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Abstract
This paper is devoted to the following class of nonlinear fractional Schrödinger equa-
tions:

(−�)su + V (x)u = f (x, u) + λg(x, u), in RN ,

where s ∈ (0, 1), N > 2s, (−�)s stands for the fractional Laplacian, λ ∈ R is a
parameter, V ∈ C(RN ,R), f (x, u) is superlinear and g(x, u) is sublinear with respect
to u, respectively. We prove the existence of infinitely many high energy solutions of
the aforementioned equation by means of the Fountain theorem. Some recent results
are extended and sharply improved.

Keywords Fractional Schrödinger equation · Fountain theorem · Infinitely many
solutions

Mathematics Subject Classification 35R11 · 35A15 · 35B38

1 Introduction

Consider the following fractional Schrödinger equation

(−�)su + V (x)u = f (x, u), x ∈ R
N , (1.1)
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where s ∈ (0, 1), N > 2s and (−�)s stands for the fractional Laplacian which can
be defined for a sufficiently smooth function u as

(−�)su(x) = C(N , s) lim
ε→0+

∫
RN \B(x,ε)

u(x) − u(y)

|x − y|N+2s
dy, x ∈ R

N , (1.2)

where B(x, ε) = {x ∈ R
N : |x | < ε} and C(N , s) > 0 is a dimensional constant

that depends on N and s (see [6]).
Equation (1.1) arises in the study of the following fractional Schrödinger equation

i∂t�(x, t) + (−�)s�(x, t) + (V (x) − ω)�(x, t) = h(|�(x, t)|)�(x, t),

when looking for standing waves, that is, solutions of the form �(x, t) =
exp(−iωt)u(x). The fractional Schrödinger equation was introduced by Laskin [14,
15] in the context of fractional quantum mechanics, as a result of extending the Feyn-
man path integral from the Brownian-like to Lévy-like quantum mechanical paths. It
is also appeared in several subjects such as plasma physics, image processing, finance
and stochastic models, see for instance [1, 4, 10, 16].

In recent years, Eq. (1.1) has been extensively studied under various assumptions
on V and f and there are many interesting results in the literature on the existence and
multiplicity of solutions to problem (1.1) has been obtained via variational approaches,
we refer the readers to [3, 5, 7–9, 11–13, 17, 19–23]. In particular, the existence of
infinitely many high or small energy solutions to problem (1.1) was established in [5,
7, 9, 11–13, 17, 20] by the aid of variant fountain theorems (see [25]) or the symmetric
mountain pass theorem (see [24]). However, there are few papers concern with the
existence of infinitely many (high or small) energy solutions to problem (1.1) in the
case where f (x, u) is a combination of sublinear and superlinear terms at infinity with
respect to u, see for instance [7, 17, 21].

In [7], Du and Tian considered the following class of fractional Schrödinger equa-
tions with concave and critical nonlinearities

(−�)su + V (x)u = μa(x)|u|q−2u + |u|2∗
s −2u, x ∈ R

N , (1.3)

where (and in the sequel) 2∗
s = 2N

N−2s is the critical Sobolev exponent, μ > 0 is
a parameter, 1 < q < 2, a(x) is positive continuous functions satisfying a(x) ∈
L

2
2−q

(
R

N
) ∩ L

22s
2s −q (

R
N
)
and V (x) satisfies the following assumptions

(V ) V ∈ C(RN ,R) satisfies infx∈RN V (x) ≥ V0 > 0, where V0 is a constant. More-
over, there exists r0 > 0 such that

lim|y|→∞meas{x ∈ R
N : |x − y| ≤ r0, V (x) ≤ M} = 0, ∀M > 0,

where meas(.) is the Lebesgue measure on R
N . The authors proved that there exists

μ∗ > 0 such that, for any 0 < μ < μ∗, problem (1.3) possesses infinitely many small
energy solutions by using the Dual fountain theorem.

123



Infinitely Many Solutions for a Fractional Schrödinger… Page 3 of 17 58

In [21], Timoumi established infinitely many small energy solutions to the problem

(−�)su + V (x)u = g(x, u) + h(x, u), in RN ,

by means of the Dual Fountain Theorem (see [24]), where V (x) satisfies assumptions
(V ), g(x, u) is sublinear in u and h(x, u) is superlinear in u.

