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Abstract
Several games that arise from graph coloring have been introduced and studied.
Let ϕ denote a graph invariant that arises from such a game. If G is a graph and
ϕ(G − x) �= ϕ(G) = k, k ≥ 1, holds true for every vertex x ∈ V (G), then G is called
a k-ϕ-game-vertex-critical graph. We study the concept of ϕ-game-vertex-criticality
for ϕ ∈ {χg, χi , χ

A
ig , χ

AB
ig }, where χg denotes the standard game chromatic number, χi

denotes the indicated game chromatic number and χA
ig , χ

AB
ig denote two versions of the

independence game chromatic number. Since the game chromatic number ϕ(G − x)
can either decrease or increase with respect to ϕ(G), we distinguish between lower,
upper andmixed vertex-criticality.We show that for ϕ ∈ {χg, χ

A
ig , χ

AB
ig } the difference

ϕ(G)−ϕ(G−x), x ∈ V (G), can be arbitrarily large. A characterization of 2-ϕ-game-
vertex-critical and (connected) 3-ϕ-lower-game-vertex-critical graphs for all ϕ ∈
{χg, χi , χ

A
ig , χ

AB
ig } is given. It is shown that χg-game-vertex-critical, χA

ig -game-vertex-

critical and χAB
ig -game-vertex-critical graphs are not necessarily connected. However,

it is also shown that χi -lower-game-vertex-critical graphs are always connected.
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1 Introduction

The concept of criticality has been explored for many different graph invariants. Per-
haps, the most important one is the concept of color-critical or chromatic-critical
graphs; see for instance the book [27]. Recall that G is a color-critical graph if
χ(H) < χ(G) holds true for any proper subgraph H of G, where χ denotes the
chromatic number.1 In addition, the concept of vertex-chromatic-critical (or simply
vertex-critical) graphs has aroused the interest of many researchers. Note that G is a
vertex-critical graph if χ(G − x) < χ(G) holds true for every vertex x ∈ V (G). The
wide interest given to the concept of graph criticality is reflected in many different
criticality concepts which have been investigated thus far, one of them being related
to the (total) domination game; see [7, 9, 18].

In this paper, we introduce the criticality of graphs with respect to three variations
of coloring games, more precisely with respect to the classical coloring game, with
respect to the indicated coloring game, and lastly with respect to the independence
coloring game.

Coloring games in graphs were introduced independently by Gardner [15] and
Bodlander [4]. The introduction of the initial version of the game has led to many
investigations and development of various strategies and methods [3, 13, 21]. Several
connections between the game chromatic number and thewell-known graph invariants
were discovered [10, 11, 19]. This has triggered the development of several variations
of the coloring game [1, 2, 5, 16, 20, 23]. A good source to review some of the basic
results associated with coloring games are a survey on coloring games [26] and a
dynamic survey on combinatorial games [14].

One of the most intensively studied games is the initial version of the game, simply
called the coloring game. It is played on a simple finite graph G by two players, Alice
and Bob. Both players color the vertices of G using the fixed set of colors {1, . . . , k}.
The aim of Alice (the first player) is to color all vertices of G while Bob (the second
player) is trying to prevent this from happening. Alice starts the game and after this the
players alternate turns. When choosing a color for an individual vertex both players
must follow the rules of a proper coloring, i.e., they must color a vertex with a color
from the color set {1, . . . , k} which is different from the colors of its neighbors. If at
some point of the game there exists an uncolored vertex, which has all colors from
the color set {1, . . . , k} in its neighborhood, Bob wins the game. Otherwise, if all the
vertices of the graph are colored, Alice wins. The minimum number of colors k for
which Alice has a winning strategy on G is called the game chromatic number of G,
and is denoted by χg(G).

The second coloring gameconsidered in this paper is the gameplayedby twoplayers
on a simple finite graph G with a fixed set of colors {1, . . . , k}. In this variation of
the game, both players are usually named Ann and Ben. In every round of the game,
Ann selects a previously uncolored vertex and Ben colors it with any of the available
colors that have not been used in its neighborhood. Ann’s goal is to achieve a proper
coloring of the whole graph, while Ben has the opposite goal. He wants to create a
partial coloring of the vertices in the given graph such that there exists an uncolored

1 The chromatic number is the minimum number of colors used in a proper coloring of a graph.
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vertex which has all colors from the color set {1, . . . , k} in its neighborhood. The
minimum number of colors k for which Ann has a winning strategy on G, no matter
how Ben plays, is called the indicated chromatic number of G, and denoted by χi (G).
The described game was introduced by Grzesik under the name the indicated coloring
game [17] and has since gained attention from other authors [6, 22, 24, 25].

