

Sharp Bounds on Hermitian Toeplitz Determinants for Sakaguchi Classes

Yong Sun1 · Zhi-Gang Wang[2](http://orcid.org/0000-0001-6118-7196)

Received: 13 September 2022 / Revised: 26 October 2022 / Accepted: 26 December 2022 / Published online: 6 January 2023 © The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2023

Abstract

The main purpose of this paper is to derive the sharp lower and upper bounds on Hermitian Toeplitz determinants for starlike and convex functions with respect to symmetric points. Some of the results provide improvements (or corrections) to several recent results.

Keywords Analytic function · Sakaguchi class · Hermitian Toeplitz determinant

Mathematics Subject Classification 30C55 · 30C45

1 Introduction

Let *A* denote the class of functions *analytic* in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ of the form

$$
f(z) = z + \sum_{k=2}^{\infty} a_k z^k.
$$
 (1.1)

We denote *S* by the subclass of *A* whose elements are univalent functions.

Communicated by V. Ravichandran.

Yong Sun yongsun2008@foxmail.com

¹ School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, Hunan, P. R. China

² School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, Hunan, P. R. China

 \boxtimes Zhi-Gang Wang wangmath@163.com

Sakaguchi $[40]$ $[40]$ (see also $[38, 43, 46]$ $[38, 43, 46]$ $[38, 43, 46]$ $[38, 43, 46]$ $[38, 43, 46]$) once introduced a class S^*_{s} of starlike functions with respect to symmetric points, it consists of functions $f \in S$ satisfying

$$
\Re\left(\frac{2zf'(z)}{f(z)-f(-z)}\right)>0 \quad (z\in\mathbb{D}).
$$

In a later paper, Das and Singh [\[13](#page-20-0)] discussed a class K_s of convex functions with respect to symmetric points, it consists of functions $f \in S$ satisfying

$$
\Re\left(\frac{2\left(zf'(z)\right)'}{\left(f(z)-f(-z)\right)'}\right)>0\quad(z\in\mathbb{D}).
$$

A function $f \in A$ is said to be in the class $S_s^*(\alpha)$, consisting of starlike functions of order α with respect to symmetric points, if it satisfies the following condition

$$
\Re\left(\frac{2zf'(z)}{f(z)-f(-z)}\right) > \alpha \quad (0 \le \alpha < 1; \ z \in \mathbb{D}).
$$

Denote $\mathcal{K}_s(\alpha)$ by the class of convex functions of order α with respect to symmetric points, which satisfy the condition

$$
\Re\left(\frac{2\left(zf'(z)\right)'}{\left(f(z)-f(-z)\right)'}\right)>\alpha\quad(0\leq\alpha<1;\ z\in\mathbb{D}).
$$

We note that $S_s^*(0) =: S_s^*$ and $\mathcal{K}_s(0) =: \mathcal{K}_s$.

Recently, Cunda et al. [\[12](#page-20-1)] (see also [\[26](#page-21-4)]) introduced the notation of Hermitian Toeplitz determinants for the class *A*, and some of its subclasses. Hermitian Toeplitz matrices play important roles in functional analysis, applied mathematics as well as in physics and technical sciences, e.g., the Szegö theory, the stochastic filtering, the signal processing, the biological information processing and other engineering problems.

Given $q, n \in \mathbb{N}$, the Hermitian Toeplitz matrix $T_{q,n}(f)$ of a function $f \in \mathcal{A}$ of the form (1.1) is defined by

$$
T_{q,n}(f) = \begin{pmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ \overline{a}_{n+1} & a_n & \cdots & a_{n+q-2} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{a}_{n+q-1} & \overline{a}_{n+q-2} & \cdots & a_n \end{pmatrix},
$$

where $\overline{a}_k := \overline{a_k}$. For convenience, we let $\det(T_{q,n})(f)$ denote the determinant of $T_{q,n}(f)$.

By the definition, $det(T_{2,1})(f)$, $det(T_{3,1})(f)$ and $det(T_{4,1})(f)$ are given by

$$
\det(T_{2,1})(f) = \left| \frac{a_1}{a_2} \frac{a_2}{a_1} \right|, \ \det(T_{3,1})(f) = \left| \frac{a_1}{a_2} \frac{a_2}{a_1} \frac{a_3}{a_2} \frac{a_3}{a_1} \right|,
$$

 $\textcircled{2}$ Springer

and

$$
\det(T_{4,1})(f) = \begin{vmatrix} a_1 & a_2 & a_3 & a_4 \\ \overline{a}_2 & a_1 & a_2 & a_3 \\ \overline{a}_3 & \overline{a}_2 & a_1 & a_2 \\ \overline{a}_4 & \overline{a}_3 & \overline{a}_2 & a_1 \end{vmatrix},
$$

respectively. Note that for $f \in A$, $a_1 = 1$, $\det(T_{2,1})(f)$, $\det(T_{3,1})(f)$ and $\det(T_{4,1})(f)$ reduce to

$$
\det(T_{2,1})(f) = 1 - |a_2|^2,\tag{1.2}
$$

$$
\det(T_{3,1})(f) = 1 - 2|a_2|^2 - |a_3|^2 + 2\Re(a_2^2\overline{a}_3),\tag{1.3}
$$

and

$$
\det(T_{4,1})(f) = 1 - 3|a_2|^2 + |a_2|^4 - 2|a_2|^2|a_3|^2 - 2|a_3|^2 + |a_3|^4 + |a_2|^2|a_4|^2 - |a_4|^2
$$

+ 4\Re(a_2^2\overline{a}_3) + 4\Re(a_2a_3\overline{a}_4) - 2\Re(a_2^2\overline{a}_4) - 2\Re(a_2\overline{a}_3^2a_4), \t(1.4)

respectively.

In recent years, many investigations have been devoted to finding bounds of determinants, whose elements are coefficients of functions in *A*, or its subclasses. Hankel matrices, i.e., square matrices which have constant entries along the reverse diagonal, and the symmetric Toeplitz determinants are of particular interest (see [\[1](#page-20-2)]).

The sharp upper bounds on the second Hankel determinants were obtained by $[2, 6]$ $[2, 6]$, [10,](#page-20-5) [15](#page-20-6), [16,](#page-20-7) [31,](#page-21-5) [34](#page-21-6)], for various classes of analytic functions. We refer to [\[4](#page-20-8), [5,](#page-20-9) [7](#page-20-10), [9,](#page-20-11) [18,](#page-20-12) [20,](#page-21-7) [22](#page-21-8), [25](#page-21-9), [28](#page-21-10), [37,](#page-21-11) [39,](#page-21-12) [42](#page-21-13), [44](#page-21-14), [45](#page-21-15), [47\]](#page-21-16) for discussions on the upper bounds of the third or fourth Hankel determinants for various classes of univalent functions. However, some of these results are far from sharpness. In a recent paper, Kwon *et al.* [\[21](#page-21-17)] found such a formula of expressing *c*⁴ by Carathéodory functions, the sharp results of the third Hankel determinants are found for some classes of univalent functions.

