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Abstract
Nonlocal metric dimension dimn�(G) of a graphG is introduced as the cardinality of a
smallest nonlocal resolving set, that is, a set of verticeswhich resolves each pair of non-
adjacent vertices of G. Graphs G with dimn�(G) = 1 or with dimn�(G) = n(G) − 2
are characterized. The nonlocal metric dimension is determined for block graphs, for
corona products, and for wheels. Two upper bounds on the nonlocal metric dimension
are proved.An embedding of an arbitrary graph into a supergraphwith a small nonlocal
metric dimension and small diameter is presented.

Keywords Metric dimension · Nonlocal metric dimension · Block graphs · Corona
product of graphs · Edge cover number

Mathematics Subject Classification 05C12 · 05C76

1 Introduction

Let G = (V (G), E(G)) be a graph, X ⊆ V (G), and u, v ∈ V (G). Then, u and v are
resolved by X if there exists x ∈ X such that dG(u, x) �= dG(v, x), where dG(y, z)
denotes the shortest path distance between vertices y and z of G. A set X such that
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each pair of vertices of G is resolved by X is a resolving set of G. A smallest resolving
set is a metric basis of G; its cardinality is the metric dimension of G denoted by
dim(G). This concept is one of the central ones in the field of metric graph theory,
and its popularity stems, among other things, from the fact that it has found many
applications in fields as diverse as computer science, chemistry, biology, and social
sciences. For a better understanding of the concept and its applications, see the recent
survey [18], while for a comprehensive survey on its variants see the other recent
survey [11].

In 2010, Okamoto et al. [12] introduced the local metric dimension of a graph as a
natural version of themetric dimension. In this version,whichwas further researched in
particular in [1–3, 6, 10, 13, 14, 17], we need to resolve only pairs of adjacent vertices.
The dual concept, in which all pairs of non-adjacent vertices are to be resolved, has
surprisingly not been considered in the literature. In this paper, we fill this gap.

If X ⊆ V (G) resolves each pair of non-adjacent vertices, then we speak of a
nonlocal resolving set. A smallest nonlocal resolving set is a nonlocal metric basis
of G, its cardinality is the nonlocal metric dimension of G and will be denoted by
dimn�(G). By definition,

dimn�(G) ≤ dim(G) (1)

holds for every graphG. The difference can be arbitrary large as already demonstrated
by complete graphs for which we have dimn�(Kn) = 0 and dim(Kn) = n − 1 for
every n ≥ 1.

We proceed as follows. In the next section, we first recall definitions, notation,
and a result needed later. Then, we characterize the graphs with the nonlocal metric
dimension equal to 1 and show that dimn�(G) = dim(G) holds for bipartite graphs
G. In Sect. 3, we determine the nonlocal metric dimension for block graphs and
for corona products. The latter result is reduced to a join of a graph with K1. This
motivates us to determine the nonlocal metric dimension of wheels in Sect. 4. In the
subsequent section, we prove two upper bounds on the nonlocal metric dimension and
characterize graphs G with dimn�(G) = n(G) − 2. In Sect. 6, we embed an arbitrary
graph into a supergraph with a small nonlocal metric dimension and small diameter.
In the concluding section, directions for further study are indicated.

2 Preliminaries

Unless stated otherwise, graphs considered will be connected. The order of a graph G
will be denoted by n(G). If X = {x1, . . . , xk} and u ∈ V (G), then the metric repre-
sentation of u with respect to X is the vector r(u|X) = (dG(u, x1), . . . , dG(u, xk)).
The diameter diam(G) of G is the largest distance between pairs of vertices of G.
The clique number of G is the order of a largest complete subgraph in G and denoted
by ω(G). As usual, the chromatic number of G is denoted by χ(G). The edge cover
number β ′(G) of G is the smallest number of edges such that each vertex is incident
with at least one of these edges. The join G + H of graphs G and H is obtained from
the disjoint union of a copy of G and a copy of H by adding an edge between each
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vertex of G and each vertex of H . The complement of G will be denoted by G. For a
positive integer k, we will use the notation [k] = {1, . . . , k}.

A vertex of degree at least 3 in a tree T is called a branch vertex. A leaf u of T
is called a terminal leaf of a branch vertex v of T if dT (u, v) < dT (u, w) for every
other branch vertex w of T . A branch vertex v of T is an exterior branch vertex of
T if it has at least one terminal leaf. The path from an exterior branch vertex to its
terminal leaf is called a terminal path. Let n1(T ) denote the number of leaves of T ,
and let ex(T ) denote the number of exterior branch vertices of T . In [5, 7, 15], it was
proved that if T is a tree that is not a path, then

dim(T ) = n1(T ) − ex(T ). (2)

We already mentioned that dimn�(Kn) = 0 for n ≥ 1. Moreover, as soon as G is
not complete, dimn�(G) ≥ 1. Clearly, dimn�(Pn) = 1 for n ≥ 3. It is also not difficult
to see that dimn�(Cn) = 2 for n ≥ 4.

