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Abstract
In this paper, we study the Schrödinger–Bopp–Podolsky system

{
−�u + V (x)u + φu = μ f (u) + u5 in R

3,

−�φ + a2�2φ = 4πu2 in R
3,

thereinto, we request that a, μ > 0, the function V (x) and f (u) satisfies some spec-
ified conditions. By using constraint variational method and quantitative deformation
lemma, we derive two results. If μ is large enough, the system has a least-energy
sign-changing solution uμ. Moreover, the energy of the solution is twice as large as
that of the ground state solution.
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1 Introduction

In this paper, we consider the following Schrödinger–Bopp–Podolsky system

{
−�u + V (x)u + φu = μ f (u) + u5 in R

3,

−�φ + a2�2φ = 4πu2 in R
3,

(1.1)

thereinto, we request that a > 0, which is the Bopp–Podolsky parameter, μ > 0, the
potential function V : R3 → R

+ and the nonlinearity f : R → R satisfies some
suitable hypotheses.

The most common Schrödinger–Bopp–Podolsky system is

{
−�u + V (x)u + K (x)φu = f (x, u) in R

3,

−�φ + a2�2φ = 4πu2 in R
3,

(1.2)

which was first studied in [1] in mathematical literature, and we refer to the recent
paper [1–14] for more physical details, we will omit it here.

In recent years, in [1], P. dAvenia and G. Siciliano studied the system (1.2) when
V (x) is a constant, K (x) = q2 and f (x, u) = |u|p−2u. By using variational method,
theyobtained the existence andnonexistence results.Moreover, theyhave shown that in
the radial case the concentration behaves of the solutions they found. In particular, they
take two different approaches to overcoming compactness of the Sobolev embedding
H1(R3) ↪→ Ls(R3)(2 ≤ s < 6): by means of the Splitting lemma; by looking
for solutions in the subspace of radial functions of H1(R3), both of which are only
available for the case p ∈ (2, 6). However, the authors do not cover critical cases. In
[15], Chen and Tang studied the existence of solutions of system (1.1), by using some
new analytic techniques and new inequalities, they found nontrivial solutions, ground
state solutions of Nehari–Pohozaev type and ground state solutions of Nehari type in
constant potential case. On the other hand, for the case of non-constant potential, they
proved that system (1.1) admits ground state solutions for all μ > 0 large enough.
In [16], Li, Patrizia Pucci and Tang considered the system when K (x) = q2 and
f (x, u) = μ|u|p−1u+|u|4u. Theyfirstly proved the existenceof ground state solutions
for the “limit” problem, by using a global compactness lemma, they proved that Palais–
Smale condition holds and the existence of ground state solutions. Therefore, the
main results of [15] and [16] has extended the existence results in [1] to critical
cases. Moreover, in [17] Yang, Chen and Liu considered a class of Schrödinger–
Bopp–Podolsky system with critical growth. They proved the existence of nontrivial
solution without any growth and Ambrosetti–Rabinowitz conditions.

Based on the above observations, we find that more of the research around
the Schrödinger–Bopp–Podolsky system is the ground state solution. Motivated by
[15, 18–20] and an originate idea of [21], the main purpose of present paper is
to investigate the existence of least-energy sign-changing solutions for the critical
Schrödinger–Bopp–Podolsky system with subcritical perturbations. And, we suppose
that V : R3 → R

+ and f : R → R satisfy the following assumptions:

(V ) V (x) ∈ C(R3, R
+) is coercive;
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( f1) f ∈ C1(R, R), lim|t |→0

f (t)
t = 0 and lim|t |→∞

f (t)
t5

= 0;

( f2) The function f (t)
|t |3 is increasing on (−∞, 0) and (0,+∞).

Thus, we can say that, for any fixed a > 0, a pair (u, φ) ∈ H × D is a solution of
(1.1) if and only if the following equations hold

∫
R3

[∇u · ∇v + V (x)uv]dx +
∫
R3

φuvdx =
∫
R3

[μ f (u) + u5]vdx, ∀v ∈ H1(R3),∫
R3

∇φ · ∇ζdx + a2
∫
R3

�φ�ζdx = 4π
∫
R3

ζu2dx, ∀ζ ∈ D,

where D and H is a function space that will be introduced in Sect. 2.
Then our results can be stated as follows.

Theorem 1.1 Assume that (V ), ( f1) and ( f2) holds, then there exists μ∗ > 0 such
that for all μ ≥ μ∗, the system (1.1) has a least-energy sign-changing solution uμ,
which has precisely two nodal domains.

Theorem 1.2 Assume that (V ), ( f1) and ( f2) holds, then there exists μ∗∗ > 0 such
that for all μ ≥ μ∗∗, the energy of any sign-changing solutions for system (1.1) is
strictly larger than two times of the energy of the ground state solution.

Remark 1.3 In fact, there are some differences obviously caused by the nonlocal term,
and some good methods of seeking sign-changing solutions for local problems seem
not be applicable to nonlocal problems. We borrow the idea from [21], trying to seek
a minimizer of the energy function Jμ over the constraint Mμ = {u ∈ H with u± 
=
0 : 〈(Jμ)′(u), u+〉 = 〈(Jμ)′(u), u−〉 = 0}; then we prove that the minimizer is the
sign-changing solution of system (1.1). For the proof of Theorem 1.2, we define the
manifold Nμ = {u ∈ H1(R3) \ {0} : 〈(Jμ)′(u), u〉 = 0}, then there exists positive
constants s, t for u+ and u− respectively such that su+ and tu− both in Nμ, using
the results in [15], we have a ground state solution vμ with Jμ(vμ) = inf

Nμ

Jμ(u), and

thus we can compare the energy between sign-changing solutions and ground state
solutions by inequalities.

