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Abstract

For all n € N, we find sharp constants ,uflz) and /,L,(;’) such that Mff)o,?) (z, )< f@
and /,L,(13)0'753)(Z, f) < f(z) in the open unit disc D for all f- normalized convex
univalent functions in ID. Here a,fa) (z, f) stands for nth Cesaro mean of order o, o >
0, of f(z) = Y22, axzX defined by o\, f) = (":if1)71 Yoy (":f;k)akzk
and the symbol " <’ stands for subordination between two analytic functions. Among
other things, a generalization of an earlier known result related to subordination is also

presented.

Keywords Cesaro means - De la Vallée Poussin means - Subordination - Hadamard
product

Mathematics Subject Classification 30C45 - 30C80

1 Introduction

LetD = {z € C: |z| < 1} denote the open unit disc in the complex plane and . the
class of functions f(z) = z +a>z> + ... which are analytic and univalent in D. Denote
by .* and # the usual subclasses of .% consisting of functions which map ID onto
starlike (w.r.t. the origin) and convex domains, respectively. Let .#*(1/2) C .¥ be the
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class of functions which are starlike of order 1/2. It is known that .2~ C .%*(1/2).
Further, by % we denote the class of functions f € .# for which there exist g €
such that R { @/ g’(z)} > 0, z € D. Functions in the class € are called close-to-
convex.

The convolution or Hadamard product of two power series f(z) = Y ve an2" and
g(z) = Y02 byz" is denoted by (f * g)(z) and is defined as

(f ¥)@ = ) anbyz".

n=0

A function f is said to be subordinate to a function g (in symbols f(z) < g(z))
in|z| <r (0 <r < 1)if gisunivalentin |z] < r, f(0) = g(0) and f(|z] < 1) C
glzl <r).

For a given function f(z) = )

0]

1 anZ" andn € N, o > 0, let

n
su(z ) =) azt,
k=1
nda—1\""<
oé”(z,f):( o )
k=

and

2\ L 2n k
Vn(va)=<n) Z(n+k>akz

k=1

denote, the nth partial sum, the nth Cesaro mean of order « and the nth de la Vallée
Poussin mean of f, respectively.

Polya and Schoenberg ( [7], Theorem 2, p.298) showed that the de 1a Vallée Poussin
means V, (z, f) are convex (starlike) if and only if f is convex (starlike) and also,
established the following fascinating result : O

Theorem 1.1 If f € X, then V,(z, f) < f(z) inD.

Robertson [8] further extended this result by proving that if f is univalent in D,
then converse of Theorem 1.1 is also true.

It has been a long tradition to study mapping properties of Cesaro means (for
example, see [4], [3], [9], [2], [6], [11], [12]). In 1995, Singh and Singh [14] proved
the following analogues of above theorem of Polya and Schoenberg for certain trans-
formations of the nth partial sum, s, (z, f), and the nth Cesaro mean of first order,

oz, f), of f e A

Theorem 1.2 If f € Z, then
(i) (1/2) foz s (t, f)dt < f(z) inD for everyn € N.
(ii) (n/(n + 1))0,51)(z, f) < f(2) in D. This result is sharp for every n € N.
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O
In the same paper, i.e., [14], Singh and Singh also proved the following result :
Theorem 1.3 For every f € .*(1/2) and for every positive integer n, we have
Val(z,
m# >0, zeD.
on (2, f)
O

In the present note, we establish the analogues of Theorem 1.1 for certain trans-
formations of the nth Cesaro means 0,52) (z, f) and 0,53) (z, f), of f € . We also

prove an analogue of Theorem 1.3 by replacing 0,9) (z, f) there with 0,53) (z, )- A
generalization of a result of Singh and Singh [13] related to subordination between

Va(z, f) and 02(1)(Z, f)of f € Z is also presented.

2 Preliminaries

In this section, we collect following definition and results which shall be needed to
prove our results in this paper.

