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Abstract

Signal sampling issue has been extensively studied based on a single sampling func-
tional over classical Lebesgue spaces. This paper focuses on discussing the signal
reconstruction and error analysis based on multiple sampling functionals over mixed
Lebesgue spaces. We firstly explore the stabilities for two kinds of sampling func-
tionals, respectively. Then the corresponding iterative reconstruction algorithms are
established. Finally, the error between the reconstruction signal in the presence of
noisy and the original signal f is analyzed.

Keywords Average sampling - Mixed Lebesgue space - Stability - Reconstruction
algorithm - Random noise - Error analysis

Mathematics Subject Classification 94A20 - 46E30 - 94A12

1 Introduction

The mixed Lebesgue space is a natural generalization of the classical Lebesgue space,
which was firstly in depth introduced by Benedek and Panzone [7]. In fact, it arises from
considering a function containing several independent variables of different properties.
For instance, a multivariate function depending on both spatial and time variables may
belong to amixed Lebesgue space. Moreover, the flexibility of the separate integrability
for each variable is of interests and potentially useful in the study of time-based partial
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differential equations [10]. The definition of mixed Lebesgue spaces L? (R4+1) [14,
16, 17, 23] is given as follows.

Definition 1.1 Let 1 < p, g < oo, then LP-4(R4+1) consists of all measurable func-
tions f on RY*! such that

Il fllLra = [/}% (/Rd If(x,y)lqdy>§dx}p < 00.

The corresponding sequence spaces are

=S
Sl

@t = e, felma = | Y2 (D letkikl?)” | <00

ki€Z  kyeZd

It is easy to check LP-P(RI*tl)y = LP(RI*HY) and (PP (Z4H1) = [P(Z4)), respec-
tively.

Signal sampling and its reconstruction theories are ubiquitous tools in a wide range
of applications. The most well-known result is Shannon sampling theorem which gives
an explicit reconstruction formula and states that every band-limited function can be
reconstructed from its uniform samples. However, due to the slow decay and infinite
support of the sinc function, it is often less efficient for numerical implementation.
Moreover, there are many data just can be observed on non-uniform sampling set, such
as in communication theory, medical imaging, astronomical measurement and among
many others [1-4, 6, 21, 25]. In general, sampling problems have been studied in the
following shift-invariant space [3-6, 11, 20]

Vp(@) =Y Y cithpi(- — k), i = {eitk)} € 17(Z) ¢,

i=1 kezd

where 1 < p < oo. The vector function ® := (¢, - -- ,¢,)T is usually called the
generator of the space V,(®). If r =d =1, p = 2 and ¢ () = sinc(-), then V2(¢)
reduces to the classical space of band-limited functions.

Although the samples are usually supposed to be the exact values of a signal f in
classical sampling theory, in fact, only the local average values can be derived. More
precisely, the samples of f can be taken near the points which belong to a countable
index set. In the last decades, the average sampling theory has drawn considerable
attentions including in band-limited signals [8, 13], shift-invariant signals [1, 3-6, 15,
22], non-decaying signals [18] and multi-channel sampling problems [9, 12].

In addition, the multiple sampling functionals can be traced back to the multi-
channel sampling problem [19]. Unser and Zerubia [24] showed that the multi-channel
sampling can achieve higher stability and be more suitable for analyzing large
bandwidth signals. Recently, Zhang [27] studied the non-uniform average sampling
problem in multiply generated shift-invariant subspaces of mixed Lebesgue spaces
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and provided two fast reconstruction algorithms for two types of average sampled
values. Wang and Zhang [26] considered the average sampling problem for signals
in shift-invariant subspaces of weighted mixed Lebesgue spaces. More precisely, the
sampling stability and iterative reconstruction algorithms are established for two kinds
of average sampling functionals. However, the work in Refs. [26, 27] only discussed
the average sampling problems by using single sampling functional. Motivated by
above literature, this paper investigates the stabilities and reconstruction algorithms
of average sampling based on multiple sampling functionals over mixed Lebesgue
spaces.

The rest of the paper is organized as follows. In Sect. 2, the definitions and prelim-
inaries are introduced briefly. In order to recover the signal exactly from the average
sampling, Sect. 3 provides the sampling stabilities for two kinds of average sampling
functionals, respectively. In Sect. 4, the iterative algorithms for the reconstruction are
presented. Finally, since the samples are usually contaminated by random noises, the
error analysis is discussed in Sect. 5.

2 Definitions and Preliminaries

This section collects some definitions, notations and preliminary results for future
convenience. We begin with the mixed Wiener amalgam spaces W (L? 4y (RIHD).

