
Bull. Malays. Math. Sci. Soc. (2023) 46:38
https://doi.org/10.1007/s40840-022-01437-3

Remarks on Blowup of Solutions for Compressible
Navier–Stokes Equations with Revised Maxwell’s Law

Jianwei Dong1

Received: 8 August 2022 / Revised: 7 November 2022 / Accepted: 21 November 2022 /
Published online: 1 December 2022
© The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti
Sains Malaysia 2022

Abstract
In this note, we study the blowup of classical solutions to the three-dimensional com-
pressible Navier–Stokes equations with revised Maxwell’s law. First, we improve the
previous blowup result with initial density away from vacuum by removing three
restrictions. Next, we present a blowup result for the classical solutions with decay
at far fields when the shear relaxation time is zero by introducing a new averaged
quantity.
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1 Introduction

In this note, we consider the following three-dimensional compressible Navier–Stokes
equations with revised Maxwell’s law (see [10] for instance):

{
ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇ p(ρ) = divS,

(1.1)

where the fluid density ρ = ρ(x, t), the fluid velocity u = u(x, t) = (u1(x, t),
u2(x, t), u3(x, t)) and the stress tensor S = S(x, t) are the unknown functions with
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(x, t) ∈ R
3 × R

+. The function p(ρ) = aργ represents the pressure with a > 0 and
γ > 1 being two constants, γ is called the adiabatic exponent. The stress tensor S
is assumed to satisfy the revised Maxwell’s law: S = S1 + S2I, where S1 and S2 are
given by the following equations

τ1(S1)t + S1 = μ[(∇u + ∇uT ) − 2

3
divuI], (1.2)

τ2(S2)t + S2 = λdivu, (1.3)

whereμ and λ are positive constants, τ1 and τ2 denote the shear relaxation time and the
compressible relaxation time, respectively, I represents 3×3 identitymatrix. Equations
(1.2) and (1.3) were first proposed by Yong [14] from some mathematical point of
view, later Chakraborty and Sader [2] showed the fact that the division of S into two
parts has its physicalmeanings, where the importance of thismodel for describing high
frequency limits is underlined togetherwith the presentation of numerical experiments.

Therewere someworks about themathematical analysis of theNavier–Stokes equa-
tions with revisedMaxwell’s law in the literature. Yong proved that system (1.1)–(1.3)
is symmetric hyperbolic system, which implies local well-posedness immediately.
Again due to the symmetric hyperbolic property of system (1.1)–(1.3), the important
property of finite propagation speed is available, which allows one to define some
averaged quantities as in [8] and shows finite time blowup of solutions by establishing
a Riccati-type inequality, see [10]. Precisely, Wang and Hu [10] considered system
(1.1)–(1.3) with initial data

(ρ,u,S1, S2)(x, 0) = (ρ0,u0,S10, S20)(x), (1.4)

they showed that if the initial data (ρ0 − ρ,u0,S10, S20) are compactly supported in
BR := {x ∈ R

3||x | ≤ R} for some R > 0 with ρ being any positive constant, then
there exists a constant σ such that

(ρ(·, t) − ρ,u(·, t),S1(·, t), S2(·, t)) = (0, 0, 0, 0) (1.5)

on D = {x ∈ R
3||x | > R + σ t} for C1 solutions (ρ(·, t),u(·, t),S1(·, t), S2(·, t)) to

the Cauchy problem (1.1)–(1.4) on [0, T ], see Proposition 2.1 of [10]. This guarantees
that the following averaged quantities are finite:

m(t) :=
∫
R3

(ρ(x, t) − ρ)dx, (1.6)

A(t) :=
∫
R3

S2(x, t)dx, (1.7)

F(t) :=
∫
R3

x · (ρu)(x, t)dx . (1.8)

By establishing a Riccati-type inequality of F(t), the authors of Wang and Hu [10]
proved that the life span of any C1 solution to (1.1)–(1.4) must be finite for some
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special large initial data. Unfortunately, the following three restrictions are required
in [10]:

m(0) ≥ 0, Trace{S10(x)} = 0, A(0) ≤ 0. (1.9)

In this note, our first aim is to give a blowup result for the C1 solutions to (1.1)–(1.4)
without the conditions (1.9).