The last game investigated in this paper is the game initiated by Brešar and Štesl
[8] under the name the independence coloring game. Again, the game is played on
a simple finite graph G by two players, called Alice and Bob. It consists of several
rounds whereby each round is played with the color of the round (round 1 with color
1, round 2 with color 2, and so on). In each round of the game, players alternate
their moves by coloring a previously uncolored vertex of the given graph with the
color of the round. The vertices selected in the same round of the game must form an
independent set.2 To be more precise, a round is completed when there is no longer
a vertex that could be colored by the color of the round. The game is over when all
vertices are colored. It follows that the total number of rounds and the number of
colors that are used in the entire game are the same and the coloring obtained in the
game is clearly a proper coloring. Alice wants to finish the game in as few rounds as
possible and Bob in as many rounds as possible. The authors introduced four versions
of this game depending on who starts each round. In this paper, we consider the two
natural ones where Alice has the first move. The first version is when every round of
the game on a graph G is started by Alice. This version of the game is called the A-
independence coloring game and the minimum number of resulting rounds played on
G is called the A-independence game chromatic number ofG, and denoted by χA

ig (G).
The second version is when Alice starts the first round of the game, and each further
round is started by the player who did not end the previous round. This version of
the game is called the AB-independence coloring game, and the minimum number of
resulting rounds played on G is called the AB-independence game chromatic number
of G and denoted by χAB

ig (G). In both variations, it is assumed that Alice and Bob
play optimally in each of their moves.

2 Vertex-Criticality with Respect to Games

A vertex-critical graph is a graph in which every vertex is a critical element in terms
of the chromatic number of G. Thus, χ(G − x) < χ(G) for every vertex x ∈ V (G).
It is easy to see that this notion is well defined since using the same coloring with
χ(G) colors on G − x which is used on G yields a proper coloring of G − x . Since
χ(G− x) is the minimum number of colors needed for a proper coloring of G− x , we
have χ(G − x) ≤ χ(G). It turns out that vertex-critical graphs behave nicely, since
if χ(G − x) < χ(G) holds true for every vertex x ∈ V (G), then the decrease cannot
be by more than 1. Hence, if G is a vertex-critical graph, then χ(G − x) = χ(G) − 1
holds true for every vertex x ∈ V (G) [27].

However, if we turn our attention to game colorings on graphs, then the relation
between game chromatic invariants of critical graphs and their vertex-deleted sub-

2 An independent set is a set of vertices in a graph such that no two vertices are adjacent.
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graphs is more chaotic. When a coloring game is played on a game-vertex-critical
graph G, then the game chromatic number of G − x can either decrease or it can
increase, which clearly depends on the vertex x ∈ V (G) being removed. Moreover,
the decrease or the increase can even be arbitrarily large. In this paper, we introduce
vertex-critical graphs with respect to the three introduced games. Let ϕ(G) denote a
game chromatic invariant of a graphG. In accordance with the behavior of some game
chromatic invariants, we consider three types of game-vertex-criticality.

Definition 1 A graph G is ϕ-lower-game-vertex-critical if ϕ(G − x) < ϕ(G) holds
true for every vertex x ∈ V (G). Moreover, if ϕ(G) = k for some positive integer k,
then G is called a k-ϕ-lower-game-vertex-critical graph.

Definition 2 A graph G is ϕ-upper-game-vertex-critical if ϕ(G − x) > ϕ(G) holds
true for every vertex x ∈ V (G). Moreover, if ϕ(G) = k for some positive integer k,
then G is called a k-ϕ-upper-game-vertex-critical graph.

Definition 3 A graph G is ϕ-mixed-game-vertex-critical if ϕ(G − x) �= ϕ(G) holds
true for every vertex x ∈ V (G), and there exists a vertex y ∈ V (G) such that ϕ(G −
y) < ϕ(G) and a vertex y′ ∈ V (G) such that ϕ(G − y′) > ϕ(G). Moreover, if
ϕ(G) = k for some positive integer k, then G is called a k-ϕ-mixed-game-vertex-
critical graph.

Combining all three definitions, we give the final definition that unifies the notion
of lower-, upper- and mixed-game-vertex-critical graphs.

Definition 4 A graph G is ϕ-game-vertex-critical if ϕ(G − x) �= ϕ(G) holds true for
every vertex x ∈ V (G). Moreover, if ϕ(G) = k for some positive integer k, then G is
called a k-ϕ-game-vertex-critical graph.

In other words, Definition 4 says that a graph G is ϕ-game-vertex-critical if it is a
ϕ-lower-game-vertex-critical, or a ϕ-upper-game-vertex-critical, or a ϕ-mixed-game-
vertex-critical graph.

