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Abstract
In this work, we mainly study refinements and generalizations of the Young’s and
its reverse inequalities. First, utilizing the famous weighted arithmetic and geometric
mean inequality, we provide an alternative proof for the power version of the Young’s
inequality given by Al-Manasrah and Kittaneh. In addition, some generalizations of
the Al-Manasrah–Kittaneh’s inequalities are also given. Further, we also establish
refinement of the Alzer–Fonseca–Kovačec’s version of the Young’s inequality as fol-
lows. Let a, b, μ and v be positive real numbers with 0 ≤ μ < v ≤ 1 and m be a
positive integer. Then

[
μa + (1 − μ)b

]m − (
aμb1−μ

)m + r
[
a

m
2 − (

avb1−v
)m

2
]2

≤
(1 − μ

1 − v

)m[(
va + (1 − v)b

)m − (
avb1−v

)m]

and

r1
[
a

m
2 − (

avb1−v
)m

2
]2 +

(μ

v

)m[(
va + (1 − v)b

)m − (
avb1−v

)m]

≤ [
μa + (1 − μ)b

]m − (
aμb1−μ

)m
,
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where r is a constant with 0 < r ≤
(
1−μ
1−v

)m
vm − μm and r1 is a constant with

0 < r1 ≤ min
{(

μ
v

)m
, μm −

(
μ
v

)m
vm

}
. As an application, we present corresponding

operator and matrix inequalities following from the established scalar inequalities.

Keywords Young’s and its reverse inequalities · Al-Manasrah–Kittaneh’s
inequalities · Alzer–Fonseca–Kovačec’s inequalities · Determinants · Positive
semidefinite matrices, operators
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1 Introduction

The famous weighted arithmetic and geometric mean inequality can be stated as fol-
lows: Let m be a positive integer and xk and pk (k = 1, 2, . . . ,m) be positive real

numbers with
m∑

k=1
pk = 1, then

m∏

k=1

x pk
k ≤

m∑

k=1

pkxk . (1)

Equality holds if and only if x1 = x2 = · · · = xm . When m = 2, inequality (1) is
just the classical Young’s inequality

a1−vbv ≤ (1 − v)a + vb, (2)

where a and b are positive real numbers and 0 ≤ v ≤ 1.
Refining the Young’s and its reverse inequalities by adding a positive term to the left

(right) side becomes possible, which has been taken the attention of many researchers.
In [19, 20],Kittaneh andManasrah presented a refinement ofYoung’s and its reverse

inequalities:

avb1−v + r(
√
a − √

b)2 ≤ va + (1 − v)b ≤ avb1−v + R(
√
a − √

b)2, (3)

where a ≥ 0, b ≥ 0, 0 ≤ v ≤ 1, r = min{v, 1 − v} and R = max{v, 1 − v}.
The squared form of the refined Young’s and its reverse inequalities, obtained by

Hirzallah etc. [15] and He etc. [12], respectively, can be stated that

r2(a − b)2 ≤ (
va + (1 − v)b

)2 − (
avb1−v

)2 ≤ R2(a − b)2, (4)

where a ≥ 0, b ≥ 0, 0 ≤ v ≤ 1, r = min{v, 1 − v} and R = max{v, 1 − v}.
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In 2015, Manasrah and Kittaneh [24, Theorem 2] deduced a more generalization
of inequalities (3) and (4) that

(
avb1−v

)m + rm
(
a

m
2 − b

m
2
)2 ≤ (

va + (1 − v)b
)m (5)

for any positive integer m, where a ≥ 0, b ≥ 0, 0 ≤ v ≤ 1, and r = min{v, 1 − v}.
It should be mentioned here that Akkouchi and Ighachane [1] gave an alternative

proof to inequality (5).
In 2017,Al-Manasrah andKittaneh [2, Theorem3] presented another generalization

of inequalities (3) as follows: Let a, b and v be positive real numbers with 0 ≤ v ≤ 1
and m be a positive integer. Then

rm(a
m
2 − b

m
2 )2 ≤ rm

[
(a + b)m − 2m(ab)

m
2
]2

≤ [
va + (1 − v)b

]m − (
avb1−v

)m

≤ Rm[
(a + b)m − 2m(ab)

m
2
]2

, (6)

where r = min{v, 1 − v} and R = max{v, 1 − v}.
It is easy to see that the left-hand side of inequalities (6) is also a refinement of

inequality (5).
Alzer, Fonseca and Kovačec [3, Theorem 2.1] obtained an important refinement

of the Young’s inequalities (3): Let a, b, v, μ and λ be positive real numbers with
0 ≤ μ ≤ v ≤ 1 and λ ≥ 1. Then

(μ

v

)λ ≤
[
μa + (1 − μ)b

]λ − (aμb1−μ)λ

[
va + (1 − v)b

]λ − (avb1−v)λ
≤

(1 − μ

1 − v

)λ

. (7)

TheAlzer–Fonseca–Kovačec’s inequalities (7) canbe regarded as amajor development
concerning the Young’s inequality for the past few years.

Later, Liao and Wu [23, Theorem 2.1] deduced the following inequalities between
the arithmetic mean and the harmonic mean:

(μ

v

)λ ≤
[
μa + (1 − μ)b

]λ − [
μa−1 + (1 − μ)b−1

]−λ

[
va + (1 − v)b

]λ − [
va−1 + (1 − v)b−1

]−λ
≤

(1 − μ

1 − v

)λ

, (8)

where a, b, v, μ and λ are positive real numbers with 0 ≤ μ ≤ v ≤ 1 and λ ≥ 1.
As far as convex functions are concerned, Sababheh [28, Theorem 2.1] generalized

inequalities (7) and (8): Let f : [0, 1] → [0,+∞) be a convex function and v, μ and
λ be positive real numbers with 0 ≤ μ ≤ v ≤ 1 and λ ≥ 1. Then

(μ

v

)λ ≤
[
μ f (0) + (1 − μ) f (1)

]λ − f (μ)λ

[
v f (0) + (1 − v) f (1)

]λ − f (v)λ
≤

(1 − μ

1 − v

)λ

.