To characterize graphs G with dimn�(G) = 1, we need the following concept. If
x ∈ V (G) and k ≥ 0, then Lk(x) = {u ∈ V (G) : dG(x, u) = k} is a distance level
of x . In particular, L0(x) = {x}, and L1(x) is the (open) neighborhood of x .

Proposition 2.1 If G is a non-complete graph, then dimn�(G) = 1 if and only if there
exists a vertex x such that Lk(x) induces a complete graph for every k ≤ diam(G).

Proof Assume first that dimn�(G) = 1 and let {x} be a nonlocal metric basis. If
u, v ∈ Lk(x) for some k ≥ 1, then dG(x, u) = dG(x, v) = k, and hence, u and v must
be adjacent. Thus, Lk(x) induces a complete graph. (L0(x) is trivially complete.)

Conversely, let x be a vertex whose all distance levels induce complete graphs.
Therefore, if u, v ∈ V (G) and uv /∈ E(G), then dG(x, u) �= dG(x, v) and so u and v

are resolved by x . �	
In general, dimn�(G) can be arbitrary smaller than dim(G). This cannot happen if

G is bipartite as the next result asserts.

Proposition 2.2 If G is a bipartite graph with n(G) ≥ 3, then dimn�(G) = dim(G).

Proof By (1), we have dimn�(G) ≤ dim(G). Let X be a nonlocal metric basis of
G. As n(G) ≥ 3, G is not complete and hence |X | ≥ 1. Consider arbitrary vertices
u, v ∈ V (G). If uv /∈ E(G), then u and v are resolved by X because X is a nonlocal
resolving set. If uv ∈ E(G), then u and v are resolved by X since G is bipartite. It
follows that X is also a resolving set. Hence, dim(G) ≤ |X | = dimn�(G) and we are
done. �	

3 Block Graphs and Corona Products

Proposition 2.2 implies that if T is a tree with n(T ) ≥ 3, then dimn�(T ) = dim(T ).
This fact generalizes to block graphs as follows. Let G be a block graph. The block-
cutpoint tree ̂G of G is the tree whose vertices are the blocks and the cut-vertices of
G, and a block B is adjacent to a cut-vertex v if v ∈ V (B), cf. [19, Definition 4.1.20].
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Theorem 3.1 If G is a block graph with n(G) ≥ 3, then dimn�(G) = dim(̂G).

Proof We can extend the terminology for trees from the previous section to block
graphs as follows. Let G be a block graph. A block B of G is called a branch block
if the vertices of B have at least three independent neighbors outside of B. A branch
block B of G is an exterior branch block of G if in ̂G there exist t ≥ 1 terminal paths
emanating from a cut-vertex of B. If so, we say that B has t rays.

Let now X be a nonlocal resolving set of G. If B is an exterior branch block of G
with t rays, then we claim that X has at least t−1 vertices in these rays, each one from
a different ray. Indeed, otherwise there exist two rays R1 and R2 with no vertex from
X . Let R1 and R2 be attached to B at vertices u1 and u2 (note that u1 = u2 is possible),
and select neighbors v1 and v2 of u1 and u2 in R1 and R2, respectively. Then, v1 and
v2 are not adjacent and have the same metric representation with respect to X . This
proves the claim. Each exterior branch block of G corresponds to an exterior branch
vertex of ̂G. Since ̂G is a tree, (2) implies that dimn�(G) ≥ dim(̂G).

To prove that dimn�(G) ≤ dim(̂G) holds, let X be a metric basis of ̂G. We may
without loss of generality assume that every element of X is a leaf of ̂G. Then, each
element x ∈ X corresponds to a terminal block Bx ofG, that is, a blockwhich contains
exactly one cut-vertex. For every x ∈ X , let wx be an arbitrary but fixed vertex of Bx

which is not a cut-vertex. Set Y = {wx : x ∈ X}. Since we do not need to resolve
adjacent vertices, it is straightforward to check that Y is a nonlocal resolving set of G.
Hence, dimn�(G) ≤ |Y | = |X | = dim(̂G). �	

The metric dimension of block graphs was studied in [8]. It was proved that the
metric dimension of a block graphG is equal to themetric dimension of a tree, obtained
from G by replacing each block B of size at least 3 by a star whose leaves are the
vertices of B. The local metric dimension of block graphs was investigated in [14].