Definition 2.1 A sequence {b,,}{° of complex numbers is said to be a subordinating

factor sequence if, whenever f(z) = ZZO: 1 an2", a1 = 1, is univalent and convex in
D, we have

Y anbu" < f(2).
n=1

m}

Lemma2.2 [15] A sequence {b,}7° of complex numbers is a subordinating factor
sequence if and only if

o0
m[1+22bnz"] >0, zeD.
n=1

O
Lemma2.3 ([5], p.3)Ifh(z) =nz+ (n — 1)z> + ... + 2", then
By = " 1 sin(n+180/2  (n+1)sinf —sin(n + Do
2 2sin?6/2 4sin?6/2
O
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Lemma 2.4 [10] Let f and g belong to .*(1/2). Then for each function F analytic
in D and satisfying WF (z) > 0, z € D, we have

9% f(@)* F(2)g(2)
(SR x TREL)

>0, zeD.
f(2)*g2)

m}

Lemma 2.5 [1] Suppose that by, by, by are complex numbers, by # 0, and let P(z) =
bo + b1z + baz%. Then the zeros of P(z) lie on D = {z € C : |z| < 1} if, and only if
(i) |bo| < |b2| and

(ii) |bob1 — biba| < |b2|* — |b1|*.

Lemma 2.6 [10] Let ¢ and r be convex functions in D and suppose that f is subor-
dinate to ¢. Then f x r is subordinate to ¢ *  in .

3 Main Results

Cesaro means not only play an important role in areas like approximation theory,

summability, Fourier analysis etc., but also find many applications in geometric func-

tion theory. One of the striking properties of the polynomial approximations 0,5“) (z, )

is that they converge to f in the sense of compact convergence as n — o0. In the fol-

lowing two theorems we establish analogues of Theorem 1.1 for some transformations
() _

of o, (2, f), @ =2,3.

Theorem 3.1 For all elements f € ¢ and for all positive integers n, we have

nLHo,,@(z, <@ (1)

in D. This result is sharp for every n.

o
Proof Let f(z) = z+ >_ a,z" be any member of the class J#". Then
n=2

n nn—1 >, ©G-DHnm-2) 4 2.1 n
7+ 1) azz” + -+ .

s ) = TS

nr1n it T 2 ®

Thus, in view of the Definition 2.1, the assertion (1) holds if and only if the sequence

n nn—1) n—1n-2) 2.1
<n+1 (n+1)2 (n+1)?2 (n+1)? >

is a subordinating factor sequence. By Lemma 2.2, this is equivalent to

NF(z) >0, ze.
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where
2 2 3 n
F(z) = +72{(n+l)nz+n(n—l)z F—Dn—2B + - +2.1z }
(n+1)
2
=1+ an(z) (say). 2)
Here
Fa)=m+Dnz+nn— D22+ @m—D0n—2)2> + - +2.12", (3)

from which we get,
(1=2)Fy(2) = (n+ Dnz —2nz> = 2(n — 1)z> — .- — 271,

n
=+ nz—22) (n—k+ Dzt
k=1

It compiles to

-2

Z Z " k
—k+1 .
1—-z l—z[;(n + )Z:|

F,(z) =n(n+1)

Setting z = ¢/?, 0 < 0 < 27 and making use of Lemma 2.3, we get

i0 i0
N e e n—+1
Fn(e’)_n(n+l)<—1_ei9)—2<1_ei9).|:_ >

sin?(n 4+ 1)8/2 . (n+ 1)sinf — sin(n + 1)9}
1 .
2sin?6/2 4sin®6/2

“)

On substituting % = (_71 + L cot9/2), we get

n+1
2

‘ 1 1
Fo(®) = n(n+1) (7 + %cot9/2> ) (7 + %cot@/Z) : [—
sinf(n+ 1)0/2  (n+ 1)sin6 — sin(n + 1)0i|
l .
2sin% /2 4sin’6/2

(&)