Our goal in this paper is to study the concept of ϕ-game-vertex-criticality for all
ϕ ∈ {χg, χi , χ

A
ig , χ

AB
ig }. The core of the paper is divided into three sections. In “The

coloring game-vertex-critical graphs” section, we consider coloring game-vertex-
critical graphs; in “The indicated coloring game-vertex-critical graphs” section, we
consider indicated coloring game-vertex-critical graphs, and finally in “The indepen-
dence coloring game-vertex-critical graphs” section, we consider the two versions
of independence coloring game-vertex-critical graphs. We show that the difference
ϕ(G)−ϕ(G− x), where x ∈ V (G) and ϕ ∈ {χg, χ

A
ig , χ

AB
ig }, can be arbitrarily large in

the positive and negative sense. Finally, we characterize 2-ϕ-game-vertex-critical and
(connected) 3-ϕ-lower-game-vertex-critical graphs for all ϕ ∈ {χg, χi , χ

A
ig , χ

AB
ig }. We

give some results that are unique to every game chromatic invariant considered in the
paper. For instance, we give a nice property of 4-χi -lower-game-vertex-critical graphs
with respect to theirminimumdegree.Moreover,we show thatχg-game-vertex-critical
graphs, χA

ig -game-vertex-critical graphs and χAB
ig -game-vertex-critical graphs are not

necessarily connected, which is not true for χi -lower-game-vertex-critical graphs.
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Notation

All graphs considered in this paper are simple, undirected and finite. For a graph G,
we call |V (G)| the order of graph G and |E(G)| the size of graph G. The notations
δ(G), �(G), χ(G) stand for the minimum vertex degree, the maximum vertex degree
and the chromatic number of G, respectively. The degree of a vertex v ∈ V (G) in a
graph G is denoted by dG(v), and the set of its neighbors is denoted by NG(v) and
called the open neighborhood of v. Moreover, we define NG[v] = NG(v) ∪ {v} as
the closed neighborhood of v. If dG(v) = 1, then v is called a pendant vertex of G.
With dG(u, v) we denote the distance between vertices u and v, i.e., the number of
edges on a shortest path between u and v. We will simply write d(v), N (v), N [v] and
d(u, v) if G is the only graph considered.

Notations Pn , Cn and Kn stand for the path, the cycle and the complete graph of
order n, respectively. We denote by Km,n the complete bipartite graph of orderm + n.
Moreover, we call K1,n the star graph of order n+1. LetM be a perfect matching3 of
Kn,n . Then, we denote by Kn,n −M the complete bipartite graph of order 2n without
the perfect matching M. If x ∈ V (G), then G − x denotes the graph obtained from
G by removing the vertex x and all of the edges incident with x . Finally, universal
vertex of a graph G of order n is a vertex of degree n − 1. Given a graph G, construct
a new graph Gu by adding a vertex u and edges between u and each vertex of V (G)

such that u is a universal vertex of Gu .

3 The Coloring Game-Vertex-Critical Graphs

It iswell known that vertex-critical graphs (with respect to the usual chromatic number)
are connected [27]. Unfortunately, that is not always true for χg-game-vertex-critical
graphs.

Proposition 5 For every k ≥ 4 there exists a k-χg-game-vertex-critical, disconnected
graph.

Proof Let k ≥ 4 and let G be two disjoint copies of the graph Kk,k −M, where Kk,k

denotes the complete bipartite graph and M is a perfect matching in Kk,k . Clearly,
χg(G) = k (whichever vertex Alice colors, Ben responds by coloring the opposite
vertex along the edge of M). Now, let us remove an arbitrary vertex x ∈ V (G) and
denote with y ∈ V (G) the vertex that lies on the opposite side of the vertex x along
the edge ofM. Suppose that Alice and Bob play a coloring game on the graph G − x
with the color set {1, 2, 3}. Alice has the first move in which she colors with color
1 the vertex y. Then, the vertices of the partite set that contained x can no longer
receive color 1. Note that Bob does not want to be the first to play in the second copy
of Kk,k − M, because then Alice would color (with a different color than Bob) the
vertex which lies on the opposite side along the edge of M, thus ensuring that only
two colors would be needed to color the second copy of Kk,k −M. Therefore, Bob’s