The rest of this paper is organized as follows. InSect. 2,wepresent somepreliminary
notations and Lemmas. In Sect. 3, we prove Theorem 1.1 and Theorem 1.2.

2 Preliminary

In this paper, we use the following notations:

• H = {u ∈ D1,2(R3) : ∫
R3 V (x)u2dx < ∞}, with the norm

‖u‖2 =
∫
R3

(|∇u|2 + V (x)u2)dx .
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• L p(R3) is the usual Lebesgue space endowed with the norm

|u|pp =
∫
R3

|u|pdx and |u|∞ = ess sup
x∈R3

|u(x)| for all p ∈ [1, 6).

• Ci denote a positive constant and is possibly various in different places.
• 〈·, ·〉 denote action of dual.
• u+ := max{u(x), 0}, u− := min{u(x), 0}.
• S = inf

u∈D1,2(R3)

|∇u|22
|u|26

.

Let D be the completion of C∞
c (R3) with respect to the norm ‖ · ‖D induced by

the scalar product

〈ϕ,ψ〉D :=
∫
R3

∇ϕ · ∇ψdx + a2
∫
R3

�ϕ�ψdx .

Clearly, D is a Hilbert space continuously embedded into D1,2(R3) and conse-
quently in L6(R3).

Next, we present the following basic results.

Lemma 2.1 (Lemma 3.1, [1]) The space D is continuously embedded in L∞(R3).

Lemma 2.2 (Lemma 3.2, [1]) The space C∞
c (R3) is dense in

A := {φ ∈ D1,2(R3) : �φ ∈ L2(R3)}

normed by
√〈φ, φ〉D and, therefore, D = A.

In view of the Riesz Theorem, for every fixed u ∈ H1(R3), there exists a unique
solution φu ∈ D of the second equation in (1.1). Let

κ(x) = 1 − e− |x |
a

|x | .

We have the following fundamental properties.

Lemma 2.3 (Lemma 3.3, [1]) For all y ∈ R3, κ(· − y) solves in the sense of distri-
butions

−�φ + a2�2φ = 4πδy .

Moreover,

(i) if g ∈ L1
loc(R

3) and, for a.e. x ∈ R3, the map y ∈ R3 �→ g(y)
|x−y| is summable,

then κ ∗ g ∈ L1
loc(R

3);
(ii) if g ∈ Ls(R3) with 1 ≤ s < 3

2 , then κ ∗ g ∈ Lq(R3) for q ∈ ( 3s
3−2s , + ∞].
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In both cases κ ∗ g solves

− �φ + a2�2φ = 4πg (2.1)

in the sense of distributions, we have the following distributional derivatives

∇(κ ∗ g) = (∇κ) ∗ g and �(κ ∗ g) = (�κ) ∗ g a.e. in R3.

For any fixed u ∈ H1(R3), the unique solution inD of the second equation in (1.1)
is given by

φu := κ ∗ u2. (2.2)

Then we have the following useful properties.

Lemma 2.4 (Lemma 3.4, [1]) For every u ∈ H1(R3) we have:

(1) for every y ∈ R3, φu(·+y) = φu(· + y);
(2) φu ≥ 0;
(3) for every s ∈ (3,+∞], φu ∈ Ls(R3) ∩ C0(R3);
(4) for every s ∈ (3/2,+∞], ∇φu = ∇κ ∗ u2 ∈ Ls(R3) ∩ C0(R3);
(5) φu ∈ D;
(6) ‖φu‖6 ≤ C‖u‖2;
(7) φu is the unique minimizer of the functional

E(φ) = 1

2
‖∇φ‖22 + a2

2
‖�φ‖22 −

∫
R3

φu2dx, φ ∈ D;

(8) if vn⇀v in H1(R3), then φvn⇀φv in D.

Lemma 2.5 (Theorem 2.1, [22]) If V (x) satisfies (V ), then H is compactly embedded
in L p(R3) for any p ∈ [2, 6). Especially, for any p ∈ [2, 6), there exists C > 0 such
that

|u|p ≤ C‖u‖, ∀u ∈ H .

In view of [1], the energy function of (1.1), defined in H1(R3) × D by

S(u, φ) = 1

2

∫
R3

[|∇u|2 + V (x)u2]dx + 1

2

∫
R3

φu2dx

− 1

16π
‖∇φ‖22 − a2

16π
‖�φ‖22 −

∫
R3

[μF(u) + 1

6
u6]dx

is continuously differentiable and its critical points correspond to the weak solution
of (1.1). In order to avoid the difficulty originated by the strongly indefiniteness of the
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function S, we apply the reduction procedure used in [1] and get the reduced function

Jμ(u) = 1

2

∫
R3

[|∇u|2+V (x)u2]dx+ 1

4

∫
R3

φuu
2dx−

∫
R3

[μF(u)+ 1

6
u6]dx, (2.3)

which is of class C1 on H and, for all u, v ∈ H

〈(Jμ)′(u), v〉 =
∫
R3

[∇u · ∇v + V (x)uv]dx +
∫
R3

φuuvdx −
∫
R3

[μ f (u) + u5]vdx,
(2.4)

Remark 2.6 The following statements are equivalent:

(i) The pair (u, φ) ∈ H ×D is critical point of S, that is (u, φ) is a solution of (1.1);
(ii) u is a critical point of Jμ and φ = φu .