In 2020, Ren [27, Theorems 2.1 and 2.3] refined the Alzer–Fonseca–Kovačec’s
inequalities (7) in the cases λ = 1, 2 under some conditions.
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In 2021, Ighachane, Akkouchi and benabdi [17, Theorem 2.2] gave a refinement of
the left-hand side of theAlzer–Fonseca–Kovačec’s inequalities (7) for λ = 1, 2, 3, . . ..

The Young’s and its reverse inequalities, though very simple, are important in
functional analysis, matrix theory, operator theory, electrical networks, etc. Many
scholars had done much research in this topic. We refer the readers to [5, 8–10, 21,
25, 26, 29–37] and references therein for other works.

The main aim of this work is to study generalizations and refinements of the
Young’s and its reverse inequalities. First, we give an alternative proof to the Al-
Manasrah–Kittaneh’s inequalities (6). And then, we also give some generalizations for
the Al-Manasrah–Kittaneh’s inequalities (6) and refinements of the Alzer–Fonseca–
Kovačec’s inequalities (7) for λ = 1, 2, 3, . . .. Based on them,we present some refined
matrix version of the Young’s and its reverse inequalities for convex functions. More-
over, inequalities for determinants and operators are also given.

2 Generalizations and Refinements of the Young’s and Its Reverse
Inequalities for Scalars

In this section, we mainly study generalizations and refinements of the Young’s and its
reverse inequalities for scalars. Before giving the main results, we need the following
lemmas. The first lemma was given by Akkouchi and Ighachane [1].

Lemma 1 Let m be a positive integer and v be a positive real number with 0 ≤ v ≤ 1.
Then

m∑

k=1

Ck
mkv

k(1 − v)m−k = mv,

where Ck
m =

(
m
k

)
is the binomial coefficient.

Lemma 2 Let μ and v be positive real numbers with 0 ≤ μ < v ≤ 1 and m be a
positive integer. Then inequality holds

(1 − μ

1 − v

)m
vk(1 − v)m−k − μk(1 − μ)m−k > 0,

for k = 0, 1, . . . ,m.

Proof Since 0 ≤ μ < v ≤ 1, then v
μ

> 1 and 1−μ
1−v

> 1. So we get

(1 − μ

1 − v

)m vk(1 − v)m−k

μk(1 − μ)m−k
=

( v

μ

)k ·
(1 − μ

1 − v

)k
> 1.

This completes the proof. ��
The third lemma was obtained by Ighachane, Akkouchi and Bennabdi [17, Lemma

2.2].
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Lemma 3 Let μ and v be positive real numbers with 0 ≤ μ < v ≤ 1 and m be a
positive integer. Then inequality holds

μk(1 − μ)m−k −
(μ

v

)m
vk(1 − v)m−k > 0,

for k = 0, 1, . . . ,m.

Utilizing the famous weighted arithmetic and geometric mean inequality, we can
give an alternative proof to inequalities (6). For convenience,we present it as a theorem.

Theorem 1 Let a, b and v be positive real numbers with 0 ≤ v ≤ 1 andm be a positive
integer. Then

rm
[
(a + b)m − 2m(ab)

m
2

]
≤ [

va + (1 − v)b
]m − (

avb1−v
)m

≤ Rm
[
(a + b)m − 2m(ab)

m
2

]
, (9)

where r = min{v, 1 − v} and R = max{v, 1 − v}.
Proof By the binomial expansion of

(
va + (1 − v)

)m and (a + 1)m , we have

(
va + (1 − v)

)m =
m∑

k=0

pka
k

and

(a + 1)m =
m∑

k=0

Ck
ma

k,

where pk = Ck
mvk(1 − v)m−k and Ck

m =
(
m
k

)
is the binomial coefficient, k =

0, 1, . . . ,m.

Therefore, we get

[
va + (1 − v)

]m − amv − rm
[
(a + 1)m − 2ma

m
2

]

=
m∑

k=0

pka
k − amv − rm

[ m∑

k=0

Ck
ma

k − 2ma
m
2

]

=
m∑

k=0

[
pk − rmCk

m

]
ak + 2mrma

m
2 − amv

≥ a

m∑

k=0
k

[
pk−rmCk

m

]
+m2m−1rm

− amv (inequali t y (1))

= amv−m2m−1rm+m2m−1rm − amv (Lemma1)
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= 0. (10)

Inequality (10) gives

rm
[
(a + 1)m − 2ma

m
2

]
≤ [

va + (1 − v)
]m − amv. (11)

Putting a =: a
b in inequality (11), we have

rm
[(a

b
+ 1

)m − 2m
(a
b

)m
2
]

≤
[
v
a

b
+ (1 − v)

]m −
[a
b

]mv

. (12)

Multiplying bm on both sides of inequality (12), we get the left-hand side of inequality
(9).