3 A perfect matching of a graph is an independent set of edges in which every vertex of the graph is incident
to exactly one edge of the matching.
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optimal next move is to color with color 2 a vertex that lies in the same partite set as
the vertex y. However, Alice responds by coloring with color 3 the vertex that lies on
the opposite side of Bob’s last colored vertex along the edge ofM. This ensures that
three colors will suffice to color the first copy of Kk,k − M. Since Bob has the next
move and there are an even number of uncolored vertices in the first copy, Bob will
automatically have the first move in the second copy of Kk,k −M. Hence, Alice wins
the game using three colors and χg(G − x) ≤ 3. It is also clear that Alice cannot win
the game by using less than three colors (if Bob plays in his first move as described
above). Therefore, χg(G − x) = 3. Because this holds for every vertex x ∈ V (G), G
is a k-χg-game-vertex-critical, disconnected graph. �	

To be more precise, the graphs considered in the proof of Proposition 5 are χg-
lower-game-vertex-critical graphs. The proof also shows that the difference between
the game chromatic number of such graphs and the game chromatic number of its
vertex-deleted subgraphs can be arbitrarily large.

Proposition 6 Let n ≥ 1 be a positive integer. There exists a χg-lower-game-vertex-
critical graph G, such that χg(G) − χg(G − x) = n for every vertex x ∈ V (G).

Proof Let n ≥ 1 be a positive integer and G = Kn+3,n+3 −M, whereM is a perfect
matching. With the same reasoning as in the proof of Proposition 5 we conclude that
χg(G) = n + 3 and χg(G − x) = 3 for every x ∈ V (G). Thus,

χg(G) − χg(G − x) = (n + 3) − 3 = n

for every vertex x ∈ V (G). �	
Further, we give an infinity family of χg-upper-game-vertex-critical graphs. We

again show that the difference between the game chromatic number of such graphs
and the game chromatic number of its vertex-deleted subgraphs can be arbitrarily large
in the negative sense.

Proposition 7 Let n ≥ 1 be a positive integer. There exists a χg-upper-coloring-game-
vertex-critical graph G, such that

{
χg(G) − χg(G − x) | x ∈ V (G)

} = {−1,−n}.

Proof Let n ≥ 1 be a positive integer. Suppose that G = (Kn+3,n+3 − M)u , where
M is a perfect matching and u the universal vertex of G. If Alice colors the vertex u
in her first move, then Bob has to take all of his moves in Kn+3,n+3 − M and Alice
always responds with a different color on the vertex that lies on the opposite side
along the edge ofM. Clearly, Alice wins the game on G using three colors, and thus
χg(G) ≤ 3. Since G contains C3 as a subgraph, χg(G) = 3. If we remove u from
G, we obtain the graph Kn+3,n+3 − M for which χg(Kn+3,n+3 − M) = n + 3 (see
Proposition 6). This already proves that

χg(G) − χg(G − u) = 3 − (n + 3) = −n.
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We still need to show that the removal of all other vertices of G also increases the
game chromatic number of the vertex-deleted subgraph. Let x ∈ V (G) be an arbitrary
vertex different from u, and let y be the vertex that lies on the opposite site of vertex
x along the edge ofM. We show that χg(G − x) = 4. First, we prove that Alice does
not have a winning strategy in a coloring game on G − x with three colors.

Suppose that Alice plays first on a vertex that is different from u and different from
the vertex y. Then, Bob responds by coloring the vertex that lies on the opposite side
of the vertex that Alice colored along the edge of M, and he uses the same color
that Alice used. Thus no other vertex of the graph G − x can receive this color in the
continuation of the game. To color the remaining vertices of the graph G − x , Alice
and Bob need at least three more colors, one for the vertex u and two for the vertices
of (Kn+3,n+3 −M) − x . Hence, at least four colors are needed to complete the game
on G − x .

Now suppose that Alice plays first either on the vertex u or on the vertex y. If Alice
colors the vertex u, then Bob responds by coloring the vertex y, or if Alice colors
the vertex y, Bob responds with the vertex u. In either case, Bob has to use a new
color, Alice could play in her second move with a third color on an arbitrary vertex
which lies in the same partite set that contained vertex x . In this case, Bob responds by
coloring the vertex lying on the opposite side along the edge ofM of the vertex Alice
just colored. He uses the same color as Alice. With such a move, he ensures that at
least one more color will be needed to finish the game on G− x . Otherwise, Alice can
make her second move in the partite set that contains vertex y. She can use the same
color that was used on the vertex y, or a third color. If Alice uses the same color, then
Bob responds by coloring a vertex in the same partite set with the third color. In either
case, two different colors will be used in the partite set that contains vertex y. Thus, to
finish the game on G − x at least one new color is required. Hence, χg(G − x) ≥ 4.

To prove χg(G − x) ≤ 4, suppose that Alice continues the game considered in
the latter case. She colors with the fourth color the vertex lying opposite to the vertex
along the edge of M which was last colored by Bob. In this way, she wins the game
on G − x using four colors. Indeed, all vertices lying in the partite set that contains
the vertex y can now receive colors 2 or 3, and all other vertices can receive color 4. �	

In order to characterize the 2-χg-game-vertex-critical graphs, we recall the charac-
terization of graphs G with χg(G) = 2 [12].