Definition 2.1 [16] Let 1 < p,q < oo, then a measurable function f belongs to
W (LP-7) (R4t if it satisfies

1f ey = D_esssup | D esssuplfx+ny+DI7 | < oo.
nez x€[0,1] lezd ye[O,l]d

Moreover, Wo(LP-2)(R4+1) denotes the space of all continuous functions in
W(LP-9)(RIHD),

For the simpler case, a function f belongs to W(LP)(RI*TH (1 < p < oo)if

LI = D esssup |fx+h)|P < oo

ke7zd+!1 XG[O,l]dJrl

holds. Furthermore, it is easy to check that W(L?) C W(LP??) and W(LP) C
W(L?) C LY (1 < p < g < 00) (the details please see Ref. [3]).
With @ := (¢1, -+, ¢)T € WELMHD .= w(@Lb) x .- x W(L""), the under-

r times

lying shift-invariant space is given by

Vpg(@):=1>" > Clh k)" ¢ —ki,- k), {Clhy ko) e (79D (2 1,
k1€ZkyeZd
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where C(ky, k2) := (c1(k1, ka), - -+, ¢ (k1, k2))T . On the other hand, the correspond-
ing norm || ® | of a vector function ® := (¢, - - - , ¢,) stands for || ®| := Zle il
Moreover, we assume that for any £ € R?*! and all k € Z4*!, the sequences

{61(€ +27k), §2(€ +27k), -, (€ +27h) )

are linearly independent in this paper, where 6)\, stands for the Fourier transform of ¢;.
Forinstance,let¢; (i = 1, - - - , r) bethe d+1-dimensional tensor product orthonormal
wavelets. Then for fixed & € R and k € Z4+!, {¢1 (€ + 27k), -+, by (& + 27k)}
are linearly independent thanks to Theorem 1.4 in Ref. [17]. It is well-known that
there exists the dual functions ¢~>1, S (]Sr € W(Ll’l)(]Rd“‘l) such that for any f €
Vpg(®@) (1 < p,qg < 00),

FE =233 Af i — ki, — k)i (x — ki, y — ka).

i=1 ki€Z kyezd

All these claims can be found in Ref. [17].
The following lemma is a natural extension of Theorem 3.1 in Ref. [16].

Lemma2.1 Let ® € W(L'"HOD(RIHY and {C(ky, k) € (P9 (zZ4t) (1 <
p.q < 00). Then for any f = 3" cz. Y ez C k1. k) @ — ki, - — ko),

.
1 lzra < leillivalgillwpry-

i=1
To prove the sampling stability, we need the definition of relatively separated set.

Definition 2.2 [14] A sampling set I" = {y; x = (xj, yv), (j, k) € J:=J1 x Jo}is
called to be (81, §,)-relatively separated, if

Br x(81) = sup Z XB(x;,5)(x) < 00,
XERjeJh

Br.y(82) = SUp D xB(y.00 () < 00
veR? ey,

and

Ar«(81) = inf ZJ XBGx.0 (%) = 1,
JEJ1

Ary(8) = inf > xpey.sn(y) =1
yeRr? kelr

for some 6; > 0 and § > 0. Here, J = J; x J> is a countable index set, xp(x,s5) ()
denotes the characteristic function on a ball with the center point x and the radius §.
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Given arelatively separated sampling set I', two kinds of average sampling schemes
based on I are considered in the present paper.
e The first average sampling scheme is given by

(o WLe—yi0) = fxylen, (b el

where ¥/ € LRI (1 =1, -, 5) satisfy that for a > 0,

N
1 . ~ -
S [ [ e dvar =1 ke i= ! (2). B0 = V.
=1 R JRA a a
e The second average sampling scheme is defined by
(f, v = FE W (e ydydx, (k) €T,
j & Jra J

where the average sampling functionals {Ilijk, (J,k)eltd=1,---,5) satisfy that
(i). supp 1//5.’,{ C B(yj k. a) for some @ > 0;
(ii). There exists a constant M > 0 such that [ [pa |1/f§7k(x, y)|dydx < M for
all (j, k) € J;
(D). Y- Jp Jra w;)k(x, y)dydx = 1 forall (j, k) € J.

3 Sampling Stability

Before illustrating the main results, the oscillation (or modulus of continuity) of a
continuous function f € L'(R4+!) is given by

oscs(f)(x) := sup | f(x +y) — f(x)]

[y|<sé

Lemma 3.1 [16]If ¢ € Wo(L")(RFY), then the following two statements hold:

loscs (@) llw ity < 22 1dllww. 3.1
and
}i_f)% lloses (@ lwry = 0. (3.2)
Denote

o4 ;:cb—d)*(i{hz):(¢1—¢1*(i@z>v'“ 7¢r_¢’*<i%)>T'
I=1 I=1 =1

Then the next two lemmas are introduced.
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Lemma3.2 Lety!' € LRI (=1, , ) satisfy Y }_; [gart ¥ (t)dt = 1. Then
Jorany ® = (¢1,--- . ¢,)" € Wo(LH P (RIT),

lim ||®¢ =0.
4Ot l ||W(L1)