When τ1 = τ2 = 0, the system (1.1)–(1.3) is reduced to the classical compressible
Navier–Stokes system. Many authors have studied the blowup of smooth solutions to
the classical compressible Navier–Stokes system, see [1, 3, 5–7, 9, 12, 13] and the
references therein. Particularly, the authors of Jiu [5] and Wang et al. [9] investigated
the blowup of classical solutions to the classical compressible Navier–Stokes system
when the density and the velocity decay at far fields. Motivated by Jiu [5] and Wang
et al. [9], we can present a blowup result of classical solutions to (1.1)–(1.4) when
τ1 = 0 and the density and the velocity decay at far fields. This is our second aim of
this note. Different from Jiu [5] and Wang et al. [9], for the problem (1.1)–(1.4) we
cannot obtain the conversation of the total energy or the decrease with time of the total
energy. This makes us difficult to get the upper bound of the momentum of inertia,
which is crucial to establish the Riccati-type inequality of a weighted momentum. To
overcome this difficulty, we introduce a new averaged quantity J (t) [see (3.3) below],
which decreases with time and is related to the total energy.

Remark 1.1 For the results about the non-isentropic Navier–Stokes equations with
revised Maxwell’s law, we can refer to [4, 11].

2 Improvement on the Blowup Result of Wang and Hu [10]

Our result in this section is stated as follows.

Theorem 2.1 Let (ρ, u,S1, S2) be a C1 solution to the Cauchy problem (1.1)–(1.4)
for 0 ≤ t ≤ T1 with the initial data (ρ0 − ρ,u0,S10, S20) being compactly supported
in BR := {x ∈ R

3||x | ≤ R}. For any fixed t∗1 > 0, if

F(0) >

√
2[m(0) + ρ|B(t∗1 )|][3p|B(t∗1 )| + 3|A(0)| + |G(0)|](R + σ t∗1 ) (2.1)

and

F(0) >

{∫ t∗1

0

dt

2(R + σ t)2[m(0) + ρ|B(t)|]

}−1

, (2.2)

then T1 < t∗1 , where

|B(t∗1 )| = 4

3
π(R + σ t∗1 )3, p = p(ρ), G(0) =

∫
R3

Trace{S10}dx . (2.3)
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Proof By (1.6), (1.1)1 and (1.5), we get

m′(t) =
∫
R3

ρt dx = −
∫
R3

div(ρu)dx = 0, (2.4)

which implies that

m(t) = m(0). (2.5)

In view of (1.7), (1.3) and (1.5), one has

A′(t) = − 1

τ2

∫
R3

S2dx + λ

τ2

∫
R3

divudx = − 1

τ2

∫
R3

S2dx = − 1

τ2
A(t), (2.6)

so we obtain

|A(t)| = |A(0)|e− t
τ2 ≤ |A(0)|. (2.7)

By (1.2), we know that

τ1∂tTrace{S1} + Trace{S1} = 0 (2.8)

due to

Trace{(∇u + ∇uT ) − 2

3
divuI} = 0. (2.9)

Define

G(t) =
∫
R3

Trace{S1(x, t)}dx, (2.10)

then by (2.8), we have

|G(t)| = |G(0)|e− t
τ1 ≤ |G(0)|. (2.11)

It follows from (1.8), (1.1)2, (1.5), (2.7) and (2.11) that

F ′(t) =
∫
R3

x · (ρu)t dx

= −
∫
R3

x · div(ρu ⊗ u)dx −
∫
R3

x · ∇(p(ρ) − p)dx +
∫
R3

x · divSdx

=
∫
R3

ρ|u|2dx + 3
∫
R3

(p(ρ) − p)dx − 3
∫
R3

S2dx −
∫
R3

Trace{S1}dx

=
∫
B(t)