Li and Shang [17] studied the following problem

(−�)su + V (x)u = f (x, u) + λh(x)|u|p−2u, x ∈ R
N (1.4)

where λ > 0 is a parameter, p ∈ [1, 2), h ∈ L
2

2−p
(
R

N
)
and V and f satisfies the

following assumptions:

(V ′) V (x) ∈ C
(
R

N ,R
)
, infx∈RN V (x) ≥ V0 > 0 and lim|x |→∞ V (x) = ∞;

( f1) f ∈ C(RN × R,R) and there exist constants a1, a2 ≥ 0, q ∈ [
2, 2N+4s

N

)
with

a1
2S22

+ a2
q Sq

q
< 1

2 such that

| f (x, u)| ≤ a1|u| + a2|u|q−1, ∀(x, u) ∈ R
N × R,

where Sq is the best constant for the embedding of X ⊂ Lq
(
R

N
)
and

X =
{

u ∈ L2
(
R

N
)

:
∫
RN

∫
RN

|u(x) − u(z)|2
|x − z|N+2s

dxdz +
∫
RN

V (x)u(x)2dx < +∞
}

;

( f2) lim
t→∞

F(x,t)
|t |2 = ∞ uniformly in x ∈ R

N and there exists r1 > 0 such that

F(x, u) ≥ 0, for any x ∈ R
N , u ∈ R and |u| ≥ r1, where F(x, t) =∫ t

0 f (x, s)ds;
( f3) 2F(x, u) < f (x, u)u,∀(x, u) ∈ R

N × R.
(F4) f (x,−u) = − f (x, u) for all (x, u) ∈ R

N × R

By using the symmetric mountain pass theorem, the authors showed that there exists
a constant λ0 > 0 such that, for any λ ∈ (0, λ0), problem (1.4) possesses infinitely
many high energy solutions.

Motivated by these works, in the present paper we are concerned with the existence
of infinitelymanyhigh energy solutions to the following class of fractional Schrödinger
equation

(−�)su + V (x)u = f (x, u) + λg(x, u), in RN , (1.5)

where λ ∈ R is a parameter, V (x) satisfies assumptions (V ) and f and g satisfy the
following assumptions

(F1) f ∈ C(RN ×R,R) and there exist constants c1, c2 > 0 and p ∈ (2, 2∗
s ) such that

| f (x, u)| ≤ c1|u| + c2|u|p−1, ∀(x, u) ∈ R
N × R,

where 2∗
s = 2N

N−2s is the critical Sobolev exponent.

123



58 Page 4 of 17 S. Khoutir

(F2) lim|u|→∞
F(x,u)

u2
= +∞ a.e. x ∈ R

N, where F(x, u) = ∫ u
0 f (x, t)dt and there exists

r1 > 0 such that

inf
x∈RN ,|u|≥r1

F(x, u) ≥ 0;

(F3) There exist constants μ > 2, c3 > 0 and a0 > 0 such that such that

μF(x, u) ≤ f (x, u)u + c3|u|2, ∀(x, |u|) ∈ R
N × [a0,∞).

(g1) There exist constants 1 < δ1 < δ2 < 2 and positive functions ξi ∈ L
2

2−δi (RN )

(i = 1, 2) such that

|g(x, u)| ≤ ξ1(x)|u|δ1−1 + ξ2(x)|u|δ2−1, ∀(x, u) ∈ R
N × R.

(g2) g(x,−u) = −g(x, u) for all (x, u) ∈ R
N × R;

By using the Fountain theorem (i.e., [24, Theorem 3.6]), we prove the existence of an
unbounded sequence of nontrivial solutions {uk} to problem (1.5) under assumptions
(V ), (F1)–(F4) and (g1)–(g2). Our result extends and sharply improves that in [17].

The remainder of this paper is organized as follows. In Sect. 2, we prepare the
variational framework of the studied problem. In Sect. 3, employing the fountain
theorem (3.1), we establish the existence of infinitely many high energy solutions to
problem (1.5).

2 Variational Setting andMain Result

In this section, for the reader’s convenience, we shall introduce some notations and
we revise some known results about the fractional Sobolev spaces which can be found
in [6].