Hence, if u ∈ H is a critical point of Jμ, then the pair (u, φu) is a solution of (1.1).
As we defined before, for the sake of simplicity, in many cases we just say u ∈ H ,
instead of (u, φu) ∈ H × D, is a solution of (1.1).

Next, we define the manifold

Mμ = {u ∈ H with u± 
= 0 : 〈(Jμ)′(u), u+〉 = 〈(Jμ)′(u), u−〉 = 0},

and fixed u ∈ H with u± 
= 0.

Lemma 2.7 Assume that (V ), ( f1) and ( f2) holds, if u ∈ H with u± 
= 0, then we
have the following results:

(i) There exists a unique pair (su, tu) ∈ (0,+∞)×(0,+∞) such that suu++tuu− ∈
Mμ and

Jμ(suu
+ + tuu

−) = max
(s,t)∈(0,+∞)×(0,+∞)

Jμ(su+ + tu−).

(ii) If 〈(Jμ)′(u), u±〉 ≤ 0, then 0 < su, tu ≤ 1.

Proof (i) For any u ∈ H with u± 
= 0, to prove that there exists a unique pair
(su, tu) ∈ (0,+∞) × (0,+∞) such that suu+ + tuu− ∈ Mμ is equivalent
to prove that 〈(Jμ)′(suu+ + tuu−), suu+〉 = 〈(Jμ)′(suu+ + tuu−), tuu−〉 = 0,
which means the following equations have a unique solution:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s2‖u+‖2 +s4

∫
R3 φu+|u+|2dx + s2t2

∫
R3 φu−|u+|2dx

−μs
∫
R3 f (su+ + tu−)u+dx − s6

∫
R3 |u+|6dx = 0;

t2‖u−‖2 +t4
∫
R3 φu−|u−|2dx + s2t2

∫
R3 φu+|u−|2dx

−μt
∫
R3 f (su+ + tu−)u−dx − t6

∫
R3 |u−|6dx = 0.

(2.5)

Fi rst l y, we claim the existence of the pair (su, tu).
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Define

gu(s, t) = s2‖u+‖2 + s4
∫
R3

φu+|u+|2dx + s2t2
∫
R3

φu−|u+|2dx

− μs
∫
R3

f (su+ + tu−)u+dx − s6
∫
R3

|u+|6dx; (2.6)

hu(s, t) = t2‖u−‖2 + t4
∫
R3

φu−|u−|2dx + s2t2
∫
R3

φu+|u−|2dx

− μt
∫
R3

f (su+ + tu−)u−dx − t6
∫
R3

|u−|6dx . (2.7)

By ( f1), for any ε > 0, there exists Cε > 0, we have

| f (t)| ≤ ε|t | + Cε|t |5. (2.8)

Using (2.8) and Sobolev inequality, we get

gu(s, s) =s2‖u+‖2 + s4
∫
R3

φu+|u+|2dx + s4
∫
R3

φu−|u+|2dx

− μs
∫
R3

f (su)u+dx − s6
∫
R3

|u+|6dx

≥s2‖u+‖2 − εμs2
∫
R3

|u+|2dx − Cεμs
6
∫
R3

|u+|6dx − s6
∫
R3

|u+|6dx
≥(1 − εμC1)s

2‖u+‖2 − μC2s
6‖u+‖6 − C3s

6‖u+‖6.

Choosing ε > 0 small enough such that 1 − εμC1 > 0, then gu(s, s) > 0 for
s > 0 small enough. Similarly, we obtain that hu(t, t) > 0 for t > 0 small
enough.
By ( f2), we can easily get that:

f (t)t ≥ 4F(t) > 0, t ∈ (−∞, 0) ∪ (0,+∞). (2.9)

By Lemma 2.4 (6), (2.9) and Sobolev inequality, we also have that

gu(t, t) =t2‖u+‖2 + t4
∫
R3

φu+|u+|2dx + t4
∫
R3

φu−|u+|2dx

− μt
∫
R3

f (tu)u+dx − t6
∫
R3

|u+|6dx

≤t2‖u+‖2 + t4
∫
R3

φu |u+|2dx − t6
∫
R3

|u+|6dx .

as t → +∞, gu(t, t) → −∞, which means gu(t, t) < 0 for t > 0 large enough.
Similarly, we obtain that hu(s, s) < 0 for s > 0 large enough. Assume there
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exists 0 < r < R such that

gu(r , r) > 0, gu(R, R) < 0,

hu(r , r) > 0, hu(R, R) < 0.

Thus, we have

gu(r , t) > 0, gu(R, t) < 0, ∀t ∈ [r , R].
hu(s, r) > 0, hu(s, R) < 0, ∀s ∈ [r , R].

Then there exists a pair (su, tu) ∈ (0,+∞) × (0,+∞) such that gu(su, tu) = 0
and hu(su, tu) = 0, thus suu+ + tuu− ∈ Mμ.
Secondl y, we claim the uniqueness of the pair (su, tu).
Case 1. u ∈ Mµ.

