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Abstract
The main purpose of this paper is to derive the sharp lower and upper bounds on
Hermitian Toeplitz determinants for starlike and convex functions with respect to
symmetric points. Some of the results provide improvements (or corrections) to several
recent results.
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1 Introduction

Let A denote the class of functions analytic in the unit disk D := {z ∈ C : |z| < 1}
of the form

f (z) = z +
∞∑

k=2

ak zk . (1.1)

We denote S by the subclass of A whose elements are univalent functions.
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Sakaguchi [40] (see also [38, 43, 46]) once introduced a classS∗
s of starlike functions

with respect to symmetric points, it consists of functions f ∈ S satisfying

�
(

2z f ′(z)
f (z) − f (−z)

)
> 0 (z ∈ D).

In a later paper, Das and Singh [13] discussed a class Ks of convex functions with
respect to symmetric points, it consists of functions f ∈ S satisfying

�
(

2
(
z f ′(z)

)′

( f (z) − f (−z))′

)
> 0 (z ∈ D).

A function f ∈ A is said to be in the class S∗
s (α), consisting of starlike functions

of order α with respect to symmetric points, if it satisfies the following condition

�
(

2z f ′(z)
f (z) − f (−z)

)
> α (0 ≤ α < 1; z ∈ D).

DenoteKs(α) by the class of convex functions of order α with respect to symmetric
points, which satisfy the condition

�
(

2
(
z f ′(z)

)′

( f (z) − f (−z))′

)
> α (0 ≤ α < 1; z ∈ D).

We note that S∗
s (0) =: S∗

s and Ks(0) =: Ks .
Recently, Cunda et al. [12] (see also [26]) introduced the notation of Hermitian

Toeplitz determinants for the class A, and some of its subclasses. Hermitian Toeplitz
matrices play important roles in functional analysis, applied mathematics as well as in
physics and technical sciences, e.g., the Szegö theory, the stochastic filtering, the signal
processing, the biological information processing and other engineering problems.

Given q, n ∈ N, the Hermitian Toeplitz matrix Tq,n( f ) of a function f ∈ A of the
form (1.1) is defined by

Tq,n( f ) =

⎛

⎜⎜⎜⎝

an an+1 · · · an+q−1
an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

⎞

⎟⎟⎟⎠ ,

where ak := ak . For convenience, we let det(Tq,n)( f ) denote the determinant of
Tq,n( f ).

By the definition, det(T2,1)( f ), det(T3,1)( f ) and det(T4,1)( f ) are given by

det(T2,1)( f ) =
∣∣∣∣
a1 a2
a2 a1

∣∣∣∣ , det(T3,1)( f ) =
∣∣∣∣∣∣

a1 a2 a3
a2 a1 a2
a3 a2 a1

∣∣∣∣∣∣
,
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and

det(T4,1)( f ) =

∣∣∣∣∣∣∣∣

a1 a2 a3 a4
a2 a1 a2 a3
a3 a2 a1 a2
a4 a3 a2 a1

∣∣∣∣∣∣∣∣
,

respectively. Note that for f ∈ A, a1 = 1, det(T2,1)( f ), det(T3,1)( f ) and det(T4,1)( f )

reduce to

det(T2,1)( f ) = 1 − |a2|2, (1.2)

det(T3,1)( f ) = 1 − 2|a2|2 − |a3|2 + 2�(
a2
2a3

)
, (1.3)

and

det(T4,1)( f ) = 1 − 3|a2|2 + |a2|4 − 2|a2|2|a3|2 − 2|a3|2 + |a3|4 + |a2|2|a4|2 − |a4|2
+ 4�(

a22a3
) + 4�(

a2a3a4
) − 2�(

a32a4
) − 2�(

a2a23a4
)
, (1.4)

respectively.
In recent years, many investigations have been devoted to finding bounds of deter-

minants, whose elements are coefficients of functions in A, or its subclasses. Hankel
matrices, i.e., square matrices which have constant entries along the reverse diagonal,
and the symmetric Toeplitz determinants are of particular interest (see [1]).

The sharp upper bounds on the second Hankel determinants were obtained by [2, 6,
10, 15, 16, 31, 34], for various classes of analytic functions. We refer to [4, 5, 7, 9, 18,
20, 22, 25, 28, 37, 39, 42, 44, 45, 47] for discussions on the upper bounds of the third
or fourth Hankel determinants for various classes of univalent functions. However,
some of these results are far from sharpness. In a recent paper, Kwon et al. [21] found
such a formula of expressing c4 by Carathéodory functions, the sharp results of the
third Hankel determinants are found for some classes of univalent functions.

