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Abstract
The goal of this paper is to discuss the asymptotic behavior of weak solutions to
a class of parabolic equations involving fractional Laplacian in cylindrical domains
becoming unbounded in one direction. The results presented in this paper are new and
extend some main results in the literature for local and nonlocal elliptic problems with
Dirichlet boundary condition.
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1 Introduction and theMain Results

In this paper, we are interested in analyzing the asymptotic behavior of weak solutions
to the following fractional parabolic problem when � → +∞

⎧
⎨

⎩

∂t u�(x, t) + (−�)su�(x, t) = f (x, t) in �� × (0, T ),

u�(x, t) = 0 in
(
R

N\��

)× (0, T ),

u�(x, 0) = u0(x) in ��.

(1.1)

Communicated by Rosihan M. Ali.

B Tahir Boudjeriou
re.tahar@yahoo.com

1 Department of Basic Teaching, Institute of Electrical and Electronic Engineering University of
Boumerdes, 35000 Boumerdes, Algeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-022-01426-6&domain=pdf


19 Page 2 of 25 T. Boudjeriou
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Fig. 1 the domain ��

Here ∂t = ∂/∂t , T > 0, and the leading operator (−�)s is the fractional Laplace
operator defined on smooth functions by

(−�)sϕ(x) = CN ,s lim
ε→0+

∫

RN \Bε (x)

ϕ(x) − ϕ(y)

|x − y|N+2s dy x ∈ R
N , (1.2)

where s ∈ (0, 1), Bε(x) denotes the open ball in R
N centered at x ∈ R

N with radius
ε > 0. The constant CN ,s in (1.2) is given by

CN ,s = s2s�
( N+2s

2

)

π
N
2 �(1 − s)

, (1.3)

where� denotes the usual Gamma function. The fractional Laplacian and the constant
CN ,s have been studied in detail in [2]. We point out that in the PDEs literature, the
operator (1.2) is also known as the restricted fractional Laplacian (see, e.g., [9, 10]).
In the setting of bounded domains, it was proven in [28] that the operator (1.2) is
different from the spectral fractional Laplacian operator, whereas in the whole space
R

N , it was proven in [27] that the operator (1.2) has ten equivalent definitions.
In the sequel, we introduce some notations that we will use in the rest of the paper.

For x = (x1, x2, . . . , xN ) ∈ R
N , we set

x = (x1, X2), X2 = (x2, x3, . . . , xN ). (1.4)

Let � > 0, we shall denote by�� = (−�, �)×ω ⊂ R
N (N ≥ 2) the cylinder of length

� with the open bounded set ω ⊂ R
N−1 as the cross section. A schematic picture of

the domain �� is shown in Fig. 1.
Recently, the study of fractional Laplacian and related problems has been received

an increasing amount of attention because of their connection with many real-world
phenomena. Indeed, the fractional Laplacian appears in many different areas, such
as anomalous diffusion, quantum mechanics, finance, optimization, and game theory;
see [1, 4, 15] and the references therein.
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In the past, many problems of partial differential equations of the type “� → +∞"
were studied by several researchers. In a seminal paper published in 2001, Chipot and
Rougirel in [19] considered the following parabolic problem

⎧
⎨

⎩

∂t u� − div(A(x, t)∇u�) = f (X2, t) in �� × (0, T ),

u� = 0 in ∂�� × (0, T ),

u�(x, 0) = u0(X2) in ��,

(1.5)

where �� := (−�, �)p × ω, ω is a bounded open subset of RN−p, 1 ≤ p < N ,
A(x, t) = (ai j )i, j=1,...,N is an N × N matrix satisfies some conditions. It was proved
in that paper, for any fixed �0 > 0 the unique weak solution u� of (1.5) converges to
u∞ in L2(0, T ; L2(��0)) and L2(0, T ; H1(��0)) with a speed larger than any power
of 1

�
where u∞ is the unique weak solution of this cross section problem

⎧
⎨

⎩

∂t u∞ − div(A2,2(x, t)∇X2u∞) = f (X2, t) in ω × (0, T ),

u∞ = 0 in ∂ω × (0, T ),

u∞(x, 0) = u0(X2) in ω.

(1.6)

Moreover, in [19] it was studied the asymptotic behavior of solutions as � → +∞ to
a class of quasilinear parabolic equations. Later on, Chipot and Rougirel [18] inves-
tigated the same question for a class of elliptic equations. Since then, there several
interesting results have been established by many authors from different points of
view. Among them we refer the reader to Guesmia [29, 30], Chipot and Xie [20],
Chipot and Yeressian [21], Chipot and Mardare [22], Chipot et al. [25, 26], Esposito
et al. [16] and the references there.

Next, in order to study the asymptotic behavior of (1.1) as � → +∞, we need to
recall from [5] some properties of the fractional Sobolev spaces that will be used in
the sequel. For any s ∈ (0, 1) the space Hs(RN ) is defined by

Hs(RN ) =
{
u ∈ L2(RN ) : [u]s,2,RN < ∞

}
,

where [u]s,2,RN is the so-called Gagliardo semi-norm defined by

[u]2s,2,RN :=
∫

R2N

|u(x) − u(y)|2
|x − y|N+2s dxdy.

For every u, v ∈ Hs(RN ), we define

(u, v)Hs (RN ) = (u, v)L2(RN ) +
∫

R2N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy. (1.7)

One can show easly that this is an inner product and the corresponding norm is denoted
by ‖. ‖Hs (RN ). It is well known that H

s(RN ) is a Hilbert space with respect to the inner
product defined in (1.7) and C∞

c (RN ) is a dense subset of Hs(RN ). In what follows,
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we let � be an open bounded subset of RN and define the space Hs
0 (�) by

Hs
0 (�) =

{
u ∈ Hs(RN ) : u = 0 a.e. in R

N\�
}

,

equipped with the norm

‖u‖ := ‖u‖Hs (RN ).

We shall look for a solution to (1.1) in the following proper class of regularity

W (0, T ; Hs
0 (�)) =

{
u ∈ L2(0, T ; Hs

0 (�)), ut exists and ut ∈ L2(0, T ; L2(�)
}

.

One can show easily that W (0, T ; Hs
0 (�)) is a Banach space when endowed with the

norm

‖u‖2W =
∫ T

0
‖u(t)‖2 dt +

∫ T

0
‖ut (t)‖2L2(�)

dt .