By the definition of manifold, we have

‖u±‖2+
∫
R3

φu±|u±|2dx+
∫
R3

φu∓|u±|2dx = μ

∫
R3

f (u)u±dx+
∫
R3

|u±|6dx .
(2.10)

Let (s0, t0) be a pair of suitable numbers such that s0u+ + t0u− ∈ Mμ with
0 < s0 ≤ t0. Then we have

s20‖u+‖2 + s40

∫
R3

φu+|u+|2dx + s20 t
2
0

∫
R3

φu−|u+|2dx

= μ

∫
R3

f (s0u
+)s0u

+dx + s60

∫
R3

|u+|6dx .
(2.11)

t20‖u−‖2 + t40

∫
R3

φu−|u−|2dx + s20 t
2
0

∫
R3

φu+|u−|2dx

= μ

∫
R3

f (t0u
−)t0u

−dx + t60

∫
R3

|u−|6dx .
(2.12)

Operating 1
t40
(2.12)-(2.10), we have:

(
1

t20
− 1)‖u−‖2 ≥ (t20 − 1)

∫
R3

|u−|6dx + μ

∫
R3

[ f (t0u
−)

(t0u−)3
− f (u−)

(u−)3
](u−)4dx .

(2.13)

Using ( f2), if t0 > 1, the inequality is absurd; therefore, we obtain that 0 < s0 ≤
t0 ≤ 1. Similarly, we also obtain that s0 ≥ 1. Consequently, s0 = t0 = 1.
Case 2. u /∈ Mµ.
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Suppose that there exists two pairs (s1, t1), (s2, t2) such that v = s1u+ + t1u− ∈
Mμ, w = s2u+ + t2u− ∈ Mμ. Therefore, we have

w = s2u
+ + t2u

− = s2
s1
s1u

+ + t2
t1
t1u

− = s2
s1

v+ + t2
t1

v−.

Through the analysis in Case 1, we have

s2
s1

= t2
t1

= 1,

so, s1 = s2, t1 = t2. The uniqueness is complete.
Thi rdl y, we claim that the pair (su, tu) is a maximum point.
For any u ∈ H with u± 
= 0, by (2.9), we have

Jμ(su+ + tu−)

= 1

2

∫
R3

[|∇(su+ + tu−)|2 + V (x)(su+ + tu−)2]dx

+ 1

4

∫
R3

φsu++tu−|su+ + tu−|2dx − μ

∫
R3

F(su+ + tu−)dx

− 1

6

∫
R3

|su+ + tu−|6dx

= s2

2
‖u+‖2 + t2

2
‖u−‖2 + s4

4

∫
R3

φu+|u+|2dx + t4

4

∫
R3

φu−|u−|2dx

+ s2t2

4

∫
R3

φu+|u−|2dx + s2t2

4

∫
R3

φu−|u+|2dx

−
∫
R3

μF(su+ + tu−)dx − s6

6
|u+|66 − t6

6
|u−|66

≤ s2

2
‖u+‖2 + t2

2
‖u−‖2 + s4

4

∫
R3

φu+|u+|2dx

+ t4

4

∫
R3

φu−|u−|2dx + s2t2

4

∫
R3

φu+|u−|2dx

+ s2t2

4

∫
R3

φu−|u+|2dx − s6

6
|u+|66 − t6

6
|u−|66.

Obviously, Jμ(su+ + tu−) → −∞ as (s, t) → ∞. Thus, Jμ(su+ + tu−) only
have a unique maximum point such that

Jμ(suu
+ + tuu

−) = max
(s,t)∈(0,+∞)×(0,+∞)

Jμ(su+ + tu−).
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(ii) If 〈(Jμ)′(u), u±〉 ≤ 0, by the definition, we have

‖u±‖2 +
∫
R3

φu |u±|2dx ≤ μ

∫
R3

f (u)u±dx +
∫
R3

|u±|6dx .

For the fixed u ∈ H , by (i), we know that there exists a pair (su, tu) such that
suu+ + tuu− ∈ Mμ with 0 < tu ≤ su , then

s2u‖u+‖2 + s4u

∫
R3

φu |u+|2dx

≥ s2u‖u+‖2 + s4u

∫
R3

φu+|u+|2dx + s2u t
2
u

∫
R3

φu−|u+|2dx

= μ

∫
R3

f (suu
+ + tuu

−)(suu
+)dx + s6u

∫
R3

|u+|6dx .

It’s similar to the calculation in (i), we omitted it here. We have that

(
1

s2u
− 1)‖u+‖2 ≥ (s2u − 1)

∫
R3

|u+|6dx + μ

∫
R3

[ f (suu
+)

(suu+)3
− f (u+)

(u+)3
](u+)4dx .

By ( f2), if su ≥ 1, the inequality is absurd, thus 0 < tu ≤ su ≤ 1. The proof is
complete.

��
Lemma 2.8 There exists ρ > 0 such that ‖u±‖ ≥ ρ for all u ∈ Mμ.

Proof ∀u ∈ Mμ, we have

‖u±‖2 +
∫
R3

φu |u±|2dx = μ

∫
R3

f (u)u±dx +
∫
R3

|u±|6dx .