From (2), (3) and (5), we obtain

— 2 )
RN(F() = 1+ 2 { (n+1) |:s1n (n+1)6/2

(n+1)32 2 2sin% 6,2
4 n+1 sin? 2— sin(n + l)ecotG/Z:H .
4sin“6/2
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or

RF()) = — |:sin2(n +10/2  (n+1)siné —sin(n + )8

cotf/2].
(n+ D2 2sin?6/2 4sin”6/2 /}

We note that (n + 1)sinf — sin(n + 1)6 and cot6/2 are both non-negative for
6 € [0, ] and are both negative for 6 € (i, 27r). Hence,

N(F(z)) >0 forall 6 €[0,2m).

In order to prove the sharpness of our result, we consider the function h(z) =
z/(1 — z) which is a member of the class .. We have

@) _ nn—1) , w—-Dn—-2) 4 2.1 .
o @l =24 ¢ nntn T MR
1
RS TRA

In view of (5), taking z = ¢, 0 < 6 < 27, we get

o@E? hy=——nmn+1 _—1+£cot9/2 -2 _—1+£cot9/2
" T n(n+ 1) 2 2 2 2 ’

[ n+1  sin?(n+1)6/2 _(n+1)sin9—sin(n+1)6:|}
= 1 .
2 2sin?6/2 4sin”0/2

Taking 8 = 2w /(n + 1), for any positive real number p, we have

. 1
Rp P (e, h) = —% {(n +D+ (1 - m)]
et

>_p(n+1)7
- 2n

because for all n € N,

a sinz(n/l(n 1y =

It follows that if p > n/(n + 1), then %po,\> (z, h) < —1/2 and hence po,> (z, h)
will not be subordinate to /2 in D as & maps D onto the right half plane Rw > —1/2.
This completes the proof.

For the sake of illustration, graphs of £(3D) and (n/(n + 1)o\> (3D, h),n = 2,3, 4
are plotted in Fig. 1, and Fig. 2 is an enlargement of the critical portion of Fig. 1. O
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e h(oD) ’ | |
1o} _
|/
/ ,
o5} _

-0.5 0.0 05 1.0 1.5
Fig.1 Graphs of £(3D) and (n/(n + 1))o\> (3D, h), forn = 2,3, 4

Theorem 3.2 For all f € J# and for all positive integers n, we have

2 2
nn+2) e

mn (Z,f)<f(Z) (6)

in . This result is sharp for every n.

o
Proof For f(z) =z+ Y a,z", we have

n=2
MUE)(Z’ f) = 2
2n+ D(n+3) Cn+1Dn+3)Hn+1)

[+ 201+ Dz + 1+ D — 122

fnn =D =25 +... + 3.2.1{’] .

The assertion (6) will hold, if

< 2n(n+ D(n +2) 2n(n+ DH(n —1) 2n(n — 1(n —2)
Cn+1Dn+3)n+1)" Cn+Dn+3)A+1D) Cn+Dn+D)n+3)
3.2.1 ’0’07.”>
QCn+1Dm+1Dn+3)
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0.5

-0.5

-0.5

o

Fig.2 Enlargement of the critical portion of Fig.1.

is a subordinating factor sequence. By Lemma 2.2, it is equivalent to show that

RG(2) > 0
for all z in D, where
_ 4 2
G@ =14 G {(n +2)(n + Dz + (n+ D — 1)z
Y+ Dn— D2 +n— 1) -2 +... + 3.2.1z"} . )
If we write

Gn(2) = (n+2)(n+ Dnz+ 4+ D — D2 +nn — D —2)z5 + - +3.2.17",
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then

(1 =2)Gn(z) = (n+2)(n + Dnz —3(n + Hnz> = 3n(n — Hz> — ... —3.2.17"1!
— (1 42)(n+ Dnz — 3z [(n FDnz+nm—D2+.. .+ 2.1z"] .