Proof According to the definition of ®¢ and the fact

‘W(L') )W(L'

||<1>“||W<L1>=Hd>—d>*(§%) (; ‘)

one only needs to show [[¢;i — ¢ * (O_j_; %)HW(U) — 0asa — 0% for each
i=1,---,r.
It follows from Y )_; [pa+1 W' (1)dr = 1 that

9i(x) - (Z vh)w

. [ _ - . l
IR [y i+ v

< ZfRM i (6) = i (x + 1) [¥a (0)ldr

= ¢ (x) — i (x + DYk (0)|dr
t\>f t<ya
= 11 (x) + Ih(x). (3.3)

For I (x), it is clear to see that

5
Iy = Y, esssup Z/ 16 (x + k) — i (x + 1 + D[y (1)l
kezdr xel0 114 2 = va
s

< > Z/ f(esssup | (x + k)| + ess sup |¢,-(x+t+k)|> [yL(r)|dr.
|t|>/a

kezd+1 =1 x€[0,174+1 x+1€[0,1]4+1

Obviously, the above inequality reduces to

s
Millw sznqﬁinW(U)Z/ @l
I=1 \tlzﬁ

Therefore, |||y 1y —> 0asa — 0% follows from Yyl e LV(R4H,
For I(x), by the definition of oscillation,

120l ry < Z/ esssup [osc /(i) (x + SIIAGIL
t

[t < fkeZd+l xel0,1]4+!1
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= llosc sz (@) llwwn Z/ VAGI
= ltl=va

This with ¢; € Wo(L') and (3.2) shows losc @ llwity — 0asa — 0. Then
21wty — 0.
Hence, the above arguments tell that foreachi =1, --- ,r,
s ~
oo+ (2 0h)| = Ihlway + IRy — 0. asa— 0
=1 W(Ll)

thanks to (3.3). The proof is done. m]

Lemma 3.3 Under the assumptions of Lemma 3.2, the oscillation of ®¢ satisfies

lim ||oscs(P? =0,
5_)()” 5 ( )”W(Ll)

where oscs (D) = (oscs(9]), - - - ,osc(;(qbf))r and a € R.

Proof Similar to the discussion of Lemma 3.2, one should prove that for each i =
|

tim floscs @)y w1y = 0.

Recall that ¢f := ¢; — ¢ (Zle (/;Z) Then

oses @) < 0scs @)+ [ oses@) =0 U@z G
=1

For the second term of the right-hand side of (3.4), it is easy to find that

” [, osestonc =) > Vol

W(L)

= Z ess sup A@dﬂ oscs (i) (x +k — z)‘ Z %(z))dz
I=1

keZd+1 x€l0, ]]d+]

N
< lloses@)llwwn Y f |Wh(2)]dz.
= Rd+!1
Combining this with (3.2) and Yl e LY(R*1), one obtains that for each a € R,

—0. (3.5)
W(L)

lim
§—0

/ oscs (i) (- — z)‘ Z 1ZZ(Z)’dZ
Rd+!1 =1
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Furthermore, by (3.4)—(3.5),

loses @Oy < loses@) w1y + fR 1, 05500 —2)| 1; Yhio|dz —0

W(LY)
as § — 0, which completes the proof. O

Lemma 3.4 is necessary for later discussions.

Lemma3.4 If® € W(L'"HYO(RIY) and {¢; (€ + 2km), k € Z9Y are linearly
independent, then for any f € Vp,q(CD)(Rd‘H) (1 <p,g <o),

.
> leillia < 1@ 1 fllLra,
i=1

where || CT)H is a positive constant only depending on .

Proof For each fixedi = 1, - - -, r, there exists a dual function q~5,' such that
citki ka) = (f. ¢i(- — ki, —k2)) (3.6)

thanks to f € V), ,(®) (see Ref. [17]). Take b = {b(ky, k), k1 € Z, k> € Zd} €
174" (74+1y with % + pi =1and % + qi = 1. Then by (3.6), one knows that

Cti= X[ stk ks 5 )

kl GZ,]QEZd

:A/é{f(x, y) Z b(kl’k2)q;l(x_klyy—kz)dydx

k1€Z,kyeZ4

This with the Holder inequality and Lemma 2.1 shows that

[{ci, b)Y < I fllLra Z bky, k)i (- — ki, - — ka)

ki€Z,kreZd Lr.d
< W fllerallbllyp o 1di llw 11y

Thus, ||c;llip.a < || fllLra ||¢~>,-||W(L1,1) which leads to

.
> leillia < @I 11 fllLra
i=1

with ||| := > ||¢~>,-||W(L1,1). The proof is finished. O

We are in a position to state the first stability theorem.