By (2.8) and Sobolev inequalities, we have that

‖u±‖2 ≤ ‖u±‖2 +
∫
R3

φu |u±|2dx = μ

∫
R3

f (u)u±dx +
∫
R3

|u±|6dx

≤ εμ

∫
R3

|u±|2dx + Cεμ

∫
R3

|u±|6dx +
∫
R3

|u±|6dx
≤ C4εμ‖u±‖2 + C5μ‖u±‖6 + C6‖u±‖6.

Thus

(1 − C4εμ)‖u±‖2 ≤ C5μ‖u±‖6 + C6‖u±‖6.

Choosing ε > 0 such that 1 − C4εμ > 0, then there exists ρ > 0, ‖u±‖ ≥ ρ > 0. ��
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Lemma 2.9 Suppose (V ), ( f1) and ( f2) holds, let cμ = inf
u∈Mμ

Jμ, then we have that

lim
μ→∞ cμ = 0.

Proof For any u ∈ Mμ, using (2.9) and Lemma 2.8, we have

Jμ(u) = Jμ(u) − 1

4
〈(Jμ)′(u), u〉

= 1

4
‖u‖2 + μ

4

∫
R3

[ f (u)u − 4F(u)]dx + 1

12

∫
R3

|u|6dx

≥ 1

4
‖u‖2

≥ 1

4
ρ2 > 0.

Therefore,Jμ(u) is bounded below onMμ. That is cμ is well-defined. For ∀u ∈ H
with u± 
= 0, for each μ > 0, by Lemma 2.7, there exists a unique pair (sμ, tμ) ∈
(0,+∞) × (0,+∞) such that sμu+ + tμu− ∈ Mμ. Therefore, by (2.9) and Lemma
2.7, we have that

0 ≤ cμ = inf
u∈Mμ

Jμ ≤ Jμ(sμu
+ + tμu

−)

≤ 1

2
‖sμu+ + tμu

−‖2 + 1

4

∫
R3

φsμu++tμu−|sμu+ + tμu
−|2dx

≤ s2μ‖u+‖2 + t2μ‖u−‖2 + 1

2
C7s

4
μ‖u+‖4 + 1

2
C8t

4
μ‖u−‖4.

To our end, we just prove that sμ → 0 and tμ → 0 as μ → ∞.
Let �u = {(sμ, tμ) ∈ (0,+∞) × (0,+∞) : Wu(sμ, tμ) = (0, 0), μ > 0}, where

Wu is defined as follow: Wu : (0,+∞) × (0,+∞) → R2

Wu(s, t) = (〈(Jμ)′(su+ + tu−), su+〉, 〈(Jμ)′(su+ + tu−), tu−〉).

Then, we have that

2s2μ‖u+‖2+2t2μ‖u−‖2 + 2C9s
4
μ‖u+‖4 + 2C10t

4
μ‖u−‖4

≥ ‖sμu+ + tμu
−‖2 +

∫
R3

φsμu++tμu−|sμu+ + tμu
−|2dx

= μ

∫
R3

f (sμu
+ + tμu

−)(sμu
+ + tμu

−)dx +
∫
R3

|sμu+ + tμu
−|6dx

≥ s6μ

∫
R3

|u+|6dx + t6μ

∫
R3

|u−|6dx .

Therefore, �u is bounded. Let {μn} ⊂ (0,∞) be such that μn → ∞ as n → ∞.
Then, there exist s0 and t0 such that, up to a subsequence, (sμn , tμn ) → (s0, t0) as
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n → ∞. Next, we claim s0 = t0 = 0. Suppose, by contradiction, that s0 > 0 or
t0 > 0. Thanks to sμn u

+ + tμn u
− ∈ Mμ, for any n ∈ N, we have

‖sμn u
+ + tμn u

−‖2 +
∫
R3

φsμn u
++tμn u

−|sμn u
+ + tμn u

−|2dx

= μn

∫
R3

f (sμn u
+ + tμn u

−)(sμn u
+ + tμn u

−)dx +
∫
R3

|sμn u
+ + tμn u

−|6dx .
(2.14)

According to sμn u
+ → s0u+ and tμn u

− → t0u− in H , by (2.8) and (2.9), we have
that ∫

R3
f (sμn u

+ + tμn u
−)(sμn u

+ + tμn u
−)dx

→
∫
R3

f (s0u
+ + t0u

−)(s0u
+ + t0u

−)dx > 0 (2.15)

as n → ∞. So, it follows from μn → ∞ as n → ∞ and {sμn u
+ + tμn u

−} is
bounded in H , combining with (2.14) and (2.15), that we have a contradiction. Hence,
s0 = t0 = 0. That is, lim

μ→∞ cμ = 0. ��

Lemma 2.10 There existsμ∗ > 0 such that for allμ ≥ μ∗, the infimum cμ is achieved.

Proof Supposed that there exists a sequence {un} ⊂ Mμ such that lim
n→∞Jμ(un) = cμ,

obviously, {un} bounded in H . Then by Lemma 2.5, up to a subsequence, there exists
a uμ ∈ H such that

un⇀uμ in H ; (2.16)

un → uμ in L p(R3) for p ∈ (2, 6); (2.17)

un(x) → uμ(x) a.e. in R3. (2.18)

Besides, we also have u±
n ⇀u±

μ in H , u±
n → u±

μ in L p(R3) and un(x)± → uμ(x)±
a.e. in R3.

According to Lemma 2.9, there exists μ∗ > 0 such that cμ < 1
3 S

3
2 for all μ ≥ μ∗.