As usual, for 1 ≤ p < +∞, we define

‖u‖L p := ‖u‖p =
(∫

RN
|u|pdx

) 1
p

, u ∈ L p(RN ),

The fractional Sobolev space Hs(RN ) = W s,2(RN ) is defined by

Hs(RN ) :=
{

u ∈ L2(RN ) : |u(x) − u(y)|
|x − y| N

2 +s
∈ L2

(
R

N × R
N
)}

with the inner product and the norm

〈u, v〉Hs =
∫∫

RN ×RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dxdy +

∫
RN

u(x)v(x)dx,
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‖u‖2Hs = 〈u, u〉Hs =
∫∫

RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy +
∫
RN

|u(x)|2dx,

where the norm

[u]2Hs =
∫∫

RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

is the so-called Gagliardo semi-norm of u.
Let S (RN ) be the Schwartz space of rapidly decaying C∞ functions in R

N . We
recall that the Fourier transform of a function u ∈ S (RN ) is defined as

Fu(ξ) := 1

(2π)N

∫
RN

e−ixξ u(x)dx .

By Plancherel’s theorem, we have

‖u‖2 = ‖Fu‖2, ∀u ∈ S (RN ).

Let s ∈ (0, 1), the fractional Laplacian (−�)s of a function u ∈ S (RN ) is defined
by means of the Fourier transform as

F
(
(−�)su

)
(ξ) = |ξ |2sFu(ξ), ∀s ∈ (0, 1).

The space Hs(RN ) can also be described via the Fourier transform as follows

Hs(RN ) :=
{

u ∈ L2(RN ) :
∫
RN

(
1 + |ξ |2

)s |Fu(ξ)|2dξ < ∞
}

,

and the norm is defined by

‖u‖Hs =
(∫

RN

(
1 + |ξ |2

)s |Fu(ξ)|2dξ
) 1

2

.

For the problem (1.5), we define the following Hilbert space

H :=
{

u ∈ Hs(RN ) :
∫
RN

V (x)|u|2dx < ∞
}

,

endowed with the inner product

〈u, v〉:=〈u, v〉H =
∫∫

RN ×RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dxdy

+
∫
RN

V (x)u(x)v(x)dx .
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Then, the norm on H is given by

‖u‖ :=
(∫∫

RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy +
∫
RN

V (x)|u|2dx

) 1
2

.

Obviously, by assumptions (V ), the embedding H ↪→ Hs(RN ) is continuous.
From [6], the embeddings Hs(RN ) ↪→ L p(RN ) is continuous for p ∈ [2, 2∗

s ].
Therefore, H ↪→ L p(RN ), 2 ≤ p ≤ 2∗

s is continuous, namely, there exist constants
ηp > 0 such that

‖u‖p ≤ ηp‖u‖, ∀u ∈ H , p ∈ [2, 2∗
s ], (2.1)

Moreover, from [20], we know that the embedding H ↪→ L p(RN ) is compact for
2 ≤ p < 2∗

s under condition (V ).
For the fractional Schrödinger equation (1.5), the associated energy functional is

defined on H as follows

Iλ(u) = 1

2
‖u‖2 −

∫
RN

F(x, u)dx − λ

∫
RN

G(x, u)dx . (2.2)

Byhypotheses (V ), (F1) and (g1), the functional I iswell define and of classC1(H ,R)

with

〈I ′
λ(u), v〉 =

∫
R2N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dxdy

+
∫
RN

V (x)uvdx −
∫
RN

f (x, u)vdx − λ

∫
RN

g(x, u)vdx, (2.3)

for all v ∈ H . Besides, the critical points of I in H are solutions of problem (1.5).
Now, we are ready to state the main result of this paper as follows.

Theorem 2.1 Assume that conditions (V ), (F1)–(F4) and (g1)–(g2) hold. Then there
exists λ > 0 such that problem (1.5) possesses infinitely many nontrivial solutions
{uk} provided |λ| ≤ λ. Moreover, there holds

Iλ(uk) → ∞ as k → ∞.

Remark 2.1 Since the problem (1.5) is defined on the entire space RN , the main dif-
ficulty of this problem is the lack of compactness for Sobolev embedding theorem.
In the context of studying of the existence of solutions for the classical Schrödinger
equation

−�u + V (x)u = f (x, u), x ∈ RN ,

Bartsch et al. [2] presented the general conditions (V ) which guarantee the
compactness of the embeddings

{
u ∈ H1

(
RN

) : ∫
RN V (x)|u|2dx < +∞}

↪→
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L p
(
R

N
)
, p ∈ [2, 2N

N−2 ]. Furthermore, conditions (V ) are weaker than the coercivity
condition (V ′) used in [17].