@ Springer



Reconstruction and Error Analysis Based on Multiple... Page90f23 67

Theorem 3.1 Suppose that ® € Wo (L") (R and T is a (81, 82)-relatively sepa-
rated set. If §1, 62 and a are chosen such that

TR a
ry = || P < OSC\/@(Q)HW(LI) + OSC\/m(q) )

then for any signal f € V), ,(®) (1 < p,q < 00),

+ ||<Da||W(L1)> <1,
WL
37

281 N1, Vasd -1 - 5 L
(Am((gl)) <Ar,y<52)> (1 =rDIfllra < Z:<f, Vol =yl p
=1 (.5ET || pa

28, —% Vd(sg —é
! “ 3.8
= (Br’x(81)> (Bl",y(52)> A+rDlfllLre (3.8)

d/2 . . . . =T ...
where Vg = m is the volume of d-dimensional unit ball, and || ® || is the positive
constant given in Lemma 3.4.

Proof For any x € B(x;,61) and y € B(y, 62), it follows from f € V, ,(®P) that

|0 e = v = £ )
=1

<Y D leitky k)l

S
9i(x — ki, — ko) = g+ (D 0k ) (e — ki i — ko).
i=1k €Ziye7d =1

Moreover, by ¢f := ¢; — ¢; * (ZL] {/;Z), the above inequality reduces to
N
D0 vhe =y = f )|
=1

< |ci (k1. k2)|{ osc (Pi)(x — ki, y — k2)
;k%kgd ( Jo1+83
+os¢ @0 — ki y — k) + @1 — ki k)

= Fi(x,y). (3.9)

Furthermore, due to Lemma 2.1 and W(L') ¢ W(L'1),
r
IFilera < Y Neillra( ose prs@]  +
; 83482 wah
< ||® ( osc (CD)H + |osc (D)
191 ose i @, 00, * 15 o

= rill fllzra (3.10)

+ llgf ||W(L1))
WL

a
osc :
Joa )

+ 19 e )1 1z
WL
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thanks to Lemma 3.4 and (3.7).

Define
XB(x;,81) (%) XB(yi.82) (Y) :
o (x) = el LB = S . Gk el
> el XB(x .80 (%) > kel XB(y.60) ()
Then with I" being (81, §,)-relatively separated, it is clear to see that
261B1, (81) < lljll 1 < 281AFL(81), foreach j € I (3.11)
and
vdag’Brjly((sz) < 1Bl 1 < vdagA;}y(az), for each k € J». (3.12)

On the other hand, it follows from (3.9) that

s 1 1 1 1 1 1
‘Z(f, W,ﬂ('—)/j,k»‘a}’ OB () = [f (. Yl B N+ F1(x, e () (7).
=1
(3.13)
Taking /9-norm and L9-norm about the variable k € J», y € RY, respectively, on the
both sides of (3.13), one knows that

1
thanks to [|{B; }keJ, llie = 1. Moreover, taking /”-norm and L”-norm about the vari-
ables j € Ji, x € R, respectively, on the both sides of (3.14), one obtains that

1
because of ||{al’.’ }jen llip = 1 and (3.10).
Combining (3.15) with the left-hand sides of (3.11)—(3.12), the right-hand side of

(3.8) is established.
In addition, due to (3.9),

1 1 1
af () e @If G )l +af OIFICx, )z

149

S 1
{Z(f, YhC =y Bl ], }
kel,

=1

(3.14)

= fllerat+lFillLea < A4roll fllzra

P4

{Zm YhC =y Bl eI }
(j.kel

=1

(3.15)

1 1 1 1

o« B ) + IF1 (e, wlaf @B ().

1 1 S
Fala) OB 0) = [ DU e =vj0)
=1

Moreover, similar to the discussions of (3.13)—(3.15), one knows

1

s 1 1
: D UYL= viOMBe el > [ flliLra = I Fillra

=1 (. k)l ip.a
> (1= rD)l fllra. (3.16)
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Clearly, the assumption of r; < 1 is necessary in (3.16). In fact, r; < 1 could follow
from Lemmas 3.2-3.3. Therefore, the inequality (3.16) with (3.11)—(3.12) implies that
the left-hand side of (3.8) holds, which concludes the desired conclusion. O

The next lemma is useful to prove Theorem 3.2.

Lemma3.5 If & € Wo(L") " (RIHY), then for any f € V) 4(®) (1 < p,q < 00),

.
lloses(HlliLra <D leillmalloses(@)llw -

i=1
Proof According to the definition of oscillation and f € V), , (),

0ses (/) < sup Y D fei(b)lIi (x+y — k) — gi(x — k)|

Iyl=6 ;24 kezd+1

<Y D leitk)loscs(@i)(x — k).

i=1 gezd+!