Thus, we obtain

4
G(z)=1+(n_l_1)@_}_3)(2’1_’_1){n(n+1)(n+21_Z T

where F, is as in (3). Setting z = ¢?, 0<6 <2rand using (4), we get

i

4 {n(n+1)(n+2)l—w,

n+Dn+3)2n+1)

ei@ ei@

_2( el? >[_n+1 sin®(n + 1)0/2 ,(n+1)sin9—sin(n+1)9“}

Gy =1+

- 4
1 —eif 2 2sin?6/2 4sin” 6,2
. i0 : i0 0
On substituting ;“ = (—% + £ cot6/2) and (15 )? = e o770 We get
4

G =1+

1
(n+1)(n+3)2n+1) {"(” + D +2) (— + = c0t9/2>

oif
+3(n + 1)? T,
4sin-60/2

el? sin(n + 1)0/2 o el? (n+ 1)sin6 — sin(n + 1)
— — 1 .
4sin26/2 2sin%6/2 4sin%6/2 4sin%6/2

Writing the real part, we have

. 4 —n(n + 1)(n+2) cos 6
NG () =1+ { 2
) (n+ D(n+3)2n + 1) 2 ( +D sin2 /2
6 cos 6 sin®(n 4+ 1)6/2 6 sinf[(n + 1)sind — sin(n + 1)6] }
8 sin*6/2 16 sin*6/2 )

Writing sin®(n 4+ 1)8/2 = (1 — cos(n + 1)0)/2 and regrouping the terms, we have

NG =1+ += ( + 1)%(=1 +cot? 6/2)

4 —nn+1)(n+2)
n+1Dn+3)2n+1) { 2

6 cos(n +2)0 6 cos6
16 sin*6/2  16sin*6)2

+ Z(n + 1) cot? 9/2} ,
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i.e.,
i0 4 {—(n+1)(n+3)(2n+ 1
: =1
neten " n+Dn+3)2n+1) 4
20 | 3cos(n+2)0 —cost
+- (n + 1)(n + 3)cot 5 + 2 on } ’
or
RG () = 1+ 4 {—(n+ D@2n+ 1)(n +3)
(n+1Dm+3)2n+1) 4

3 0 3 1 2)0 — %
3o ? n+3)n+1) n cos(n —i-. ) cos 7
2 2 2 sin? 0

which further simplifies to

NG (') =

4 {gc0t2€<(n+3)(n+l)
n+Dm+3)2n+1) 2 2
2 )
+200s (n+2)'9/22+sm 9/2)}.
sin“ 0

All terms on the right-hand side of above expression are positive. So, we have
NG(z) >0

for all z in .

Thus, the desired result holds.

To prove the sharpness of our result, we consider the function 4(z) = z/(1 — z) which
is a member of the class .#". We have

0(3)(Z hy = (n + Dnn —1) 2 nn—1)(n-2) 23 ' 3.2.1 -
" n(n +1)(n+2) n(n+1)(n+2) n(n+1)(n+2)
Setting z = ¢, we get
o P, h) = ;[(n +2)(n+ Dne'? + (n + Dnn — 1)

nn+1)(n+2)
+n(n — D(n —2)e3 +...3.2.1"7].

For a positive real number p, we have

;{n(n+l)(n+2)i—3i.{(n+l)z il

nn+1)(n+2) 1 —el? 1 — el 1 — el
9 (sin?(n41)6/2  (n+1)sinf —sin(n + 1)0

- 1—ei9( 25262 4sin? 6,2 )H

b0, ) =
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Simplifying, we obtain

i - 1 2 1
Npo (e h) = p (n+D@n+3)2n+1)

nn+1n+2) 4
3 0  3cos(n+2)0 —cosb
= 1 3)cot? = 4+ = .