The Hermitian Toeplitz determinants in relation to normalized analytic functions
is a natural concept to study. By the work of [12], the study of the Hermitian Toeplitz
determinants on classes of normalized analytic functions has been initiated. We refer
to [3, 11, 12, 17, 23, 26, 27, 30, 35] for discussions on the sharp bounds of Hermitian
Toeplitz determinants for various classes of univalent functions.

Recently, Krishna et al. [19] (see also [8, 14, 36]) obtained upper bounds of the
third Hankel determinants for the classes of starlike and convex functions with respect
to symmetric points. Moreover, Kumar and Kumar [24] obtained the following sharp
bounds of the second- and third-order Hermitian Toeplitz determinants for starlike
and convex functions of order α with respect to symmetric points.
Theorem A. Let α ∈ [0, 1). If f ∈ S∗

s (α), then

(2 − α)α ≤ det(T2,1)( f ) ≤ 1,

123
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and

(3 − 2α)α2 ≤ det(T3,1) ( f ) ≤ 1.

All inequalities are sharp.
Theorem B. Let α ∈ [0, 1). If f ∈ Ks(α), then

(2 − α)α ≤ det(T2,1)( f ) ≤ 1,

and

1

9
(−4 + 20α − α2 − 6α3) ≤ det(T3,1)( f ) ≤ 1.

All inequalities are sharp.
We note that the proof of Theorem B exists several errors, and the lower bounds

are not true. For the sake of completeness, we give the corrected proofs in the next
section.

In this paper, we aim at deriving the sharp bounds on the second and third-order
Hermitian Toeplitz determinants for the class of convex functions of order α with
respect to symmetric points. We observe that the problem of finding sharp estimates
of the Hermitian Toeplitz determinants det(Tq,1)( f ) for q ≥ 4 is technically much
more difficult, and few sharp bounds have been obtained. Recently, Lecko et al. [29]
obtained the sharp bounds on det(T4,1)( f ) of the class of convex functions. We shall
find the sharp bounds on det(T4,1)( f ) of the class S∗

s .
Denote P by the class of Carathéodory functions p normalized by

p(z) = 1 +
∞∑

n=1

cnzn (z ∈ D) (1.5)

and satisfy the condition �(
p(z)

)
> 0.

The following results will be required in the proof of our main results.

Lemma 1.1 (See [32, 33]) If p ∈ P , then

2c2 = c21 + (4 − c21)ζ (1.6)

and

4c3 = c31 +
(
4 − c21

)
c1ζ(2 − ζ ) + 2

(
4 − c21

) (
1 − |ζ |2

)
η (1.7)

for some ζ, η ∈ D := {z ∈ C : |z| ≤ 1}.
Lemma 1.2 Let α ∈ [0, 1). If f ∈ A and

2z f ′(z)
f (z) − f (−z)

= 1 + (1 − 2α)z

1 − z
(0 ≤ α < 1; z ∈ D), (1.8)
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then f ∈ S∗
s (α) and

a2n+1 = a2n =
n∏

k=1

(
1 − α

k

)
(n = 1, 2, 3, · · · ). (1.9)

Proof For the function f ∈ A given by (1.1), in view of (1.8), we get f ∈ S∗
s (α), that

is

�
(

2z f ′(z)
f (z) − f (−z)

)
= �

(
1 + (1 − 2α)z

1 − z

)
> α (0 ≤ α < 1; z ∈ D).

By (1.8) and elementary calculations, we have

(1 − z)

(
z +

∞∑

n=2

nanzn
)

= [
1 + (1 − 2α)z

](
z +

∞∑

n=2

a2n−1z2n−1
)

. (1.10)

It follows from (1.10) that

2na2n − (2n − 1)a2n−1 = (1 − 2α)a2n−1 (n = 1, 2, 3, · · · ),

and

(2n + 1)a2n+1 − 2na2n = a2n+1 (n = 1, 2, 3, · · · ).

Therefore, by virtue of the above relationships, we get

a2n+1 = a2n =
(
1 − α

n

)
a2n−1 =

(
1 − α

n

)
a2n−2

=
(
1 − α

n

)(
1 − α

n − 1

)
a2n−3 =

(
1 − α

n

)(
1 − α

n − 1

)
a2n−4

= · · · · · ·
=

(
1 − α

n

)(
1 − α

n − 1

)
· · ·

(
1 − α

2

)(
1 − α

1

)
a1

=
n∏

k=1

(
1 − α

k

)
(n = 1, 2, 3, · · · ).