Theorem 8 ([12])
Let F be a forest and let �(F) be the length of the longest path in F. Then,χg(F) = 2

if and only if:

1 1 ≤ �(F) ≤ 2 or
2 �(F) = 3, |V (F)| is odd, and every component with diameter 3 is a path.

Proposition 9 Graph G is a 2-χg-game-vertex-critical graph if and only if

• G = K2 (the 2-χg-lower-game-vertex-critical graph),
• G is a graph from Theorem 8 (2), that contains at least two paths with diameter 3
(a 2-χg-upper-game-vertex-critical graph).
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Proof It is easy to see thatχg(K2) = 2 andχg(K2−x) = χg(K1) = 1 for every vertex
x ∈ V (G). Hence, K2 is a 2-χg-lower-game-vertex-critical graph. Further assume that
G is a graph from Theorem 8 (2), that contains at least two paths with diameter 3. Let
x ∈ V (G) be an arbitrary vertex of G. Since �(G − x) = 3 and |V (G − x)| is even,
Theorem 8 implies that χg(G − x) �= 2. It is also clear that χg(G − x) �= 1. It follows
that χg(G − x) ≥ 3. Therefore, G is a 2-χg-upper-game-vertex-critical graph.

Now suppose that χg(G) = 2. If 1 ≤ �(G) ≤ 2, then G is a disjoint union of
stars and possibly some isolated vertices, or G is a star. In the first case, removing any
vertex from any of those stars or isolated vertices still yields a graph from Theorem 8
(1) with the game chromatic number 2. Thus, G is necessarily a star graph, i.e., K1,n ,
n ≥ 1. Suppose that n ≥ 2, and let x and y be two distinct pendant vertices of K1,n .
By removing either one of the vertices x or y from K1,n , we obtain the star K1,n−1
that still requires two colors in a coloring game. Thus, n = 1 and G = K1,1 = K2.
Further assume that G satisfies condition (2) from Theorem 8.We have already shown
that χg(G − x) ≥ 3 for every vertex x ∈ V (G) if G contains at least two paths with
diameter 3. Consequently, in this case,G is a 2-χg-(upper)-game-vertex-critical graph.
Next, assume on the contrary, thatG contains only one component P4 = a0, a1, a2, a3
(note thatG contains at least one path with diameter 3 since |�(G)| = 3). Then,G−a1
is a graph that satisfies condition (1) from Theorem 8. Therefore, χg(G−a1) = 2 and
G is not a 2-χg-game-vertex-critical graph. �	

Proposition 9 shows that there also exist 2-χg-lower-game-vertex-critical and 2-χg-
upper-game-vertex-critical graphs which are not necessarily connected. The problem
of finding all critical graphs clearly becomes more involved for k-χg-game-vertex-
critical graphs when k is large. This problem already seems challenging for k = 3.
Therefore, we characterize only connected 3-χg-lower-game-vertex-critical graphs.

Theorem 10 Let G be a connected graph. Then, G is a 3-χg-lower-game-vertex-
critical graph if and only if G is P4, C3, or C4.

Proof It is again easy to see that χg(G) = 3 and χg(G − x) = 2 for every vertex
x ∈ V (G) when G is either P4 or C3 or C4. Let G be a 3-χg-lower-game-vertex-
critical, connected graph and let us denote G ′ = G − x , where x ∈ V (G) is an
arbitrary vertex.

First suppose that χg(G ′) = 2. Then, G ′ satisfies one of the two conditions from
Theorem 8. IfG ′ satisfies the first condition from this theorem, then it is a star graph or
a disjoint union of stars and possibly some isolated vertices. If G ′ is a disjoint union of
stars and possibly some isolated vertices, then x has at least one neighbor in every star
component of G ′ and is adjacent to every isolated vertex, because G is a connected
graph. SinceG ′ is a disjoint union of stars and possibly some isolated vertex,G is either
P4 itself, which is one of the 3-χg-lower-game-vertex-critical graphs, or it contains
the graph P4 as a proper subgraph. In the latter case, there exists a pendant vertex w

in G such that G ′′ = G − w is connected and it contains the graph P4 as a subgraph.
Suppose that Alice and Bob play a coloring game on G ′′ and Alice makes her first
move on any vertex y ∈ V (G ′′) which clearly lies on the path P4 in G ′′. Then, Bob
responds with the vertex z on this path that has a common neighbor with y, and he uses
a different color than Alice. Sometime during the game between Alice and Bob one of
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them will have to color the common neighbor of vertices y and z with the third color,
and hence χg(G ′′) ≥ 3, which means that G is not a 3-χg-lower-game-vertex-critical
graph. The other possibility is that G ′ is a star graph, i.e., K1,n for some n ≥ 1. If
n = 1, then the only two possibilities are either G = P3 or G = C3. Clearly, C3 is the
only 3-χg-lower-game-vertex-critical graph in this case. Henceforth we may assume
that n ≥ 2. Let y be the central vertex and z1, . . . , zn the pendant vertices of G ′.