The Hermitian Toeplitz determinants in relation to normalized analytic functions is a natural concept to study. By the work of $[12]$ $[12]$, the study of the Hermitian Toeplitz determinants on classes of normalized analytic functions has been initiated. We refer to [\[3](#page-20-13), [11,](#page-20-14) [12,](#page-20-1) [17,](#page-20-15) [23](#page-21-18), [26](#page-21-4), [27](#page-21-19), [30,](#page-21-20) [35\]](#page-21-21) for discussions on the sharp bounds of Hermitian Toeplitz determinants for various classes of univalent functions.

Recently, Krishna et al. [\[19](#page-20-16)] (see also [\[8,](#page-20-17) [14](#page-20-18), [36\]](#page-21-22)) obtained upper bounds of the third Hankel determinants for the classes of starlike and convex functions with respect to symmetric points. Moreover, Kumar and Kumar [\[24](#page-21-23)] obtained the following sharp bounds of the second- and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α with respect to symmetric points.

Theorem A. *Let* $\alpha \in [0, 1)$ *. If* $f \in S_s^*(\alpha)$ *, then*

$$
(2 - \alpha)\alpha \leq \det(T_{2,1})(f) \leq 1,
$$

and

$$
(3-2\alpha)\alpha^2 \le \det(T_{3,1}) \ (f) \le 1.
$$

All inequalities are sharp. **Theorem B.** *Let* $\alpha \in [0, 1)$. *If* $f \in \mathcal{K}_s(\alpha)$, *then*

$$
(2-\alpha)\alpha \leq \det(T_{2,1})(f) \leq 1,
$$

and

$$
\frac{1}{9}(-4 + 20\alpha - \alpha^2 - 6\alpha^3) \le \det(T_{3,1})(f) \le 1.
$$

All inequalities are sharp.

We note that the proof of Theorem B exists several errors, and the lower bounds are not true. For the sake of completeness, we give the corrected proofs in the next section.

In this paper, we aim at deriving the sharp bounds on the second and third-order Hermitian Toeplitz determinants for the class of convex functions of order α with respect to symmetric points. We observe that the problem of finding sharp estimates of the Hermitian Toeplitz determinants $\det(T_{q,1})(f)$ for $q \geq 4$ is technically much more difficult, and few sharp bounds have been obtained. Recently, Lecko et al. [\[29\]](#page-21-24) obtained the sharp bounds on $det(T_{4,1})(f)$ of the class of convex functions. We shall find the sharp bounds on det($T_{4,1}$)(f) of the class S_s^* .

Denote *P* by the class of *Carathéodory functions p* normalized by

$$
p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \quad (z \in \mathbb{D})
$$
 (1.5)

and satisfy the condition $\Re(p(z)) > 0$.

The following results will be required in the proof of our main results.

Lemma 1.1 (See [\[32](#page-21-25), [33](#page-21-26)]) *If p* ∈ *P, then*

$$
2c_2 = c_1^2 + (4 - c_1^2)\zeta \tag{1.6}
$$

and

$$
4c_3 = c_1^3 + \left(4 - c_1^2\right)c_1\zeta(2 - \zeta) + 2\left(4 - c_1^2\right)\left(1 - |\zeta|^2\right)\eta\tag{1.7}
$$

for some ζ , $\eta \in \overline{\mathbb{D}} := \{z \in \mathbb{C} : |z| < 1\}.$

Lemma 1.2 *Let* $\alpha \in [0, 1)$ *. If* $f \in \mathcal{A}$ *and*

$$
\frac{2zf'(z)}{f(z) - f(-z)} = \frac{1 + (1 - 2\alpha)z}{1 - z} \quad (0 \le \alpha < 1; \ z \in \mathbb{D}),\tag{1.8}
$$

then $f \in S^*_s(\alpha)$ *and*

$$
a_{2n+1} = a_{2n} = \prod_{k=1}^{n} \left(1 - \frac{\alpha}{k} \right) \quad (n = 1, 2, 3, \cdots). \tag{1.9}
$$

Proof For the function $f \in \mathcal{A}$ given by [\(1.1\)](#page-0-0), in view of [\(1.8\)](#page-3-0), we get $f \in \mathcal{S}_s^*(\alpha)$, that is

$$
\Re\left(\frac{2zf'(z)}{f(z)-f(-z)}\right)=\Re\left(\frac{1+(1-2\alpha)z}{1-z}\right)>\alpha\quad(0\leq\alpha<1;\ z\in\mathbb{D}).
$$

By [\(1.8\)](#page-3-0) and elementary calculations, we have

$$
(1-z)\left(z+\sum_{n=2}^{\infty}na_nz^n\right) = \left[1+(1-2\alpha)z\right]\left(z+\sum_{n=2}^{\infty}a_{2n-1}z^{2n-1}\right).
$$
 (1.10)

It follows from [\(1.10\)](#page-4-0) that

$$
2na_{2n} - (2n - 1)a_{2n-1} = (1 - 2\alpha)a_{2n-1} \quad (n = 1, 2, 3, \cdots),
$$

and

$$
(2n + 1)a_{2n+1} - 2na_{2n} = a_{2n+1} \quad (n = 1, 2, 3, \cdots).
$$

Therefore, by virtue of the above relationships, we get

$$
a_{2n+1} = a_{2n} = \left(1 - \frac{\alpha}{n}\right) a_{2n-1} = \left(1 - \frac{\alpha}{n}\right) a_{2n-2}
$$

= $\left(1 - \frac{\alpha}{n}\right) \left(1 - \frac{\alpha}{n-1}\right) a_{2n-3} = \left(1 - \frac{\alpha}{n}\right) \left(1 - \frac{\alpha}{n-1}\right) a_{2n-4}$
= $\cdots \cdots$
= $\left(1 - \frac{\alpha}{n}\right) \left(1 - \frac{\alpha}{n-1}\right) \cdots \left(1 - \frac{\alpha}{2}\right) \left(1 - \frac{\alpha}{1}\right) a_1$
= $\prod_{k=1}^{n} \left(1 - \frac{\alpha}{k}\right) \quad (n = 1, 2, 3, \cdots).$

In view of Lemma [1.2](#page-3-1) and the relationship

$$
f(z) \in \mathcal{K}_s(\alpha) \Longleftrightarrow z f'(z) \in \mathcal{S}_s^*(\alpha) \quad (0 \le \alpha < 1; \ z \in \mathbb{D}), \tag{1.11}
$$

² Springer

Ч

we know that

$$
f_1(z) = z + \sum_{n=1}^{\infty} \left[\prod_{k=1}^{n} \left(1 - \frac{\alpha}{k} \right) \left(z^{2n} + z^{2n+1} \right) \right] \quad (0 \le \alpha < 1; \ z \in \mathbb{D}) \tag{1.12}
$$

belongs to the class $S_s^*(\alpha)$, and

$$
f_2(z) = z + \sum_{n=1}^{\infty} \left[\prod_{k=1}^n \left(1 - \frac{\alpha}{k} \right) \left(\frac{z^{2n}}{2n} + \frac{z^{2n+1}}{2n+1} \right) \right] \quad (0 \le \alpha < 1; \ z \in \mathbb{D}) \tag{1.13}
$$

belongs to the class $\mathcal{K}_s(\alpha)$.