Similarly, since R = max{v, 1 − v}, then 2R ≥ 1, thus we obtain

Rm[
(a + 1)m − 2ma

m
2
] − (va + 1 − v)m + amv

=
m∑

k=0

[
Ck
m Rm − pk

]
ak + amv − (2R)ma

m
2

= (2R)m
[ m∑

k=0

(2R)−m(
Ck
m Rm − pk

)
ak + (2R)−mamv

]
− (2R)ma

m
2

≥ (2R)ma
(2R)−m

{
m∑

k=0
k
(
Ck
m Rm−pk

)
+mv

}

− (2R)ma
m
2 ( inequali t y(1))

= (2R)ma
[
m
2 −mv(2R)−m+mv(2R)−m

]
− (2R)ma

m
2 (Lemma1)

= 0,

which implies

(va + 1 − v)m + amv ≤ Rm[
(a + 1)m − 2ma

m
2
]
. (13)

Setting a =: a
b in inequality (13), we get

[
v
a

b
+ 1 − v

]m +
(a
b

)mv ≤ Rm
[(a

b
+ 1

)m − 2m
(a
b

)m
2
]
. (14)

Multiplying bm on both sides of inequality (14),we get the right-hand side of inequality
(9).

This completes the proof. ��
It is worth mentioning that the authors [2, Theorem 2] proved that if φ is a strictly

increasing convex function on an interval I , then φ(z)−φ(w) ≤ φ(x)−φ(y) , where
x , y, w, z are points in I with w ≤ z ≤ x , y ≤ x and z − w ≤ x − y. By using this
result for the function φ(x) = x p (p ≥ 1), they obtained Theorem 1. It is easy to see
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that our proof of Theorem 1 is different from that of Al-Manasrah and Kittaneh’s [2,
Theorem 3].

The positive integer m in inequality (9) can be replaced by positive real number
λ ≥ 1. Actually, we have the following results.

Theorem 2 Let a, b and λ be positive real numbers with λ ≥ 1. Then

[
va + (1 − v)b

]λ − (avb1−v)λ

min{v, 1 − v}λ ≥
[
τa + (1 − τ)b

]λ − (aτb1−τ )λ

min{τ, 1 − τ }λ

for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. In particular,

[va + (1 − v)b]λ − (avb1−v)λ ≥ rλ
[
(a + b)λ − 2λ(ab)

λ
2
]
,

where 0 ≤ v ≤ 1 and r = min{v, 1 − v}.
Proof The proof idea is due to Alzer–Fonseca–Kovačec [3, Theorem 2.1].

Taking h(x) = x(1 − ln x) − 1, then h′(x) = − ln x , thus h(x) < h(1) = 0 for all

0 < x 
= 1. Define the function F(v, λ, a) = (va+1−v)λ−avλ

min{v,1−v}λ . Then for 0 ≤ v ≤ 1
2 , we

get,

∂

∂v
F(v, λ, a) = λ

v1+λav(1−λ)

[
av(1 − v ln a) −

(va + 1 − v

av

)λ−1]

≤ λ

v1+λav(1−λ)

[
av(1 − v ln a) − 1

]

= λ

v1+λav(1−λ)
h(av)

≤ 0.

This gives that

(va + 1 − v)λ − avλ

min{v, 1 − v}λ ≥ (τa + 1 − τ)λ − aτλ

min{τ, 1 − τ }λ , (15)

for 0 ≤ v ≤ τ ≤ 1
2 .

On the other hand, let 1
2 ≤ v ≤ 1, we have

∂

∂v
F(v, λ, a) = λ

(1 − v)1+λav(1−λ)−1

[(va + 1 − v

av

)λ−1

− av−1((1 − v) ln a + 1
)]

≥ λ

(1 − v)1+λav(1−λ)−1

[
1 − av−1((1 − v) ln a + 1

)]

= − λ

(1 − v)1+λav(1−λ)−1
h(av−1) ≥ 0,
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which entails that

(va + 1 − v)λ − avλ

min{v, 1 − v}λ ≤ (τa + 1 − τ)λ − aτλ

min{τ, 1 − τ }λ , (16)

for 1
2 ≤ v ≤ τ ≤ 1.

Replacing a by a
b andmultiplying bλ in inequalities (15) and (16), we get the desired

results. This completes the proof. ��
The next theorem is a reverse of Theorem 2.

Theorem 3 Let a, b and λ be positive real numbers with λ ≥ 1. Then

[
va + (1 − v)b

]λ − (avb1−v)λ

max{v, 1 − v}λ ≤
[
τa + (1 − τ)b

]λ − (aτb1−τ )λ

max{τ, 1 − τ }λ

for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. Moreover,

[
va + (1 − v)b

]λ − (
avb1−v

)λ ≤ Rλ
[
(a + b)λ − 2λ(ab)

λ
2
]
,

where 0 ≤ v ≤ 1 and R = max{v, 1 − v}.
Proof The proof idea is the same as that of Theorem 2. First, the function h(x) is the

same as in Theorem 2. Moreover, we define the function G(v, λ, a) = (va+1−v)λ−avλ

max{v,1−v}λ .

Therefore, for 0 ≤ v ≤ 1
2 , we get,

∂

∂v
G(v, λ, a) = λ

(1 − v)1+λav(1−λ)−1

[(va + 1 − v

av

)λ−1

− av−1((1 − v) ln a + 1
)]

≥ λ

(1 − v)1+λav(1−λ)−1

[
1 − av−1((1 − v) ln a + 1

)]

= − λ

(1 − v)1+λav(1−λ)−1
h(av−1)

≥ 0.