Remark 2.2 Firstly, comparing with Theorem 1.1 in [17], our assumptions (F1)–(F3)

are more general than ( f1)–( f3). Indeed, let f (x, u) = au + b|u|p−2u, where a >

2S2
2 , b > q Sq

q and p ∈ (2, 2∗
2). Then, clearly f satisfies (F1) but not ( f1) since

a
2S22

+ b
q Sq

q
> 2. Secondly, let

f (x, t) = 3|t |t − 15

2
|t |1/2t + t, t ∈ R.

Then,

F(x, t) = |t |3 − 3|t |5/2 + 1

2
t2.

It is easy to verify that the above function f satisfies (F1), (F2), (F4) and (F3) (which
was initially gave in [18]) with μ = 5

2 . However, f does not satisfy ( f3), in fact we
have

f (x, t)t − 2F(x, t) = |t |3 − 3

2
|t |5/2 ≤ 0, ∀t ∈

[
−9

4
,
9

4

]
.

This shows that ( f3) is not satisfied. Finally, it is easy to see that g̃(x, u) =
λh(x)|u|p−2u considered in (1.4) is a special case of g(x, u) considered in this paper.
Furthermore, unlike (1.4), the parameter λ in (1.5) is allowed to be sign-changing.
Consequently, Theorem 2.1 generalizes and sharply improves Theorem 1.1 in [17].

Remark 2.3 When s = 1, Eq. (1.5) becomes the classical Schrödinger equation

−�u + V (x)u = f (x, u) + λg(x, u), x ∈ RN ,

As far as we know, our result is new even for the case s = 1.

3 Proof of theMain Result

Hereafter, we shall use ci , Ci , i = 1, 2, . . . to denote various positive constants which
may change from line to line. We start this section by introducing some variational
preliminaries and abstract results that we need to prove our main results.

Definition 3.1 ((PS)-condition)

– A sequence {un} ⊂ H is said to be a Palais–Smale sequence at level c ∈ R ((PS)c
sequence for short) if I (un) → c and I ′(un) → 0 in H∗ the dual space of H .

– The functional I satisfies the Palais–Smale condition at the level c ((PS)c condition
for short) if any (PS)c sequence has a convergent subsequence.

123



58 Page 8 of 17 S. Khoutir

Lemma 3.1 Under the assumptions of Theorem 2.1, the functional Iλ satisfies the (PS)c

condition for any c > 0.

Proof Let {un} ⊂ H be any (PS) sequence of Iλ, that is,

Iλ(un) → c > 0, I ′
λ(un) → 0 in H∗. (3.1)

First, we prove that {un} is bounded in H . Arguing indirectly, suppose that ‖un‖ → ∞
asn → ∞. Setvn = un‖un‖ , then‖vn‖ = 1, thus {vn} is bounded in H .Using assumption
(F1) we have

|F(x, u)| = |F(x, u) − F(x, 0)| =
∣∣∣∣
∫ 1

0
f (x, tu)udt

∣∣∣∣
≤

∫ 1

0

(
c1|u|2t + c2|u|pt p−1

)
dt

= c1
2

|u|2 + c2
p

|u|p, ∀(x, u) ∈ R
N × R.

(3.2)

Set F(x, un) = f (x, un)un −μF(x, un). Therefore, for x ∈ R
N and |u(x)| < a0, by

(3.2), we have

| f (x, u)u − μF(x, u)| ≤ | f (x, u)u| + μ|F(x, u)|
≤

(
c1|u|2 + c2|u|p

)
+

(
c1

μ

2
|u|2 + c2

μ

p
|u|p

)

≤
(
2 + μ

2
c1 + p + μ

p
c2a p−2

0

)
|u|2

= c3|u|2,

where μ and a0 > 0 are given in (F3). Combining the above inequality with (F3), we
conclude that there exists c4 > 0 such that

F(x, u) = f (x, u)u − μF(x, u) ≥ −c4|u|2, ∀(x, u) ∈ R
N × R. (3.3)