ρ|u|2dx + 3
∫
B(t)

(p(ρ) − p))dx − 3A(t) − G(t)
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≥
∫
B(t)

ρ|u|2dx − 3p|B(t)| − 3|A(0)| − |G(0)|, (2.12)

where

B(t) = {x ∈ R
3||x | ≤ R + σ t}, |B(t)| = 4

3
π(R + σ t)3. (2.13)

By the Schwarz inequality, it holds

F(t)2 =
(∫

B(t)
x · ρudx

)2

≤
∫
B(t)

|x |2ρdx ·
∫
B(t)

ρ|u|2dx . (2.14)

By (1.6) and (2.5), we know that

∫
B(t)

|x |2ρdx ≤ (R + σ t)2
∫
B(t)

ρdx = (R + σ t)2
[∫

B(t)
(ρ − ρ)dx +

∫
B(t)

ρdx

]

= (R + σ t)2 [m(t) + ρ|B(t)|] = (R + σ t)2 [m(0) + ρ|B(t)|] .
(2.15)

Combining (2.12), (2.14) and (2.15), we obtain

F ′(t) ≥ F(t)2

(R + σ t)2 [m(0) + ρ|B(t)|] − 3p|B(t)| − 3|A(0)| − |G(0)|. (2.16)

For any fixed t∗1 > 0, when 0 ≤ t ≤ t∗1 , it follows from (2.16) that

F ′(t) ≥ F(t)2

2(R + σ t)2 [m(0) + ρ|B(t)|]

+
{

F(t)2

2(R + σ t∗1 )2
[
m(0) + ρ|B(t∗1 )|] − 3p|B(t∗1 )| − 3|A(0)| − |G(0)|

}
.

(2.17)

By (2.1), we know that

F(0)2

2(R + σ t∗1 )2
[
m(0) + ρ|B(t∗1 )|] − 3p|B(t∗1 )| − 3|A(0)| − |G(0)| > 0, (2.18)

which together with (2.17) imply that F ′(0) > 0, so F(t) > F(0) > 0 holds at least
for a small time t > 0, then by (2.17) we derive that

F ′(t) ≥ F(t)2

2(R + σ t)2 [m(0) + ρ|B(t)|] (2.19)

123



38 Page 6 of 14 J. Dong

and

F(t)2

2(R + σ t∗1 )2
[
m(0) + ρ|B(t∗1 )|] − 3p|B(t∗1 )| − 3|A(0)| − |G(0)| > 0 (2.20)

hold whenever F(t) exists and 0 < t ≤ t∗1 . We divide (2.19) by F(t)2 and integrate
the resultant inequality over [0, t∗1 ] to have

1

F(0)
>

1

F(0)
− 1

F(t∗1 )
≥

∫ t∗1

0

dt

2(R + σ t)2 [m(0) + ρ|B(t)|] . (2.21)

On the other hand, by (2.2) we know that

1

F(0)
<

∫ t∗1

0

dt

2(R + σ t)2 [m(0) + ρ|B(t)|] , (2.22)

which together with (2.21) imply that T1 < t∗1 . We complete the proof of Theorem
2.1. 	

Remark 2.1 In Theorem 2.1 above, we show the blowup of classical solutions to the
problem (1.1)–(1.4) without the three restrictions m(0) ≥ 0, Trace{S10(x)} = 0 and
A(0) ≤ 0, so we have improved the blowup result of [10].