Finally, we define the bilinear form a : Hs
0 (�) × Hs

0 (�) → R as

a(u, v) = CN ,s

∫

RN

∫

RN

(u(x) − u(y))v(x)

|x − y|N+2s dxdy

= CN ,s

2

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy.

It is important to point out that the asymptotic behavior of solutions to elliptic and
parabolic equations involving fractional Laplacian in domain becoming unbounded
in one or several directions is still not well studied in the literature and need further
attention. As far aswe know at thismoment, there is still no research that focuses on the
asymptotic of solutions as � → +∞ to linear or nonlinear parabolic equations driven
by the fractional Laplacian. However, to the best of our knowledge, the asymptotic
behavior of the solution of nonlocal elliptic problems in cylindrical domains becoming
unbounded has been studied first by Yeressian [12] and more recently by Chowdhury
and Roy [7] and Ambrosio et al. [31]. The author in [12] considered the following
elliptic problem

{
(−�)su�(x) = f (x) in ��,

u� = 0 in R
N\��,

(1.8)

and established this result

Theorem Let u� be the unique weak solution of (1.8) for s = 1
2 with the condition

that

support( f ) ⊂ ��\��−1 and ‖ f ‖L2(��)
≤ 1. (1.9)
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Then there holds

∫

�1

u2�(x) dx ≤ C

�2
∀� > 0,

where C > 0 is a constant independent of �.

Subsequently, Chowdhury and Roy [7] have extended Yeressian’s result to the case
where s ∈ (0, 1). Moreover, when the force term f is defined only on ω ⊂ R

N−1,
namely, f = f (x2, x3, . . . , xN ) the authors in [7] proved the following result:

Theorem Let us assume s ∈ ( 12 , 1
)
, f (x2, x3, . . . , xN ) ∈ L2(ω). Let u� be the unique

weak solution of (1.8) for each � and u∞ be the unique weak solution of the following
equation on the cross section ω of the cylinder ��,

{
(−�′)su∞ = f (x2, x3, . . . , xN ) in ω,

u∞ = 0 in R
N\ω,

(1.10)

where (−�′)s denotes N − 1-dimensional fractional Laplace operator. Then for each
α ∈ (0, 1), we have

∫

�α�

|u� − u∞|2 dx ≤ 1

�2s−1 ∀� > 0.

In [31] Ambrosio et al. considered the following elliptic problem

{
(−�RN+k )su� = f∞ in �N+k

� ,

u� = 0 in R
N+k\�N+k

� ,
(1.11)

where �N+k
� = ωN × Bk

� ⊂ R
N × R

k , k, N ≥ 1, ωN is a given bounded and
Lipschitz domain in R

N , Bk
� can be the rectangle (−�, �)k or the Euclidean ball of

radius � about the origin, and (−�RN+k )s is N + k-dimensional fractional Laplace
operator. The authors have proved in [31] the following results:

• lim
�→+∞ inf

u∈Hs
0 (�N+k

� )\{0}

〈
(−�

RN+k )su,u
〉

‖u‖2
L2(�

N+k
�

)

= inf
u∈Hs

0 (ωN )\{0}

〈
(−�

RN )su,u
〉

‖u‖2
L2(ωN )

= λs(ωN ).

• For a given f∞ ∈ L2(ωN ) and u� be the unique weak solution of (1.11). Then

1

�k Bk
1

∫

Bk
�

u�(x, t) dt → u∞ strongly in Hs
0 (ω), as � → +∞,

where u∞ is the unique weak solution to the following problem

{
(−�RN )su∞ = f∞ in ωN ,

u∞ = 0 in R
N\ωN .

(1.12)
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Djilali and Rougirel [17] investigated the existence and the asymptotic behavior of
weak solutions to the following time fractional diffusion equations

⎧
⎨

⎩

Dα
0,t u� − �u� = f in �� × (0, T ),

u� = 0 on ∂�� × (0, T ),

(g1−α ∗ u�)(0) = v in ��.

(1.13)

where �� = (−�, �)p × ω ⊂ R
p × R

N−p, � is the classical Laplace operator, and
Dα
0,t is the so-called Riemann–Liouville fractional derivative of order 0 < α < 1

defined as

Dα
0,tv(t) := d

dt
(v ∗ gα) (t) = d

dt

(
1

�(1 − α)

∫ t

0
(t − s)−αv(s) ds

)

.

By using the Poincaré inequality and selecting a suitable test function, the authors
proved the existence of two positive constants ε and C independent of � such that

∫ T

0

∫

��/2

|∇(u� − u∞)|2 dxdt ≤ Ce−ε�,

where u∞ is the unique weak solution of this problem

⎧
⎨

⎩

Dα
0,t u∞ − �u∞ = f in ω × (0, T ),

u∞ = 0 on ∂ω × (0, T ),

(g1−α ∗ u∞)(0) = v in ω.

(1.14)

Motivated by the above results especially by [7, 12], in this paper we shall discuss the
asymptotic behavior of weak solutions as � → +∞ to the nonlocal parabolic problem
(1.1). It is important to highlight that this is the first time the asymptotic behavior of
weak solutions as � → +∞ to (1.1) is analyzed.

Before we go into details, we introduce various notations that would be used. We
denote by 〈 , 〉� the duality between H−s(�) and Hs

0 (�). The L2(�)-norm will be
denoted by ‖. ‖2,�. The short hand notation u(t) = u(., t) for any t ∈ [0, T ] will be
used throughout of the paper.

Now we define the notion of weak solution to problem (1.1).

Definition 1.1 Let u0 ∈ L2(��) and f ∈ L2(0, T ; L2(��)). We say that u� ∈
W (0, T ; Hs

0 (��)) is a weak solution of (1.1), if for any v ∈ Hs
0 (��) there holds

∫

��

∂t u�(t)v dx + a(u�(t), v) =
∫

��

f (t)v dx for a.e. t ∈ (0, T ), (1.15)

u�(0) = u0(X2). (1.16)
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In the first of ourmain results, we shall show that the unique solution of (1.1) converges
to the unique solution of the following problem in the L2-norm

⎧
⎨

⎩

∂t u∞ + (−�′)su∞ = f (X2, t) in ω × (0, T ),

u∞ = 0 in
(
R

N−1\ω)× (0, T ),

u∞(0, x) = u0(X2) in ω.