Moreover, by Lemma 2.1,

A

loscs(Pllra < Y Y leitk)loscs(@i) (- — k)

i=1 kezd+] Lpa

IA

,
D leilliralloses(@)llw

i=1
thanks to W (L') ¢ W(L11), which is the desired conclusion. O

The sampling stability for the second kind of average sampling functional is
explored by Theorem 3.2.

Theorem 3.2 Suppose that ® € Wo (L") (R and T is a (83, 84)-relatively sepa-
rated set. If 83, 84 and d are chosen such that

ry = sM|®|

osc._ (D) H <1, (3.17)
a+,/83+83 WLl

then for any signal f € V), ,(®) (1 < p,q < 00),

283 N~/ Vad§{ \—i s l
- Pq s .
(Ar)x(33)> <Ar,y(64)> A=) fllLre < {l;(f VK ol
253 *% Vdc‘ig 75
= (Br,x(53)> (Br,y(54)) A+ r)l fliLra, (3.18)
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an . . . = .
where Vg = m is the volume of d-dimensional unit ball, and || ® || is the positive

constant given in Lemma 3.4.

Proof For any f e V), ,(®), it follows from supp w;’,k C B(yjk,a) and
Yot Jr Jra wj’k(x, y)dydx = 1 that

N

DY = fxy)

=1

< Z//B N |f(u,v)—f(x,y)||1pj,’k(u’ v)|dvdu
=1

(V) k@)

< SM0S05+m(f)(x, y) = Fa(x,y) (3.19)

due to [ [a |1p§’k(x, y)|dydx < M. This with Lemma 3.5 and Lemma 3.4 shows

| F2llra = sM

,
<sM Y licillira
i=1

0sca+m(f) 0sca+\/m(¢i)"W(Ll)

Lpa

< sM||D||| fllLra |osc_ (¢)H =r2 fllLra (3.20)
a+,/83+67 WLl
thanks to (3.17).
Define
XB(x;,83)(X) XB (.80 (V) .
aj(x) == SE . B = S . (el
D jren, XB(x ;.83 (%) Y wel, XBGy .50 ()

It follows from (3.19) that

s

D v

=1

1 1 1 1

I I T
af (B () = 1f G, e DB () + [Falx, y)lef (0B ().

The reminding proof is similar to the arguments in (3.14)—(3.15), one firstly takes the
[9-norm and L7-norm for the variable k and y, respectively, then takes the /”-norm
and L”-norm for the variable j and x, respectively. By (3.20),

1

S 1 1
{Z(f, UM AR

} <\ fllLra + 1 F2llLra < A+ 1)l fliLra.
=1 (ke |lipa

Therefore, the right-hand side of (3.18) can be concluded from the above inequality,
the left-hand side of (3.18) can be obtained by the similar method as (3.16). The proof
is done. =
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4 Iterative Reconstruction Algorithms

In this section, the iterative reconstruction algorithms for recovering original sig-
nals are provided. Before introducing the main results, we demonstrate the following
important concept.

Definition 4.1 [14] Let J := J; x J, be a countable index set, and I" be a (81, 82)-
relatively separated set. Then {u; x(x,y), (j,k) € J} is called a BUPU (Bounded
Uniform Partition of Unity) associated with I, if

(). 0<ujxCx,y) <lforall (x,y) € R x R?and (j, k) € J;

(ii). suppujx C B(yj, /87 + 83) foreach (j, k) € J;
(i), Y e, Dren, #jk(x, y) = 1forall (x,y) € R x RY.
Lemma4.1 Let ® € Wo(LH® (R4, T be a (8L, 8¢)-relatively separated set and

{ujr(x,y), (j, k) € I} beaBUPU associatedwith I'. Thenforany f € Vj 4(®) (1 <
P.q < 09),

,
1Or flliLra < (422> " icilipallgillw -

i=1
where Qr f 1= Zjej]l Zkejz F O yiouj .
Proof Clearly,
1O9r fllLra < If — Qr fliLra + | fllLra. 4.1

Then the main work of Lemma 4.1 is to estimate || f — Qr f||Lre. According to the

definition of Qr f, supp uj x C B(y . ,/8/52 + 6/62) and Zjejl ZkeJZ ujk(x,y) =
1’

DD uia ) = Y Fg yujkx, )

[f @, ») = @rfHx, »I =

jeli kel j€li kel
< Z Z osc\/m(f)(xgy)uj,k(x»ﬁ
jeli kel s

= oscw(f)(x,y).