By (2.2), (2.3) and (3.3) , we have

μIλ(un) − 〈I ′
λ(un), un〉 =μ − 2

2
‖un‖2 +

∫
RN

F(x, un)dx − λ

∫
RN

G(x, un)dx

≥μ − 2

2
‖un‖2 − c4

∫
RN

|un|2dx − λ

∫
RN

G(x, un)dx,

(3.4)
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where G(x, u) := g(x, u)u − μG(x, u). By (g1) one has

|G(x, u)| = |g(x, u)u − μG(x, u)|
≤ |g(x, u)u| + μ|G(x, u)|
≤ ξ1(x)|u|δ1 + ξ2(x)|u|δ2 + μ

δ1
ξ1(x)|u|δ1 + μ

δ2
ξ2(x)|u|δ2

:= γ1ξ1(x)|u|δ1 + γ2ξ2(x)|u|δ2 ,

(3.5)

where γi = μ+δi
δi

(i = 1, 2). Since ξi ∈ L
2

2−δi (RN ), it follows from (3.5), the Hölder’s
inequality and (2.1)

∣∣∣∣
∫
RN

G(x, un)dx

∣∣∣∣
≤

∫
RN

|G(x, un)|dx

≤ γ1

∫
RN

ξ1(x)|un|δ1dx + γ2

∫
RN

ξ2(x)|un|δ2dx

≤
2∑

i=1

γi

(∫
RN

|ξi (x)| 2
2−δi dx

) 2−δi
2

(∫
RN

|un|2dx

) δi
2

≤ γ1‖ξ1‖ 2
2−δ1

‖un‖δ1
2 + γ2‖ξ2‖ 2

2−δ2
‖un‖δ2

2

≤ γ1η
δ1
2 ‖ξ1‖θ1‖un‖δ1 + γ2η

δ2
2 ‖ξ2‖θ2‖un‖δ2

:= C1‖ξ1‖θ1‖un‖δ1 + C2‖ξ2‖θ2‖un‖δ2 ,

(3.6)

where Ci = γiη
δi
2 and θi = 2

2−δi
, i = 1, 2. Combining (3.1) with (3.4) and (3.6), for

sufficiently large n ∈ N, there exists a constant C3 > 0 such that

C3 ≥ μIλ(un) − 〈I ′
λ(un), un〉

≥ μ − 2

2
‖un‖2 − c4

∫
RN

|un|2dx − λ

∫
RN

G(x, un)dx

≥ μ − 2

2
‖un‖2 − c4‖un‖22 − |λ| (C1‖ξ1‖θ1‖un‖δ1 + C2‖ξ2‖θ2‖un‖δ2

)
,

which yields

‖un‖22
‖un‖2 ≥ μ − 2

2c4
− 1

c4

[
C3

‖un‖2 + |λ|C1‖ξ1‖θ1

‖un‖2−δ1

+|λ|C2‖ξ2‖θ2

‖un‖2−δ2

]
.
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Since 1 < δ1 < δ2 < 2 and ‖un‖ → ∞, we can choose a large n ∈ N so that

C3

‖un‖2 + |λ|C1‖ξ1‖θ1

‖un‖2−δ1
+ |λ|C2‖ξ2‖θ2

‖un‖2−δ2
≤ μ − 2

4
,

we then conclude

‖vn‖22 = ‖un‖22
‖un‖2 ≥ μ − 2

4c4
> 0. (3.7)

Set �n = {x ∈ R
N : |un(x)| ≤ r1} and An = {x ∈ R

N : vn(x) �= 0}, then
meas(An) > 0 due to (3.7). Besides, since ‖un‖ → ∞ as n → ∞, we obtain

|un(x)| → ∞ as n → ∞, ∀x ∈ An . (3.8)

Hence, An ⊆ R
N \ �n for n ∈ N large enough.

Similarly to (3.6), by (g1), (2.1) and Hölder’s inequality, we derive that

∫
RN

G(x, un)dx ≤
∫
RN

ξ1(x)|un|δ1dx +
∫
RN

ξ2(x)|un|δ2dx

≤ ‖ξ1‖θ1‖un‖δ1
2 + ‖ξ2‖θ2‖un‖δ2

2

≤ ‖ξ1‖θ1η
δ1
2 ‖un‖δ1 + ‖ξ2‖θ2η

δ2
2 ‖un‖δ2

(3.9)