(1.17)

The weak solution of problem (1.17) can be defined in a similar way to Definition 1.1.
However, for the reader’s convenience we shall state it in full.

Definition 1.2 Let u0 ∈ L2(ω) and f ∈ L2(0, T ; L2(ω)). We shall say that u∞ ∈
W (0, T ; Hs

0 (ω)) is a weak solution of (1.1) if for all v ∈ Hs
0 (ω) there holds

∫

ω
∂t u∞(t)v dX2 + CN−1,s

2
∫

RN−1

∫

RN−1

(u∞(X2, t) − u∞(Y2, t))(v(X2) − v(Y2))

|X2 − Y2|N−1+2s
dX2dY2 =

∫

ω
f (X2, t)v dX2,

(1.18)

for a.e. t ∈ (0, T ), and

u∞(0) = u0(X2). (1.19)

In order to solve problem (1.1), one can convert it into a first-order abstract Cauchy
problem in H = L2(��). To this aimwe define the functionalϕ from H to (−∞,+∞]
by

ϕ(u�) =

⎧
⎪⎨

⎪⎩

1
2

∫

R2N
(u�(x,t)−u�(y,t))2

|x−y|N+2s dxdy if u� ∈ Hs
0 (��),

+∞ if u� ∈ H \ Hs
0 (��).

It is easy to see that ϕ is convex, lower semi-continuous and proper. It was proven in
[11, Theorem2.3] that solving problem (1.1) in the sense ofDefinition 1.1 is equivalent
to solve the following abstract Cauchy problem:

{ du�(t)
dt + ∂ϕ(u�(t)) � f (t) in H , 0 < t < T ,

w(x, 0) = u0
(1.20)

where ∂ϕ(u�) denotes the subdifferential of ϕ at u� in the sense of convex analysis.
Since u0 ∈ L2(��), then by [6, Theorem 3.6 and Lemma 3.3], for any T > 0, there
exists a unique solution u� to the Cauchy problem (1.20).

The existence and uniqueness of weak solution to problem (1.17) can be obtained
similarly by considering the functional ψ from H = L2(ω) to (−∞,+∞] as

ψ(u∞) =

⎧
⎪⎨

⎪⎩

1
2

∫

RN−1×RN−1
(u∞(X2,t)−u∞(Y2,t))2

|X2−Y2|N−1+2s d X2dY2 if u∞ ∈ Hs
0 (ω),

+∞ if u∞ ∈ H \ Hs
0 (ω).
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Our first result in this paper is the following:

Theorem 1.3 Let u� be the unique weak solution of (1.1) and u∞ be the unique weak
solution of (1.17). Assume that the functions f ∈ L2(0, T ; L2(ω)) and u0 ∈ L2(ω)

are independent of x1, that is

f (x, t) = f (X2, t), u0(x) = u0(X2).

Moreover, if s ∈ ( 12 , 1
)
then for any fixed �0 > 0 there exists K > 0 independent of �

such that

‖u� − u∞‖2L∞(0,T ;L2(��0 ))
+ ‖u� − u∞‖2L2(0,T ;L2(��0 ))

≤
K
{
‖u0‖22,ω + ‖ f ‖L2(0,T ;L2(ω))

}

�2s−1 ,

for any large enough � > 0.

This result can be seen as an extension of the main result of Chowdhury and Roy
stated above to the case of nonlocal parabolic equations. Here we will give a simpler
proof than the one outlined in [7]. The proof of Theorem 1.3 will be based on some
energy estimates and on a nonlocal Poincaré inequality established by Chowdhury-
Csató-Roy-Sk in [8] as well as with a suitable choice of a test function in the weak
formulation. We point out that it is still not clear if the result presented in Theorem 1.3
can be extended to the case of more general domain of the type �� = (−�, �)p ×ω ⊂
R

p ×R
N−p where p > 1. However, from the point of view of applications, the most

interesting case is when p = 1.
In the next theorem, we are interested in studying the asymptotic behavior of solu-

tions to (1.1) as � → +∞ for every value s ∈ (0, 1) and where the functions f and
u0 not only depend on X2 but also on x1.

Theorem 1.4 Let u� be the weak solution of the problem (1.1) for s ∈ (0, 1). Assume
that f and u0 satisfy the following conditions:

support( f ) ⊂ ��\��−1, ‖ f ‖L2(0,T ;L2(��\��−1))
≤ 1, (1.21)

and

support(u0) ⊂ ��\��−1, ‖u0‖L2(��\��−1)
≤ 1. (1.22)

Then there exists C > 0 independent of � such that for all � > 0 we have

‖u�‖2L∞(0,T ;L2(��α ))
+ ‖u�‖2L2(0,T ;L2(��α ))

≤ C

�(1−α)ε
,

for each α ∈ [0, 1) and ε ∈ (0, 2).
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As it was pointed out by Chipot in [23] and by Yeressian in [12] the estimates obtained
in Theorems 1.3 and 1.4 are important in numerical computations of solutions in large
domains, for example when one is only interested to compute the solution in a small
subdomain. Furthermore, these estimates are also important in the proof the well-
posedness of equations in unbounded domains with right-hand side non-decaying at
infinity.

Before concluding, we mention some problems related to our results that we hope
will inspire further research:

• Does Theorem 1.3 extend to case where s ∈ (0, 1) ?.
• It would be interesting to see in Theorems 1.3 and 1.4 when it is possible to obtain
an exponential rate of convergence.

• Under the assumptions of Theorem 1.3, is it possible to find estimates of u� − u∞
in Hs

0 (��0) ?.

The rest of this paper is organized as follows. In Sect. 2, we introduce some prelimi-
naries which will play important roles in the proofs of the main results. In the other
sections, we shall prove our main results.

1.1 Notations

Throughout this paper, the letters c, ci , K ,C , Ci , i = 1, 2, . . . , denote positive
constants which may vary from line to line but independent of �.

2 Some Preliminary Results

In order to prove Theorems 1.3 and 1.4, we shall need several preliminary results.