This gives that

(va + 1 − v)λ − avλ

max{v, 1 − v}λ ≤ (τa + 1 − τ)λ − aτλ

max{τ, 1 − τ }λ , (17)

for 0 ≤ v ≤ τ ≤ 1
2 .
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On the other hand, if 1
2 ≤ v ≤ 1, then we have

∂

∂v
G(v, λ, a) = λ

v1+λav(1−λ)

[
av(1 − v ln a) −

(va + 1 − v

av

)λ−1]

≤ λ

v1+λav(1−λ)

[
av(1 − v ln a) − 1

]

= λ

v1+λav(1−λ)
h(av)

≤ 0,

which entails that

(va + 1 − v)λ − avλ

max{v, 1 − v}λ ≥ (τa + 1 − τ)λ − aτλ

max{τ, 1 − τ }λ , (18)

for 1
2 ≤ v ≤ τ ≤ 1.

Replacing a by a
b andmultiplying bλ in inequalities (17) and (18), we get the desired

results.
This completes the proof. ��
For convex functions, the following results hold.

Theorem 4 Let f : [0, 1] → [0,+∞) be convex function and λ ≥ 1. Then

[
(1 − v) f (0) + v f (1)

]λ − f λ(v)

min{v, 1 − v}λ ≥
[
(1 − τ) f (0) + τ f (1)

]λ − f λ(τ )

min{τ, 1 − τ }λ

holds for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. In particular,

rλ
[(

f (0) + f (1)
)λ − f λ(

1

2
)
]

≤
[
(1 − v) f (0) + v f (1)

]λ − f λ(v),

where 0 ≤ v ≤ 1 and r = min{v, 1 − v}.
Proof The proof idea is the same as that of Sababheh’s [28, Theorem 2.1].

First, we assume that the function f is twice differentiable, then f ′′(x) ≥ 0 for
0 ≤ x ≤ 1. Define the function

F(v) =
[
(1 − v) f (0) + v f (1)

]λ − f λ(v)

min{v, 1 − v}λ ,

where 0 ≤ v ≤ 1. Then, for 0 ≤ v ≤ 1
2 , we have

F ′(v) = λ f λ−1(v)

vλ+1

[
−

( (1 − v) f (0) + v f (1)

f (v)

)λ−1
f (0) + f (v) − v f ′(v)

]
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≤ λ f λ−1(v)

vλ+1

[
− f (0) + f (v) − v f ′(v)

]
. (19)

Putting g1(v) = − f (0)+ f (v)−v f ′(v) (v ∈ [0, 1]), since f ′′(v) ≥ 0 for 0 ≤ v ≤
1, then g′

1(v) = −v f ′′(v) ≤ 0. This shows g1(v) ≤ g1(0) = 0, v ∈ [0, 1]. Therefore,
inequality (19) implies F(v) is decreasing with respect to v on [0, 1

2 ]. Similarly, if
1
2 ≤ v ≤ 1, then

F ′(v) = λ f λ−1(v)

(1 − v)λ+1

[( (1 − v) f (0) + v f (1)

f (v)

)λ−1
f (1) − f (v) − (1 − v) f ′(v)

]

≥ λ f λ−1(v)

(1 − v)λ+1

[
f (1) − f (v) − (1 − v) f ′(v)

]
. (20)

Setting g2(v) = f (1) − f (v) − (1 − v) f ′(v) (v ∈ [0, 1]), then g′
2(v) = −(1 −

v) f ′′(v) ≤ 0, which gives g2(v) ≥ g2(1) = 0, v ∈ [0, 1]. Thus, inequality (20)
implies F(v) is increasing with respect to v on [ 12 , 1].

The general case follows from the fact that any convex function is a uniform limit
of smooth convex functions [4, Theorem 1].

This completes the proof. ��
A reverse of Theorem 4 can be stated as follows.

Theorem 5 Let f : [0, 1] → [0,+∞) be convex function and λ ≥ 1. Then

[
(1 − v) f (0) + v f (1)

]λ − f λ(v)

max{v, 1 − v}λ ≤
[
(1 − τ) f (0) + τ f (1)

]λ − f λ(τ )

max{τ, 1 − τ }λ

holds for 0 < v ≤ τ ≤ 1
2 , its reverse holds for

1
2 < v ≤ τ ≤ 1. Moreover,

[
(1 − v) f (0) + v f (1)

]λ − f λ(v) ≤ Rλ
[(

f (0) + f (1)
)λ − f λ(

1

2
)
]
,

where 0 ≤ v ≤ 1 and R = max{v, 1 − v}.
Proof Using the same method as in that of Theorem 4, we can complete the proof.
First, we assume the f is twice differentiable. Define the function

G(v) =
[
(1 − v) f (0) + v f (1)

]λ − f λ(v)

max{v, 1 − v}λ ,

where 0 ≤ v ≤ 1. Then, for 0 ≤ v ≤ 1
2 , we have

G ′(v) = λ f λ−1(v)

(1 − v)λ+1

[( (1 − v) f (0) + v f (1)

f (v)

)λ−1
f (1) − f (v) − (1 − v) f ′(v)

]

≥ λ f λ−1(v)

(1 − v)λ+1

[
f (1) − f (v) − (1 − v) f ′(v)

]
. (21)
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Setting g2(v) = f (1) − f (v) − (1 − v) f ′(v) (v ∈ [0, 1]), then g′
2(v) = −(1 −

v) f ′′(v) ≤ 0, which gives g2(v) ≥ g2(1) = 0, v ∈ [0, 1]. By inequality (21), we
conclude that G ′(v) ≥ 0, which implies G(v) is increasing with respect to v on [0, 1

2 ].
Similarly, if 1

2 ≤ v ≤ 1, then

G ′(v) = λ f λ−1(v)

vλ+1

[
−

( (1 − v) f (0) + v f (1)

f (v)

)λ−1
f (0) + f (v) − v f ′(v)

]

≤ λ f λ−1(v)

vλ+1

[
− f (0) + f (v) − v f ′(v)

]
. (22)

Putting g1(v) = − f (0) + f (v) − v f ′(v) (v ∈ [0, 1]), then g′
1(v) = −v f ′′(v) ≤ 0,

v ∈ [0, 1]. This is to say that g1(v) ≤ g1(0) = 0, v ∈ [0, 1]. Therefore, inequality
(22) implies G(v) is decreasing with respect to v on [ 12 , 1].