3 Blowup for Solutions Decay at Far Fields

In this section, we need the following averaged quantities:

I (t) := 1

2

∫
R3

|x |2ρ(x, t)dx, (3.1)

E(t) := 1

2

∫
R3

ρ|u|2dx + a

γ − 1

∫
R3

ργ dx = Ek(t) + Ei (t), (3.2)

J (t) := E(t) + τ2

2λ

∫
R3

S22dx, (3.3)

where I (t), E(t), Ek(t) and Ei (t) represent the momentum of inertia, the total energy,
the kinetic energy and the internal energy, respectively, which have been used in [5, 9].
We remark that the averaged quantity J (t) is new in the literature. In this section, we
only consider the classical solutions with decay at far fields. Precisely, for any T > 0,
we require that the solutions (ρ,u,S1, S2) satisfy that

ρ|u|3, ργ |u|, |S2u|, |u∇u|, |x |ρ|u|2, |x |ργ , |x∇u|, |xS2|, |u| ∈ L∞(0, T ; L1(R3)).

(3.4)

We should remark that the condition (3.4) guarantees that the integration by parts in
our calculations makes sense (see also [5, 9]).
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The main result of this section is stated as follows.

Theorem 3.1 Let (ρ,u,S1, S2) be a C1 solution to the Cauchy problem (1.1)–(1.4)
with τ1 = 0 satisfying (3.4) for 0 ≤ t ≤ T2 with the initial data satisfying 0 <

|A(0)|, I (0), J (0) < +∞. For any fixed t∗2 > 0, if

F(0) >

√
6|A(0)|{[max{2, 3(γ − 1)}J (0) + 3|A(0)|]t∗22 + 2F(0)t∗2 + 2I (0)}

(3.5)

and

F(0) >

{∫ t∗2

0

dt

2{[max{2, 3(γ − 1)}J (0) + 3|A(0)|]t2 + 2F(0)t + 2I (0)}

}
,

(3.6)

then T2 < t∗2 .

Proof We multiply (1.1)2 by u and integrate it over R3 to have

∫
R3

(ρu)t · udx +
∫
R3

div(ρu ⊗ u) · udx +
∫
R3

∇ p(ρ) · udx

= μ

∫
R3

div[(∇u + ∇uT ) − 2

3
divuI] · udx +

∫
R3

∇S2 · udx, (3.7)

where we have used S = S1 + S2I and (1.2) with τ1 = 0. We use integration by part
and (1.1)1 to obtain

∫
R3

div(ρu ⊗ u) · udx =
∫
R3

div(ρu)|u|2dx +
∫
R3

ρu · ∇u · udx

=
∫
R3

div(ρu)|u|2dx + 1

2

∫
R3

ρu · ∇(|u|2)dx

= 1

2

∫
R3

div(ρu)|u|2dx

= −1

2

∫
R3

ρt |u|2dx . (3.8)

Similarly,

∫
R3

∇ p(ρ) · udx = aγ

∫
R3

ργ−1∇ρ · udx

= aγ

γ − 1

∫
R3

∇(ργ−1) · (ρu)dx

= − aγ

γ − 1

∫
R3

ργ−1div(ρu)dx
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= aγ

γ − 1

∫
R3

ργ−1ρt dx

= d

dt

∫
R3

ργ

γ − 1
dx, (3.9)

∫
R3

∇S2 · udx = −
∫
R3

S2divudx . (3.10)

We estimate the integralμ
∫
R3 div[(∇u+∇uT )− 2

3divuI]·udx as follows. Noticing
that

div(∇u + ∇uT ) =
(
2

∂

∂x1

(
∂u1
∂x1

)
+ ∂

∂x2

(
∂u1
∂x2

+ ∂u2
∂x1

)
+ ∂

∂x3

(
∂u1
∂x3

+ ∂u3
∂x1

)
,

∂

∂x1

(
∂u1
∂x2

+ ∂u2
∂x1

)
+ 2

∂

∂x2

(
∂u2
∂x2

)
+ ∂

∂x3

(
∂u2
∂x3

+ ∂u3
∂x2

)
,

∂

∂x1

(
∂u1
∂x3

+ ∂u3
∂x1

)
+ ∂

∂x2

(
∂u2
∂x3

+ ∂u3
∂x2

)
+ 2

∂

∂x3

(
∂u3
∂x3

))
,

(3.11)