Suppose that x is adjacent to y in G. The vertex x must be adjacent to at least
one of the pendant vertices of G ′, say z1, since for otherwise G would also be a star
graph and hence χg(G) = 2, which is a contradiction. Now G − z2 contains C3 and
χg(G − z2) ≥ 3, which is again a contradiction since G is a 3-χg-lower-game-vertex-
critical graph.

Finally, suppose that x is not adjacent to y inG, but it must be adjacent to at least one
of the pendant vertices z1, . . . , zn , n ≥ 2, sinceG is connected. If n = 2, then the only
two possible cases are either G = P4 or G = C4, which are both 3-χg-lower-game-
vertex-critical graphs. Therefore, assume that n ≥ 3. Removing any vertex z1, . . . , zn
from G in such a way that the remaining graph stays connected yields a connected
graph that contains the path P4 as a subgraph. With the same reasoning as above we
conclude that the game chromatic number of such a graph is at least 3, and hence G
is not a 3-χg-lower-game-vertex-critical graph.

Further assume that G ′ satisfies the second condition from Theorem 8. Then,
|V (G ′)| is odd and at least one component of G ′ equals P4. This means that G ′
consists of at least two components and G contains the graph P4 as a proper subgraph.
Consequently, there exists a pendant vertex w in G (which is connected by assump-
tion) such that also G ′′ = G −w is connected and it contains the graph P4 as a proper
subgraph. By the same reasoning as above, we conclude that the game chromatic num-
ber of the graph G ′′ is at least 3, and hence G is not a 3-χg-lower-game-vertex-critical
graph.

The case for χg(G ′) = 1 is trivial, since G ′ is a disjoint union of isolated vertices.
Then, G must be a star graph for which χg(G) = 2, which is not possible. This
completes the proof. �	

4 The Indicated Coloring Game-Vertex-Critical Graphs

It turns out that the indicated coloring game behaves nicer than the classical coloring
game, at least for the case of lower-criticality, since all χi -lower-game-vertex-critical
graph are connected. To prove this, we need the following lemma.

Lemma 11 Let G1, . . . ,Gn be connected components of a graph G. Then,

χi (G) = max{χi (Gk) | k = 1, . . . , n}.

Proof A strategy of Ann which produces a coloring of G with χi (G) colors can
have Ann jumping back and forth between the components when selecting vertices.
But since Ann only selects a vertex in each round of the indicated coloring game
and Ben colors it with any available color, the moves in the game played on the
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disconnected graph G can always be rearranged in such a way that Ann first selects
all vertices inside one component, then moves to another component and repeats this
procedure until she selects all vertices in every component. When she is selecting
vertices in a component she does this in the same order as they were selected in
this component in the original strategy. This yields χi (Gk) ≤ χi (G) for every k ∈
{1, . . . , n}. However, if χi (Gk) < χi (G) for every k ∈ {1, . . . , n}, then according to
the rearranged coloring strategy, G can be colored with less than χi (G) colors, which
is not possible. Therefore, there exists a component G j such that χi (G j ) = χi (G),
and hence χi (G) = max{χi (Gk) | k = 1, . . . , n}. �	
Proposition 12 If G is a χi -lower-game-vertex-critical graph, then G is connected.

Proof LetG be aχi -lower-game-vertex-critical, disconnectedgraph and letG1, . . . ,Gn

be its connected components. Note that, since G is not connected, n ≥ 2.
By Lemma 11, we have χi (G) = max{χi (Gk) | k = 1, . . . , n} and there exists a

component G j such that χi (G j ) = χi (G). Since n ≥ 2, we have V (G − G j ) �= ∅.
Let x ∈ V (G − G j ), which means that x ∈ V (G�), � �= j . If the removal of a vertex
x lowers χi (G�) or if χi (G�) stays the same, then χi (G − x) = χi (G j ) = χi (G), but
if the removal of vertex x increases χi (G�), then χi (G − x) ≥ χi (G j ) = χi (G). In
all cases, we get a contradiction to the assumption that G is a χi -lower-game-vertex-
critical graph. We conclude that G must be connected. �	

Next, we characterize the 2-χi -game-vertex-critical graphs. Similarly as for the 2-
χg-game-vertex-criticality this shows that the notion of 2-χi -game-vertex-criticality
is equivalent to 2-χi -lower-game-vertex-criticality. Recall that the indicated game
chromatic number of a connected graph G equals 2 if and only ifG is a bipartite graph
[17]. (If G is disconnected, then it is a union of bipartite graphs and isolated vertices.)