Let G and H be graphs where V (G) = {g1, . . . , gn(G)}. The corona product of
G and H , denoted by G 
 H , is a graph obtained from the disjoint union of a copy
of G and n(G) copies of H , denoted by Hi , i ∈ [n(G)]. The product G 
 H is then
constructed by making gi adjacent to every vertex in Hi for each i ∈ [n(G)]. Let
further ˜Hi be the subgraph ofG
H induced by V (Hi )∪{gi }. Clearly, ˜Hi ∼= H +K1.
We will use this notation in the rest of the section.

The metric dimension of corona products has been investigated in [9, 20]. The local
metric dimension of corona products has been studied in [13] and more generally of
generalized hierarchical products in [10]. In particular, in [13] it is proved for the local
metric dimension dim� that if G is a connected graph and H is a graph of radius at
least 4, then dim�(G 
 H) = n(G) · dim�(H + K1). In general, dim�(G 
 H) ≤
n(G) · dim�(H + K1), see [10]. Here we add the following formula for the nonlocal
metric dimension.

Theorem 3.2 If G is a graph and H a non-complete graph, then

dimn�(G 
 H) = n(G) · dimn�(H + K1).

Proof Let X be a nonlocal metric basis of G 
 H and let Xi = X ∩ V (˜Hi ). If
u, v ∈ V (Hi ) and w ∈ V (G 
 H) \ V (Hi ), then dG
H (u, w) = dG
H (v,w). Since
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also dG
H (u, gi ) = dG
H (v, gi ) = 1, any two non-adjacent vertices from Hi must
be resolved by some vertex from Hi . Therefore, Xi is a nonlocal resolving set of ˜Hi

and so |Xi | ≥ dimn�(˜Hi ) = dimn�(H + K1). Consequently,

dimn�(G 
 H) = |X | =
n(G)
∑

i=1

|Xi | ≥
n(G)
∑

i=1

dimn�(˜Hi ) = n(G) · dimn�(H + K1).

Let now Y be a nonlocal metric basis of H 
K1. Since H is not complete, |Y | ≥ 1.
For each i ∈ [n(G)], let Yi be the copy of Y in ˜Hi . Note that gi /∈ Yi . We claim that
∪n(G)
i=1 Yi is a nonlocal resolving set ofG
H . Indeed, if vertices u and v from V (Hi ) are

non-adjacent, then they are resolved by some vertex from Yi . Assume next u ∈ V (˜Hi )

and v ∈ V (˜Hj ), where i �= j . If yi ∈ Yi , then d(yi , u) ≤ 2 and d(yi , v) ≥ 3, hence u

and v are again resolved. We have thus seen that ∪n(G)
i=1 Yi is a nonlocal resolving set,

and henceforth,

dimn�(G 
 H) ≤ | ∪n(G)
i=1 Yi | = n(G) · |Y | = n(G) · dimn�(H + K1).

We conclude that dimn�(G 
 H) = n(G) · dimn�(H + K1). �	
In the case when the second factor of a corona product is complete, we can bound

the nonlocal metric dimension as follows.

Theorem 3.3 If G is a graph and n ≥ 1, then

dim(G) ≤ dimn�(G 
 Kn) ≤ n(G).

Proof To prove the upper bound, we claim that V (G) is a nonlocal resolving set of
G 
 Kn . Indeed, let u, v ∈ V (G 
 Kn) \ V (G) be two non-adjacent vertices. Then,
u ∈ Hi and v ∈ Hj for some i and j , where i �= j . As dG
Kn (u, gi ) = 1 and
dG
Kn (v, gi ) ≥ 2, the claim follows. Hence, dimn�(G 
 Kn) ≤ n(G).

Let now X be a nonlocal metric basis of G 
 H ; then |X | = dimn�(G 
 H). Let
Y ⊆ V (G) be the set obtained from X by replacing each vertex u ∈ X ∩ V (˜Hi )

by gi . Note that this in particular means that if gi ∈ X , then also gi ∈ Y . Clearly,
|Y | ≤ |X |. We claim that Y is a resolving set of G. For this sake, consider arbitrary
vertices gi , g j ∈ V (G) ⊆ V (G 
 H). Let u ∈ V (Hi ) and v ∈ V (Hj ). Since X is a
nonlocal metric basis of G 
 H and uv /∈ E(G 
 H), there exists a vertex w ∈ X
such that dG
H (u, w) �= dG
H (v,w). If w ∈ ˜Hi ∪ ˜Hj , then gi ∈ Y or g j ∈ Y and
there is nothing to be proved. Suppose henceforth that w ∈ ˜Hk , where k �= i, j . If
w �= gk , then

1 + dG(gi , gk) + 1 = dG
H (u, w) �= dG
H (v,w) = 1 + dG(g j , gk) + 1,

and if w = gk , then

1 + dG(gi , gk) = 1 + dG(gi , w)

123



66 Page 6 of 14 S. Klavžar and D. Kuziak

= dG
H (u, w) �= dG
H (v,w)

= 1 + dG(g j , w) = 1 + dG(g j , gk).