Fixed μ ≥ μ∗, it follows from Lemma 2.7 that Jμ(su+
n + tu−

n ) ≤ Jμ(un) for all
s, t > 0.

Therefore, by using Brezis–Lieb Lemma, Fatou’s Lemma and Hardy–Littlewood–
Sobolev inequality, we have that

lim inf
n→∞ Jμ(su+

n + tu−
n )

≥ s2

2
lim
n→∞(‖u+

n − u+
μ‖2 + ‖u+

μ‖2) + t2

2
lim
n→∞(‖u−

n − u−
μ‖2 + ‖u−

μ‖2)

+ t2

4
lim inf
n→∞

∫
R3

φu−
n
|u−

n |2dx + s2

4
lim inf
n→∞

∫
R3

φu+
n
|u+

n |2dx
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+ s2t2

4
lim inf
n→∞

∫
R3

φu+
n
|u−

n |2dx + s2t2

4
lim inf
n→∞

∫
R3

φu−
n
|u+

n |2dx

− lim sup
n→∞

μ

∫
R3

F(su+
n + tu−

n )dx − s6

6
lim
n→∞(|u+

n − u+
μ |66 + |u+

μ |66)

− t6

6
lim
n→∞(|u−

n − u−
μ |66 + |u−

μ |66)

≥ Jμ(su+
μ + tu−

μ) + s2

2
lim
n→∞ ‖u+

n − u+
μ‖2 + t2

2
lim
n→∞ ‖u−

n − u−
μ‖2

− s6

6
lim
n→∞ |u+

n − u+
μ |66 − t6

6
lim
n→∞ |u−

n − u−
μ |66

Letting A1 = lim
n→∞ ‖u+

n −u+
μ‖2, A2 = lim

n→∞ ‖u−
n −u−

μ‖2, B1 = lim
n→∞ |u+

n −u+
μ |66,

and B2 = lim
n→∞ |u−

n − u−
μ |66. Then we have that

Jμ(su+
μ + tu−

μ) + s2

2
A1 + t2

2
A2 − s6

6
B1 − t6

6
B2 ≤ cμ. (2.19)

for all s > 0 and t > 0.
Fi rst l y, we prove that u±

μ 
= 0.
Since the situation u−

μ 
= 0 is analogous, we just prove u+
μ 
= 0. By contradiction,

we suppose u+
μ = 0. Hence, let t > 0 small enough in (2.19).

Case 1 : A1 = 0.
In this case, we can induce that u+

n → u+
μ in H . By lemma 2.8, we obtain ‖u+

μ‖ ≥
ρ > 0. Obviously, we have a contradiction.

Case 2 : A1 > 0.
If B1 = 0, from above, we have that s2

2 A1 ≤ cμ for all s > 0, this is absurd.
If B1 > 0, we can induce that

s2

2
A1 − s6

6
B1 ≤ cμ.

By the definition of S, we have that B
1
3
1 S ≤ A1, thus we induce that

s2

2
A1 − s6

6S3
A3
1 ≤ s2

2
A1 − s6

6
B1 ≤ cμ.

It is easy to see that 1
3 S

3
2 = max

s≥0
{ s22 A1 − s6

6 S3
A3
1}. So we can get that

1

3
S

3
2 ≤ s2

2
A1 − s6

6
B1 ≤ cμ <

1

3
S

3
2 for all μ ≥ μ∗,

which is contradiction. Therefore, u±
μ 
= 0.

Secondl y, we prove that A1 = A2 = 0.
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Since the situation A2 = 0 is analogous, we just prove A1 = 0. By contradiction,
we suppose A1 > 0.

By the definition of {un} ⊂ Mμ, we have that

〈(Jμ)′(un), u+
n 〉 = 〈(Jμ)′(un), u−

n 〉 = 0,

which is equivalent to

‖u+
n ‖2 +

∫
R3

φun |u+
n |2dx − μ

∫
R3

f (u+
n )u+

n dx −
∫
R3

|u+
n |6dx = 0. (2.20)

‖u−
n ‖2 +

∫
R3

φun |u−
n |2dx − μ

∫
R3

f (u−
n )u−

n dx −
∫
R3

|u−
n |6dx = 0. (2.21)

Therefore, by using Brezis–Lieb Lemma, Fatou’s Lemma and Hardy–Littlewood–
Sobolev inequality and (2.20), we can deduce that

0 = lim
n→∞[‖u+

n ‖2 +
∫
R3

φun |u+
n |2dx − μ

∫
R3

f (u+
n )u+

n dx −
∫
R3

|u+
n |6dx]

= lim
n→∞(‖u+

n − u+
μ‖2 + ‖u+

μ‖2) + lim
n→∞

∫
R3

φun |u+
n |2dx − lim

n→∞ μ

∫
R3

f (u+
n )u+

n dx

− lim
n→∞

∫
R3

(|u+
n − u+

μ |6 + |u+
μ |6)dx

=A1 + ‖u+
μ‖2 +

∫
R3

φuμ |u+
μ |2dx − μ

∫
R3

f (u+
μ)u+

μdx − B1 − |u+
μ |66

=A1 − B1 + 〈(Jμ)′(uμ), u+
μ 〉.