	


In view of Lemma 1.2 and the relationship

f (z) ∈ Ks(α) ⇐⇒ z f ′(z) ∈ S∗
s (α) (0 ≤ α < 1; z ∈ D), (1.11)
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we know that

f1(z) = z +
∞∑

n=1

[ n∏

k=1

(
1 − α

k

)(
z2n + z2n+1

)]
(0 ≤ α < 1; z ∈ D) (1.12)

belongs to the class S∗
s (α), and

f2(z) = z +
∞∑

n=1

[ n∏

k=1

(
1 − α

k

)(
z2n

2n
+ z2n+1

2n + 1

)]
(0 ≤ α < 1; z ∈ D)(1.13)

belongs to the class Ks(α).

2 Main results

We begin by determining the sharp bounds for det(T2,1)( f ) and det(T3,1)( f ) in the
class of convex functions of order α with respect to symmetric points. By observing
that the coefficient a2 of f ∈ Ks(α) in [24, Formula (2.7)] was written as

a2 = 1

2
(1 − α)c1,

thus, the lower bounds of det(T2,1)( f ) [24, p.1046, line 17] and det(T3,1)( f ) [24, The-
orem 2.4] are not true. Theorems 2.1 and 2.2 are the corrected versions of det(T2,1)( f )

and det(T3,1)( f ) for the class Ks(α), respectively.

Theorem 2.1 Let α ∈ [0, 1). If f ∈ Ks(α), then

1 − 1

4
(1 − α)2 ≤ det(T2,1)( f ) ≤ 1.

Both inequalities are sharp with equalities attained by f2(z) defined by (1.13), and by
the identity function f (z) = z, respectively.

Proof For the function f ∈ Ks(α) given by (1.1), we know that there exists an analytic
function p ∈ P in the unit disk D with p(0) = 1 and �(

p(z)
)

> 0 such that

2
(
z f ′(z)

)′
(

f (z) − f (−z)
)′ = (1 − α)p(z) + α (z ∈ D).

By elementary calculations, we have

1 +
∞∑

n=2

n2anzn−1 =
(
1 + (1 − α)

∞∑

n=1

cnzn
)(

1 +
∞∑

n=2

(2n − 1)a2n−1z2n−2
)

.

(2.1)
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It follows from (2.1) that

a2 = 1

4
(1 − α)c1, a3 = 1

6
(1 − α)c2. (2.2)

Since the class Ks(α) and det(T2,1)( f ) are rotationally invariants, we may assume
that c := c1 ∈ [0, 2]. By using (1.2) and |c1| ≤ 2, we see that

det(T2,1)( f ) = 1 − 1

16
(1 − α)2|c1|2 ∈

[
1 − 1

4
(1 − α)2, 1

]
.

Obviously, the sharp estimates are attained by the extremal function f2(z) defined by
(1.13), and identity function f (z) = z, respectively. 	

Theorem 2.2 Let α ∈ [0, 1). If f ∈ Ks(α), then

1 − 1

18
(1 − α)2(8 + 3α) ≤ det(T3,1)( f ) ≤ 1. (2.3)

Both inequalities are sharp with equalities attained by f2(z) defined by (1.13), and by
the identity function f (z) = z, respectively.

Proof Let f ∈ Ks(α) be given by (1.1). Since the class Ks(α) and det(T3,1)( f ) are
rotationally invariants, we may assume that c := c1 ∈ [0, 2]. Thus, (1.3) and (2.2)
show that

det(T3,1)( f ) = 1 − 1

8
(1 − α)2c2 − 1

36
(1 − α)2

∣∣c2
∣∣2 + 1

48
(1 − α)3c2�(c2).

By virtue of (1.6), we conclude that

det(T3,1)( f ) = 1 − 1

8
(1 − α)2c2 + 1

288
(1 − α)2(1 − 3α)c4

− 1

288
(1 − α)2(1 + 3α)c2

(
4 − c2

)
�(ζ )

− 1

144
(1 − α)2

(
4 − c2

)2 |ζ |2

=: �(c, |ζ |,�(ζ ))

(2.4)

for some c ∈ [0, 2] and ζ ∈ D.
A. We first prove the right-side inequality in (2.3).
By means of (2.4), we get

det(T3,1)( f ) = �(c, |ζ |,�(ζ )) ≤ �(c, |ζ |,−|ζ |)
=: P

(
c2, |ζ |

)
((c, |ζ |) ∈ [0, 2] × [0, 1]), (2.5)

123
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where P : [0, 4] × [0, 1] → R is defined by

P(x, y) = 1 − 1

8
(1 − α)2x + 1

288
(1 − α)2(1 − 3α)x2

+ 1

288
(1 − α)2(1 + 3α)(4 − x)xy − 1

144
(1 − α)2(4 − x)2y2.

A1. For the case x = 0, we have

P(0, y) = 1 − 1

9
(1 − α)2y2 ≤ 1 (y ∈ [0, 1]).