In either case, we get dG(gi , gk) �= dG(g j , gk). As gk ∈ Y , we have proved that Y is
a resolving set of G which in turn implies that

dim(G) ≤ |Y | ≤ |X | = dimn�(G 
 H)

and we are done. �	
If r , s ≥ 3, then it can be checked that dimn�(Kr ,s 
 Kn) = r + s − 2 =

dimn�(Kr ,s) = dim(Kr ,s). This shows the sharpness of the lower bound of Theo-
rem 3.3. On the other hand, if m ≥ 2 and n ≥ 1, then dimn�(Pm 
 Kn) = 2. Since
dim(Pm) = 1 and n(Km) = m, the casem = 2 shows the tightness of the upper bound,
while the cases m ≥ 3 demonstrate that the intermediate values are also attainable.

4 Nonlocal Metric Dimension of Wheels

In Theorem 3.2, the nonlocal metric dimension of a corona product G 
 H is reduced
to the nonlocal metric dimension of the join of H with K1. To determine the latter
deserves a special attention. Here we solve it for the join of a cycle with K1, that is,
for wheels. Recall that the wheel graph K1 + Cn of order n + 1 ≥ 4 is denoted by
W1,n .

As a consequence of [13, Corollary 5(iv)], we obtain dim�(W1,n) = �n/4�. The
metric dimension ofW1,n was independently studied in [4, 16], where it is proved that
if n ≥ 7, then

dim(W1,n) =
⌊

2n + 2

5

⌋

.

Clearly, dimn�(W1,3) = 1 and dimn�(W1,4) = dimn�(W1,5) = dimn�(W1,6) = 2. The
main result of this section reads as follows.

Theorem 4.1 If n ≥ 7, then

dimn�(W1,n) =
⌊

2n

5

⌋

.

Note that if n ≥ 7, then dim(W1,n) = dimn�(W1,n) if and only if n mod 5 ∈
{0, 1, 3}. Otherwise, dimn�(W1,n) = dim(W1,n) − 1. In the rest of the section, we
prove Theorem 4.1, for which some additional terminology is needed.

Let V (Cn) = {0, 1, . . . , n−1}with natural adjacency. Operation with vertices will
be done modulo n. Let v be the central vertex of the wheelW1,n , where n ≥ 7. Notice
first that v does not belong to any nonlocal metric basis, since for any 0 ≤ i ≤ n − 1,
v and i are adjacent. Let X ⊂ V (Cn) be a set of vertices such that |X | ≥ 2. A gap of
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X is a set of vertices Ai, j = {i + 1, . . . , j − 1}, |i − j | ≥ 1, of Cn such that i, j ∈ X
and {i + 1, . . . , j − 1} ∩ X = ∅. We call i and j neighboring vertices of X . Two gaps
Ai, j and A j,k are called neighboring gaps.

Lemma 4.2 Let n ≥ 7, and let S be a nonlocalmetric basis of W1,n. Then, the following
hold.

(i) |Ai, j | ≤ 4 for each gap of S.
(ii) |Ai, j | ≥ 3 holds for at most one gap of S.
(iii) If |Ai, j | ≥ 2, then each of the two neighboring gaps of Ai, j contains at most one

vertex.
(iv) Moreover, W1,n contains a nonlocal metric basis S′ that fulfils conditions (i)-(iii)

and in addition has no gap of size 3.

Proof (i) Consider the gap Ai, j and suppose that j ≥ i + 6, where i ≤ n − 1. Then,
the vertices i + 2 and i + 4 have the same metric representation with respect to S. As
they are not adjacent, we have a contradiction.

(ii) Suppose there exist two distinct gaps Ai,i+k and A j, j+k′ , where k, k′ ∈ {4, 5}.
Then, for two non-adjacent vertices i + 2 and j + 2 we have r(i + 2|S) = r( j + 2|S),
a contradiction.

(iii) Let Ai, j be a gap with j ≥ i + 3. Consider now a neighboring gap, without
loss of generality let it be Ai ′,i , and suppose that i − i ′ > 2. Then, the vertices i − 1
and i + 1 have the same metric representation with respect to S. Again, as they are
not adjacent, we have a contraction.