Fg D3 eol 54 (ST }

For 6 = 7, we get
' —(n+Dnr+3)2n+1)
R 3) 10’h _ 1Y (n
P G I D+ ) i
3

- _p(n+3)(2n+l). )
nn+2)

It follows thatif p > 2n(n+2)/((n+3)(2n + 1)), then 9%,06,53) (z,h) < —1/2 and
hence /0(7,53 ) (z, h) will not be subordinate to 4 in D as 4 maps D onto the right half
plane Rw > —1/2.

This completes the proof.

For visual illustration, graphs of /1(3D) and 2n(n +2)/((2n + 1)(n + 3))o,>) (3D, h),
n = 2,3, 4, are plotted in Fig. 3, and Fig. 4 is an enlargement of the critical portion
of Fig. 3. O

10f — h(dD)

0.5} /

0.0

—0s5} \

AN

-1.0f

-05 0.0 0.5 1.0 1.5
Fig.3 Graphs of 2(3D) and 2n(n +2)/(2n + D(n + 300> (3D, h), for n = 2,3, 4
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0.5

-05

-0.5 0

Fig.4 Enlargement of the critical portion of Fig. 3.

Ruscheweyh [11] proved that 0,53)(z, z/(1 —2)) € & C .*(1/2). Since the
class .*(1/2) is closed under convolution (see [10], Theorem 3.1), so 0,53) (z, f) =
oMz, z/(0 —2)) * [ € .L*(1/2) for every f € .#*(1/2). In the next theorem we
establish that 0,52) (z, f) in Theorem 1.3 can be replaced with 0,53) (z, f).

o0
Theorem 3.3 Let f(z) = z + Z a,z" be a member of the class .7*(1/2). Then for

n=2
every positive integer n and each z € D, we have

Vn(Zv f)
M| |
oz, f)
O
Proof Consider the function
Fn(z)=(1—z)[ R L R
mn+1) (+1) (n+3)
2 2
n 3 n“(n—1) 4
T30 +9 Thrharhnts)”
n?(n—Dn—2)(n—-3).4 n1:| (10)
T3+ +5)...2n) '
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Then
3) oz _ n—1, @m-Dn-2) ;3
(o (Z’f)*l—zE’(Z)_{Z+n+2Z (n+2)(n+l)z +...
32.1 }
n+2)(n+ Dn°
*{ n N n 2, n 3
n+ D T+ T w3
2 2
n 4 n“(n—1m—-2)(n—-3)..4 ,
teaers Tt ar et v’
n nn—1) 5 nn—1)(n—2) 3

I R YDy T Y Y I
nn— 1 —2)...432.1
(n+1)(n+2)...2n)
Vn(Zsf)~

7"

Also, the function F), defined above is regular (in fact, an entire function) in D and
can be written in the form

_ n B n _n+1 2 n _n 3
F"(Z)_|:(n+l) (n—l—l)(l n+3>Z (n+3)<1 n+4>z

_ n? (1 _n 1) A
(n+3)(n+4) n+5)"
2= D@=2)..5 (1 B i) et n?(n—1)(n —2)..4 z"]
n+3)n+4)..2n—1) 2n n+3)(n+4)...2n)

(11)
In view of (10) and (11), it is clear that in D, we have
NFu(z) = F(lz]) > Fp(1) = 0.

Taking f(z) = 0¥ (z, ), g(z) = z/(1 — z) and F(z) = F,(z) in Lemma 2.4, we
immediately get

(3)
, 1-2)F Va(z,
DI (é) P2/ = D) = —(g)(z i) >0, zeD, (12)
on (2, f)*z/(1 =2) on” (2 f)
as NF,(z) > 0in D.
This completes the proof. O

It is known (see [6]) that for « > 1 and n € N, U,fa)(z, z/(1 —z)) € €. Then,
using the fact that the class € is closed under convolution with convex functions (see
[10], Theorem 2.2), we immediately get that for« > 1 andn € N, o,fa) (z, f) e®
for all f € 2. Singh and Singh [13] proved that if f € £, then z/2 < Va(z, f) <

02(1)(1, f) in . The theorem below generalizes this result of Singh and Singh [13] in
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the sense that the superordinate function Gél)(z, f) can be replaced with crz(a)(z, s

where o, « > 1, is any real number.