A2. For the case x = 4, we obtain

P(4, y) = 1 − 1

18
(1 − α)2(8 + 3α) (y ∈ [0, 1]).

A3. For the case y = 0, we get

P(x, 0) = 1 − 1

8
(1 − α)2x + 1

288
(1 − α)2(1 − 3α)x2 (x ∈ [0, 4]).

For α = 1
3 , we find that

P(x, 0) = 1 − 1

18
x ≤ P(0, 0) (x ∈ [0, 4]).

For 0 < α < 1
3 , we know that

P(x, 0) = 1

288
(1 − α)2(1 − 3α)

(
x − 18

1 − 3α

)2

− (1 + 3α)2

1 − 3α
≤ P(0, 0) (x ∈ [0, 4]).

For 1
3 < α < 1, we see that

P(x, 0) = 1

288
(1 − α)2(1 − 3α)

(
x − 18

1 − 3α

)2

− (1 + 3α)2

1 − 3α
≤ P(0, 0) (x ∈ [0, 4]).

Thus, for all 0 ≤ α < 1, we have

P(x, 0) ≤ P(0, 0) = 1 (x ∈ [0, 4]).

123
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A4. For the case y = 1, we see that

P(x, 1) = 1 − 1

9
(1 − α)2 − 1

72
(1 − α)2(4 − 3α)x − 1

144
(1 − α)2(1 + 3α)x2

= − 1

144
(1 − α)2(1 + 3α)

(
x − 3α − 4

1 + 3α

)2

+ 1 − 1

9
(1 − α)2 + 1

144

[(1 − α)(4 − 3α)]2
1 + 3α

≤ P(0, 1) = 1 (x ∈ [0, 4]).

A5. Let (x, y) ∈ (0, 4) × (0, 1). Then

∂ P

∂ y
= 1

288
(1 − α)2(4 − x)

[
(1 + 3α)x − 4(4 − x)y

] = 0

if and only if

y0 = (1 + 3α)x

4(4 − x)
.

Therefore, we see that

∂ P

∂x

(
x, y0

) = 0

if and only if

(1 − α)2x2 − 4[(1 − α)2 + 4]x + 64 = 0. (2.6)

For 0 ≤ α < 1, the equation (2.6) has solutions:

x1 = 4, x2 = 16

(1 − α)2
≥ 16.

Thus, P(x, y) has no critical point in (0, 4) × (0, 1).
It now follows from A1-A5 that

det(T3,1)( f ) ≤ max

{
1, 1 − 1

18
(1 − α)2(8 + 3α)

}
= 1

for 0 ≤ α < 1 and (x, y) ∈ [0, 4] × [0, 1]. By virtue of (2.5), we deduce that the
upper bound in (2.3) holds.

B. We now prove the left-side inequality in (2.3).

123
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Note that

det(T3,1)( f ) = �(c, |ζ |,�(ζ )) ≥ �(c, |ζ |, |ζ |)
=: Q(c2, |ζ |) ((c, |ζ |) ∈ [0, 2] × [0, 1]), (2.7)

where Q : [0, 4] × [0, 1] −→ R is defined by

Q(x, y) = 1 − 1

8
(1 − α)2x + 1

288
(1 − α)2(1 − 3α)x2

− 1

288
(1 − α)2(1 + 3α)(4 − x)xy − 1

144
(1 − α)2(4 − x)2y2.

B1. For the case x = 0, we obtain

Q(0, y) = 1 − 1

9
(1 − α)2y2 ≥ 1 − 1

9
(1 − α)2 (y ∈ [0, 1]).

B2. For the case x = 4, we get

Q(4, y) = 1 − 1

18
(1 − α)2(8 + 3α) (y ∈ [0, 1]).

B3. For the case y = 0, we have

Q(x, 0) = 1 − 1

8
(1 − α)2x + 1

288
(1 − α)2(1 − 3α)x2 (x ∈ [0, 4]).

For α = 1
3 , we know that

Q(x, 0) = 1 − 1

18
x ≥ Q(4, 0) (x ∈ [0, 4]).

For 0 < α < 1
3 , we find that

Q(x, 0) = 1

288
(1 − α)2(1 − 3α)

(
x − 18

1 − 3α

)2

− (1 + 3α)2

1 − 3α
≥ Q(4, 0) (x ∈ [0, 4]).

For 1
3 < α < 1, we see that

Q(x, 0) = 1

288
(1 − α)2(1 − 3α)

(
x − 18

1 − 3α

)2

− (1 + 3α)2

1 − 3α
≥ Q(4, 0) (x ∈ [0, 4]).