(iv) Assume that S contains a gap Ai,i+4. By (ii), this gap is the only gap of size
3. Moreover, by (iii), there are the following cases to be considered. Assume first that
i+5 /∈ S. Then i+6 must belong to S. Let S′ = (S∪{i+5})\{i+4}. Having in mind
that i + 2 and i + 3 are adjacent, it is straightforward to verify that S′ is a required
nonlocal metric basis. The case when i −1 /∈ S is treated analogously. The last case to
consider is when i−1, i+5 ∈ S. Then, i+6 /∈ S and the set S′ = (S∪{i+6})\{i+4}
is a required nonlocal metric basis. �	
Lemma 4.3 Let n ≥ 7. If X ⊆ V (Cn) satisfies conditions (i)–(iii) of Lemma 4.2, then
X is a nonlocal resolving set of W1,n.

Proof Notice that by Proposition 2.1, dimn�(W1,n) ≥ 2, for n ≥ 7. Let u ∈ V (W1,n)\
X . As the central vertex v is adjacent to any other vertex, we may assume that u �= v.
We then distinguish three cases.
Case 1: u belongs to a gap Ai,i+2 (gap of size 1).
Then, u = i +1 and u has distance 1 to i, i +2 ∈ X and distance 2 to all other vertices
of X . Hence, any other vertex has different metric representation with respect to X
because n ≥ 7.
Case 2: u belongs to a gap Ai,i+3 (gap of size 2).
Let without loss of generality u = i + 1. Then u has distance 1 to i and distance 2 to
all other vertices of X . By condition (iii) from Lemma 4.2, there is no any other vertex
with the same metric representation.
Case 3: u belongs to a gap Ai,i+ j , j ∈ {4, 5}.
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If u = i + 1, then u has distance 1 to i and distance 2 to all the other vertices of
X . Hence, by condition (iii) of Lemma 4.2, there is no other vertex with the same
metric representation. The case when u = i + j − 1 is done similarly. Now, if u ∈
{i + 2, i + j − 2}, then r(u|X) = (2, . . . , 2). If j = 4, then there is only one
such vertex, and if j = 5, there are two such vertices. In the latter case, these two
vertices are adjacent. By condition (ii) fromLemma 4.2, no other vertex has this metric
representation. �	

We are now in a position to prove Theorem 4.1. We construct a set S ⊆ V (W1,n)

with |S| = ⌊ 2n
5

⌋

depending on the residue class modulo 5.
Case 1: n mod 5 ∈ {0, 1}.
Then, n = 5k or n = 5k + 1, where k ≥ 2. In both cases, let S = {5i, 5i + 2 : i ∈
[k − 1]} ∪ {0, 5k − 1}. Notice that |S| = 2k = ⌊ 2n

5

⌋

.
Case 2: n ≡ 2 mod 5.
Then, n = 5k + 2, where k ≥ 1. Let S = {5i, 5i + 2 : 1 ≤ i ≤ k − 1} ∪ {0, 5k}. Then
|S| = 2k = ⌊ 2n

5

⌋

.
Case 3: n mod 5 ∈ {3, 4}.
Then, n = 5k + 3 or n = 5k + 4, where k ≥ 1. In both cases, let S = {5i, 5i + 2 : i ∈
[k]} ∪ {0}. Then, |S| = 2k + 1 = ⌊ 2n

5

⌋

.
In each case, the set S fulfils the conditions of Lemma 4.3; hence, S is a nonlocal

resolving set of W1,n and thus dimn�(W1,n) ≤ ⌊ 2n
5

⌋

.
To prove that dimn�(W1,n) ≥ ⌊ 2n

5

⌋

, consider an arbitrary nonlocal resolving set X
of W1,n . In view of Lemma 4.2(iv), we may without loss of generality assume that X
has no gaps of size 3. We distinguish two cases.
Case 1: |X | = 2r , where r ≥ 1.
By Lemma 4.2(iii), at most r gaps contain two or four vertices, and by Lemma 4.2(ii),
at most one of these gaps contains 4 vertices. Hence, there is at most 2(r−1)+4+r =
3r + 2 vertices belonging to the gaps. Since n ≤ 2r + (3r + 2), we have that |X | =
2r ≥ 2

( n−2
5

)

. Since 2r is an integer, we conclude that |X | ≥ ⌈ 2
5n − 4

5

⌉ = ⌊ 2n
5

⌋

.
Case 2: |X | = 2r + 1, where r ≥ 1.
Again, by Lemma 4.2(iii), at most r gaps contain two or four vertices, and by
Lemma 4.2(ii), at most one of these gaps contains 4 vertices. Hence, in this case
there is at most 2(r − 1) + 4+ (r + 1) = 3r + 3 vertices belonging to the gaps. Since
n ≤ 2r + 1 + (3r + 3), we have that |X | = 2r + 1 ≥ ⌈ 2

5n − 3
5

⌉ ≥ ⌊ 2n
5

⌋

.
This proves Theorem 4.1.