Proposition 2.1 ( [3, Proposition 1.2]) Let V be a Banach space which is dense and
continuously embedded in theHilbert space H.We identify H = H

′
so that V ↪→ H =

H
′
↪→ V

′
. Then the Banach space Wp = {u ∈ L p(0, T , V ), u′ ∈ L p′

(0, T , V ′)}
is contained in C([0, T ], H). Moreover, if u ∈ Wp, then ‖u(t)‖L2(�) is absolutely
continuous on [0, T ], we have

d

dt
‖u(t)‖2L2(�)

= 2〈ut (t), u(t)〉, a.e. on [0, T ],

and there is a constant C > 0 such that

‖u‖C(0,T ,H) ≤ C‖u‖Wp , for all u ∈ Wp.

In the next lemma, we state the fractional Pioncaré inequality due to Chowdhury-
Csató-Roy-Sk [8, Theorem 1.2] where the authors established the best constant for
this inequality in certain unbounded domains.

Lemma 2.2 (Pioncaré Inequality) Consider the strip D∞ = R
m × ω ⊂ R

N with
1 ≤ m < N, where ω is a bounded open subset of RN−m. Then for 0 < s < 1, we
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have

P2
N ,s(D∞) := inf

u∈Hs
0 (D∞)\{0}

[u]2
s,2,RN

‖u‖22,D∞
= P2

N−m,s(ω) := inf
u∈Hs

0 (ω)\{0}
[u]2

s,2,RN−m

‖u‖22,ω
> 0.

To the best of our knowledge, the fractional Poincaré inequality has been studied only
in some papers [8, 12–14]. In [12], it was proved a fractional Pioncaré inequality
for the spaces Hs

0 (�) without driving the best constant. Later on, in [8] Chowdhury-
Csató-Roy-Sk obtained the best constants for fractional Poincaré inequalities for the
spaces Hs

0 (�) in certain unbounded domains. Specifically, they proved that the best
constant in the regional fractional Poincaré inequality P1

N ,s(R× (−1, 1)) and the best

constant in the fractional Poincaré inequality P2
N ,s(R

m × ω) are equal to those of

the cross sections, that is to P1
1,s((−1, 1)) and P2

N−m,s(ω), respectively, where ω is

a bounded open subset of RN−m . Very recently, Mohanta and Sk in [14] proved a
fractional Poincaré inequality in the setting of Ws,p

0 (�)- spaces for 1 < p < ∞ with
establishing the best constant. Furthermore, they studied the asymptotic behavior of
the first eigenvalue of the nonlocal Dirichlet p-Laplacian problem when the domain is
becoming unbounded in several directions. Finally, in [13], the authors extended the
results of [8] to the setting of fractional Orlicz-Sobolev spaces.

In the following lemma, we give an important relation between the constants CN ,s

and CN−1,s which appear in the definition of the fractional Laplacian.

Lemma 2.3 For each N ∈ N and s ∈ (0, 1), let CN ,s be the constant defined in (1.3).
Then one has CN ,s�N = CN−1,s , where

�N =
∫

R

dz

(1 + z2)
N+2s
2

. (2.1)

Proof The proof is somehow similar to that in [7] but we include it for completeness
since it differs in some significant details. Indeed, from [32, Theorem 8.20] we have

∫ π
2

0
(sin θ)2p−1(cos θ)2q−1 dθ = �(p)�(q)

2�(p + q)
for all p, q > 0, (2.2)

where � denotes the gamma function. On the other hand, by using the change of
variable z = tan(θ) in (2.1), we obtain

�N = 2
∫ +∞

0

dz

(1 + z2)
N+2s
2

= 2
∫ π

2

0
(cos θ)N+2s−2 dθ = �

( 1
2

)
�
( N+2s−1

2

)

�
( N+2s

2

) .

From this and by the definition of CN ,s in (1.3), we deduce the desired result. ��
Lemma 2.4 Let u� be the weak solution to (1.1). Then, there exists K > 0 a constant
independent of � such that

‖u�‖L∞(0,T ;L2(��))
+ CN ,s

2

∫ T

0

∫

RN

∫

RN

|u�(x, t) − u�(y, t)|2
|x − y|N+2s dxdydt
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≤ K�
{
‖u0‖22,ω + ‖ f ‖2L2(0,T ;L2(ω))

}
. (2.3)

Proof Taking v = u� in (1.15) and using the Young’s inequality, we obtain for a.e.
t ∈ (0, T )

1

2

d

dt
‖u�(t)‖22,��

+ CN ,s

2

∫

RN

∫

RN

|u�(x, t) − u�(y, t)|2
|x − y|N+2s dxdy

≤ ‖ f (t)‖2,��
‖u�(t)‖2,��

.

Using the fractional Pioncaré’s inequality and the Young’s inequality we derive

1

2

d

dt
‖u�(t)‖22,��

+ CN ,s

4

∫

RN

∫

RN

|u�(x, t) − u�(y, t)|2
|x − y|N+2s dxdy ≤ C1‖ f (t)‖22,��

,

where C1 > 0 independent of �. Further, integrating on (0, t) we obtain for a.e. t

‖u�(t)‖22,��
+ CN ,s

2

∫ t

0

∫

RN

∫

RN

|u�(x, σ ) − u�(y, σ )|2
|x − y|N+2s dxdydσ

≤ ‖u0‖22,��
+ 2C1

∫ T

0
‖ f (t)‖22,��

dt,

≤ K�
{
‖u0‖22,ω + ‖ f ‖2L2(0,T ;L2(ω)

}
,

where K = max {2C1, 1} . Thus the proof is now complete. ��
The following lemma will be a key in proving Theorem 1.3.

Lemma 2.5 Let x = (x1, X2) ∈ �� and define u∗(x, t) = u∞(X2, t) where u∞ is the
unique weak solution to (1.17). Then, for any v ∈ Hs

0 (��) there holds

CN ,s

2

∫

RN

∫

RN

(u∗(x, t) − u∗(y, t))(v(x) − v(y))

|x − y|N+2s dxdy

= −
∫

��

∂t u
∗(x, t)v dx +

∫

��

f (X2, t)v dx, a.e. t ∈ (0, T ). (2.4)

Proof Through direct calculations, we have

∫

��

f (X2, t)v(x) dx −
∫

��

∂t u
∗(t)v(x) dx

=
∫

R

∫

ω
f (X2, t)v(x1, X2) dX2dx1 −

∫

R

∫

ω
∂t u∞(X2, t)v(x1, X2) dX2dx1

by (1.18)= CN ,sθN

CN−1,s
CN−1,s

∫

R

∫

RN−1
∫

RN−1

(u∞(X2, t) − u∞(Y2, t))v(x1, X2)

|X2 − Y2|N−1+2s
dY2dX2dx1
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by Lemma2.3= CN ,sθN

∫

R

∫

RN−1

∫

RN−1

(u∞(X2, t) − u∞(Y2, t))v(x1, X2)

|X2 − Y2|N−1+2s
dY2dX2dx1

= CN ,s

∫

RN

∫

RN

(u∗(x, t) − u∗(y, t))v(x)

|X2 − Y2|N+2s
(
1 + |x1−y1|2

|X2−Y2|2
) N+2s

2

dydx

= CN ,s

∫

RN

∫

RN

(u∗(x, t) − u∗(y, t))v(x)

|x − y|N+2s
dydx

= a(u∗(t), v) a.e. t ∈ (0, T ).