The general case follows from the fact that any convex function is a uniform limit
of smooth convex functions.

This completes the proof. ��
Remark 1 Let a, b and v be positive real numbers with 0 ≤ v ≤ 1. Then the function
f (v) = avb1−v is a convex function on [0, 1]. Replacing f by f (v) = avb1−v in
Theorems 4 and 5, we get Theorems 2 and 3, respectively.

The following two theorems are refinements of the Alzer–Fonseca–Kovačec’s
inequalities (7) when λ = 1, 2, 3, . . ..

Theorem 6 Let a, b, μ and v be positive real numbers with 0 ≤ μ < v ≤ 1 and m be
a positive integer. Then

[
μa + (1 − μ)b

]m − (
aμb1−μ

)m + r
[
a

m
2 − (

avb1−v
)m

2
]2

≤
(1 − μ

1 − v

)m[(
va + (1 − v)b

)m − (
avb1−v

)m]
, (23)

where r is a constant with 0 < r ≤
(
1−μ
1−v

)m
vm − μm.

Proof Let r̃ =
(
1−μ
1−v

)m + r , pk(x) = Ck
mx

k(1 − x)m−k , (x ∈ [0, 1] and

k = 0, 1, . . . ,m), αk =
(
1−μ
1−v

)m
pk(v) − pk(μ),(k = 0, 1, . . . ,m − 1), αm =

(
1−μ
1−v

)m
pm(v) − pm(μ) − r , αm+1 = 1, αm+2 = 2r . By Lemma 2, we have αk ≥ 0

(k = 0, 1, . . . ,m + 2) and
m+2∑

k=0
αk = r̃ . Therefore, we deduce that

(1 − μ

1 − v

)m[
(va + 1 − v)m − amv

]
− (μa + 1 − μ)m + amμ − r

[
a

m
2 − a

mv
2

]2

=
m∑

k=0

αka
k + αm+1a

mμ + αm+2a
m(1+v)

2 − r̃amv
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= r̃
{ m∑

k=0

αk

r̃
ak + αm+1

r̃
amμ + αm+2

r̃
a

m(1+v)
2

}
− r̃amv

≥ r̃a
r̃−1

{
m∑

k=0
kαk+mμ+αm+2

m(1+v)
2

}

− r̃amv (inequali t y (1))

= r̃amv − r̃amv(Lemma1))

= 0,

which gives

(1 − μ

1 − v

)m[
(va + 1− v)m − amv

]
≥ (μa + 1− μ)m − amμ + r

[
a

m
2 − a

mv
2

]2
. (24)

Replacing a by a
b and multiplying bm in the above inequality (24), we get the desired

inequality (23).
This completes the proof. ��

Theorem 7 Let a, b, μ and v be positive real numbers with 0 ≤ μ < v ≤ 1 and m be
a positive integer. Then

r1
[
a

m
2 − (

avb1−v
)m

2
]2 +

(μ

v

)m[(
va + (1 − v)b

)m − (
avb1−v

)m]

≤ (
μa + (1 − μ)b

)m − (
aμb1−μ

)m
, (25)

where r1 is a constant with 0 < r1 ≤ min
{(

μ
v

)m
, μm −

(
μ
v

)m
vm

}
.

Proof Taking pk(x) = Ck
mx

k(1 − x)m−k , (x ∈ [0, 1] and k = 0, 1, . . . ,m), βk =
pk(μ) −

(
μ
v

)m
pk(v), (k = 0, 1, . . . ,m − 1), βm = μm −

(
μ
v

)m
vm − r1, βm+1 =

(
μ
v

)m − r1, βm+2 = 2r1, then by Lemma 3, we have βk ≥ 0 and
m+2∑

k=0
βk = 1.

Therefore, we obtain

(μa + 1 − μ)m − amμ −
(μ

v

)m[
(va + 1 − v)m − amv

]
− r1

[
a

m
2 − a

mv
2

]2

=
m∑

k=0

βka
k + βm+1a

mv + βm+2a
m(1+v)

2 − amμ

≥ a

{
m∑

k=0
kβk+mvβm+1+m(1+v)

2 βm+2

}

− amμ (inequali t y(1))

= amμ − amμ (Lemma1)

= 0,

or equivalently,

(μ

v

)m[
(va + 1 − v)m − amv

]
+ r1

[
a

m
2 − a

mv
2

]2 ≤ (μa + 1 − μ)m − amμ. (26)
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Replacing a by a
b and multiplying bm in inequality (26), we obtain inequality (25).

This completes the proof. ��

3 Generalizations and Refinements of the Young’s and Its Reverse
Inequalities for Matrices and Operators

3.1 Generalizations and Refinements of the Young’s and Its Reverse Inequalities
for Convex Functions

LetMn(C) be the matrix algebra of all n×n complex matrices. For any A ∈ Mn(C),

the absolute value of A is the positive semidefinite matrix |A| = (A∗A)
1
2 , where A∗ is

the conjugate transpose of A. A norm ‖·‖ onMn(C) is called a unitarily invariant norm
if ‖U AV ‖ = ‖A‖ for A, U , V ∈ Mn(C) with U , V are unitary matrices. Examples
in these classes are the operator norm, the trace norm and the Hilbert-Schmidt norm.