5 Upper Bounds

In this section, we prove two upper bounds on the nonlocal metric dimension. Along
the way, we show that complete bipartite graphs can be characterized as the graphs G
with dimn�(G) = n(G) − 2

Proposition 5.1 If G is a graph, then dimn�(G) ≤ n(G) − ω(G). In particular, if
n(G) ≥ 2, then dimn�(G) ≤ n(G) − 2.
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Proof Since dimn�(Kn) = 0 for n ≥ 1, the result holds for complete graphs. Hence,
assume in the rest that G is not complete and n(G) ≥ 3.

Let Q be a clique of G of order ω(G). Then, we claim that V (G) \ V (Q) is a
nonlocal resolving set. Indeed, let u and v be non-adjacent vertices. At least one of
them is not in Q, say u. Then, dG(u, u) = 0 < dG(u, v), and since u ∈ V (G)\V (Q),
the claim is proved. Hence, dimn�(G) ≤ n(G) − n(Q) = n(G) − ω(G). The second
assertion, dimn�(G) ≤ n(G) − 2, follows using the same argument except that we
consider an arbitrary K2 as a complete subgraph. �	

In view of Proposition 5.1, we next describe graphs that attain the bound n(G)−2.

Proposition 5.2 If G is a graph, then dimn�(G) = n(G) − 2 if and only if G = Ks,t ,
where s ≥ 1 and t ≥ 2.

Proof If dimn�(G) = n(G) − 2, then by (1) we have dim(G) ≥ n(G) − 2. Since
the only graphs G with dim(G) = n(G) − 1 are complete graphs, we can restrict
our attention to the graphs G with dim(G) = n(G) − 2. In [5], it is proved that
dim(G) = n(G)−2 if and only ifG is one of the following graphs: Ks,t (s ≥ 1, t ≥ 2),
Ks + Kt (s ≥ 1, t ≥ 2), and Ks + (K1 ∪ Kt ) (s ≥ 1, t ≥ 1). By (1) we know that in
each of these cases we have dimn�(G) ≤ n(G) − 2. Hence, we need to determine in
which of these cases we have dimn�(G) ≥ n(G) − 2.

Consider first complete bipartite graphs Ks,t and let S and T be its bipartition sets,
where |S| = s and |T | = t . If u, v ∈ S, then u and v have the same distance to all the
other vertices. If follows that for each nonlocal metric basis X we have |X∩S| = s−1.
Analogously we get |X ∩ T | = t − 1. Hence |X | = (s − 1) + (t − 1) = n(Ks,t ) − 2.

Consider next joins Ks +Kt , s ≥ 1, t ≥ 2. The case s = 1 has already been treated
in the above paragraph, so assume that s, t ≥ 2. Then, ω(Ks + Kt ) = s + 1 ≥ 3, and
hence, by Proposition 5.1 we have dimn�(Ks + Kt ) ≤ n(Ks + Kt ) − ω(Ks + Kt ) <

n(Ks + Kt ) − 2.
The last class of graphs to be considered is Ks + (K1 ∪ Kt ), s ≥ 1, t ≥ 1. If

s = t = 1, then G = P3 which has already been considered earlier. And if s ≥ 2
or t ≥ 2, then ω(G) ≥ 3, and we conclude as in the previous case that none of the
graphs qualifies for the theorem. �	
Theorem 5.3 If G is a graph of girth at least 7, then dimn�(G) ≤ β ′(G)−1. Moreover,
if G is a tree, then the equality holds if and only if G is obtained from a star by
subdividing all but one of the edges at most once.

Proof Note first that the assertion is true for K2 since dimn�(K2) = 0. It is also clear
that the result holds for paths since dimn�(Pn) = 1 for n ≥ 3. Hence, in the rest
n(G) ≥ 4 and �(G) ≥ 3.