Thus this completes the proof. ��

3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. In R, we consider a function
ρ = ρ(x1) whose graph is given in Fig. 2.

Clearly this function satisfies

0 ≤ ρ ≤ 1, ρ = 1 on

(−1

2
,
1

2

)

, ρ = 0 on R\(−1, 1), |ρ′| ≤ 2. (3.1)

Before starting the proof, we prepare some technical lemmas.

Lemma 3.1 Let u∞ be the unique weak solution of (1.17) and u� be the unique weak
solution to (1.1). Then, for a.e. t ∈ (0, T ),

(u�(t) − u∞(t))ρ2
� (x1) ∈ Hs

0 (��). (3.2)

where ρ�(x1) = ρ
( x1

�

)
.

Proof In order to show this lemma, it is enough to show that ψ�(x, t) :=
u∞(X2, t)ρ2

( x1
�

) ∈ Hs
0 (��) a.e. t ∈ (0, T ). The proof of u�(x, t)ρ2

( x1
�

) ∈ Hs
0 (��)

for a.e. t ∈ (0, T ) can be done similarly. Indeed, it is obvious that ψ�(t) ∈ L2(��)

x1

z1

0

1

11
2

−1 −1
2

Fig. 2 the function ρ
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a.e. t ∈ (0, T ). Hereafter, we consider the Gagliardo semi-norm of ψ�(t)

[ψ�(t)]2s,2,RN =
∫

RN

∫

RN

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dxdy

=
∫

��

∫

RN

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dxdy

+
∫

RN \��

∫

RN

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dxdy

≤ 2
∫

��

∫

RN

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dxdy

+
∫

RN \��

∫

RN \��

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dxdy

︸ ︷︷ ︸
=0

= I [t].

Next it is sufficient to prove that I [t] is finite a.e. t ∈ (0, T ). Indeed, by the symmetry
of the integral in the Gagliardo semi-norm with respect to x and y, one has

I [t] = 2
∫

��

∫

RN

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dxdy

= 2
∫

��

∫

RN

(ψ�(x, t) − ψ�(y, t))2

|x − y|N+2s dydx

≤ 4
∫

��

∫

RN

u2∞(X2, t)(ρ2
� (x1) − ρ2

� (y1))2

|x − y|N+2s dydx

+4
∫

��

∫

RN

ρ4
� (y1)(u∞(X2, t) − u∞(Y2, t))2

|x − y|N+2s dydx

= I1[t] + I2[t].

In what follows, we show that

∫

��

∫

RN

|u∞(X2, t) − u∞(Y2, t)|2
|x − y|N+2s dydx < ∞.

Through direct calculations, we obtain

∫

��

∫

RN

|u∞(X2, t) − u∞(Y2, t)|2
|x − y|N+2s

dydx

=
∫ �

−�

∫

ω

∫

RN

|u∞(X2, t) − u∞(Y2, t)|2
|x − y|N+2s

dydX2dx1
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19 Page 14 of 25 T. Boudjeriou

=
∫ �

−�

∫

ω

∫

RN

|u∞(X2, t) − u∞(Y2, t)|2

|X2 − Y2|N+2s
(
1 + |x1−y1|2

|X2−Y2|2
) N+2s

2

dydX2dx1

=
∫ �

−�

∫

ω

∫

RN−1

|u∞(X2, t) − u∞(Y2, t)|2
|X2 − Y2|N+2s

⎛

⎜
⎜
⎝

∫

R

dy1
(
1 + |x1−y1|2

|X2−Y2|2
) N+2s

2

⎞

⎟
⎟
⎠ dY2dX2dx1.

With a simple change of variable, we obtain

∫

��

∫

RN

|u∞(X2, t) − u∞(Y2, t)|2
|x − y|N+2s dydx

≤ θN

∫ �

−�

∫

RN−1

∫

RN−1

|u∞(X2, t) − u∞(Y2, t)|2
|X2 − Y2|N−1+2s dY2dX2dx1,

≤ 2�θN‖u∞(t)‖2Hs (RN−1)
, a.e. t ∈ (0, T ). (3.3)

where θN is given as inLemma2.3.Hence, this combinedwith the fact that 0 ≤ ρ� ≤ 1,
yields

I2[t] ≤ 8�θN‖u∞(t)‖2Hs (RN−1)
, a.e. t ∈ (0, T ). (3.4)

On the other hand, we have

I1[t] = 4
∫

��

∫

|x−y|<1

u2∞(X2, t)(ρ2
� (x1) − ρ2

� (y1))2

|x − y|N+2s dydx

+4
∫

��

∫

|x−y|≥1

u2∞(X2, t)(ρ2
� (x1) − ρ2

� (y1))2

|x − y|N+2s dydx

≤ C

�2

∫

��

∫

|x−y|<1

u2∞(X2, t)|x − y|2
|x − y|N+2s dydx

+C
∫

��

∫

|x−y|≥1

u2∞(X2, t)

|x − y|N+2s dydx

= C

�
‖u∞(t)‖22,ω

∫

B(0,1)

1

|z|N+2s−2 dz + C�‖u∞(t)‖22,ω
∫

RN \B(0,1)

1

|z|N+2s dz < ∞ a.e. t ∈ (0, T ).