Let A, B and X ∈ Mn(C) with A and B are positive semidefinite matrices and
‖·‖ be a unitarily invariant norm on Mn(C), Bhatia and Davis [6] proved that the
function f (v) = ∥∥AvXB1−v + A1−vXBv

∥∥ is convex on the interval [0, 1] and attains
its minimum at t = 1

2 . Therefore, it is decreasing on [0, 1
2 ] and increasing on [ 12 , 1].

Thus, the celebrated Heinz inequality is valid

2
∥∥A

1
2 XB

1
2
∥∥ ≤ ∥∥AvXB1−v + A1−vXBv

∥∥ ≤ ∥∥AX + XB
∥∥,

which is a significant refinement of the arithmetic-geometric mean inequality:

2
∥
∥A

1
2 XB

1
2
∥
∥ ≤ ∥

∥AX + XB
∥
∥.

Basedon the convexity of f (v) = ∥∥AvXB1−v+A1−vXBv
∥∥on [0, 1] andTheorems

4 and 5, we get the following theorems.

Theorem 8 Let A, B and X ∈ Mn(C)with A and B are positive semidefinite matrices
and let λ ≥ 1 and ‖·‖ be a unitarily invariant norm on Mn(C). Then

∥
∥AX + XB

∥
∥λ − ∥

∥AvXB1−v + A1−vXBv
∥
∥λ

min{v, 1 − v}λ

≥
∥∥AX + XB

∥∥λ − ∥∥Aτ XB1−τ + A1−τ XBτ
∥∥λ

min{τ, 1 − τ }λ

holds for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. In particular,

(2r)λ
[∥∥AX + XB

∥∥λ − ∥∥A
1
2 XB

1
2
∥∥λ

]

≤ ∥∥AX + XB
∥∥λ − ∥∥AvXB1−v + A1−vXBv

∥∥λ
,

where 0 ≤ v ≤ 1 and r = min{v, 1 − v}.

123



52 Page 14 of 21 J.Zhao

Theorem 9 Let A, B and X ∈ Mn(C)with A and B are positive semidefinite matrices
and let λ ≥ 1 and ‖·‖ be a unitarily invariant norm on Mn(C). Then

∥
∥AX + XB

∥
∥λ − ∥

∥AvXB1−v + A1−vXBv
∥
∥λ

max{v, 1 − v}λ

≤
∥∥AX + XB

∥∥λ − ∥∥Aτ XB1−τ + A1−τ XBτ
∥∥λ

max{τ, 1 − τ }λ

holds for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. In particular,

∥∥AX + XB
∥∥λ − ∥∥AvXB1−v + A1−vXBv

∥∥λ

≤ (2R)λ
[∥∥AX + XB

∥∥λ − ∥∥A
1
2 XB

1
2
∥∥λ

]
,

where 0 ≤ v ≤ 1 and R = max{v, 1 − v}.
Similarly, let φ(v) = ∥

∥ | AvXB1−v |r ∥
∥ · ∥

∥ | A1−vXBv |r ∥
∥, where 0 ≤ v ≤ 1,

r > 0, A, B and X ∈ Mn(C) with A and B are positive semidefinite matrices, and
‖·‖ is a unitarily invariant norm on Mn(C). Hiai and Zhan [14, Theorem 1] proved
that φ(v) = ∥∥ | AvXB1−v |r ∥∥ ·∥∥ | A1−vXBv |r ∥∥ is convex on the interval [0, 1] and
attains its minimum at t = 1

2 . Consequently, it is decreasing on [0, 1
2 ] and increasing

on [ 12 , 1]. An immediate consequence of this result is that

∥∥ | A 1
2 XB

1
2 |r ∥∥2 ≤ ∥∥ | AvXB1−v |r ∥∥ · ∥∥ | A1−vXBv |r ∥∥

≤ ∥∥ | AX |r ∥∥ · ∥∥ | XB |r ∥∥,

which interpolates the Cauchy–Schwarz inequality

∥
∥ | A 1

2 XB
1
2 |r ∥

∥2 ≤ ∥
∥ | AX |r ∥

∥ · ∥
∥ | XB |r ∥

∥,

obtained by Bhatia and Davis [7] and Hiai [13]. Applying the convex function
φ(v) = ∥∥ | AvXB1−v |r ∥∥ · ∥∥ | A1−vXBv |r ∥∥ to Theorems 4 and 5, we obtain the
following Cauchy–Schwarz-type inequalities.

Theorem 10 Let A, B and X ∈ Mn(C) with A and B are positive semidefinite
matrices and let λ ≥ 1, r > 0 and ‖·‖ be a unitarily invariant norm onMn(C). Then

(∥∥ | AX |r ∥∥ · ∥∥ | XB |r ∥∥
)λ −

(∥∥ | AvXB1−v |r ∥∥ · ∥∥ | A1−vXBv |r ∥∥
)λ

min{v, 1 − v}λ

≥
(∥
∥ | AX |r ∥

∥ · ∥
∥ | XB |r ∥

∥
)λ −

(∥
∥ | Aτ XB1−τ |r ∥

∥ · ∥
∥ | A1−τ XBτ |r ∥

∥
)λ

min{τ, 1 − τ }λ
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holds for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. In particular,

rλ
1

[
2λ

(∥∥ | AX |r ∥∥ · ∥∥ | XB |r ∥∥
)λ − ∥∥ | A 1

2 XB
1
2 |r ∥∥2λ

]