123
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Thus, for all 0 ≤ α < 1, we have

Q(x, 0) ≥ Q(4, 0) = 1 − 1

18
(1 − α)2(8 + 3α) (x ∈ [0, 4]).

B4. For the case y = 1, we find that

Q(x, 1) = 1 − 1

9
(1 − α)2 − 1

24
(1 − α)2(2 + α)x

≥ Q(4, 1) = 1 − 1

18
(1 − α)2(8 + 3α) (x ∈ [0, 4]).

B5. Let (x, y) ∈ (0, 4) × (0, 1). Then

∂ Q

∂ y
= − 1

288
(1 − α)2(4 − x)

[
(1 + 3α)x + 4(4 − x)y

] = 0

if and only if

y0 = − (1 + 3α)x

4(4 − x)
.

Obviously, for 0 ≤ α < 1 and x ∈ (0, 4), we have y0 < 0. Thus, Q(x, y) has no
critical point in (0, 4) × (0, 1).

In summary, when 0 ≤ α < 1 and (x, y) ∈ [0, 4] × [0, 1], parts B1-B5 imply that

Q(x, y) ≥ min

{
1 − 1

9
(1 − α)2, 1 − 1

18
(1 − α)2(8 + 3α)

}

= 1 − 1

18
(1 − α)2(8 + 3α).

Furthermore, by virtue of (2.7), we get the lower bound in (2.3).
At last, we show that inequalities (2.3) are sharp.
In view of part A and part B, the right-side equality in (2.3) clearly holds for the

identity function f (z) = z. By means of the relationships (1.11) and (1.8), the sharp
function f2 is given by (1.13) with

a2 = 1

2
(1 − α), a3 = 1

3
(1 − α),

and yields the left-side equality in (2.3). This completes the proof of Theorem 2.2. 	

By choosingα = 0 inTheorem2.1 andTheorem2.2,we get the following corollary.

Corollary 2.1 If f ∈ Ks , then

3

4
≤ det(T2,1)( f ) ≤ 1,

123



59 Page 12 of 23 Y. Sun, Z. Wang

and

5

9
≤ det(T3,1)( f ) ≤ 1.

All the inequalities are sharp.

Now, we consider the sharp bounds of det(T4,1)( f ) for the class S∗
s of starlike

functions with respect to symmetric points.

Theorem 2.3 If f ∈ S∗
s be of the form (1.1), then

− 27

256
≤ det(T4,1)( f ) ≤ 1. (2.8)

Both inequalities are sharp with equalities attained by f (z) defined by (2.22), and by
the identity f (z) = z, respectively.

Proof For the function f ∈ S∗
s given by (1.1), we know that there exists an analytic

function p ∈ P in the unit disk D with p(0) = 1 and �(
p(z)

)
> 0 such that

2z f ′(z)
f (z) − f (−z)

= p(z) (z ∈ D). (2.9)

By elementary calculations, we have

z +
∞∑

n=2

nanzn =
(
1 +

∞∑

n=1

cnzn
)(

z +
∞∑

n=2

a2n−1z2n−1
)

. (2.10)

It follows from (2.10) that

a2 = 1

2
c1, a3 = 1

2
c2, a4 = 1

8
(2c3 + c1c2). (2.11)

Since the class S∗
s and det(T4,1)( f ) are rotationally invariant, we may assume that

c := c1 ∈ [0, 2]. Thus, (1.4) and (2.11) give

det(T4,1)( f ) =1 − 3

4
c2 + 1

16
c4 − 1

2
· |c2|2 + 1

16
· |c2|4

− 1

256
c2

(
4 − c2

)
· |c2|2 − 1

64

(
4 − c2

)
· |c3|2

+ 1

2
c2 · �(

c2
) − 1

32
c4 · �(

c2
) − 1

32
c2 · |c2|2 · �(

c2
)

− 1

16
c3 · �(

c3
) + 1

64
c
(

c2 + 12
)

· �(
c2c3

) − 1

16
c · �(

c22c3
)
.