By (2.16), we have that 〈(Jμ)′(uμ), u+
μ 〉 ≤ 0, thus

A1 − B1 ≥ 0,

which means

A1 ≥ B1. (2.22)

Since the equation (2.21) is analogous, we also can induce that

A2 ≥ B2 (2.23)

So combining with (2.19), we have

cμ ≥ Jμ(su+
μ + tu−

μ) + s2

2
A1 + t2

2
A2 − s6

6
B1 − t6

6
B2

123



Existence of least-energy... Page 15 of 19 45

≥ Jμ(su+
μ + tu−

μ) + (
s2

2
− s6

6
)A1 + (

t2

2
− t6

6
)A2.

There exists (s, t) ∈ (0,+∞) × (0,+∞) such that s2
2 − s6

6 > 0 and t2
2 − t6

6 > 0.
Thus

cμ ≥ Jμ(su+
μ + tu−

μ) + (
s2

2
− s6

6
)A1 + (

t2

2
− t6

6
)A2

> Jμ(su+
μ + tu−

μ)

≥ cμ

That is, we have a contradiction. Therefore, we deduce that A1 = A2 = 0.
Lastl y, we prove that cμ is achieved.

For u±
μ 
= 0, according to Lemma 2.7, there exists a pair (suμ, tuμ) ∈ (0,∞) ×

(0,∞) such that ũ = suμu
+
μ + tuμu

−
μ ∈ Mμ. Furthermore, it is obviously that

〈(Jμ)′(u), u±
μ 〉 ≤ 0, so 0 < suμ, tuμ ≤ 1.

Since ũμ = suμu
+
μ + tuμu

−
μ ∈ Mμ and B1 = B2 = 0, the norm of H is lower

semicontinuous, we have that

cμ ≤Jμ(̃uμ) − 1

4
〈(Jμ)′(̃uμ), ũμ〉

≤1

4
‖uμ‖2 + 1

12

∫
R3

|uμ|6dx + μ

4

∫
R3

[ f (uμ)uμ − 4F(uμ)]dx

≤ lim inf
n→∞ [Jμ(un) − 1

4
〈(Jμ)′(un), un〉] = cμ.

So, we have that suμ = tuμ = 1, which means uμ ∈ Mμ, and Jμ(uμ) = cμ.

The proof is complete. ��

3 The proof of main results

Proof of Theorem 1.1 Thanks to Lemma 2.10, we just prove that the minimizer uμ for
cμ is indeed a sign-changing solution of system (1.1). Since uμ ∈ Mμ, according to
Lemma 2.7, we have that

Jμ(su+
μ + tu−

μ) < Jμ(u+
μ + u−

μ) = cμ, for (s, t) ∈ (0,∞)× (0,∞)\(1, 1). (3.1)

If (Jμ)′(uμ) 
= 0, then there exist δ > 0 and θ > 0 such that ‖J ′
μ(v)‖ ≥ θ , for all

‖v − uμ‖ ≤ 3δ.
Choosing σ ∈ (0,min{ 12 , δ√

2‖uμ‖ }). Let D := (1− σ, 1+ σ) × (1− σ, 1+ σ) and

g(s, t) = su+
μ + tu−

μ , (s, t) ∈ D. In view of (3.1), it is easy to see that

cμ := max
∂D

J ◦ g < cμ. (3.2)
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Let ε := min{ (cμ−cμ)

2 , θδ
8 } and Sδ := B(uμ, δ), according to Lemma 2.3 in [23], there

exists a deformation η ∈ C([0, 1] × H , H) such that

(a) η(1, v) = v if v /∈ (Jμ)−1([cμ − 2ε, cμ + 2ε] ∩ S2δ);
(b) η(1,J cμ+ε

μ ∩ S2δ) ⊂ J cμ−ε
μ ;

(c) Jμ(η(1, v)) ≤ Jμ(v) for all v ∈ H .

Fi rst l y, we prove that

max
(s,t)∈D

Jμ(η(1, g(s, t))) < cμ. (3.3)

In fact, follows from Lemma 2.7 that Jμ(g(s, t)) ≤ cμ < cμ + ε. That is, g(s, t) ∈
J cμ+ε

μ . On the other hand, we have

‖g(s, t) − uμ‖2 =‖(s − 1)u+
μ + (t − 1)u−

μ‖2
≤2(s − 1)2‖u+

μ‖2 + 2(t − 1)2‖u−
μ‖2

≤2σ 2‖uμ‖2 ≤ δ2,

which shows that g(s, t) ∈ Sδ for all (s, t) ∈ D.

According (b), we can know that Jμ(η(1, g(s, t))) < cμ − ε. Hence (3.3) holds.
Secondl y, we need to prove that η(1, g(D)) ∩ Mμ 
= ∅.

Let h(s, t) = η(1, g(s, t)) and

�0(s, t) := (〈(Jμ)′(g(s, t)), u+
μ 〉, 〈(Jμ)′(g(s, t)), u−

μ 〉)
:= (ϕ1(s, t), ϕ2(s, t)),

�1(s, t) := (
1

s
〈(Jμ)′(h(s, t)), h(s, t)+〉, 1

t
〈(Jμ)′(h(s, t)), h(s, t)−〉).

By direct calculation, we have that

∂ϕ1(s, t)

∂s
|(1,1) =‖u+

μ‖2 + 3
∫
R3

φu+
μ
|u+

μ |2dx +
∫
R3

φu−
μ
|u+

μ |2dx

− μ

∫
R3

f ′(u+
μ)|u+

μ |2dx − 5
∫
R3

|u+
μ |6dx .