≤
(∥
∥ | AX |r ∥

∥ · ∥
∥ | XB |r ∥

∥
)λ −

(∥
∥ | AvXB1−v |r ∥

∥ · ∥
∥ | A1−vXBv |r ∥

∥
)λ

,

where 0 ≤ v ≤ 1 and r1 = min{v, 1 − v}.
Theorem 11 Let A, B and X ∈ Mn(C) with A and B are positive semidefinite
matrices and let λ ≥ 1, r > 0 and ‖·‖ be a unitarily invariant norm onMn(C). Then

(∥
∥ | AX |r ∥

∥ · ∥
∥ | XB |r ∥

∥
)λ −

(∥
∥ | AvXB1−v |r ∥

∥ · ∥
∥ | A1−vXBv |r ∥

∥
)λ

max{v, 1 − v}λ

≤
(∥
∥ | AX |r ∥

∥ · ∥
∥ | XB |r ∥

∥
)λ −

(∥
∥ | Aτ XB1−τ |r ∥

∥ · ∥
∥ | A1−τ XBτ |r ∥

∥
)λ

max{τ, 1 − τ }λ

holds for 0 ≤ v ≤ τ ≤ 1
2 , its reverse holds for

1
2 ≤ v ≤ τ ≤ 1. In particular,

(∥∥ | AX |r ∥∥ · ∥∥ | XB |r ∥∥
)λ −

(∥∥ | AvXB1−v |r ∥∥ · ∥∥ | A1−vXBv |r ∥∥
)λ

≤ Rλ
1

[
2λ

(∥
∥ | AX |r ∥

∥ · ∥
∥ | XB |r ∥

∥
)λ − ∥

∥ | A 1
2 XB

1
2 |r ∥

∥2λ
]
,

where 0 ≤ v ≤ 1 and R1 = min{v, 1 − v}.

3.2 Generalizations and Refinements of the Young’s and Its Reverse Inequalities
for Determinants

In this subsection, we mainly give generalizations and refinements of the Young’s and
its reverse inequalities for determinants. To achieve our goal, we need the following
lemma (see, e.g., [16, p.482]), which is the Minkowski inequality for determinants.

Lemma 4 Let A, B ∈ Mn(C) be positive semidefinite matrices. Then

det(A + B)
1
n ≥ det A

1
n + det B

1
n .

A determinant version of the Young’s inequality (see, e.g., [16, p.467]) is still well
known, which can be stated as

det(AvB1−v) ≤ det
(
vA + (1 − v)B

)
,

where A, B ∈ Mn(C) are positive semidefinite matrices and 0 ≤ v ≤ 1. Based on
Theorems 6 and 7, we obtain the generalizations and refinements of the Young’s and
its reverse inequalities for determinants.
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Theorem 12 Let A, B ∈ Mn(C) be positive semidefinite matrices and 0 ≤ μ < v ≤
1. Then for positive integer m, the following inequality holds

[
μ det A

1
n +(1 − μ) det B

1
n

]mn

− det
(
AμB1−μ

)m + r
[
det A

m
2 − det(AvB1−v)

m
2

]2

≤
(1 − μ

1 − v

)mn[
det(vA + (1 − v)B)m − det

(
AvB1−v

)m]
,

where r is a constant with 0 < r ≤
(
1−μ
1−v

)mn
vmn − μmn.

Proof By Lemma 4 and Theorem 6, we get

(1 − μ

1 − v

)mn[
det(vA + (1 − v)B)m − det

(
AvB1−v

)m]

=
(1 − μ

1 − v

)mn[(
det(vA + (1 − v)B)

1
n
)m − (

(det A
1
n )v

(
det B

1
n
)1−v)mn

]

≥
(1 − μ

1 − v

)mn[(
det(vA)

1
n + det((1 − v)B)

1
n
)mn

− (
(det A

1
n )v

(
det B

1
n
)1−v)mn

]

=
(1 − μ

1 − v

)mn[(
v det A

1
n + (1 − v) det B

1
n
)mn

− (
(det A

1
n )v

(
det B

1
n
)1−v)mn

]

≥
[
μ det A

1
n + (1 − μ) det B

1
n

]mn −
[(

det A
1
n
)μ

(det B
1
n
)1−μ

]mn

+ r
[
(det A

1
n )

mn
2 − (

(det A
1
n )v(det B

1
n )1−v

)mn
2

]2

=
[
μ det A

1
n + (1 − μ) det B

1
n

]mn − det(AμB1−μ)m

+ r
[
det A

m
2 − det(AvB1−v)

m
2

]2
.

This completes the proof. ��
Theorem 13 Let A, B ∈ Mn(C) be positive semidefinite matrices and 0 ≤ μ < v ≤
1. Then for positive integer m, the following inequality holds

(μ

v

)mn[(
v det A

1
n +(1 − v) det B

1
n

)mn − det(AvB1−v)m
]

+ r1
[
det A

m
2 − det(AvB1−v)

m
2

]2

≤ det
(
μA + (1 − μ)B

)m − det
(
AμB1−μ

)m
,

where r1 is a constant with 0 < r1 ≤ min
{(

μ
v

)mn
, μmn −

(
μ
v

)mn
vmn

}
.
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Proof By Lemma 4 and Theorem 7, we have

det
(
μA + (1 − μ)B

)m − det
(
AμB1−μ

)m

=
[
det

(
μA + (1 − μ)B

) 1
n
]mn −

[(
det A

1
n
)μ(

det B
1
n
)1−μ

]mn

≥
[
det

(
μA

) 1
n + det

(
(1 − μ)B

) 1
n
]mn −

[(
det A

1
n
)μ(

det B
1
n
)1−μ

]mn

=
[
μ det A

1
n + (1 − μ) det B

1
n

]mn −
[(

det A
1
n
)μ(

det B
1
n
)1−μ

]mn

≥
(μ

v

)mn[(
v det A

1
n + (1 − v) det B

1
n
)mn −

((
det A

1
n
)v( det B

1
n
)1−v

)mn]