one has
∫
R3

div(∇u + ∇uT ) · udx

=
∫
R3

u1

[
2

∂

∂x1

(
∂u1
∂x1

)
+ ∂

∂x2

(
∂u1
∂x2

+ ∂u2
∂x1

)
+ ∂

∂x3

(
∂u1
∂x3

+ ∂u3
∂x1

)]
dx

+
∫
R3

u2

[
∂

∂x1

(
∂u1
∂x2

+ ∂u2
∂x1

)
+ 2

∂

∂x2

(
∂u2
∂x2

)
+ ∂

∂x3

(
∂u2
∂x3

+ ∂u3
∂x2

)]
dx

+
∫
R3

u3

[
∂

∂x1

(
∂u1
∂x3

+ ∂u3
∂x1

)
+ ∂

∂x2

(
∂u2
∂x3

+ ∂u3
∂x2

)
+ 2

∂

∂x3

(
∂u3
∂x3

)]
dx

= −2
∫
R3

3∑
i=1

(
∂ui
∂xi

)2

dx −
∫
R3

[(
∂u1
∂x2

)2

+
(

∂u1
∂x3

)2
]
dx

−
∫
R3

[(
∂u2
∂x1

)2

+
(

∂u2
∂x3

)2
]
dx −

∫
R3

[(
∂u3
∂x1

)2

+
(

∂u3
∂x2

)2
]
dx

− 2
∫
R3

(
∂u1
∂x2

· ∂u2
∂x1

+ ∂u1
∂x3

· ∂u3
∂x1

+ ∂u2
∂x3

· ∂u3
∂x2

)
dx

= −2
∫
R3

3∑
i=1

(
∂ui
∂xi

)2

dx −
∫
R3

(
∂u1
∂x2

+ ∂u2
∂x1

)2

dx

−
∫
R3

(
∂u1
∂x3

+ ∂u3
∂x1

)2

dx −
∫
R3

(
∂u2
∂x3

+ ∂u3
∂x2

)2

dx . (3.12)

2

3

∫
R3

div(divuI) · udx = −2

3

∫
R3

(

3∑
i=1

∂ui
∂xi

)2dx . (3.13)
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Consequently,

∫
R3

div

[
(∇u + ∇uT ) − 2

3
divuI

]
· udx

= −2
∫
R3

3∑
i=1

(
∂ui
∂xi

)2

dx + 2

3

∫
R3

(

3∑
i=1

∂ui
∂xi

)2dx

−
∫
R3

(
∂u1
∂x2

+ ∂u2
∂x1

)2

dx −
∫
R3

(
∂u1
∂x3

+ ∂u3
∂x1

)2

dx −
∫
R3

(
∂u2
∂x3

+ ∂u3
∂x2

)2

dx

≤ −
∫
R3

(
∂u1
∂x2

+ ∂u2
∂x1

)2

dx −
∫
R3

(
∂u1
∂x3

+ ∂u3
∂x1

)2

dx

−
∫
R3

(
∂u2
∂x3

+ ∂u3
∂x2

)2

dx . (3.14)

Combining (3.7)–(3.10), (3.14) and (3.2), we obtain

d

dt
E(t) ≤ −

∫
R3

S2divudx −
∫
R3

(
∂u1
∂x2

+ ∂u2
∂x1

)2

dx

−
∫
R3

(
∂u1
∂x3

+ ∂u3
∂x1

)2

dx −
∫
R3

(
∂u2
∂x3

+ ∂u3
∂x2

)2

dx . (3.15)

We multiply (1.3) by S2
λ
and integrate the resultant equation over R3 to have

τ2

2λ

d

dt

∫
R3

S22dx = −1

λ

∫
R3

S22dx +
∫
R3

S2divudx . (3.16)