∂ϕ1(s, t)

∂t
|(1,1) =2

∫
R3

φu−
μ
|u+

μ |2dx .
∂ϕ2(s, t)

∂s
|(1,1) =2

∫
R3

φu+
μ
|u−

μ |2dx .
∂ϕ2(s, t)

∂t
|(1,1) =‖u−

μ‖2 + 3
∫
R3

φu−
μ
|u−

μ |2dx +
∫
R3

φu+
μ
|u−

μ |2dx

− μ

∫
R3

f ′(u−
μ)|u−

μ |2dx − 5
∫
R3

|u−
μ |6dx .

123



Existence of least-energy... Page 17 of 19 45

Let

M =
[

∂ϕ1(s,t)
∂s |(1,1) ∂ϕ2(s,t)

∂s |(1,1)
∂ϕ1(s,t)

∂t |(1,1) ∂ϕ2(s,t)
∂t |(1,1)

]

By using ( f2) and uμ ∈ Mμ, we have that detM > 0. Since �0 is a C1 function and
(1, 1) is the unique isolated zero point of �0, by using the degree theory, we deduce
that deg(�0, D, 0)=1.

So, combining (3.2) with (a), we obtain that g(s, t) = h(s, t) on ∂D. Conse-
quently, deg(�1, D, 0)=1. That is �1(s0, t0) = 0 for some (s0, t0) ∈ D, so that
η(1, g(s0, t0)) = h(s0, t0) ∈ Mμ. By (3.3), we have a contradiction. Therefore we
conclude that uμ is a sign-changing solution for system (1.1).
Finall y, we prove that uμ has exactly two nodal domains.

To this end, we assume by contradiction that uμ = u1 +u2 +u3 with ui 
= 0, u1 ≥
0, u2 ≤ 0, suppt ui ∩suppt u j = ∅ for i 
= j, i, j = 1, 2, 3 and 〈(Jμ)′(uμ), ui 〉 = 0
for i = 1, 2, 3.

Setting v := u1+u2, we have that v+ = u1 and v− = u2, i.e., v± 
= 0. Then, there
exists a unique pair (sv, tv) of positive numbers such that svv++tvv− = svu1+tvu2 ∈
Mμ. So, Jμ(svu1 + tvu2) ≥ cμ.

Moreover, since 〈(Jμ)′(uμ), ui 〉 = 0, we obtain that 〈(Jμ)′(v), v+〉 < 0. Accord-
ing to Lemma 2.7, we have that (sv, tv) ∈ (0, 1] × (0, 1]. On the other hand, we also
have that

0 = 1

4
〈(Jμ)′(u), u3〉 =1

4
‖u3‖2 + 1

4

∫
R3

φu1 |u3|2dx + 1

4

∫
R3

φu2 |u3|2dx

+ 1

4

∫
R3

φu3 |u3|2dx − μ

4

∫
R3

f (u3)u3dx − 1

4

∫
R3

|u3|6dx

<Jμ(u3) + 1

4

∫
R3

φu1 |u3|2dx + 1

4

∫
R3

φu2 |u3|2dx .

Then, by (2.9), we have that

cμ ≤ Jμ(svu1 + tvu2) =Jμ(svu1 + tvu2) − 1

4
〈(Jμ)′(svu1 + tvu2), svu1 + tvu2〉

≤1

4
(‖u1‖2 + ‖u2‖2) + 1

12

∫
R3

(|u1|6 + |u2|6)dx

+ μ

4

∫
R3

[ f (u1)u1 − 4F(u1) + f (u2)u2 − 4F(u2)]dx

=Jμ(u1 + u2) − 1

4
〈(Jμ)′(u1 + u2), u1 + u2〉

<Jμ(u) = cμ.

which is a contradiction, this is, u3 = 0 and uμ has exactly two nodal domains. ��
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By Theorem 1.1, we obtain a least-energy sign-changing solution uμ of system
(1.1). Next, we prove that the energy of uμ is strictly larger than two times the least
energy.

Proof of Theorem 1.2 Firstly, we define the manifold

Nμ = {u ∈ H \ {0} |〈(Jμ)′(u), u〉 = 0};

c∗
μ = inf

u∈Nμ

Jμ(u).

Similar to the proof of Lemma 2.10, there exists μ∗
1 > 0, there is vμ ∈ Nμ such

that Jμ(vμ) = c∗
μ > 0. By standard arguments, the critical points of the functional

Jμ on Nμ are critical points of Jμ on H . Thus, we obtain that vμ is the ground state
solution of system (1.1). Details for [15], here we omitted it.

Let μ∗∗ = max{μ∗, μ∗
1}, suppose that uμ = u+

μ + u−
μ . As the proof of Lemma 2.7,

there exists 0 < suμ, tuμ ≤ 1 such that suμu
+
μ ∈ Nμ and tuμu

−
μ ∈ Nμ.

Therefore, in view of Lemma 2.7, we have that

2c∗
μ ≤ Jμ(suμu

+
μ) + Jμ(tuμu

−
μ) ≤ Jμ(suμu

+
μ + tuμu

−
μ) < Jμ(u+

μ + u−
μ) = cμ.

which shows that cμ > 2c∗
μ and c∗

μ > 0 cannot be achieved by a sign-changing
solutions in H . The prove is complete. ��
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