counts in RNA-Seq data analysis.
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