2 Main results

We begin by determining the sharp bounds for $det(T_{2,1})(f)$ and $det(T_{3,1})(f)$ in the class of convex functions of order α with respect to symmetric points. By observing that the coefficient a_2 of $f \in \mathcal{K}_s(\alpha)$ in [\[24,](#page-21-23) Formula (2.7)] was written as

$$
a_2 = \frac{1}{2}(1 - \alpha)c_1,
$$

thus, the lower bounds of $\det(T_{2,1})(f)$ [\[24,](#page-21-23) p.1046, line 17] and $\det(T_{3,1})(f)$ [24, The-orem 2.4] are not true. Theorems [2.1](#page-5-0) and [2.2](#page-6-0) are the corrected versions of $det(T_{2,1})(f)$ and det($T_{3,1}$)(f) for the class $\mathcal{K}_s(\alpha)$, respectively.

Theorem 2.1 *Let* $\alpha \in [0, 1)$ *. If* $f \in \mathcal{K}_s(\alpha)$ *, then*

$$
1 - \frac{1}{4}(1 - \alpha)^2 \le \det(T_{2,1})(f) \le 1.
$$

Both inequalities are sharp with equalities attained by $f_2(z)$ *defined by [\(1.13\)](#page-5-1), and by the identity function* $f(z) = z$ *, respectively.*

Proof For the function $f \in \mathcal{K}_s(\alpha)$ given by [\(1.1\)](#page-0-0), we know that there exists an analytic function $p \in \mathcal{P}$ in the unit disk \mathbb{D} with $p(0) = 1$ and $\Re(p(z)) > 0$ such that

$$
\frac{2\big(zf'(z)\big)'}{\big(f(z)-f(-z)\big)'}= (1-\alpha)p(z)+\alpha \quad (z\in \mathbb{D}).
$$

By elementary calculations, we have

$$
1 + \sum_{n=2}^{\infty} n^2 a_n z^{n-1} = \left(1 + (1 - \alpha) \sum_{n=1}^{\infty} c_n z^n \right) \left(1 + \sum_{n=2}^{\infty} (2n - 1) a_{2n-1} z^{2n-2} \right).
$$
\n(2.1)

 $\textcircled{2}$ Springer

It follows from (2.1) that

$$
a_2 = \frac{1}{4}(1 - \alpha)c_1, \ \ a_3 = \frac{1}{6}(1 - \alpha)c_2. \tag{2.2}
$$

Since the class $K_s(\alpha)$ and $\det(T_{2,1})(f)$ are rotationally invariants, we may assume that $c := c_1 \in [0, 2]$. By using [\(1.2\)](#page-2-0) and $|c_1| \le 2$, we see that

$$
\det(T_{2,1})(f) = 1 - \frac{1}{16}(1-\alpha)^2|c_1|^2 \in \left[1 - \frac{1}{4}(1-\alpha)^2, 1\right].
$$

Obviously, the sharp estimates are attained by the extremal function $f_2(z)$ defined by [\(1.13\)](#page-5-1), and identity function $f(z) = z$, respectively.

Theorem 2.2 *Let* $\alpha \in [0, 1)$ *. If* $f \in \mathcal{K}_s(\alpha)$ *, then*

$$
1 - \frac{1}{18}(1 - \alpha)^2 (8 + 3\alpha) \le \det(T_{3,1})(f) \le 1.
$$
 (2.3)

Both inequalities are sharp with equalities attained by $f_2(z)$ *defined by [\(1.13\)](#page-5-1), and by the identity function* $f(z) = z$ *, respectively.*

Proof Let $f \in K_s(\alpha)$ be given by [\(1.1\)](#page-0-0). Since the class $K_s(\alpha)$ and $det(T_{3,1})(f)$ are rotationally invariants, we may assume that $c := c_1 \in [0, 2]$. Thus, [\(1.3\)](#page-2-0) and [\(2.2\)](#page-6-1) show that

$$
\det(T_{3,1})(f) = 1 - \frac{1}{8}(1-\alpha)^2 c^2 - \frac{1}{36}(1-\alpha)^2 |c_2|^2 + \frac{1}{48}(1-\alpha)^3 c^2 \Re(c_2).
$$

By virtue of (1.6) , we conclude that

$$
\det(T_{3,1})(f) = 1 - \frac{1}{8}(1 - \alpha)^2 c^2 + \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha) c^4
$$

$$
- \frac{1}{288}(1 - \alpha)^2 (1 + 3\alpha) c^2 (4 - c^2) \Re(\zeta)
$$

$$
- \frac{1}{144}(1 - \alpha)^2 (4 - c^2)^2 |\zeta|^2
$$

$$
=: \Psi(c, |\zeta|, \Re(\zeta))
$$
 (2.4)

for some $c \in [0, 2]$ and $\zeta \in \overline{\mathbb{D}}$.

A. We first prove the right-side inequality in [\(2.3\)](#page-6-2).

By means of (2.4) , we get

$$
\det(T_{3,1})(f) = \Psi(c, |\zeta|, \Re(\zeta)) \le \Psi(c, |\zeta|, -|\zeta|)
$$

=: $P\left(c^2, |\zeta|\right) \quad ((c, |\zeta|) \in [0, 2] \times [0, 1]),$ (2.5)

where $P : [0, 4] \times [0, 1] \rightarrow \mathbb{R}$ is defined by

$$
P(x, y) = 1 - \frac{1}{8}(1 - \alpha)^2 x + \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha)x^2
$$

+
$$
\frac{1}{288}(1 - \alpha)^2 (1 + 3\alpha)(4 - x)xy - \frac{1}{144}(1 - \alpha)^2 (4 - x)^2 y^2.
$$

A1. For the case $x = 0$, we have

$$
P(0, y) = 1 - \frac{1}{9}(1 - \alpha)^2 y^2 \le 1 \quad (y \in [0, 1]).
$$

A2. For the case $x = 4$, we obtain

$$
P(4, y) = 1 - \frac{1}{18}(1 - \alpha)^{2}(8 + 3\alpha) \quad (y \in [0, 1]).
$$

A³. For the case $y = 0$, we get

$$
P(x, 0) = 1 - \frac{1}{8}(1 - \alpha)^2 x + \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha) x^2 \quad (x \in [0, 4]).
$$

For $\alpha = \frac{1}{3}$, we find that

$$
P(x, 0) = 1 - \frac{1}{18}x \le P(0, 0) \quad (x \in [0, 4]).
$$

For $0 < \alpha < \frac{1}{3}$, we know that

$$
P(x, 0) = \frac{1}{288} (1 - \alpha)^2 (1 - 3\alpha) \left(x - \frac{18}{1 - 3\alpha} \right)^2 - \frac{(1 + 3\alpha)^2}{1 - 3\alpha}
$$

\n
$$
\le P(0, 0) \quad (x \in [0, 4]).
$$

For $\frac{1}{3} < \alpha < 1$, we see that

$$
P(x, 0) = \frac{1}{288} (1 - \alpha)^2 (1 - 3\alpha) \left(x - \frac{18}{1 - 3\alpha} \right)^2 - \frac{(1 + 3\alpha)^2}{1 - 3\alpha}
$$

\n
$$
\le P(0, 0) \quad (x \in [0, 4]).
$$

Thus, for all $0 \leq \alpha < 1$, we have

$$
P(x, 0) \le P(0, 0) = 1 \quad (x \in [0, 4]).
$$

A4. For the case $y = 1$, we see that

$$
P(x, 1) = 1 - \frac{1}{9}(1 - \alpha)^2 - \frac{1}{72}(1 - \alpha)^2(4 - 3\alpha)x - \frac{1}{144}(1 - \alpha)^2(1 + 3\alpha)x^2
$$

=
$$
-\frac{1}{144}(1 - \alpha)^2(1 + 3\alpha)\left(x - \frac{3\alpha - 4}{1 + 3\alpha}\right)^2
$$

$$
+ 1 - \frac{1}{9}(1 - \alpha)^2 + \frac{1}{144}\frac{[(1 - \alpha)(4 - 3\alpha)]^2}{1 + 3\alpha}
$$

\$\leq P(0, 1) = 1 \quad (x \in [0, 4]).