Assume first that there exists an edge cover S of G with |S| = β ′(G) ≥ 2, such
that S contains edges xy and xy′, where y �= y′. We distinguish two cases.
Case 1: degG(y) = degG(y′) = 1.
Then, degG(x) ≥ 3.We define a set X ⊂ V (G) as follows. Put into X all the neighbors
of x but y′. Complete the construction of X by putting into it an arbitrary vertex from
each of the edges f ∈ Swhich has no vertex yet in X . Let x ′ be a neighbor of x different
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from y and y′. Since G is triangle-free, the vertices x ′ are covered either by the edge
xx ′, or by an edge x ′x ′′, where x ′′ is not adjacent to x . Therefore, |X | ≤ β ′(G) − 1.
Note also that x /∈ X . We claim that X is a nonlocal resolving set. For this sake,
select arbitrary vertices u, v /∈ X such that uv /∈ E(G). If u ∈ {x, y′}, then because
degG(y) = 1, the vertices u and v are resolved by y. Assume next that u, v /∈ {x, y′}.
Then, there exist vertices u′ and v′ such that uu′, vv′ ∈ E(G) and u′, v′ ∈ X .We claim
that u and v are resolved by u′ and v′. If this is not the case, then since dG(u, u′) = 1,
we have dG(v, u′) = 1, and because dG(v, v′) = 1, we have dG(u, v′) = 1. But this
implies that uu′vv′u is a 4-cycle, a contradiction with our girth assumption.
Case 2: degG(y) ≥ 2.
Let y′′ be a neighbor of y different from x . Then, we infer that yy′′ /∈ S. Indeed, if
yy′′ ∈ S, then S′ = S \ {xy} is an edge cover of G of cardinality β ′(G) − 1. Hence,
y′′ is an end-vertex of some edge y′′y′′′ ∈ S. Define now a set X ⊂ V (G) as follows.
First put x and y′′ into X . In addition, for any edge f ∈ S \{xy, xy′, y′′y′′′} put into X
an arbitrary vertex from f . Note that |X | ≤ β ′(G) − 1. We claim that X is a nonlocal
resolving set. Let u, v /∈ X such that uv /∈ E(G). Then, we see that in every case
there exist vertices u′ and v′ such that uu′, vv′ ∈ E(G) and u′, v′ ∈ X . In particular, if
u = y and v = y′, then set u′ = y′′ and v′ = x . Similarly, if u = y and v = y′′′, then
select u′ = x and v′ = y′′. And if u = y′ and v = y′′′, then set u′ = x and v′ = y′′.
In any case we see that the vertices u, v, u′ and v′ lead to a 4-cycle.

Assume second that every edge cover G has cardinality n(G)/2. Let S be such an
edge cover. Again we distinguish two cases.
Case 1: every edge from S has an end-vertex of degree 1.
Let S = {xi yi : i ∈ [n(G)/2]} and assume without loss of generality that deg(xi ) = 1
for all i ∈ [n(G)/2]. Set X = {x2, . . . , xn(G)/2}. We claim that X is a nonlocal
resolving set. Let u and v be arbitrary non-adjacent vertices from V (G) \ X . Then, at
least one of u or v is from {y2, . . . , yn(G)/2}, say u = yi , i ≥ 2. But then xi resolves
u and v, and the claim is proved.
Case 2: there is an edge xy ∈ S such that degG(x) ≥ 2 and degG(y) ≥ 2.
Let x ′ be a neighbor of x different from y, and let y′ be a neighbor of y different from
x . By the assumption on S, there exist vertices x ′′ and y′′ such that x ′x ′′, y′y′′ ∈ S.
Let X ⊂ V (G) be the set containing x ′, y′, and an arbitrary vertex from each edge
f ∈ S′ = S \ {xy, x ′x ′′, y′y′′}. We claim that X is a nonlocal resolving set. Let
f = ww′ ∈ S′, where w′ ∈ X . Then, since dG(w,w′) = 1 and since each of
the vertices x , y, x ′′, and y′′ has either x ′ ∈ X or y′ ∈ X as a neighbor, we get
that X resolves w from each of the vertices from {x, y, x ′′, y′′}. Similarly we infer
that the pairs x ′′, y, and x ′′, y′′, and x, y′′ are resolved by X . The only pairs left to
be considered are x, x ′′ and y, y′′. Suppose on the contrary that the pair x, x ′′ is not
resolved by X . Since dG(x, y′) = 2,wemust have dG(x ′′, y′) = 2. Then y′x ′ ∈ E(G),
or y′′x ′′ ∈ E(G), or there is a new vertex z such that y′z, zx ′′ ∈ E(G). In either case,
we have a cycle of length at most 6 in G which is not possible. The other pair y, y′′ is
treated analogously.
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Let now G be a tree. Let W be the set of exterior branch vertices of T , and for a
vertex w ∈ W , let p(w) be the number of terminal paths of w. Then, we have

β ′(T ) ≥
∑

w∈W
p(w).

On the other hand, by (2) and Proposition 2.2 we have

dimn�(T ) =
∑

w∈W
(p(w) − 1).

Hence, dimn�(G) = β ′(G) − 1 can hold only when |W | = 1. Suppose hence that
G is a tree with only one exterior branch vertex. Then, G is obtained from a star
K1,n , n ≥ 3, by subdividing each of its edges an arbitrary number of times. By (2),
dimn�(G) = n − 1. Moreover, if at least one edge of K1,n has been subdivided at
least two times, then β ′(G) ≥ n + 1. Suppose next that each edge of K1,n has been
subdivided exactly once. Then, β ′(G) = n + 1. So we are left with trees G obtained
from K1,n by subdividing all but one of the edges at most once. In this case, we have
dimn�(G) = n − 1 = β ′(G) − 1. �	

6 Embeddings

In our final result, we prove that any graph can be embedded as an induced subgraph
into a supergraph with a small nonlocal metric dimension and small diameter. More
precisely, the following holds.