Proposition 13 Graph G is a 2-χi -game-vertex-critical graph if and only if G = K2.

Proof Obviously, K2 is a 2-χi -game-vertex-critical graph since χi (K2) = 2 and
χi (K2 − x) = χi (K1) = 1 for any x ∈ K2. Further, let G be an arbitrary graph,
G �= K2, for which χi (G) = 2. Then, G is a union of bipartite graphs and isolated
vertices, and has at least three vertices. Let x ∈ V (G). Clearly, also G − x is a union
of bipartite graphs and isolated vertices, or G − x is a union of isolated vertices. In
the first case χi (G − x) = 2 and in the latter case χi (G − x) = 1. If χi (G − x) = 2,
then we immediately get a contradiction. Therefore, we assume that χi (G − x) = 1.
Since G − x is a union of isolated vertices, and x is in G adjacent to some of those
vertices, K2 must be a proper subgraph of G (G has at least 3 vertices). Removing a
vertex y ∈ V (G − K2) yields the graph G − y with χi (G − y) = 2. It follows that G
is not a χi -game-vertex-critical graph. �	

We continue our study with 3-χi -game-vertex-critical graphs. Since we know that
χi -lower-game-vertex-critical graphs are connected, we focus on them.

Theorem 14 Graph G is a 3-χi -lower-game-vertex-critical graph if and only if G is
an odd cycle.

123



On Game Chromatic Vertex-Critical Graphs Page 11 of 30 27

Proof Let G be an odd cycle. It is easy to see that χi (G) = 3, and χi (G − x) = 2 for
every x ∈ V (G). Thus, every odd cycle is a 3-χi -lower-game-vertex-critical graph.

Further, letG be a 3-χi -lower-game-vertex-critical graph. This means thatχi (G) =
3 and χi (G − x) ≤ 2 for any x ∈ V (G). By Proposition 12, G is connected. Since
for every bipartite graph the indicated game chromatic number is 2, G must contain
an odd cycle, and let C be the smallest odd cycle in G. If G �= C , then there exists a
vertex x ∈ V (G − C). Clearly, χi (G − x) ≥ 3 since C cannot be properly colored
with two colors. In this case, G is not a 3-χi -lower-game-vertex-critical graph. The
other possibility is that G = C what we wanted to prove. �	

Further, we give a nice property of k-χi -lower-game-vertex-critical graphs which
might help characterizing them for k ≥ 4.

Proposition 15 LetG beaχi -lower-game-vertex-critical graph. Then, d(x) ≥ χi (G−
x) for every x ∈ V (G).

Proof We prove the contrapositive statement of our proposition. Assume that there
exists a vertex x ∈ V (G) such that d(x) < χi (G − x), and suppose that Ann and
Ben play an indicated coloring game on G using χi (G − x) colors. Clearly Ann has
a winning strategy on G − x with χi (G − x) colors. She selects the vertices of G in
the same order according to her winning strategy in G − x , while avoiding the vertex
x . In the end of this process all vertices except vertex x are colored with χi (G − x)
colors. Finally, Ann selects vertex x . Since d(x) < χi (G − x) there exists at least one
color from the color set {1, 2, . . . , χi (G− x)}which is legal for x and Ben has to color
it with it. In this way, Ann wins the indicated coloring game on G using χi (G − x)
colors. Thus, χi (G) ≤ χi (G − x), and hence G is not a χi -lower-game-vertex-critical
graph. �	

Even though the problem of finding all 4-χi -lower-game-vertex-critical graphs is
considerably more challenging, we can show that the removal of an arbitrary vertex
from a 4-χi -lower-game-vertex-critical graph lowers its indicated chromatic number
by at most one.

Theorem 16 Let G be a 4-χi -lower-game-vertex-critical graph. Then, χi (G− x) = 3
for every vertex x ∈ V (G).

Proof LetG be a 4-χi -lower-game-vertex-critical graph. This means that χi (G−x) ≤
3 for any x ∈ V (G). To prove that χi (G − x) = 3 for any x ∈ V (G) suppose on the
contrary that there exists a vertex x ∈ V (G) such that χi (G − x) ≤ 2.