A5. Let (x, y) ∈ $(0, 4) \times (0, 1)$. Then

$$
\frac{\partial P}{\partial y} = \frac{1}{288} (1 - \alpha)^2 (4 - x) [(1 + 3\alpha)x - 4(4 - x)y] = 0
$$

if and only if

$$
y_0 = \frac{(1+3\alpha)x}{4(4-x)}.
$$

Therefore, we see that

$$
\frac{\partial P}{\partial x}(x, y_0) = 0
$$

if and only if

$$
(1 - \alpha)^2 x^2 - 4[(1 - \alpha)^2 + 4]x + 64 = 0.
$$
 (2.6)

For $0 \le \alpha < 1$, the equation [\(2.6\)](#page-8-0) has solutions:

$$
x_1 = 4
$$
, $x_2 = \frac{16}{(1 - \alpha)^2} \ge 16$.

Thus, $P(x, y)$ has no critical point in $(0, 4) \times (0, 1)$.

It now follows from **A**1-**A**5 that

$$
\det(T_{3,1})(f) \le \max\left\{1, \ 1 - \frac{1}{18}(1 - \alpha)^2(8 + 3\alpha)\right\} = 1
$$

for $0 \le \alpha < 1$ and $(x, y) \in [0, 4] \times [0, 1]$. By virtue of (2.5) , we deduce that the upper bound in [\(2.3\)](#page-6-2) holds.

B. We now prove the left-side inequality in (2.3) .

Note that

$$
\begin{aligned} \det(T_{3,1})(f) &= \Psi(c, |\xi|, \Re(\xi)) \ge \Psi(c, |\xi|, |\xi|) \\ &=: Q(c^2, |\xi|) \quad ((c, |\xi|) \in [0, 2] \times [0, 1]), \end{aligned} \tag{2.7}
$$

where $Q : [0, 4] \times [0, 1] \longrightarrow \mathbb{R}$ is defined by

$$
Q(x, y) = 1 - \frac{1}{8}(1 - \alpha)^2 x + \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha)x^2
$$

-
$$
\frac{1}{288}(1 - \alpha)^2 (1 + 3\alpha)(4 - x)xy - \frac{1}{144}(1 - \alpha)^2 (4 - x)^2 y^2.
$$

B1. For the case $x = 0$, we obtain

$$
Q(0, y) = 1 - \frac{1}{9}(1 - \alpha)^2 y^2 \ge 1 - \frac{1}{9}(1 - \alpha)^2 \quad (y \in [0, 1]).
$$

B2. For the case $x = 4$, we get

$$
Q(4, y) = 1 - \frac{1}{18}(1 - \alpha)^2(8 + 3\alpha) \quad (y \in [0, 1]).
$$

B3. For the case $y = 0$, we have

$$
Q(x, 0) = 1 - \frac{1}{8}(1 - \alpha)^2 x + \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha) x^2 \quad (x \in [0, 4]).
$$

For $\alpha = \frac{1}{3}$, we know that

$$
Q(x, 0) = 1 - \frac{1}{18}x \ge Q(4, 0) \quad (x \in [0, 4]).
$$

For $0 < \alpha < \frac{1}{3}$, we find that

$$
Q(x, 0) = \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha) \left(x - \frac{18}{1 - 3\alpha}\right)^2 - \frac{(1 + 3\alpha)^2}{1 - 3\alpha}
$$

\n
$$
\geq Q(4, 0) \quad (x \in [0, 4]).
$$

For $\frac{1}{3} < \alpha < 1$, we see that

$$
Q(x, 0) = \frac{1}{288}(1 - \alpha)^2 (1 - 3\alpha) \left(x - \frac{18}{1 - 3\alpha}\right)^2 - \frac{(1 + 3\alpha)^2}{1 - 3\alpha}
$$

\n
$$
\geq Q(4, 0) \quad (x \in [0, 4]).
$$

Thus, for all $0 \leq \alpha < 1$, we have

$$
Q(x, 0) \ge Q(4, 0) = 1 - \frac{1}{18}(1 - \alpha)^2(8 + 3\alpha)
$$
 $(x \in [0, 4]).$

B4. For the case $y = 1$, we find that

$$
Q(x, 1) = 1 - \frac{1}{9}(1 - \alpha)^2 - \frac{1}{24}(1 - \alpha)^2(2 + \alpha)x
$$

\n
$$
\geq Q(4, 1) = 1 - \frac{1}{18}(1 - \alpha)^2(8 + 3\alpha) \quad (x \in [0, 4]).
$$

B5. Let $(x, y) \in (0, 4) \times (0, 1)$. Then

$$
\frac{\partial Q}{\partial y} = -\frac{1}{288}(1 - \alpha)^2 (4 - x) [(1 + 3\alpha)x + 4(4 - x)y] = 0
$$

if and only if

$$
y_0 = -\frac{(1+3\alpha)x}{4(4-x)}.
$$

Obviously, for $0 \le \alpha < 1$ and $x \in (0, 4)$, we have $y_0 < 0$. Thus, $Q(x, y)$ has no critical point in $(0, 4) \times (0, 1)$.

In summary, when $0 \le \alpha < 1$ and $(x, y) \in [0, 4] \times [0, 1]$, parts **B1-B5** imply that

$$
Q(x, y) \ge \min\left\{1 - \frac{1}{9}(1 - \alpha)^2, 1 - \frac{1}{18}(1 - \alpha)^2(8 + 3\alpha)\right\}
$$

$$
= 1 - \frac{1}{18}(1 - \alpha)^2(8 + 3\alpha).
$$

Furthermore, by virtue of (2.7) , we get the lower bound in (2.3) .

At last, we show that inequalities [\(2.3\)](#page-6-2) are sharp.

In view of part \bf{A} and part \bf{B} , the right-side equality in (2.3) clearly holds for the identity function $f(z) = z$. By means of the relationships [\(1.11\)](#page-4-1) and [\(1.8\)](#page-3-0), the sharp function f_2 is given by (1.13) with

$$
a_2 = \frac{1}{2}(1 - \alpha), \ \ a_3 = \frac{1}{3}(1 - \alpha),
$$

and yields the left-side equality in (2.3) . This completes the proof of Theorem [2.2.](#page-6-0) \Box

By choosing $\alpha = 0$ in Theorem [2.1](#page-5-0) and Theorem [2.2,](#page-6-0) we get the following corollary.

Corollary 2.1 *If* $f \in K_s$ *, then*

$$
\frac{3}{4} \le \det(T_{2,1})(f) \le 1,
$$

and

$$
\frac{5}{9} \le \det(T_{3,1})(f) \le 1.
$$

All the inequalities are sharp.