Therefore

∫
RN

|G(x, un)|
‖un‖2 dx ≤ ‖ξ1‖θ1‖un‖δ1 + ‖ξ2‖θ2‖un‖δ2

‖un‖2 −→ 0, as n → ∞,(3.10)

in view of ‖un‖ → ∞ and 1 < δ1 < δ2 < 2. Hence, by (3.2), (2.1), (2.2), (3.1), (3.8),
(3.10) and Fatou’s lemma, we obtain

0 = lim
n→∞

Iλ(un)

‖un‖2

= lim
n→∞

[
1

2
−

∫
RN

F(x, un)

‖un‖2 dx − λ

∫
RN

G(x, un)

‖un‖2 dx

]

= 1

2
+ lim

n→∞

[
−

∫
�n

F(x, un)

u2
n

v2ndx −
∫
RN \�n

F(x, un)

u2
n

v2ndx

]

≤ 1

2
+ lim sup

n→∞

[(
c1 + c2r p−2

1

) ∫
RN

|vn|2dx −
∫
RN \�n

F(x, un)

u2
n

v2ndx

]

≤ 1

2
+

(
c1 + c2r p−2

1

)
η22 − lim inf

n→∞

∫
RN \�n

F(x, un)

u2
n

v2ndx

≤ C4 −
∫

An

lim inf
n→∞

F(x, un)

u2
n

v2ndx
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= C4 −
∫
RN

lim inf
n→∞

F(x, un)

u2
n

[χAn (x)]v2ndx −→ −∞, as n → ∞. (3.11)

This is an obvious contradiction. Consequently, {un} is bounded in H .
Since {un} is bounded in H , then there exists a constant M > 0 such that

‖un‖ ≤ M, ∀n ∈ N. (3.12)

Furthermore, passing to a subsequence, there is u ∈ H such that

un⇀u in H ;
un → u in L p(RN ), 2 ≤ p < 2∗

s ;
un → u a.e. in RN .

(3.13)

By (F1), (2.1), (3.12), the Hölder’s inequality and (3.13), it has

∫
RN

| f (x, un) − f (x, u)| (un − u)dx

≤
∫
RN

| f (x, un)|(un − u)dx +
∫
RN

| f (x, u)|(un − u)dx

≤ c1

∫
RN

(|un| + |u|) (un − u)dx + c2

∫
RN

(|un|p−1 + |u|p−1)(un − u)dx

≤ C5‖un − u‖2 + C6‖un − u‖p = on(1), (3.14)

where C5 = c1(η2M + ‖u‖2), C6 = c2
(
η

p−1
p M p−1 + ‖u‖p−1

p

)
and on(1) → 0 as

n → ∞.
On the other hand, it follows from (g1), (2.1), (3.12), Hölder’s inequality and (3.13)
that

∫
RN

|g(x, un) − g(x, u)|(un − u)dx

≤
∫
RN

|g(x, un)|(un − u)dx +
∫
RN

|g(x, u)|(un − u)dx

≤
∫
RN

ξ1(x)|un|δ1−1(un − u)dx +
∫
RN

ξ2(x)|un|δ2−1(un − u)dx

+
∫
RN

ξ1(x)|u|δ1−1(un − u)dx +
∫
RN

ξ2(x)|u|δ2−1(un − u)dx

≤ ‖ξ1‖ 2
2−δ1

(
‖un‖δ1−1

2 + ‖u‖δ1−1
2

)
‖un − u‖2

+ ‖ξ2‖ 2
2−δ2

(
‖un‖δ2−1

2 + ‖u‖δ2−1
2

)
‖un − u‖2

≤ (M1 + M2)‖un − u‖2 = on(1),

(3.15)
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where Mi = ‖ξi‖ 2
2−δi

(
η

δi −1
2 Mδi −1 + ‖u‖δi −1

2

)
, i = 1, 2. Then, combining (2.3),

(3.1), (3.14) and (3.15), for n ∈ N large enough, we have

on(1) = 〈I ′
λ(un) − I ′

λ(u), un − u〉
= ‖un − u‖2 −

∫
RN

[ f (x, un) − f (x, u)] (un − u)dx

− λ

∫
RN

[g(x, un) − g(x, u)] (un − u)dx

= ‖un − u‖2 + on(1).

Consequently, un → u strongly in H as n → ∞. Thus, the functional I satisfies the
(PS)c condition for any c > 0. The proof is completed. ��

Let (X , ‖ · ‖) be a Banach space such that X = ⊕∞
i=1Xi with dim Xi < +∞ for

each i ∈ N. Set

Yk =
k⊕

i=1

Xi , Zk =
∞⊕

i=k

Xi .