Theorem 3.4 If f € %, then for all real numbers a, a > 1,

22 < Valz, ) < sz, f)

in D.

Proof We note that for f(z) =z + Y oo, an",

2 1,
Vo(z, f) = §Z + gazz

and

2
arz”.

oz, )=z + T

For every f € J, the relation, z/2 < Va(z, f), is well known. As az(a)(z, f) is

univalent in D for « > 1 and V»(0, f) = 02(0‘)(0, f), we need to show only that for
all f e x,

Va(D, f) C oi(D, f).

But this is equivalent to showing that for each real 6, the polynomial

2, 1 ;
11222 _ _610 _ —026219

|
R(z) = :
@=z+ 1773 3 6

has a zero on ID. Suppose that for some 6, R(z) has no zero in ID. Then the polynomial

2 . 1 . a
T — [z i0 - 2i60 2 _
() <3e + 2 Rt wra

has both zeros on D. Hence by Lemma 2.5, condition (i), we must have

arel®

4

<24
=3

az
14+«

@ Springer



Subordination of Cesaro Means... Page150f17 48

Writing ay = pe'?(p < 1) and ¢ + 6 = v, this is equivalent to

P 2 pe'V
< -1 13
l+a ~ 3 ‘ * 4 ' (13)
From condition (ii) of Lemma 2.5, we must have
- - 2 2
a2 2 g 2 g 2 9, @2 aig a
+ e+ = < |z 4+ = —
‘l—i—a 3¢ 6 |=13° T6° 1+a
Again, writing a, = pei‘P, p <1, and ¢ + 0 = v, this is equivalent to
6 p eV 44 peV <)4+pei‘”’2—ﬂ
14+ - 1+ a)?
or,
6'0 u// —iy i iy
6 44 pe )4+pe ’—— ‘4+ e ‘+— .
1+Ol +a
(14)
As
60 iV i i 6p ; ; 60
4 —iy >‘4 llﬂ‘_ iy 2’4 llﬂ‘_ ,
'1+ tadpe Tz |t pe I+af tpe 1 +a
therefore, if (14) holds, we must have
(‘4+pe”ﬁ‘ ——> <‘4+pe””(+——6> (15)

Obviously, minimum of left-hand side of (15) occurs at ¢ = m; so, we must have

41 + ) 2(1 +a)
(P - m) (f’ - ﬁ) =0. (16)

Now, aty = 7, (13) gives: p < 4(l+a)/(7T+a).Butd(l4+a)/(7T+a) > 1 fora > 1
andalsofor 1 <o <5,2(1 +a)/(5 —a) > 1. As p < 1, (16) gives a contradiction
(and therefore, R(z) has a zero in D) exceptif p = 1 (¢ = 1), ¥ = 7 and ¢ > 5.
When p = 1 and ¥ = 7, we easily verify that —e~? is a zero of R(z) on . For
a > 5, we proceed as follows. If 1(z) = z/(1 — z), then

max‘V(eie I)‘—max\/4+i+2cose = >
o 12 O PIT T 9 T 36 9 6
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and

. (@), 6 . 1 2cos0 1 5
min o, "(e"”, I)| = min |1+ + =1- > —
0 0 I+a)? 14+« 1+a) 6

as o > 5. Thus, Vo(D, I) is contained in the disc {z : |z| < 5/6} and for « > 5,
02(0‘)([@, I) contains the disc {z : |z| < 5/6}. Therefore, V2(z, I) < az(a)(z, I, a>
5. As, 02(“) (z, I) is convex for o > 5 (infact, for « > 3, see [11]), using Lemma 2.6,

we immediately conclude that V> (z, f) < Uz(a)(z, f)inD, forallae > Sand f € 7.
This completes the proof. O
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