Now, we consider the sharp bounds of $det(T_{4,1})(f)$ for the class S_s^* of starlike functions with respect to symmetric points.

Theorem 2.3 *If* $f \in S^*_s$ *be of the form* (1.1) *, then*

$$
-\frac{27}{256} \le \det(T_{4,1})(f) \le 1.
$$
 (2.8)

Both inequalities are sharp with equalities attained by f (*z*) *defined by [\(2.22\)](#page-19-0), and by the identity* $f(z) = z$ *, respectively.*

Proof For the function $f \in S_s^*$ given by [\(1.1\)](#page-0-0), we know that there exists an analytic function $p \in \mathcal{P}$ in the unit disk \mathbb{D} with $p(0) = 1$ and $\Re(p(z)) > 0$ such that

$$
\frac{2zf'(z)}{f(z) - f(-z)} = p(z) \quad (z \in \mathbb{D}).
$$
\n(2.9)

By elementary calculations, we have

$$
z + \sum_{n=2}^{\infty} n a_n z^n = \left(1 + \sum_{n=1}^{\infty} c_n z^n\right) \left(z + \sum_{n=2}^{\infty} a_{2n-1} z^{2n-1}\right).
$$
 (2.10)

It follows from [\(2.10\)](#page-11-0) that

$$
a_2 = \frac{1}{2}c_1, \ \ a_3 = \frac{1}{2}c_2, \ \ a_4 = \frac{1}{8}(2c_3 + c_1c_2). \tag{2.11}
$$

Since the class S_s^* and $\det(T_{4,1})(f)$ are rotationally invariant, we may assume that $c := c_1 \in [0, 2]$. Thus, [\(1.4\)](#page-2-1) and [\(2.11\)](#page-11-1) give

$$
\det(T_{4,1})(f) = 1 - \frac{3}{4}c^2 + \frac{1}{16}c^4 - \frac{1}{2} \cdot |c_2|^2 + \frac{1}{16} \cdot |c_2|^4
$$

\n
$$
- \frac{1}{256}c^2(4 - c^2) \cdot |c_2|^2 - \frac{1}{64}(4 - c^2) \cdot |c_3|^2
$$

\n
$$
+ \frac{1}{2}c^2 \cdot \Re(c_2) - \frac{1}{32}c^4 \cdot \Re(c_2) - \frac{1}{32}c^2 \cdot |c_2|^2 \cdot \Re(c_2)
$$

\n
$$
- \frac{1}{16}c^3 \cdot \Re(c_3) + \frac{1}{64}c(c^2 + 12) \cdot \Re(c_2\overline{c_3}) - \frac{1}{16}c \cdot \Re(c_2^2\overline{c_3}).
$$

Hence, by using (1.6) and (1.7) , we get

$$
\det(T_{4,1})(f) = \frac{1}{1024} \left(4 - c^2\right)^3 \cdot \left[16 - (32 + c^2) \cdot |\zeta|^2 + 2c^2 \cdot |\zeta|^2 \cdot \Re(\zeta) + \left(16 - c^2\right) \cdot |\zeta|^4 + 4c \cdot \left(1 - |\zeta|^2\right) \cdot \Re(\overline{\zeta}\eta) - 4c \cdot \left(1 - |\zeta|^2\right) \cdot \Re(\overline{\zeta^2}\eta) - 4 \cdot \left(1 - |\zeta|^2\right)^2 \cdot |\eta|^2\right]
$$
(2.12)

for some $c \in [0, 2]$ and $\zeta, \eta \in \overline{\mathbb{D}}$.

We now consider the lower and upper bounds for the class S_s^* for various cases. **A**. Suppose that $\zeta = 0$. Then

$$
0 \le \det(T_{4,1})(f) = \frac{1}{1024} \left(4 - c^2\right)^3 \cdot \left(16 - 4|\eta|^2\right) \le 1 \tag{2.13}
$$

for all $c \in [0, 2]$ and $\eta \in \overline{\mathbb{D}}$.

B. Suppose that $\eta = 0$. Then

$$
\det(T_{4,1})(f) = \frac{1}{1024} \left(4 - c^2\right)^3 \cdot \left[16 - \left(32 + c^2\right) \cdot |\zeta|^2 + 2c^2 \cdot |\zeta|^2 \cdot \Re(\zeta) + \left(16 - c^2\right) \cdot |\zeta|^4\right].
$$
\n(2.14)

It follows that

$$
\det(T_{4,1})(f) \ge \frac{1}{1024} \left(4 - c^2\right)^3 \cdot \left[16 - \left(32 + c^2\right) \cdot |\zeta|^2 - 2c^2 \cdot |\zeta|^3 + \left(16 - c^2\right) \cdot |\zeta|^4\right]
$$

$$
= \frac{1}{1024} \left(4 - c^2\right)^3 \cdot \left[16\left(1 - |\zeta|^2\right)^2 - c^2 \cdot |\zeta|^2 \cdot (1 + |\zeta|)^2\right]
$$

$$
=: P(c^2, |\zeta|), \tag{2.15}
$$

and

$$
\det(T_{4,1})(f) \le \frac{1}{1024}(4 - c^2)^3 \cdot \left[16 - (32 + c^2) \cdot |\zeta|^2 + 2c^2 \cdot |\zeta|^3 + (16 - c^2) \cdot |\zeta|^4\right]
$$

$$
= \frac{1}{1024}(4 - c^2)^3 \cdot \left[16(1 - |\zeta|^2)^2 - c^2 \cdot |\zeta|^2 \cdot (1 - |\zeta|)^2\right]
$$

$$
=: Q(c^2, |\zeta|), \qquad (2.16)
$$

where *P*, $Q: [0, 4] \times [0, 1] \longrightarrow \mathbb{R}$ is defined by

$$
P(u, x) = \frac{1}{1024}(4 - u)^3 \cdot \left[16(1 - x^2)^2 - ux^2(1 + x)^2\right],
$$

and

$$
Q(u, x) = \frac{1}{1024}(4 - u)^3 \cdot \left[16(1 - x^2)^2 - ux^2(1 - x)^2\right],
$$

respectively.

B1. We discuss the lower bound of $P(u, x)$.

(i) On the vertices of [0, 4] \times [0, 1], we have

$$
P(0,0) = 1, P(0,1) = P(4,0) = P(4,1) = 0.
$$

(ii) On the side $u = 0$, we get

$$
P(0, x) = (1 - x^2)^2 \ge 0 \quad (x \in [0, 1]).
$$

(iii) On the side $u = 4$, we obtain

$$
P(4, x) = 0 \quad (x \in [0, 1]).
$$

(iv) On the side $x = 0$, we see that

$$
P(u, 0) = \frac{1}{64}(4 - u)^3 \ge 0 \quad (u \in [0, 4]).
$$

(v) On the side $x = 1$, we know that

$$
P(u, 1) = -\frac{1}{256}u(4 - u)^3 =: \phi(u) \quad (u \in [0, 4]).
$$

Note that

$$
\phi'(u) = -\frac{1}{64}(4-u)^2(1-u) \quad (u \in [0, 4]),
$$

for $0 \le u \le 1$, we know that $\phi'(u) \le 0$, which implies that

$$
\phi(u) \ge \phi(1) = -\frac{27}{256},
$$

and for $1 \le u \le 4$, we find that $\phi'(u) \ge 0$, which shows that

$$
\phi(u) \ge \phi(1) = -\frac{27}{256}.
$$

Thus, we deduce that

$$
P(u, 1) = \phi(u) \ge -\frac{27}{256} \quad (u \in [0, 4]).
$$

(vi) In the interior of $(0, 4) \times (0, 1)$, since the equation

$$
\frac{\partial P}{\partial x} = -\frac{1}{512}x(1+x)(4-u)^3[32(1-x) + u(1+2x)] = 0
$$

has no solution in $(0, 4) \times (0, 1)$, we see that *P* has no critical point in the interior of $(0, 4) \times (0, 1)$.