Then with Lemma 3.5, one concludes

-
- pg < cillip-a ||oSc i
If = orfle _;n,uz o @)

.
< 9243 Z lcillpalldillwrry @2

i=1

W(L")
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thanks to (3.1).
On the other hand, Lemma 2.1 tells that || f | zra < > ;_; llcillira || i lw)- Com-
bining this with (4.1)—(4.2), the proof is completed. O

Let P be the projection operator from L?-4 (R4*!) onto Vg (®),

PFa,y) =) > Y (f dit—ki,-—k))gi(x — ki, y —ka),

i=1 k1 €7 kye7d

Whereqsl, S, qS, € W(Ll*l) are the dual functions of ¢, - - - , ¢ € W(Ll'l),respec-
tively. Then we provide the following lemma.

Lemma4.2 Define Arqf == ), D jel 2kel (f*{hz)(yj,k)uj,k. Then there exist
a (8s, 8g)-relatively separated set I and ap > 0 such that the operator I — P Ar 4 is
contractive on Vp 4(®) (1 < p,q < 0) fora < ay.

Proof Forany f €V, ,(®), one knows that

If = PArafllra = If = POrf + POrf = PAraflira
< 1Pllop(ILf = Or fllLra +1Qr f = Arafllira). 43)

By (4.2) and Lemma 3.4,

,
If = Qrfllra <Y licillira
i=1

OSC\/W(@)
OSC\/W((D) H W(Ll) ||f||Lp-q. (4.4)

On the other hand, it follows from Lemmas 4.1 and 3.4 that

10r f = Ar.aflLra = ”Qr (f — f (Zlﬁ))

=1

WL

< 9|

Lpa

¢i—¢i*(2@>

=1

[

,
< (A+2%7) Y Cllcilliva

i=1

W(LY)

@—qa*(i@)

=1

< (14 2% I fllLra. (4.5)

WL

Combining (4.3) with (4.4) and (4.5), one obtains that
I f—PAraflLra
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osC 5 / (:I:)H (1 22d 3)”¢u”W 1 I fllLra.
552 362 ( 1) (LY
( . )

< |D] I Pllop (

By (3.2),

— 0
WL

0sc 1 ,(CD)H 0S¢ 75 (i)
\/2752 WL [52 452

when 8/52 + 8’62 — 0. Moreover, Lemma 3.2 shows

i:

lim ||®¢ =0.
4Ot Il ”W(Ll)

Therefore, there exist 85, 8¢ and ag > 0 such that

ap = ||<T>||||P||op< osc\/m(cb)H + +22d+3)||c1>“°||W(L1)> <1.
5 6 W(Ll)

Hence, (4.6) reduces to

If = PArafliera <onllflliLea < | fllzea,

which implies that I — P Ar 4 is a contractive operator. O

Theorem 4.1 If ® € Wo(L")") (R4HY), then there exist a (85, 8¢)-relatively separated
set I' and ag > 0 such that each signal f € V), ,(®) (1 < p,q < o0) can be
recovered from {( f, thz(' — Vjk)) } (el by the following iterative algorithm:

4.7

fl = PAF,af,
fn = PAF,a(f - fn—l) + fn—la n>2.

Furthermore,

If = fullra <ol fliLra

for some a1 (85, b6, ag, P) < 1.
Proof Lete, = f — f,. Then by (4.7),

€n = f - fn = f - fnfl - PAF,a(f - fnfl) = - PAF,a)enfl-

Using Lemma 4.2 and choosing 85, 86 and a9 > O suchthatoy = [/ — PArgllop < 1,
then

2
lenllLra < aillen—1llra < aillen—allpra <--- < afll fliLra.
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Furthermore, |le,||zr.« —> 0 as n — oo, which completes the proof. O

Similar to Lemma 4.2, we establish the next lemma for the second kind of sampling
functional.

Lemma 4.3 Define Ar f = Y j_, Do il kel (S W}k)uj,lo Then there exist a
(87, 8g)-relatively separated set T and ay > O such that the operator I — P Ar is
contractive on Vp 4(®) (1 < p, g < 00).
Proof For any f € V), ,(®), one obtains
I f—PArfllera = If = POrf + PQOrf — PArflLra
< 1Pllop(ILf = Or fllLra +1Qrf = Ar flizra). (48)

According to the definitions of Qr f, Arfand > )_; [p [ra wj’k(x, y)dydx =1,

|Or f(x,y) = Ar f(x, y)|

DO FG ) = DY Y (s U ujax, y)

jeli keln =1 jeJ; kel

Z Z Z (\/R \/Rd |f('x]’ yk) - f(v’t)Hlpﬁ’k(vyt)ldtdv) I/tj’k(_x7y)_

=1 jel]i kel,

IA

Moreover, by supp 1#5', « CByjx,a)(=1,---,5), the above inequality yields

|Or f(x, y) = Arfe, )1 < Y Zosca(f)(x,-,ym,-,k(x,y)Z/R/Rd W} (v, Oldedv
1

jeli keln I=
< sMQrloscz(f)1(x,y)

thanks to [ [pa Wj.’ (s, 1)|drds < M and the definition of Qr. This with Lemma 4.1
and Lemma 3.4 shows that