Thus the proof is now complete. ��
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We note that by Proposition 2.1, we have the following identity

∫ t

0

∫

��

du�

dσ
(u� − u∞)ρ2

� − du∞
dσ

(u� − u∞)ρ2
� dxdσ

=
∫ t

0

∫

��

d(u� − u∞)ρ�

dσ
(u� − u∞)ρ� dxdσ

= 1

2
‖(u� − u∞)ρ�‖22,��

. (3.5)

Here we have used the fact that u�(0) − u∞(0) = 0.
Nowwe are in position to finish the proof of Theorem 1.3. Denoting v� := u�−u∞,

we obtain by subtracting the identities (1.15) and (2.4) that

∫

��

∂tv�(t)w dx + CN ,s

2

∫

RN
∫

RN

(v�(x, t) − v�(y, t))(w(x) − w(y))

|x − y|N+2s dxdy = 0 a.e. t ∈ (0, T ), (3.6)

for each w ∈ Hs
0 (��). According to Lemma 3.1, we know that v�ρ

2
� ∈ Hs

0 (��), and
hence by taking w = v�ρ

2
� in (3.6) yields

∫

��

∂tv�(t)v�(t)ρ
2
� dx + CN ,s

2

∫

RN

∫

RN

(v�(x, t) − v�(y, t))(v�(x, t)ρ
2
�
(x1) − v�(y, t)ρ

2
�
(y1))

|x − y|N+2s
dxdy = 0a.e. t ∈ (0, T ).

(3.7)

Integrating the latter identity over [0, t] and using (3.5), we get

1

2
‖v�(t)ρ�‖22,��

+ CN ,s

2

∫ t

0

∫

RN

∫

RN

(v�(x, σ ) − v�(y, σ ))(v�(x, σ )ρ2
� (x1) − v�(y, σ )ρ2

� (y1))

|x − y|N+2s dxdydσ = 0,

(3.8)

which implies through simple manipulations

1

2
‖v�(t)ρ�‖22,��

+ CN ,s

2

∫ t

0

∫

RN

∫

RN

(v�(x, σ ) − v�(y, σ ))2ρ2
� (x1)

|x − y|N+2s dxdydσ

= −CN ,s

2

∫ t

0

∫

RN

∫

RN

v�(y, σ )(v�(x, σ ) − v�(y, σ ))(ρ2
� (x1) − ρ2

� (y1))

|x − y|N+2s dxdydσ

≤ CN ,sε

2

∫ t

0

∫

RN

∫

RN

(v�(x, σ ) − v�(y, σ ))2(ρ�(x1) + ρ�(y1))2

|x − y|N+2s dxdydσ
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+CN ,s

2ε

∫ t

0

∫

RN

∫

RN

v2� (y, σ )(ρ�(x1) − ρ�(y1))2

|x − y|N+2s dxdydσ

≤ 2CN ,sε

∫ t

0

∫

RN

∫

RN

(v�(x, σ ) − v�(y, σ ))2ρ2
� (x1)

|x − y|N+2s dxdydσ

+CN ,s

2ε

∫ t

0

∫

RN

∫

RN

v2� (y, σ )(ρ�(x1) − ρ�(y1))2

|x − y|N+2s dxdydσ ∀ε > 0.

Further, we may choose ε small enough to guarantee the existence of a constantC > 0
independent of � such that

‖v�(t)ρ�‖22,��
+
∫ t

0

∫

RN

∫

RN

(v�(x, σ ) − v�(y, σ ))2ρ2
� (x1)

|x − y|N+2s dxdydσ

≤ C
∫ t

0

∫

RN

∫

RN

v2� (y, σ )(ρ�(x1) − ρ�(y1))2

|x − y|N+2s dxdydσ. (3.9)

Using the nonlocal Poincaré inequality (see, Lemma 2.2) for the function v�ρ�, we
obtain

∫

��

v2� (x, t)ρ
2(x1) dx

≤ C
∫

RN

∫

RN

(v�(x, t)ρ�(x1) − v�(y, t)ρ�(y1))2

|x − y|N+2s dxdy

≤ 2C
∫

RN

∫

RN

(v�(x, t) − v�(y, t))2ρ2
� (x1)

|x − y|N+2s dxdy

+2C
∫

RN

∫

RN

(ρ�(x1) − ρ�(y1))2v2� (y, t)

|x − y|N+2s dxdy. (3.10)

Combining (3.9) and (3.10) yields

‖v�(t)ρ�‖22,��
+
∫ t

0
‖v�(σ )ρ�‖22,��

dσ

≤ C1

∫ t

0

∫

RN

∫

RN

v2� (y, σ )(ρ�(x1) − ρ�(y1))2

|x − y|N+2s dxdydσ.

by Fubini’s theorem= C1

N∏

k=2

θk

∫ t

0

∫

RN
v2� (y, σ )

∫

R

(ρ�(x1) − ρ�(y1))2

|x1 − y1|1+2s dx1dydσ

= C1

N∏

k=2

θk

∫ t

0

∫

RN
v2� (y, t)g�(y1)dydσ, (3.11)

where

g�(y1) =
∫

R

(ρ�(x1) − ρ�(y1))2

|x1 − y1|1+2s dx1. (3.12)
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Next, we examine the term g�(y1). Indeed, we observe that if |y1| ≥ 2� then

g�(y1) =
∫

R

(ρ�(x1))2

|x1 − y1|1+2s dx1
fromFig.2.≤

∫ �

−�

1

|x1 − y1|1+2s dx1

≤ 1

s

(
1

| − � + y1|2s + 1

|� + y1|2s
)

.

On the other hand, if we assume that |y1| < 2�, then from the fact that |ρ′
�| ≤ 2 we

have

g1(y1) =
∫ �

−�

(ρ�(x1 + y1) − ρ�(y1))2

|x1|1+2s dx1 +
∫

R\(−�,�)

(ρ�(x1 + y1) − ρ�(y1))2

|x1|1+2s dx1

≤ 4

�2

∫ �

−�

|x1|2
|x1|1+2s dx1 + 2

∫

R\(−�,�)

1

|x1|1+2s dx1,

≤ C2

�2s
,

where C2 > 0 independent of �. Therefore, we conclude that

g�(y1) ≤
{ C2

�2s
if y1 ∈ (−2�, 2�),

1
s

(
1

|−�+y1|2s + 1
|�+y1|2s

)
if y1 ∈ R\(−2�, 2�).