Therefore, from (2.15) , it follows that

$$
\det(T_{4,1})(f) \ge P\left(c^2, |\zeta|\right) \ge -\frac{27}{256} \quad ((c^2, |\zeta|) \in [0, 4] \times [0, 1]).
$$

B2. We next discuss the upper bound of $Q(u, x)$.

(i) On the vertices of $[0, 4] \times [0, 1]$, we get

$$
Q(0, 0) = 1, Q(0, 1) = Q(4, 0) = Q(4, 1) = 0.
$$

(ii) On the side $u = 0$, we have

$$
Q(0, x) = (1 - x^2)^2 \le 1 \quad (x \in [0, 1]).
$$

(iii) On the side $u = 4$, we obtain

$$
Q(4, x) = 0 \quad (x \in [0, 1]).
$$

(iv) On the side $x = 0$, we know that

$$
Q(u, 0) = \frac{1}{64}(4 - u)^3 \le 1 \quad (u \in [0, 4]).
$$

(v) On the side $x = 1$, we find that

$$
Q(u, 1) = 0 \quad (u \in [0, 4]).
$$

(vi) In the interior of $(0, 4) \times (0, 1)$, since the equation

$$
\frac{\partial Q}{\partial x} = -\frac{1}{512}x(1-x)(4-u)^3[32+u+2(16-u)x] = 0
$$

has no solution in $(0, 4) \times (0, 1)$, we know that *P* has no critical point in the interior of $(0, 4) \times (0, 1)$. Thus, it follows from (2.16) that

$$
\det(T_{4,1})(f) \le Q(c^2, |\zeta|) \le 1 \quad \left(\left(c^2, |\zeta| \right) \in [0, 4] \times [0, 1] \right).
$$

C. Suppose that ζ , $\eta \in \overline{D} \setminus \{0\}$. Then, there exist unique θ and φ in [0, 2π) such $\zeta = xe^{i\theta}$ and $\eta = ye^{i\phi}$, where $x := |\zeta| \in (0, 1]$ and $y := |\eta| \in (0, 1]$. Thus, from (2.12) , we get

$$
\det(T_{4,1})(f) = \frac{1}{1024} \left(4 - c^2\right)^3 \cdot F(c, x, y, \theta, \varphi),\tag{2.17}
$$

where

$$
F(c, x, y, \theta, \varphi) = 16 - (32 + c^2) x^2 + 2c^2 x^3 \cos \theta + (16 - c^2) x^4
$$

+
$$
4c (1 - x^2) xy \cos(\theta - \varphi) - 4c (1 - x^2) x^2 y \cos(2\theta - \varphi)
$$

-
$$
4 (1 - x^2)^2 y^2.
$$

For $c \in [0, 2]$ and $x, y \in (0, 1]$, we have

$$
G(c, x, y) \le F(c, x, y, \theta, \varphi) \le H(c, x, y),
$$
\n(2.18)

where

$$
G(c, x, y) := F(c, x, y, \pi, 0)
$$

= 16 - (32 + c²)x² - 2c²x³ + (16 - c²)x⁴ - 4c(1 - x²)(1 + x)xy (2.19)
- 4(1 - x²)²y²
= 16(1 - x²)² - c²x²(1 + x)² - 4c(1 - x²)(1 + x)xy - 4(1 - x²)²y²,

and

$$
H(c, x, y)
$$

= 16 - (32 + c²)x² + 2c²x³ + (16 - c²)x⁴ + 4c(1 - x²)(1 + x)xy (2.20)
- 4(1 - x²)²y²
= 16(1 - x²)² - c²x²(1 - x)² + 4c(1 - x²)(1 + x)xy - 4(1 - x²)²y².

C1. We discuss the lower bound of $G(c, x, y)$. Let $x = 1$. Then

$$
G(c, 1, y) = -4c2 \quad (c \in [0, 2]; \ y \in (0, 1]).
$$

From [\(2.17\)](#page-15-0), [\(2.18\)](#page-15-1) and part **B**1 (v), it follows that

$$
\det(T_{4,1})(f) \ge -\frac{1}{256}c^2(4-c^2)^3 \ge -\frac{27}{256}.
$$

Let $x \in (0, 1)$. Then

$$
y_{\omega} = -\frac{cx}{2(1-x)} \le 0, \ -4(1-x^2)^2 < 0.
$$

We now find that

$$
G(c, x, y) \ge G(c, x, 1) = 12(1 - x^2)^2 - c^2 x^2 (1 + x)^2 - 4c(1 - x^2)(1 + x)x
$$

=: $\psi(c, x) \quad ((c, x) \in [0, 2] \times (0, 1)).$

(i) On the side $x = 0$, we obtain

$$
\psi(c,0) = 12 \quad (c \in [0,2]).
$$

(ii) On the side $x = 1$, we get

$$
\psi(c, 1) = -4c^2 \quad (c \in [0, 2]).
$$

It follows from (2.17) , (2.18) and part **B**1 (v) that

$$
\det(T_{4,1})(f) \ge -\frac{1}{256}c^2(4-c^2)^3 \ge -\frac{27}{256}.
$$

(iii) On the side $c = 0$, we have

$$
\psi(0, x) = 12(1 - x^2)^2 \ge 0 \quad (x \in [0, 1]).
$$

(iv) On the side $c = 2$, we get

$$
\psi(2, x) = 4(1+x)^2(3-2x)(1-2x) \quad (x \in [0, 1]),
$$

thus, from (2.17) and (2.18) , we deduce that

$$
\det(T_{4,1})(f) \ge \frac{1}{1024} \cdot (4 - c^2)^3 \big|_{c=2} \cdot \psi(2, x) = 0.
$$

(v) It remains to consider the interior of $(0, 2) \times (0, 1)$. Since the system of equations

$$
\frac{\partial \psi}{\partial c} = -2x(1+x)^2[cx + 2(1-x)] = 0
$$

has no solution in $(0, 2) \times (0, 1)$, we see that ψ has no critical point in the interior of $(0, 2) \times (0, 1)$.

From part **C**1, we find that

$$
\det(T_{4,1})(f) \ge \frac{1}{1024}(4-c^2)^3 \cdot G(c, x, y) \ge -\frac{27}{256}.
$$

C2. We next discuss the upper bound of $H(c, x, y)$. Let $x = 1$. Then

$$
H(c, 1, y) = 0 \quad (c \in [0, 2], \ y \in (0, 1]).
$$

Let $x \in (0, 1)$. Then

$$
y_0 = \frac{cx}{2(1-x)} \ge 0
$$
, $-4(1-x^2)^2 < 0$.