In order to prove Theorem 2.1, we shall use the following Fountain Theorem.

Theorem 3.1 [24, Theorem 3.6] Let X be an infinite dimensional Banach space.
Assume that ϕ ∈ C1(X ,R), ϕ(−u) = ϕ(u) for all u ∈ X. If, for every k ∈ N,
there exist ρk > rk > 0 such that

(A1) ϕ satisfies the (PS)c condition for every c > 0;
(A2) ak := max

u∈Yk ,‖u‖=ρk
ϕ(u) ≤ 0.

(A3) bk := inf
u∈Zk ,‖u‖=rk

ϕ(u) → +∞ as k → ∞.

Then ϕ has a sequence of critical points {uk} such that ϕ(uk) → +∞.

Since H ↪→ L2
(
R

N
)
is compact under assumptions (V ) and L2

(
R

N
)
is a separable

Hilbert space, then H possesses is a countable orthonormal basis {e j }∞j=1. Define

X j = Re j , Yk =
k⊕

j=1

X j , Zk =
∞⊕

j=k+1

X j , k ∈ N
∗.

Then, H = ⊕∞
j=1 X j and Yk is finite dimensional.

Lemma 3.2 Assume that (V ), (F1) and (g1) hold, then there exist λ > 0 and rk > 0
such that

inf
u∈Zk ,‖u‖=rk

Iλ(u) → +∞ as k → ∞

whenever |λ| ≤ λ.
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Proof Similar to Lemma 3.8 in [24], for any 2 ≤ p < 2∗
s , we have

βk(p) := sup
u∈Zk ,‖u‖=1

‖u‖p → 0, (3.16)

as k → ∞.
By (2.2), (3.2), (3.9) and (3.16) we obtain

Iλ(u) = 1

2
‖u‖2 −

∫
RN

F(x, u)dx − λ

∫
RN

G(x, u)

≥ 1

2
‖u‖2 − c1

2
‖u‖22 − c2

p
‖u‖p

p − λ
(
‖ξ1‖θ1η

δ1
2 ‖u‖δ1 + ‖ξ2‖θ2η

δ2
2 ‖u‖δ2

)

≥ 1

2
‖u‖2 − c1

2
β2

k (2)‖u‖2 − c2
p

β
p
k (p)‖u‖p − |λ|

(
‖ξ1‖θ1η

δ1
2 ‖u‖δ1 + ‖ξ2‖θ2η

δ2
2 ‖u‖δ2

)
.

According to (3.16), we can choose a large k0 > 1 so that

β2
k (2) ≤ 1

2c1
, ∀k ≥ k0.

This provides

Iλ(u) ≥ 1

4
‖u‖2 − c2

p
β

p
k (p)‖u‖p − |λ|

(
‖ξ1‖θ1η

δ1
2 ‖u‖δ1 + ‖ξ2‖θ2η

δ2
2 ‖u‖δ2

)
.

For any u ∈ Zk satisfying ‖u‖ ≥ 1, we have

‖ξ1‖θ1η
δ1
2 ‖u‖δ1 + ‖ξ2‖θ2η

δ2
2 ‖u‖δ2 ≤

(
‖ξ1‖θ1η

δ1
2 + ‖ξ2‖θ2η

δ2
2

)
‖u‖δ2 ,

since 1 < δ1 < δ2 < 2. Hence, we obtain

Iλ(u) ≥ 1

4
‖u‖2 − c2

p
β

p
k (p)‖u‖p − |λ|

(
‖ξ1‖θ1η

δ1
2 ‖u‖δ1 + ‖ξ2‖θ2η

δ2
2 ‖u‖δ2

)

≥ 1

4
‖u‖2 − c2

p
β

p
k (p)‖u‖p − |λ|

(
‖ξ1‖θ1η

δ1
2 + ‖ξ2‖θ2η

δ2
2

)
‖u‖δ2

= ‖u‖δ2

[
1

4
‖u‖2−δ2 − c2

p
β

p
k (p)‖u‖p−δ2 − |λ|K

]
,

(3.17)

where K = ‖ξ1‖θ1η
δ1
2 + ‖ξ2‖θ2η

δ2
2 . For each k ∈ N sufficiently large, taking

rk :=
(

p

8c2β
p
k (p)

)1/(p−2)

.
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Then, by virtue of (3.16) we obtain

rk → +∞ as k → ∞.