In view of (3.15), (3.16) and (3.3), it holds

d

dt
J (t) ≤ −

∫
R3

(
∂u1
∂x2

+ ∂u2
∂x1

)2

dx −
∫
R3

(
∂u1
∂x3

+ ∂u3
∂x1

)2

dx

−
∫
R3

(
∂u2
∂x3

+ ∂u3
∂x2

)2

dx ≤ 0, (3.17)

which implies that

J (t) ≤ J (0), 0 ≤ t ≤ T2. (3.18)

By (3.1), (1.1)1 and (1.8), we know that

I ′(t) = 1

2

∫
R3

|x |2ρt dx = −1

2

∫
R3

|x |2div(ρu)dx =
∫
R3

x · ρudx = F(t).

(3.19)
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In view of (1.8) and (1.1)2, we get

F ′(t) =
∫
R3

x · (ρu)t dx

= −
∫
R3

x · div(ρu ⊗ u)dx −
∫
R3

x · ∇ p(ρ)dx

+μ

∫
R3

x · div[(∇u + ∇uT ) − 2

3
divuI]dx +

∫
R3

x · ∇S2dx, (3.20)

where we have used S = S1 + S2I and (1.2) with τ1 = 0. Using (3.4) and integration
by part, we obtain

−
∫
R3

x · div(ρu ⊗ u)dx = −
∫
R3

x1

[
∂

∂x1
(ρu21) + ∂

∂x2
(ρu2u1) + ∂

∂x3
(ρu3u1)

]
dx

−
∫
R3

x2

[
∂

∂x1
(ρu1u2) + ∂

∂x2
(ρu22) + ∂

∂x3
(ρu3u2)

]
dx

−
∫
R3

x3

[
∂

∂x1
(ρu1u3) + ∂

∂x2
(ρu2u3) + ∂

∂x3
(ρu23)

]
dx

=
∫
R3

ρ(u21 + u22 + u23)dx =
∫
R3

ρ|u|2dx, (3.21)

−
∫
R3

x · ∇ p(ρ)dx = 3a
∫
R3

ργ dx, (3.22)

μ

∫
R3

x · div
[
(∇u + ∇uT ) − 2

3
divuI

]
dx

= −μ

∫
R3

Trace

[
(∇u + ∇uT ) − 2

3
divuI

]
dx = 0, (3.23)

∫
R3

x · ∇S2dx = −3
∫
R3

S2dx . (3.24)

It follows from (3.20) to (3.24) that

F ′(t) =
∫
R3

ρ|u|2dx + 3a
∫
R3

ργ dx − 3
∫
R3

S2dx, (3.25)

which together with (3.2) lead to

F ′(t) = 2Ek(t) + 3(γ − 1)Ei (t) − 3
∫
R3

S2dx . (3.26)
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We integrate (1.3) over R3 and use the condition |u| ∈ L∞(0, T ; L1(R3)) in (3.4) to
have

τ2
d

dt

∫
R3

S2dx +
∫
R3

S2dx = λ

∫
R3

divudx = 0, (3.27)

which together with (1.7) and (3.26) imply that

F ′(t) = 2Ek(t) + 3(γ − 1)Ei (t) − 3A(t)

= 2Ek(t) + 3(γ − 1)Ei (t) − 3A(0)e
− t

τ2 . (3.28)

By (3.19), (3.28), (3.2), (3.3) and (3.18), we know that

I ′′(t) = F ′(t) ≤ max{2, 3(γ − 1)}J (t) + 3|A(0)|
≤ max{2, 3(γ − 1)}J (0) + 3|A(0)|. (3.29)

We integrate (3.29) over R3 twice and use (3.19) to obtain

I (t) ≤ 1

2
[max{2, 3(γ − 1)}J (0) + 3|A(0)|]t2 + F(0)t + I (0). (3.30)

By the Schwarz inequality, (3.1) and (3.2), it holds

F(t)2 =
(∫

R3
x · ρudx

)2

≤
∫
R3

|x |2ρdx ·
∫
R3

ρ|u|2dx = 4I (t)Ek(t), (3.31)

which together with (3.28) and (3.30) imply that

F ′(t) ≥ 2Ek(t) − 3|A(0)| ≥ F(t)2

2I (t)
− 3|A(0)|

≥ F(t)2

[max{2, 3(γ − 1)}J (0) + 3|A(0)|]t2 + 2F(0)t + 2I (0)
− 3|A(0)|.