(3.13)

Since v�(x, t) = u�(x, t) − u∞(x, t), then from (3.11) we have

‖v�(t)ρ�‖22,��
+
∫ t

0
‖v�(σ )ρ�‖22,��

dσ ≤ C1

N∏

k=2

θk

∫ t

0

∫

RN
v2� (y, σ )g�(y1)dydσ

≤ 2C1

N∏

k=2

θk

∫ T

0

∫

RN
u2�(y, t)g�(y1)dydt

+2C1

N∏

k=2

θk

∫ T

0

∫

RN
u2∞(Y2, t)g�(y1)dydt = I1 + I2. (3.14)

In view of (3.13) and by using the fact that u�(y, t) = 0 in RN\��, we infer that

I1 = 2C1

N∏

k=2

θk

∫ T

0

∫

RN
u2�(y, t)g�(y1)dydt

= 2C1

N∏

k=2

θk

∫ T

0

∫

��

u2�(y, t)g�(y1)dydt ≤ C2

�2s

∫ T

0

∫

��

u2�(y, t)dydt .

(3.15)
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From this and according to Lemma 2.4, there exists C3 > 0 independent of � such
that

I1 ≤ C3

�2s−1

{
‖u0‖22,ω + ‖ f ‖2L2(0,T ;L2(ω))

}
. (3.16)

Next we note that from (3.13) and the fact that s > 1
2 we obtain

I2 = 2C1

N∏

k=2

θk

∫ T

0

∫

RN
u2∞(Y2, t)g�(y1)dydt

= 2C1

N∏

k=2

θk

∫ T

0
‖u∞(t)‖22,ω dt

∫ +∞

−∞
g�(y1) dy1

≤ 2C1

N∏

k=2

θk

∫ T

0
‖u∞(t)‖22,ω dt

{∫ 2�

−2�
g�(y1) dy1 +

∫ +∞

2�
g�(y1) dy1 +

∫ −2�

−∞
g�(y1) dy1

}

= 2C4
∏N

k=2 θk
∫ T
0 ‖u∞(t)‖22,ω dt

�2s−1 .

Now by taking v = u∞ in (1.15) and using the the Young’s inequality and through
direct computations we derive

‖u∞(t)‖22,ω ≤ eT
(
‖u0‖22,ω + 2‖ f ‖L2(0,T ;L2(ω))

)
. (3.17)

This combined with the last inequality proves the existence of C5 > 0 independent of
� such that

I2 ≤
C5

(
‖u0‖22,ω + 2‖ f ‖L2(0,T ;L2(ω))

)

�2s−1 . (3.18)

Hence, by gathering (3.14), (3.16), and (3.18) we may obtain a constant K > 0
independent of � such that

∫

��

(u�(t) − u∞(t))2ρ�(x1) dx +
∫ T

0

∫

��

(u�(t) − u∞(t))2ρ�(x1) dxdt

≤
K
{
‖u0‖22,ω + ‖ f ‖L2(0,T ;L2(ω))

}

�2s−1 . (3.19)

Since ρ� = 1 on ��/2 this leads to

‖u�(t) − u∞(t)‖22,��/2
+
∫ T

0
‖u�(t) − u∞(t)‖22,��/2

dt
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≤
K
{
‖u0‖22,ω + ‖ f ‖L2(0,T ;L2(ω))

}

�2s−1 . (3.20)

We choose � large enough so that �/2 > �0, we obtain

‖u� − u∞‖2L∞(0,T ;L2(��0 ))
+ ‖u� − u∞‖2L2(0,T ;L2(��0 ))

≤
K
{
‖u0‖22,ω + ‖ f ‖L2(0,T ;L2(ω))

}

�2s−1 .

Hence the proof is now complete.

4 Proof of Theorem 1.4

This section is devoted to prove Theorem 1.4. The next proposition is the key argument
to prove Theorem 1.4.

Proposition 4.1 let u� be the weak solution of (1.1). If for some 0 < γ < 1
10 , there

exists a non-negative bounded Lipschitz continuous function ρ such that

S(ρ)(x) :=
∫

RN

(
√

ρ(x + y) − √
ρ(x))2

|y|N+2s dy ≤ γ

Cp
ρ(x) ∀x ∈ R

N , (4.1)

where Cp > 0 is the Poincaré constant for the domain��. Then, there exists CN ,s,γ >

0 independent of � such that

‖u�
√

ρ‖2L∞(0,T ;L2(��))
+ ‖u�

√
ρ‖2L2(0,T ;L2(��))

≤ CN ,s,γ

{∫ T

0

∫

��

f 2(x, t)ρ(x) dxdt +
∫

��

u20(x)ρ(x) dx

}

. (4.2)

Proof From (4.1) and [12, Lemma 3], we have the weighted Poincaré inequality

∫

��

u2�(x, t)ρ(x) dx≤ 2Cp

1−2γ

∫

RN

∫

RN

(u�(x, t)−u�(y, t))2ρ(x)

|x−y|N+2s dxdy∀t ∈ (0, T ).

(4.3)

In a similar fashion as above, one can show that u�(t)ρ ∈ Hs
0 (��) a.e. t ∈ (0, T ).

Thus, by taking v = u�ρ in (1.15) yields

∫

��

∂t u�(t)u�(t)ρ dx + a(u�(t), u�(t)ρ) =
∫

��

f (x, t)u�(t)ρ dx a.e. t ∈ (0, T ).

(4.4)
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Using Proposition 2.1, we obtain

1

2

d

dt
‖u�(t)

√
ρ‖22,��

+ a(u�(t), u�(t)ρ) =
∫

��

f (x, t)u�(t)ρ dx a.e. t ∈ (0, T ).

(4.5)

Next we note that

a(u�(t), u�(t)ρ)

= CN ,s

2

∫

RN

∫

RN

(u�(x, t) − u�(x, t))(u�(x, t)ρ(x) − u�(y, t)ρ(y))

|x − y|N+2s dxdy

= CN ,s

2

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy

+CN ,s

2

∫

RN

∫

RN

(u�(x, t) − u�(y, t))(ρ(x) − ρ(y))u�(y, t)

|x − y|N+2s dxdy. (4.6)

This combined with (4.5) gives

d

dt
‖u�(t)

√
ρ‖22,��

+ CN ,s

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy0

= 2
∫

��

f (x, t)u�(t)ρ dx

−CN ,s

∫

RN

∫

RN

(u�(x, t)−u�(y, t))(ρ(x)−ρ(y))u�(y, t)

|x − y|N+2s dxdya.e.t ∈ (0, T ).