123



Sharp Bounds on Hermitian Toeplitz... Page 13 of 23 59

Hence, by using (1.6) and (1.7), we get

det(T4,1)( f ) = 1

1024

(
4 − c2

)3 ·
[
16 − (32 + c2) · |ζ |2 + 2c2 · |ζ |2 · �(

ζ
)

+
(
16 − c2

)
· |ζ |4 + 4c ·

(
1 − |ζ |2

)
· �(

ζη
)

− 4c ·
(
1 − |ζ |2

)
· �(

ζ 2η
) − 4 · (

1 − |ζ |2)2 · |η|2
]

(2.12)

for some c ∈ [0, 2] and ζ, η ∈ D.
We now consider the lower and upper bounds for the class S∗

s for various cases.
A. Suppose that ζ = 0. Then

0 ≤ det(T4,1)( f ) = 1

1024

(
4 − c2

)3 · (
16 − 4|η|2) ≤ 1 (2.13)

for all c ∈ [0, 2] and η ∈ D.
B. Suppose that η = 0. Then

det(T4,1)( f ) = 1

1024

(
4 − c2

)3 ·
[
16 −

(
32 + c2

)
· |ζ |2 + 2c2 · |ζ |2 · �(

ζ
)

+
(
16 − c2

)
· |ζ |4

]
. (2.14)

It follows that

det(T4,1)( f ) ≥ 1

1024

(
4 − c2

)3 ·
[
16 −

(
32 + c2

)
· |ζ |2 − 2c2 · |ζ |3

+
(
16 − c2

)
· |ζ |4

]

= 1

1024

(
4 − c2

)3 ·
[
16

(
1 − |ζ |2)2 − c2 · |ζ |2 · (1 + |ζ |)2

]

=: P(c2, |ζ |),

(2.15)

and

det(T4,1)( f ) ≤ 1

1024
(4 − c2)3 ·

[
16 − (32 + c2) · |ζ |2 + 2c2 · |ζ |3

+ (16 − c2) · |ζ |4
]

= 1

1024
(4 − c2)3 ·

[
16

(
1 − |ζ |2)2 − c2 · |ζ |2 · (1 − |ζ |)2

]

=: Q(c2, |ζ |),

(2.16)
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where P, Q : [0, 4] × [0, 1] −→ R is defined by

P(u, x) = 1

1024
(4 − u)3 ·

[
16(1 − x2)2 − ux2(1 + x)2

]
,

and

Q(u, x) = 1

1024
(4 − u)3 ·

[
16(1 − x2)2 − ux2(1 − x)2

]
,

respectively.
B1. We discuss the lower bound of P(u, x).

(i) On the vertices of [0, 4] × [0, 1], we have

P(0, 0) = 1, P(0, 1) = P(4, 0) = P(4, 1) = 0.

(ii) On the side u = 0, we get

P(0, x) = (1 − x2)2 ≥ 0 (x ∈ [0, 1]).

(iii) On the side u = 4, we obtain

P(4, x) = 0 (x ∈ [0, 1]).

(iv) On the side x = 0, we see that

P(u, 0) = 1

64
(4 − u)3 ≥ 0 (u ∈ [0, 4]).

(v) On the side x = 1, we know that

P(u, 1) = − 1

256
u(4 − u)3 =: φ(u) (u ∈ [0, 4]).

Note that

φ′(u) = − 1

64
(4 − u)2(1 − u) (u ∈ [0, 4]),

for 0 ≤ u ≤ 1, we know that φ′(u) ≤ 0, which implies that

φ(u) ≥ φ(1) = − 27

256
,

and for 1 ≤ u ≤ 4, we find that φ′(u) ≥ 0, which shows that

φ(u) ≥ φ(1) = − 27

256
.
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Thus, we deduce that

P(u, 1) = φ(u) ≥ − 27

256
(u ∈ [0, 4]).

(vi) In the interior of (0, 4) × (0, 1), since the equation

∂ P

∂x
= − 1

512
x(1 + x)(4 − u)3[32(1 − x) + u(1 + 2x)] = 0

has no solution in (0, 4)×(0, 1), we see that P has no critical point in the interior
of (0, 4) × (0, 1).

Therefore, from (2.15), it follows that

det(T4,1)( f ) ≥ P
(

c2, |ζ |
)

≥ − 27

256
((c2, |ζ |) ∈ [0, 4] × [0, 1]).

B2. We next discuss the upper bound of Q(u, x).

(i) On the vertices of [0, 4] × [0, 1], we get

Q(0, 0) = 1, Q(0, 1) = Q(4, 0) = Q(4, 1) = 0.

(ii) On the side u = 0, we have

Q(0, x) =
(
1 − x2

)2 ≤ 1 (x ∈ [0, 1]).

(iii) On the side u = 4, we obtain

Q(4, x) = 0 (x ∈ [0, 1]).

(iv) On the side x = 0, we know that

Q(u, 0) = 1

64
(4 − u)3 ≤ 1 (u ∈ [0, 4]).

(v) On the side x = 1, we find that

Q(u, 1) = 0 (u ∈ [0, 4]).