(3.32)

This corresponds to (2.16), so the rest proof is similar to the one of Theorem 2.1, we
omit the details. 	


In fact, if we assume A(0) ≤ 0, we can obtain a refined blowup result for the
Cauchy problem (1.1)–(1.4) with solutions decay at far fields.

Corollary 3.1 Denote

c1 = max{2, 3(γ − 1)}, c2 =
√
2[c1 J (0) − 3A(0)]I (0) − F(0)2. (3.33)
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Under the assumptions of Theorem 3.1, if we further assume that A(0) ≤ 0, F(0) > 0
and

c2
F(0)

+ arctan
F(0)

c2
<

π

2
, (3.34)

then the life span T2 of the classical solutions to (1.1)–(1.4) satisfies that

T2 <
c2

c1 J (0) − 3A(0)
tan

[
c2

F(0)
+ arctan

F(0)

c2

]
− F(0)

c1 J (0) − 3A(0)
(3.35)

Proof By the condition A(0) ≤ 0 and (3.28)–(3.30), we know that

F ′(t) ≥ 2Ek(t) + 3(γ − 1)Ei (t) (3.36)

and

I (t) ≤ 1

2
[max{2, 3(γ − 1)}J (0) − 3A(0)]t2 + F(0)t + I (0). (3.37)

Then (3.32) becomes

F ′(t) ≥ F(t)2

[max{2, 3(γ − 1)}J (0) − 3A(0)]t2 + 2F(0)t + 2I (0)
. (3.38)

The inequality (3.36) implies that F(t) increases with time, which together with
F(0) > 0 lead to the fact that F(t) > 0 for t ∈ [0, T2]. We use (3.33) to rewrite
(3.38) as

F ′(t) ≥ F(t)2

[c1 J (0) − 3A(0)]
{(

t + F(0)
c1 J (0)−3A(0)

)2 + c22
[c1 J (0)−3A(0)]2

} . (3.39)

Noticing that

c22 = 2[c1 J (0) − 3A(0)]I (0) − F(0)2 ≥ 2c1 J (0)I (0)

− F(0)2 > 4Ek(0)I (0) − F(0)2 ≥ 0, (3.40)

we have c2 > 0. So we divide (3.39) by F(t)2 and integrate the resultant inequality
over [0, T2] to obtain

1

F(0)
>

1

F(0)
− 1

F(T2)

≥ 1

c2

⎡
⎣arctan

[c1 J (0) − 3A(0)]
(
T2 + F(0)

c1 J (0)−3A(0)

)
c2

− arctan
F(0)

c2

⎤
⎦ , (3.41)
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which can be solved as (3.35). The proof of Corollary 3.1 is finished. 	

Remark 3.1 The condition (3.34) inCorollary 3.1 is used to ensure that the upper bound
in (3.35) is positive. In fact, by using (3.34) and the monotonicity of the function tan x
in (0, π

2 ), we have

c2
c1 J (0) − 3A(0)

tan

(
c2

F(0)
+ arctan

F(0)

c2

)
>

c2
c1 J (0) − 3A(0)

· F(0)

c2

= F(0)

c1 J (0) − 3A(0)
. (3.42)

Remark 3.2 If τ1 > 0, we do not know how to treat the integral
∫
R3 divS1 ·udx , which

is crucial to obtain the inequality like (3.18). Perhaps we need to construct some new
averaged quantities for the case of τ1 > 0.
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