Theorem 6.1 Every connected graph G is an induced subgraph of a graph H with
dimn�(H) ≤ ⌈

log(χ(G))
⌉

and diam(H) ≤ 4. Moreover, if 2k−1 ≤ χ(G) < 2k , for
some integer k, then diam(H) ≤ 3.

Proof If χ(G) = 1, then G is an edge-less graph and hence G is complete. Then, by
definition, dimn�(G) = 0, and hence, the conclusion holds in this case by embedding
the complete graph into itself. We may thus assume in the rest that χ(G) = s ≥ 2.
Let k be the unique integer with 2k−1 < s ≤ 2k .

Let X0, . . . , Xs−1 be the color classes of G under some optimal coloring of it. By
our assumption, 2k−1 < s ≤ 2k . Then, the sets X0, . . . , Xs−1, respectively, induce
complete subgraphs of G. Since G is connected, we may without loss of generality
assume that there exists an edge connecting a vertex from X0 by a vertex from Xs−1.
Construct now a graph H as follows. First take the disjoint union of G and Kk . For
each Xi write i in its binary representation, say i = i1 . . . ik . Then, for each j such
that i j = 0, add all the edges between the vertex j ∈ V (Kk) and Xi . See Fig. 1 for
an example of the construction where G is the Petersen graph P . For it, note that
χ(P) = 5.

We claim that D = V (Kk) is a nonlocal resolving set of H . For this sake, let u and
v be arbitrary non-adjacent vertices of H . If at least one of u and v belongs to D, there
is nothing to prove. Otherwise, u ∈ Xi and v ∈ X j , where i �= j . If i = i1 . . . ik and
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Fig. 1 Embedding the Petersen graph into a graph H as in the proof of Theorem 6.1. A thick edge means
that a bottom vertex is adjacent to both encircled vertices

j = j1 . . . jk are the binary representations of i and j , then there exists p such that,
without loss of generality, i p = 0 and jp = 1. Then, dH (p, u) = 1 �= 2 = dH (p, v);
hence, u and v are resolved. This proves the claim. Since |D| = k = �log(s)� =
⌈

log(χ(G))
⌉

, we conclude that dimn�(H) ≤ ⌈

log(χ(G))
⌉

.
To show that diam(H) ≤ 4, let again u and v be arbitrary vertices of H . Note first

that if u ∈ V (Kk), then dH (u, v) ≤ 2. Assume, hence, that u ∈ Xi and v ∈ X j , where
i < j . Suppose first j < 2k . Then, each of u and v has a neighbor in V (Kk) which
implies that dH (u, v) ≤ 3. Note that this fact in particular implies that if χ(G) < 2k ,
then diam(H) ≤ 3. Suppose second that j = 2k . By our selection of X0 and X2k ,
there is an edge v′w, where v′ ∈ X2k and w ∈ X0. As w is adjacent to all the vertices
of V (Kk) and u has at least one neighbor in V (Kk), we have a u, v-path of length 4. �	

A result for the standard metric dimension which would be parallel to Theorem 6.1
is not possible. The reason is the following. Imagine a connected, non-complete graph
G and having a color class (in an optimal coloring of it) of order 2r , r ≥ 2. Then, G
contains a clique of the same order and hence in whichever graph H we embed G as
an induced subgraph, we have ω(H) ≥ 2r . Then, [5, Theorem 1] which asserts that
if G is a graph with diam(G) = d, then f (n, d) ≤ dim(G) ≤ n − d, where f (n, d)

is the least positive integer k for which k + dk ≥ n, implies that dim(H) ≥ r . So
dim(H) can be arbitrary larger than

⌈

log(χ(G))
⌉

(actually, arbitrary larger than χ(G)

for that matter).

7 Concluding Remarks

In this article, we have introduced the concept of nonlocal metric dimension, which
seems to deserve wider interest, not least because it is in some sense a complementary
concept to the established local metric dimension. Many problems about this new
concept remain open, let us mention here just a few that follow from our results.

In Theorem 3.2, we have proved a formula for the local metric dimension of corona
products with the second factor being not complete. Extending this theorem (as done
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in [10] for the local metric dimension) to generalized hierarchical products is open. In
view of Theorem 3.3, it would be interesting to prove a formula for dimn�(G 
 Kn).
Theorem 5.3 is proved for graphs of girth at least 7. We suspect that the condition
can be relaxed to girth at least 5. Moreover, the edge cover number in triangle-free
graphs (that is, of girth at least 4) is equal to the clique cover number. Hence extending
Theorem 5.3 to arbitrary graphs, where the upper bound would be stated as a function
of the clique covering number would be of interest.
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