,
1Qr f = Ar fllLra < sM(1+22) Y " licillira llosca (@il
i=1

< sM1 4223 ® |osca(®) Iyl fllLra.  (4.9)

Combining (4.8) with (4.4) and (4.9), one concludes

1 = PAr fllzra < 1311 Ploo

0sc ,(q>)H
8748 WL

FsM(1 + 22d+3)||0scg(d>)||W(L1))||f||Lp,q.
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Furthermore, (3.2) implies that

lim
824820

— (P =0 and lim (P =0.
572"1‘582( ) W (L) a—0 ||0SCa( )”W(L])

Therefore, there exist 87, §g and @y > 0 such that

@ 1= [B1Pllop

2d+3
oscm(fb) HW(LI) +sM(1+42 + )||05C50(<D)”W(L1)) < 1.

Hence, it leads to the conclusion, i.e.,

I f —PArfliea < 2l fllLra < 1 fllizpa.

The proof is finished. O

Similar to the proof of Theorem 4.1, we can derive the second iterative algorithm
immediately.

Theorem 4.2 [f® € Wy(L ! )(Rd+] )(r), then there exist a (87, 8g)-relatively separated

set T and d@p > 0 such that each signal f € V, ,(®) (I < p,q < o0) can be
recovered from {{f, Iﬂj-yk)}(j’k)ej by the following iterative algorithm:

(4.10)

fi=PArf,
fo=PAr(f — fu—1) + fum1, n>2.

Furthermore,

If = fullra < o3l fliLra

for some ay (87, 83, ap, ®) < 1.

5 Error Analysis
In many applications, the samples are often contaminated by random noises. Motivated
by the work of Aldroubi et al. [5] and Jiang [14], we investigate the error analysis if

the samples are destroyed by random noises in this section.
Firstly, we propose the following inequality under mixed norm.

Lemma5.1 Ifp € W(LHR™ Y and f € LP-2(RITY) (1 < p, g < 00), then

I1Lf s @llira < I fllLrall@liwpiy-
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Proof Obviously, ¢ € W(L")(R4 ) ¢ W(LP)(RI*H!) c LP(R?*!) holds for each
p>land

P

17 xotma = | S (X | [ [ semota—rie-paaf’)' | <.

k1€Z koeZd

For fixed x and k1, denote fy(y) := f(x,y) and ¢y, (ko —y) := ¢ (k1 —x, ko — y).
Then

1

1 * @llne = Z S| [ 500t = yrvas )}

| KI€EZ  kyeZd

= | (X[ X[ 500t =y -pavar]')" }

kueZ kzer’ lezd
1
14 :| >
19

If * Gllira < [ //[Ol]d PIFACERI N —z)‘ )’ dydx) }
k1€Z

2e7d  1ezd
5.1
Let fiy() :== fe(-+y) and ¢p,—x y(-) := ¢,—x(- — y). Then it follows from
Young’s inequality that

/[o 1]d( 2 ‘fo(yﬂ)qskl_x(kz_ _1)‘ )g

koezd lezd

=/ Il fx.y * Pk —x yll1ady 5/ I fxylia 1y —x yllpdy. (5.2)
(0,114 (0,11

ffo S FeG Dy a - — v — Daydx

Lki€Z 1 lezd

This with the generalized Minkowski inequality shows

1

P

Using the Holder inequality with 37 + % =1, (5.2) reduces to

/[.0”5, Z fo(}’"‘l)(f’kl ey —y —l)’) dy

kyeZd lezd

= </[O,1 ”fx’y”?qdy>;</[‘0,l l| b, xy||l1dy>
:(-/[01 Z|f"(y+l)|qdy) (/ [Z|¢k1 x(l—y)l] dy)i’

lezd

L
7
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Because the function ) ;_ya ¢, —x (I — -)| is 1-periodic, the above inequality yields

/[.o 174 ( Z ‘ Z Fx 4+ Dry—x (ko — y — l)‘qydy

koeZd 1ezd

1
= < > lo » Ife(y + l)lqdy)q ( > ess sup ¢, (v +1)|)

lezd 1ezd YELO.1)
=1 f e, )lleallgkr — x, ')||W(L1)~ (5.3)

Substituting (5.3) into (5.1), one obtains that

— L
1/ dlina = | 3 (fRnf(x,-)nLqumm—x,~>||w<p)dx)p
ki€Z
_ 1
» P
= S ([ e n ot —x =)
ki€Z neZ (0,13