(4.7)

The first term on the right-hand side can be estimated as follows:

2
∫

��

f (x, t)u�(t)ρ dx ≤ 1

ε

∫

��

f 2(x, t)ρ(x) dx

+ε

∫

��

u2�(x, t)ρ(x) dx ∀ε > 0. (4.8)

While the second term on the right-hand side can be estimated in this way

−CN ,s

∫

RN

∫

RN

(u�(x, t) − u�(y, t))(ρ(x) − ρ(y))u�(y, t)

|x − y|N+2s dxdy

= −CN ,s

2

∫

RN

∫

RN

(u�(x, t) − u�(y, t))(
√

ρ(x) + √
ρ(y))(

√
ρ(x) − √

ρ(y))u�(y, t)

|x − y|N+2s dxdy

≤ CN ,s

2ν

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2(
√

ρ(x) + √
ρ(y))2

|x − y|N+2s dxdy

+νCN ,s

2

∫

RN

∫

RN

(
√

ρ(x) − √
ρ(y))2u2�(y, t)

|x − y|N+2s dxdy
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by (4.1)≤ 2CN ,s

ν

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2(
√

ρ(x) + √
ρ(y))2

|x − y|N+2s dxdy

+νCN ,s

2

∫

RN
S(ρ)u2�(x, t) dx

by (4.1)≤ 2CN ,s

ν

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy

+νCN ,sγ

2Cp

∫

RN
u2�(x, t)ρ(x) dx

by(4.3)≤ 2CN ,s

ν

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy

+νCN ,sγ

1 − 2γ

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy ∀ν > 0.

Now, by taking ν =
(
2(1−2γ )

γ

)1/2
we infer that

−CN ,s

∫

RN

∫

RN

(u�(x, t) − u�(y, t))(ρ(x) − ρ(y))u�(y, t)

|x − y|N+2s dxdy

≤ CN ,s

(
8γ

1 − 2γ

)1/2 ∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy.

This combined with (4.7) and (4.8) yields

d

dt
‖u�(t)

√
ρ‖22,��

+ CN ,s

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy

≤ 1

ε

∫

��

f 2(x, t)ρ(x) dx + ε

∫

��

u2�(x, t)ρ(x) dx

+CN ,s

(
8γ

1 − 2γ

)1/2 ∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy

≤ 1

ε

∫

��

f 2(x, t)ρ(x) dx +
(

2Cpε

1 − 2γ
+ CN ,s

(
8γ

1 − 2γ

)1/2
)∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy. (4.9)

Since 0 < γ < 1
10 , we have

CN ,s

(
8γ

1 − 2γ

)1/2

< CN ,s,

thus by choosing ε small enough, we get

2Cpε

1 − 2γ
+ CN ,s

(
8γ

1 − 2γ

)1/2

< CN ,s .
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From this and (4.9), it turns out that

d

dt
‖u�(t)

√
ρ‖22,��

+ KN ,s,γ

∫

RN

∫

RN

(u�(x, t) − u�(y, t))2ρ(x)

|x − y|N+2s dxdy

≤ 1

ε

∫

��

f 2(x, t)ρ(x) dx . (4.10)

where Ks,N ,γ = CN ,s −
(

2Cpε

1−2γ + CN ,s

(
8γ

1−2γ

)1/2
)

> 0. Using (4.3) and integrating

(4.10) over [0, t] yields

‖u�(t)
√

ρ‖22,��
+ KN ,s,γ (1 − 2γ )

2Cp

∫ t

0

∫

��

u2�(x, σ )ρ(x) dxdσ

≤ 1

ε

∫ T

0

∫

��

f 2(x, t)ρ(x) dxdt +
∫

��

u20(x)ρ(x) dx,

which can be rewritten as

‖u�(t)
√

ρ‖22,��
+
∫ t

0

∫

��

u2�(x, σ )ρ(x) dxdσ

≤ CN ,s,γ

{∫ T

0

∫

��

f 2(x, t)ρ(x) dxdt +
∫

��

u20(x)ρ(x) dx

}

,

where CN ,s,γ := 1

min

{

1,
KN ,s,γ (1−2γ )

2Cp

}

ε

. Hence the proof of Proposition 4.1 is now

complete. ��
For each σ ∈ R and ε ∈ (0, 2) let us define

ρε(σ ) = 1

1 + |σ |ε .

Obviously, the function ρ is non-negative, bounded, and Lipschitz continuous. Then,
for each λ > 0 the function ρλ on R

N defined by

ρε,λ(x) := ρε

( x1
λ

)
(4.11)

is also non-negative bounded and Lipschitz continuous. The proof of the following
lemma is quite similar to that of Theorem 5.1 and Remark 5.1 in [7], so we omit it.

Lemma 4.2 For each λ > 0 there exists a constant Cε > 0 such that

S(ρε,λ)(x) :=
∫

RN

(
√

ρε,λ(x + y) −√ρε,λ(x))2

|y|N+2s dy ≤ Cε

λ2s
ρε,λ(x) ∀x ∈ R

N .
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Nowwe are in position to finish the proof of Theorem 1.4. By choosing λ large enough
so that

Cε

λ2s
<

γ

Cp
with 0 < γ <

1

10
,

we can apply Proposition 4.1 to obtain

∫

��α

u2�(x, t)ρε,λ(x) dx +
∫ T

0

∫

��α

u2�(x, t)ρε,λ(x) dxdt

≤ CN ,s,γ

{∫ T

0

∫

��

f 2(x, t)ρε,λ(x) dxdt +
∫

��

u20(x)ρε,λ(x) dx

}

. (4.12)

for any α ∈ [0, 1) and � large enough. Next, using assumptions (1.21)–(1.22), and the
definition of ρε,λ we obtain

1

λε + �εα

{∫

��α

u2�(x, t) dx +
∫ T

0

∫

��α

u2�(x, t) dxdt

}

≤ λε

(� − 1)ε

{
‖ f ‖2L2(0,T ;L2(��\��−1))

+ ‖u0‖2L2(��\��−1)

}
,

which implies for large � that

∫

��α

u2�(x, t) dx +
∫ T

0

∫

��α

u2�(x, t) dxdt

≤ λε (λε + �εα)

(� − 1)ε

{
‖ f ‖2L2(0,T ;L2(��\��−1))

+ ‖u0‖2L2(��\��−1)

}
,

≤ 2λε (λε + �εα)

(� − 1)ε
≤ C

�(1−α)ε
.

Hence, the proof is now complete.
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