(vi) In the interior of (0, 4) × (0, 1), since the equation

∂ Q

∂x
= − 1

512
x(1 − x)(4 − u)3[32 + u + 2(16 − u)x] = 0
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has no solution in (0, 4) × (0, 1), we know that P has no critical point in the
interior of (0, 4) × (0, 1). Thus, it follows from (2.16) that

det(T4,1)( f ) ≤ Q(c2, |ζ |) ≤ 1
((

c2, |ζ |
)

∈ [0, 4] × [0, 1]
)

.

C. Suppose that ζ, η ∈ D \ {0}. Then, there exist unique θ and ϕ in [0, 2π) such
ζ = xeiθ and η = yeiϕ , where x := |ζ | ∈ (0, 1] and y := |η| ∈ (0, 1]. Thus,
from (2.12), we get

det(T4,1)( f ) = 1

1024

(
4 − c2

)3 · F(c, x, y, θ, ϕ), (2.17)

where

F(c, x, y, θ, ϕ) = 16 −
(
32 + c2

)
x2 + 2c2x3 cos θ +

(
16 − c2

)
x4

+ 4c
(
1 − x2

)
xy cos(θ − ϕ) − 4c

(
1 − x2

)
x2y cos(2θ − ϕ)

− 4
(
1 − x2

)2
y2.

For c ∈ [0, 2] and x, y ∈ (0, 1], we have

G(c, x, y) ≤ F(c, x, y, θ, ϕ) ≤ H(c, x, y), (2.18)

where

G(c, x, y) := F(c, x, y, π, 0)

= 16 − (32 + c2)x2 − 2c2x3 + (16 − c2)x4 − 4c(1 − x2)(1 + x)xy

− 4(1 − x2)2y2

= 16(1 − x2)2 − c2x2(1 + x)2 − 4c(1 − x2)(1 + x)xy − 4(1 − x2)2y2,

(2.19)

and

H(c, x, y)

= 16 − (32 + c2)x2 + 2c2x3 + (16 − c2)x4 + 4c(1 − x2)(1 + x)xy

− 4(1 − x2)2y2

= 16(1 − x2)2 − c2x2(1 − x)2 + 4c(1 − x2)(1 + x)xy − 4(1 − x2)2y2.

(2.20)

C1. We discuss the lower bound of G(c, x, y).
Let x = 1. Then

G(c, 1, y) = −4c2 (c ∈ [0, 2]; y ∈ (0, 1]).
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From (2.17), (2.18) and part B1 (v), it follows that

det(T4,1)( f ) ≥ − 1

256
c2(4 − c2)3 ≥ − 27

256
.

Let x ∈ (0, 1). Then

yω = − cx

2(1 − x)
≤ 0, −4(1 − x2)2 < 0.

We now find that

G(c, x, y) ≥ G(c, x, 1) = 12(1 − x2)2 − c2x2(1 + x)2 − 4c(1 − x2)(1 + x)x

=: ψ(c, x) ((c, x) ∈ [0, 2] × (0, 1)).

(i) On the side x = 0, we obtain

ψ(c, 0) = 12 (c ∈ [0, 2]).

(ii) On the side x = 1, we get

ψ(c, 1) = −4c2 (c ∈ [0, 2]).

It follows from (2.17), (2.18) and part B1 (v) that

det(T4,1)( f ) ≥ − 1

256
c2(4 − c2)3 ≥ − 27

256
.

(iii) On the side c = 0, we have

ψ(0, x) = 12(1 − x2)2 ≥ 0 (x ∈ [0, 1]).

(iv) On the side c = 2, we get

ψ(2, x) = 4(1 + x)2(3 − 2x)(1 − 2x) (x ∈ [0, 1]),

thus, from (2.17) and (2.18), we deduce that

det(T4,1)( f ) ≥ 1

1024
· (4 − c2)3

∣∣
c=2 · ψ(2, x) = 0.

(v) It remains to consider the interior of (0, 2)×(0, 1). Since the systemof equations

∂ψ

∂c
= −2x(1 + x)2[cx + 2(1 − x)] = 0

has no solution in (0, 2)×(0, 1), we see thatψ has no critical point in the interior
of (0, 2) × (0, 1).
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From part C1, we find that

det(T4,1)( f ) ≥ 1

1024
(4 − c2)3 · G(c, x, y) ≥ − 27

256
.

C2. We next discuss the upper bound of H(c, x, y).
Let x = 1. Then

H(c, 1, y) = 0 (c ∈ [0, 2], y ∈ (0, 1]).

Let x ∈ (0, 1). Then

y0 = cx

2(1 − x)
≥ 0, −4(1 − x2)2 < 0.

Therefore, we need to consider the following two cases.
C2.1. Assume that y0 < 1, i.e.,

x ∈
(
0,

2

c + 2

)
⊂ [0, 1]

for all c ∈ [0, 2]. Let

�1 :=
{
(c, x) : 0 ≤ c ≤ 2, 0 ≤ x ≤ x0(c) = 2

c + 2

}
.