Denote ay(n) = [|f(x +n,)|Le and by (n) := [[¢(n — x, )|y 1) Then by the
generalized Minkowski inequality again,

1+ @l < | /[0 L L axmbi—mar] < f[m] I % billiodx.
> nel ’

Using Young’s inequality and the Holder inequality with % + % = 1, one gets

L , £
175 8hns = [ dastimbalnar < ([ acthan)” ([ ifiar)?
[0.1] [0.1] [0.1]
1
< (/ S UG+ ede) (P ess sup g n — x, e )
0115ez

ez, X€l0,1]
= ||f||LP=‘1||¢||W(L1.l),

which is the desired conclusion. The proof is completed. O
Theorem 5.1 Let ® € Wo(LHW RN, T' = {y;«, (j, k) € I} be a relatively

separated sampling set and {sé’k, (j,k)y elJ, Il =1,---,s} be random variables
satisfying

E ZZL’??J{I <N forO<N<oand l=1,---,s.
jeli kel
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Then for any initial data {(f, ¥}, (-—y; )+’ Y weror ((f 5 ) +el 1 dGmer

SCN ~
Ellfoo — fllLra < EHQH NPlw

whereC = C(d, p, q, 65, 86), @ = alforalgorithm£4.7),' orC=CWd, p,q,67,88), ¢ =
oy for algorithm (4.10), and the positive constant ||®|| is given in Lemma 3.4.

Arq, foralgorithm (4.7);
Ar, for algorithm (4.10).
a = |[I — PA|lop < 1, which implies

(1 +y U - PA)") PA=1. (5.4)

k=1

Proof Denote A := Then Lemmas 4.2 and 4.3 tell

Let ho := Y- 2 ey, Yoels ei.’kp(uj,k), and the initial data be {(f, ¥!(- —
Vi) + é‘ljyk}(j’k)eq]] or {(f, W;‘,k) +E§»’k}(j’k)eq]], respectively. Then the original signal
f can be recovered by the following iterative algorithm

fi = PAf + ho,
fn :fl _PAfn—l‘i‘fn—lv n>72,

based on Theorem 4.1 and Theorem 4.2, respectively. Moreover, due to (5.4), f, =
Fitd=Pa fur = Fit =P (Fi+U=PAfu2) = = (14542 0 -
PA)k>f] and f = (1 FYX (- PA)k)PAf - (1 FY (- PA)k>(f1 —ho),

ie.,

fo= (140210 = PAM) T,

~ (5.5
f=(1+ X320 = PAY)(Fi = ho).

According to @ = ||[I — PAllop < 1, one obtains

8] oo
I foo = fllera = | (14301 = PAY o DU =PA hollLra

k=1 Lra k=0 op

< ——llhollzra.
l -«

By the definition of i( and the Minkowski inequality, the above inequality reduces to

I foo = fllLra < +— Z Yo el Py

I=1 jel kel Lpa
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= ﬁ Z Z Z |8§‘,k| P i) lLra |- (5.6)

I=1 jel] kel

It follows from supp u; x C B(y;j k. 8? + 8%), x € B(xj, 8§ + Sg) and y €

B(yk. /83 + 62) that

P
kL = f ( / ., ) |dy ) dx
B(xj,\/62482) N JB(yr./82+62)

P P
5/ (Vd(8§+8§)%)qu=2‘/8§+8§-(Vd(5§+8§)%)"
B(xj,\/82+82)

thanks to |u; x(x, y)| < 1 for all x, y. This implies that u ; ; belongs to LP-q(RA+H
based on the first kind of sampling functional. Similarly, one can derive u;; <

P
2,/8% + 8§ . (Vd(8% + 8%)%)‘1, i.e., ujy also belongs to LP"f(R‘H‘l) based on the
second kind of sampling functional.

Furthermore, according to the definition of the operator P and Lemma 2.1, one
finds that

1P (uji)llLra

SN ke di— ki, — k)i (x — ki y — k)

i=1 ki €Z kye7d

LP4a
,
= 3 Hwiw dic =k =) 16wz y-
i=1 kkallpa
This with Lemma 5.1 leads to
,
1P lLra <D lujalliLealdi (=)l ldillwen
i=1
< IO 1Pz, (5.7)

where C is given by

r
2\/@' (Vd(S?, + 3%)%> ! for algorithm(4.7);
C = »
2m : (Vd(B% + 35)%) * for algorithm(4.10).

@ Springer



67

Page 22 of 23 J.Wangetal.

Combining (5.6) with (5.7) and E(ZjEJ1 ZkEJZ |8§-‘k|) <N({=1,---,5),o0ne

concludes that

sCN ~
Ellfoo — fllLra < mllcbll NPl

which completes the proof. O
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