+ r1
[(

det A
1
n
)mn

2 −
((

det A
1
n
)v( det B

1
n
)1−v

)mn
2

]2

=
(μ

v

)mn[(
v det A

1
n + (1 − v) det B

1
n
)mn − det(AvB1−v)m

]

+ r1
[
det A

m
2 − det(AvB1−v)m

]2
.

This completes the proof. ��

3.3 Generalizations and Refinements of the Young’s and Its Reverse Inequalities
for Operators

In this subsection, we mainly give operator inequalities for the Young’s and its reverse
inequalities. We need some preparations. Let B(H) be the C∗-algebra of all bounded
linear operators on a complexHilbert spaceH and IH (∈ B(H))be the identity operator.
For two self-adjoint operators A and B, the symbol B ≤ A means that A − B is a
positive operator.

Let A, B ∈ B(H) be positive operators and 0 ≤ v ≤ 1. The v−weighted arithmetic
operator mean of A and B, denoted by A∇vB, is defined by

A∇vB = (1 − v)A + vB.

Moreover, if A is an invertible positive operator, the v− weighted geometric oper-
ator mean of A and B, denoted by A�vB, is defined by

A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 .

For v > 1, the definition of A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 is still well defined. In

the following, we use A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 for v ≥ 0. When v = 1

2 , the
operators A∇ 1

2
B and A� 1

2
B are called the arithmetic operator mean and geometric

operatormean, respectively. Usually, wewrite A∇B and A�B for brevity, respectively.
For more details, see Kubo and Ando [22].

The operator version of inequality (2) can be stated as

A�vB ≤ A∇vB,
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where A, B ∈ B(H) with A is invertible and 0 ≤ v ≤ 1.
Let A, B ∈ Mn(C) be positive semidefinite matrices with A is invertible and

0 ≤ v ≤ 1. Kittaneh and Manasrah in [19] and [20] presented the matrix inequality
of inequality (3),

2r(A∇B − A�B) ≤ A∇vB − A�vB ≤ 2R(A∇B − A�B), (27)

where r = min{v, 1 − v} and R = max{v, 1 − v}.
It should be mentioned that Furuichi [9] independently proved inequality (27) for

positive operators andKittaneh et al. [18] also established inequality (27) by a different
method.

Before giving the main results of this part, we need the following lemma, which is
the monotonicity property for operator functions [11].

Lemma 5 Let X ∈ B(H) be a self-adjoint operator and f and g be continuous func-
tions such that f (t) ≥ g(t) for all t ∈ Sp(X)(the spectrum of X), then f (X) ≥ g(X).

Based on Theorem 6, we have the following operator inequality.

Theorem 14 If A, B ∈ B(H) are positive operators with A is invertible and 0 ≤ μ <

v ≤ 1 and m be a positive integer. Then

A�m(A∇μB) − A�mμB + r
[
A�mB − 2A�m(1+v)

2
B + A�mvB

]

≤
(1 − μ

1 − v

)m[
A�m(A∇vB) − A�mvB

]
,

where r is a constant with 0 < r ≤
(
1−μ
1−v

)m
vm − μm.

Proof By inequality (25), we have

(μa + 1 − μ)m − amμ + r
[
a

m
2 − a

mv
2

]2 ≤
(1 − μ

1 − v

)m[
(va + 1 − v)m − amv

]
,

for a > 0.
Since A and B are positive operators, then so is the operator T = A− 1

2 BA− 1
2 .

Therefore, by Lemma 5, we obtain

[
μT + (1 − μ)IH

]m − Tmμ + r
[
T

m
2 − T

mv
2

]2

≤
(1 − μ

1 − v

)m[
(vT + (1 − v)IH)m − Tmv

]
. (28)

Multiplying inequality (28) by A
1
2 , we have

A
1
2
[
μT + (1 − μ)IH

]m
A

1
2 − A

1
2 TmμA

1
2 + r A

1
2

[
T

m
2 − T

mv
2

]2
A

1
2
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≤
(1 − μ

1 − v

)m
A

1
2

[
(vT + (1 − v)IH)m − Tmv

]
A

1
2 .

or equivalently,

A�m(A∇μB) − A�mμB + r
[
A�mB − 2A�m(1+v)

2
B + A�mvB

]

≤
(1 − μ

1 − v

)m[
A�m(A∇vB) − A�mvB

]
.

This completes the proof. ��
In the same way, based on Theorem 7, we get

Theorem 15 If A, B ∈ B(H) are positive operators with A is invertible and 0 ≤ μ <

v ≤ 1 and m be a positive integer. Then

r1
[
A�mB − 2A�m(1+v)

2
B + A�mvB

]
+

(μ

v

)m[
A�m(A∇vB) − A�mvB

]

≤ A�m(A∇μB) − A�mμB,

where r1 is a constant with 0 < r1 ≤ min
{(

μ
v

)m
, μm −

(
μ
v

)m
vm

}
.

Proof The proof is very similar to that of Theorem 14, so we omit it here.
This completes the proof. ��
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