Therefore, we need to consider the following two cases.

C2.1. Assume that $y_0 < 1$, i.e.,

$$
x \in \left(0, \frac{2}{c+2}\right) \subset [0, 1]
$$

for all $c \in [0, 2]$. Let

$$
\Delta_1 := \left\{ (c, x) : \ 0 \le c \le 2, \ 0 \le x \le x_0(c) = \frac{2}{c+2} \right\}.
$$

Then

$$
H(c, x, y) \le H(c, x, y_0) =: h(c, x) \quad ((c, x) \in \Delta_1, y \in (0, 1]),
$$

where

$$
h(c, x) = 16(1 - x2)2 + 4c2x3 \quad ((c, x) \in \Delta_1).
$$

(i) On the vertices of Δ_1 , we know that

$$
h(0, 0) = 16, \quad h(0, x_0(0)) = h(0, 1) = 0,
$$

$$
h(2, 0) = 16, \quad h(2, x_0(2)) = h(2, 1/2) = 11.
$$

(ii) On the side $x = 0$, we get

$$
h(c, 0) = 16 \quad (c \in (0, 2)).
$$

(iii) On the side $x = x_0(c)$ with $c \in (0, 2)$, we have

$$
h(c, x_0(c)) = \frac{16c^2}{(2+c)^4}(c^2 + 10c + 20) =: \gamma(c).
$$

By noting that

$$
\gamma'(c) = \frac{-32c}{(2+c)^5}(c^2 - 10c - 40) = \frac{32c}{(2+c)^5} \left[65 - (c-5)^2\right] > 0 \quad (c \in (0, 2)),
$$

it shows that γ is an increasing function for $c \in (0, 2)$. Thus,

$$
h(c, x_0(c)) \le \gamma(2) = 11 \quad (c \in (0, 2)).
$$

(iv) On the side $c = 0$, we have

$$
h(0, x) = 16(1 - x^2)^2 \le 16 \quad (x \in [0, 1)).
$$

(v) on the side $c = 2$, we get

$$
h(2, x) = 16 - 16x2(x + 2)(1 - x) \le 16 \quad (x \in [0, 1/2]).
$$

(vi) It remains to consider the interior of Δ_1 . Since the system of equations

$$
\begin{cases} \frac{\partial h}{\partial c} = 8cx^3 = 0\\ \frac{\partial h}{\partial x} = -64x + 12c^2x^2 + 64x^3 = 0 \end{cases}
$$

has solutions $(0, 0)$, $(0, 1)$ and $(0, -1)$, we know that *h* has no critical point in the interior of Δ_1 .

C2.2. Assume that *y*⁰ ≥ 1, i.e., *x* ∈ [*x*₀(*c*), 1] for all *c* ∈ [0, 2]. Let

$$
\Delta_2 := \bigg\{ (c, x) : \ 0 \le c \le 2, \ x_0(c) = \frac{2}{c+2} \le x \le 1 \bigg\}.
$$

Then

$$
H(c, x, y) \le H(c, x, 1) =: g(c, x) \quad ((c, x) \in \Delta_2, y \in (0, 1]),
$$

where for $(c, x) \in \Delta_2$,

$$
g(c, x) = 12(1 - x2)2 - c2x2(1 - x)2 + 4c(1 - x2)(1 + x)x
$$

= 12 + 4cx - (c² - 4c + 24)x² + 2(c² - 2c)x³ - (c² + 4c - 12)x⁴.

(i) On the vertices of Δ_2 , we get

$$
g(0, x_0(0)) = g(0, 1) = 0, \quad g(2, x_0(2)) = g(2, 1/2) = 11, \quad g(2, 1) = 0.
$$

(ii) On the side $x = x_0(c)$, see the case C2.1 (iii).

(iii) On the side $x = 1$, we have

$$
g(c, 1) = 0 \quad (c \in (0, 2)).
$$

(iv) On the side $c = 2$, we obtain

$$
g(2, x) = 12 + 8x - 20x^2 \le (12 + 8x - 20x^2)|_{x=1/2} = 11 \quad (x \in [1/2, 1)).
$$

(v) It remains to consider the interior of Δ_2 . Since the system of equations

$$
\begin{cases} \frac{\partial g}{\partial c} = 4x - 2(c - 2)x^2 + 4(c - 1)x^3 - 2(c + 2)x^4 = 0\\ \frac{\partial g}{\partial x} = 4c - 2(c^2 - 4c + 24)x + 6(c^2 - 2c)x^2 - 4(c^2 + 4c - 12)x^3 = 0 \end{cases} (2.21)
$$

has solution $c = x = 0$ evidently. Let $x \neq 0$. From the first equation of [\(2.21\)](#page-19-1), we get

$$
c_0 = \frac{2(1+x)^2}{x(1-x)},
$$

but $c_0 \notin [0, 2]$ for $x \in [1/2, 1)$. Thus, g has no critical point in the interior of \triangle_2 .

It follows from part **C**2 that

$$
\det(T_{4,1})(f) = \frac{1}{1024}(4 - c^2)^3 \cdot F(c, x, y, \theta, \varphi) \le \frac{1}{1024} \cdot 4^3 \cdot 16 = 1.
$$

For the sharpness of [\(2.8\)](#page-11-2), in view of parts **B**1 (v) and **C**1 (ii), let

$$
p(z) = \frac{1 - z - z^2 + z^3}{1 - 2z + 2z^2 - z^3} = 1 + z - z^2 - 2z^3 + \cdots \quad (z \in \mathbb{D}),
$$

which belongs to the class P , for the extremal function given by

$$
\frac{2zf'(z)}{f(z) - f(-z)} = \frac{1 - z - z^2 + z^3}{1 - 2z + 2z^2 - z^3} \quad (z \in \mathbb{D})
$$
\n(2.22)

with

$$
a_2 = \frac{1}{2}
$$
, $a_3 = -\frac{1}{2}$, $a_4 = -\frac{5}{8}$.

Thus, we find that

$$
\det(T_{4,1})(f) = -\frac{27}{256}.
$$

It is clear that equality for the upper bound in (2.8) holds for the identity function. \Box

 \bigcirc Springer

Acknowledgements The present investigation was supported by the *Natural Science Foundation of Hunan Province* under Grant no. 2022JJ30185, the *Key Project of Education Department of Hunan Province* under Grant no. 19A097, and the *Foundation for Excellent Young Teachers of Education Department of Hunan Province* under Grant no. 18B388 of the P. R. China. The authors would like to thank Prof. Rosihan M. Ali and the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