Then

H(c, x, y) ≤ H(c, x, y0) =: h(c, x) ((c, x) ∈ �1, y ∈ (0, 1]),

where

h(c, x) = 16(1 − x2)2 + 4c2x3 ((c, x) ∈ �1).

(i) On the vertices of �1, we know that

h(0, 0) = 16, h(0, x0(0)) = h(0, 1) = 0,

h(2, 0) = 16, h(2, x0(2)) = h(2, 1/2) = 11.

(ii) On the side x = 0, we get

h(c, 0) = 16 (c ∈ (0, 2)).

(iii) On the side x = x0(c) with c ∈ (0, 2), we have

h(c, x0(c)) = 16c2

(2 + c)4
(c2 + 10c + 20) =: γ (c).
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By noting that

γ ′(c) = −32c

(2 + c)5
(c2 − 10c − 40) = 32c

(2 + c)5

[
65 − (c − 5)2

]
> 0 (c ∈ (0, 2)),

it shows that γ is an increasing function for c ∈ (0, 2). Thus,

h(c, x0(c)) ≤ γ (2) = 11 (c ∈ (0, 2)).

(iv) On the side c = 0, we have

h(0, x) = 16(1 − x2)2 ≤ 16 (x ∈ [0, 1)).

(v) on the side c = 2, we get

h(2, x) = 16 − 16x2(x + 2)(1 − x) ≤ 16 (x ∈ [0, 1/2]).

(vi) It remains to consider the interior of �1. Since the system of equations

{
∂h/∂c = 8cx3 = 0

∂h/∂x = −64x + 12c2x2 + 64x3 = 0

has solutions (0, 0), (0, 1) and (0,−1), we know that h has no critical point in
the interior of �1.

C2.2. Assume that y0 ≥ 1, i.e., x ∈ [x0(c), 1] for all c ∈ [0, 2]. Let

�2 :=
{
(c, x) : 0 ≤ c ≤ 2, x0(c) = 2

c + 2
≤ x ≤ 1

}
.

Then

H(c, x, y) ≤ H(c, x, 1) =: g(c, x) ((c, x) ∈ �2, y ∈ (0, 1]),

where for (c, x) ∈ �2,

g(c, x) = 12(1 − x2)2 − c2x2(1 − x)2 + 4c(1 − x2)(1 + x)x

= 12 + 4cx − (c2 − 4c + 24)x2 + 2(c2 − 2c)x3 − (c2 + 4c − 12)x4.

(i) On the vertices of �2, we get

g(0, x0(0)) = g(0, 1) = 0, g(2, x0(2)) = g(2, 1/2) = 11, g(2, 1) = 0.

(ii) On the side x = x0(c), see the case C2.1 (iii).
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(iii) On the side x = 1, we have

g(c, 1) = 0 (c ∈ (0, 2)).

(iv) On the side c = 2, we obtain

g(2, x) = 12 + 8x − 20x2 ≤ (12 + 8x − 20x2)
∣∣
x=1/2 = 11 (x ∈ [1/2, 1)).

(v) It remains to consider the interior of �2. Since the system of equations

{
∂g/∂c = 4x − 2(c − 2)x2 + 4(c − 1)x3 − 2(c + 2)x4 = 0

∂g/∂x = 4c − 2(c2 − 4c + 24)x + 6(c2 − 2c)x2 − 4(c2 + 4c − 12)x3 = 0
(2.21)

has solution c = x = 0 evidently. Let x �= 0. From the first equation of (2.21),
we get

c0 = 2(1 + x)2

x(1 − x)
,

but c0 /∈ [0, 2] for x ∈ [1/2, 1). Thus, g has no critical point in the interior of
�2.

It follows from part C2 that

det(T4,1)( f ) = 1

1024
(4 − c2)3 · F(c, x, y, θ, ϕ) ≤ 1

1024
· 43 · 16 = 1.

For the sharpness of (2.8), in view of parts B1 (v) and C1 (ii), let

p(z) = 1 − z − z2 + z3

1 − 2z + 2z2 − z3
= 1 + z − z2 − 2z3 + · · · (z ∈ D),

which belongs to the class P , for the extremal function given by

2z f ′(z)
f (z) − f (−z)

= 1 − z − z2 + z3

1 − 2z + 2z2 − z3
(z ∈ D) (2.22)

with

a2 = 1

2
, a3 = −1

2
, a4 = −5

8
.

Thus, we find that

det(T4,1)( f ) = − 27

256
.

It is clear that equality for the upper bound in (2.8) holds for the identity function. 	
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