Then, there exists k1 > 1 such that rk ≥ 1 when k ≥ k1. By (3.17), for u ∈ Zk, ‖u‖ =
rk , we have

Iλ(u) ≥ r δ2
k

(
1

4
r2−δ2

k − c2
p

β
p
k (p)r p−δ2

k − |λ|K
)

= r δ2
k

(
1

4
r2−δ2

k − c2
p

β
p
k (p)r p−δ2

k − |λ|K
)

= r δ2
k

(
1

8
r2−δ2

k − |λ|K
)

.

(3.18)

Putting λk = r2−δ2
k

16K
, then, λk > 0 and λk → ∞ as k → ∞. Let

λ = inf
k≥k

λk

where k = max{k0, k1}, therefore, for any λ ∈ R satisfying |λ| ≤ λ we get from
(3.18)

Iλ(u) ≥ r2k
16

, u ∈ Zk, ‖u‖ = rk .

Hence, for k ≥ k we deduce

inf
u∈Zk ,‖u‖=rk

Iλ(u) ≥ r2k
16

→ +∞ as k → ∞

whenever |λ| ≤ λ. This completes the proof. ��
Lemma 3.3 For any finite dimensional subspace Yk ⊂ H, there holds

max
u∈Yk ,‖u‖=ρk

Iλ(u) ≤ 0.

Proof Let Yk be any finite dimensional subspace of H , we claim that there exists a
constant Rk = R(Yk) > 0 such that Iλ(u) ≤ 0 ‖u‖ ≥ Rk . Otherwise, there is a
sequence {un} ⊂ Yk such that

‖un‖ → ∞ and Iλ(un) ≥ 0. (3.19)

Set vn = un‖un‖ , then ‖vn‖ = 1. Therefore, by the Sobolev embedding theorem, up to

a subsequence, we can assume vn⇀v in H , vn → v in L p(RN ) (2 ≤ p < 2∗
s ) and
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vn → v a.e. in R
N . Set E = {x ∈ R

N : v(x) �= 0}. Since on the finite dimensional
subspace Yk all norms are equivalent, there exists a constant αk > 0 such that

‖u‖p ≥ αk‖u‖, ∀u ∈ Yk,

and then
∫
RN

|un|p dx ≥ α
p
k ‖un‖p , ∀n ∈ N,

which yields

α
p
k ≤ lim

n→∞

∫
RN

|vn|p dx = ‖vn‖p
p.

Hence meas(E) > 0and then |un(x)| → ∞ for all x ∈ E . Using (2.2) and (3.19) we
obtain

1

2
‖un‖2 ≥

∫
RN

F(x, un)dx + λ

∫
RN

G(x, un)dx, ∀x ∈ R
N .

Therefore,

1

2
≥

∫
RN

F(x, un)

‖un‖2 dx + λ

∫
RN

G(x, un)

‖un‖2 dx .

Then, by (3.10) and Fatou’s Lemma we deduce

1

2
≥ lim inf

n→∞

∫
RN

F(x, un)

|un|2 |vn|2dx

≥ lim inf
n→∞

∫
E

F(x, un)

|un|2 |vn|2dx ≥
∫

E
lim inf
n→∞

F(x, un)

|un|2 |vn|2dx = +∞.

We have a contradiction. This shows that there exists a constant Rk = R(Yk) > 0
such that I (u) ≤ 0 for all u ∈ Yk \ BRk (0). Hence, choosing ρk > max{Rk, rk}, we
conclude that

max
u∈Yk ,‖u‖=ρk

Iλ(u) ≤ 0.

��
Proof of Theorem 2.1 We have Iλ ∈ C1(H ,R) is even in view of (F4) and (g2). On the
other hand, by Lemmas 3.1 and 3.3, the functional Iλ satisfies the conditions (A1)–
(A2) of the Fountain Theorem 3.1, respectively. Moreover, condition (A3) is satisfied
whenever |λ| ≤ λ due to Lemma 3.2. Thus, the functional Iλ has a sequence of critical
points {uk} ⊂ H such that Iλ(uk) → ∞ as k → ∞, whenever |λ| ≤ λ, that is,
Eq. (1.5) possesses infinitely many solutions. ��
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