- 1. Ali, M.F., Thomas, D.K., Vasudevarao, A.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. **97**, 253–264 (2018)
- 2. Ali, R.M., Lee, S.K., Obradović, M.: Sharp bounds for initial coefficients and the second Hankel determinant. Bull. Korean Math. Soc. **57**, 839–850 (2020)
- 3. Allu, V., Lecko, A., Thomas, D.K.: Hankel, Toeplitz, and Hermitian-Toeplitz determinants for certain close-to-convex functions. Mediterr. J. Math. **19**, 17 (2022)
- 4. Babalola, K. O.: On *H*3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications. In: Cho, Y. J., Kim, J. K., Dragomir, S. S., (eds.) pp. 1–7, (2010)
- 5. Banga, S., Kumar, S.: The sharp bounds of the second and third Hankel determinants for the class *SL*∗. Math. Slovaca **70**, 849–862 (2020)
- 6. Bansal, D.: Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. **26**, 103–107 (2013)
- 7. Bansal, D., Haharana, S., Prajapat, J.K.: Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. **52**, 1139–1148 (2015)
- 8. Bucur, R., Breaz, D., Georgescu, L.: Third Hankel determinant for a class of analytic functions with respect to symmetric. Acta Univ. Apulensis Math. Inform. **42**, 79–86 (2015)
- 9. Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. **11**, 429–439 (2017)
- 10. Cho, N.E., Kowalczyk, B., Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc. **100**, 86–96 (2019)
- 11. Cho, N.E., Kumar, S., Kumar, V.: Hermitian-Toeplitz and Hankel determinants for certain starlike functions. Asian-Eur. J. Math. **15**(2250042), 16 (2022)
- 12. Cudna, K., Kwon, O.S., Lecko, A., Sim, Y.J., Smiarowska, B.: The second and third-order Hermitian ´ Toeplitz determinants for starlike and convex functions of order α. Bol. Soc. Mat. Mex. **3**(26), 361–375 (2020)
- 13. Das, R.N., Singh, P.: On subclasses of schlicht mappings. Indian J. Pure Appl. Math. **8**, 864–872 (1977)
- 14. Giri, S., Kumar, S. S.: Sharp bounds of fifth coefficient and Hermitian-Toeplitz determinants for Sakaguchi classes, [arXiv. 2210.13170v1,](http://arxiv.org/abs/2210.13170v1) (2022)
- 15. Janteng, A., Halim, S.A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. **7**(50), 5 (2006)
- 16. Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. (Ruse) **1**, 619–625 (2007)
- 17. Jastrzebski, P., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fis. Nat. **114**(166), 14 (2020)
- 18. Krishna, D.V., Venkateswarlu, B., Ramreddy, T.: Third Hankel determinant for bounded turning functions of order alpha. J. Nigerian Math. Soc. **34**, 121–127 (2015)
- 19. Krishna, D.V., Venkateswarlu, B., Ramreddy, T.: Third Hankel determinant for starlike and convex functions with respect to symmetric points. Ann. Univ. Mariae Curie-Sklodowska Sect. A. **70**, 37–45 (2016)
- 20. Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. **97**, 435–445 (2018)
- 21. Kwon, O.S., Lecko, A., Sim, Y.J.: On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory **18**, 307–314 (2018)
- 22. Kowalczyk, B., Lecko, A., Lecko, M., Sim, Y.J.: The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. **55**, 1859–1868 (2018)
- 23. Kumar, V.: Hermitian-Toeplitz determinants for certain classes of close-to-convex functions. Bull. Iranian Math. Soc. **48**, 1093–1109 (2022)
- 24. Kumar, S., Kumar, V.: Sharp estimates on the third order Hermitian-Toeplitz determinant for Sakaguchi classes. Commun. Korean Math. Soc. **37**, 1041–1053 (2022)
- 25. Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. **42**, 767–780 (2019)
- 26. Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J., Smiarowska, B.: The third-order Hermitian Toeplitz ´ determinant for classes of functions convex in one direction. Bull. Malays. Math. Sci. Soc. **43**, 3143– 3158 (2020)
- 27. Kowalczyk, B., Lecko, A., Smiarowska, B.: Sharp inequalities for Hermitian Toeplitz determinants for ´ strongly starlike and strongly convex functions. J. Math. Inequal. **15**, 323–332 (2021)
- 28. Lecko, A., Sim, Y.J., Smiarowska, B.: The sharp bound of the Hankel determinant of the third kind for ´ starlike functions of order 1/2. Complex Anal. Oper. Theory **13**, 2231–2238 (2019)
- 29. Lecko, A., Sim, Y.J., Smiarowska, B.: The fourth-order Hermitian Toeplitz determinant for convex ´ functions. Anal. Math. Phys. **10**(39), 11 (2020)
- 30. Lecko, A., Smiarowska, B.: Sharp bounds of the Hermitian Toeplitz determinants for some classes of ´ close-to-convex functions. Bull. Malays. Math. Sci. Soc. **44**, 3391–3412 (2021)
- 31. Lee, S.K., Ravichandran, V., Subramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. **2013**(281), 17 (2013)
- 32. Libera, R.J., Złotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. **85**, 225–230 (1982)
- 33. Libera, R.J., Złotkiewicz, E.J.: Coefficient bounds for the inverse of a function with derivatives in *P*. Proc. Amer. Math. Soc. **87**, 251–257 (1983)
- 34. Noonan, J.W., Thomas, D.K.: On the second Hankel determinant of a really mean *p*-valent functions. Trans. Amer. Math. Soc. **223**, 337–346 (1976)
- 35. Obradović, M., Tuneski, N.: Hermitian Toeplitz determinants for the class *S* of univalent functions. Armen. J. Math. **13**(4), 10 (2021)
- 36. Patil, S.M., Khairnar, S.M.: Third Hankel determinant for starlike and convex function with respect to symmetric points, Internat. J Pure Appl. Math. **10**, 7–15 (2017)
- 37. Prajapat, J.K., Bansal, D., Singh, A., Mishra, A.K.: Bounds on third Hankel determinant for close-toconvex functions. Acta Univ. Sapientiae Math. **7**, 210–219 (2015)
- 38. Ravichandran, V.: Starlike and convex functions with respect to conjugate points. Acta Math. Acad. Paedagog. Nyhzi. (N. S.) **20**, 31–37 (2004)
- 39. Raza, M., Malik, S.N.: Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli. J. Inequal. Appl. **2013**(412), 8 (2013)
- 40. Sakaguchi, K.: On certain univalent mapping. J. Math. Soc. Japan **11**, 72–75 (1959)
- 41. Selvaraj, C., Vasanthi, N.: Subclasses of analytic functions with respect to symmetric and conjugate points. Tamkang J. Math. **42**, 87–94 (2011)
- 42. Sun, Y., Wang, Z.-G., Rasila, A.: On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings,. Hacet. J. Math. Stat. **48**, 1695–1705 (2019)
- 43. Wang, Z.-G., Gao, C.-Y., Yuan, S.-M.: On certain subclasses of close-to-convex and quasi-convex functions with respect to *k*-symmetric points. J. Math. Anal. Appl. **322**, 97–106 (2006)
- 44. Wang, Z.-G., Raza, M., Arif, M., Ahmad, K.: On the third and fourth Hankel determinants of a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. **45**, 323–359 (2022)
- 45. Wang, Z.-G., Arif, M., Liu, Z.-H., Zainab, S., Fayyaz, R., Ihsan, M., Shutaywi, M.: Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. (2023). [https://](https://doi.org/10.11948/20220180) doi.org/10.11948/20220180
- 46. Wang, X.-Y., Wang, Z.-G., Fan, J.-H., Hu, Z.-Y.: Some properties of certain close-to-convex harmonic mappings. Anal. Math. Phys. **12**(28), 21 (2022)
- 47. Zaprawa, P.: Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. **14**(19), 10 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.