First suppose that χi (G − x) = 2. Then, G − x is a union of (connected) bipartite
graphs and isolated vertices. Now assume that Ann and Ben play an indicated coloring
gameonG using three colors.We show thatAnnhas awinning strategy onG.We chose
an arbitrary bipartite subgraph of G − x and denote it by B. Let G1 and G2 be both
partite sets of B. In the first move Ann selects vertex x and without loss of generality
suppose that Ben colors it with color 1. Since G is connected by Proposition 12, x
must have a neighbor in B, say y ∈ G1. Ann selects y and Ben colors it either with
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color 2 or color 3, say 2. In the next move, Ann selects all neighbors of y. Ben colors
them either with color 1 or color 3. In this step, Ann looks at the vertices in G2 which
received color 3 and selects all of their neighbors, which Ben colors either with color
1 or color 2. Then, she selects neighbors of those vertices in G1 that newly received
color 2. She repeats this procedure by alternatively selecting the neighbors of vertices
in G1 which have color 2 and the neighbors of vertices in G2 which have color 3 until
there are no uncolored neighbors of vertices in G1 and G2 colored with colors 2 or 3,
respectively. Clearly, all vertices selected by Ann during this process could be colored
by Ben, as no vertex in G1 received color 3 and no vertex in G2 received color 2. This
process stops when all neighbors of vertices with colors 2 and 3 are colored. Note
that in the last step, the neighbors of vertices with colors 2 and 3, which were still
uncolored before this step, received color 1, since for otherwise the process would still
continue. Hence, the vertices in B that were until this step colored with colors 2 and
3 no longer play any role in the remainder of this game. After the first iteration, Ann
can select a new neighbor of x in B and repeats this procedure from the beginning.
It could happen that there no longer exists an uncolored neighbor of x in B, and B is
still not completely colored. According to the procedure described above, there must
exist an uncolored neighbor of a vertex in B which received color 1. Ann selects this
vertex in her next move and Ben colors it either with color 2 or 3. From this point
on, Ann’s strategy is exactly the same as above—she alternately selects neighbors of
vertices in Gi , i ∈ {1, 2}, which have color 2 and the neighbors of vertices in G j ,
j �= i , which have color 3 until there are no more uncolored neighbors of vertices
colored with color 2 or 3. If B is still not colored Ann finds another vertex in B colored
with 1 which still has some uncolored neighbors and repeats the process. Since B is
connected, Ann will be able to reach all vertices of B with this procedure, and B
will be colored with three colors. Ann can now move the game to another bipartite
subgraph of G − x . Note that x is in G adjacent to all bipartite subgraphs of G − x ,
since G is connected (Proposition 12). Ann can clearly color all bipartite subgraphs of
G − x with three colors. What remains are the isolated vertices of G − x . In G those
vertices have degree 1, and can easily be colored with three colors by Ben no matter
in what order Ann selects them. Thus, Ann wins the game on G using three colors,
which contradicts the assumption χi (G) = 4.

Now suppose that χi (G− x) = 1. In this case, G− x is a union of isolated vertices.
Since by Proposition 12 graph G is connected, x must be adjacent to all of those
vertices in G. Hence, G = K1,n for some n ≥ 1. However, χi (G) = χi (K1,n) = 2,
which is again a contradiction to χi (G) = 4. �	

Combining Theorem 16 with Proposition 15 for a 4-χi -lower-game-vertex-critical
graph G we get d(x) ≥ χi (G − x) = 3 for every vertex x ∈ V (G), which means that
4-χi -lower-game-vertex-critical graphs G have neither pendant vertices nor vertices
of degree 2.

Corollary 17 If G is a 4-χi -lower-game-vertex-critical graph, then δ(G) ≥ 3.
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5 The Independence Coloring Game-Vertex-Critical Graphs

Similarly as in the case of χg-game-vertex-critical graphs, we can show that a graph
does not need to be connected in order to be a χA

ig -game-vertex-critical or a χAB
ig -

game-vertex-critical graph.

Proposition 18 There exists a 3-χA
ig -game-vertex-critical and a 3-χAB

ig -game-vertex-
critical, disconnected graph.

Proof Take, for instance the graph G, which is the disjoint union of graphs C6 and P6
and suppose that Alice and Bob play an A-independence or an AB-independence col-
oring game on G. Clearly, three colors are needed to finish the game on G. Whichever
vertex Alice colors with color 1, Bob responds by coloring with color 1 a vertex at
distance three to Alice’s choice. With such a move he ensures that two more colors
will be needed to complete the game. Obviously, three colors are also enough to com-
plete the game. Therefore, χA

ig (G) = χAB
ig (G) = 3. To see that the graph G is indeed

an A-independence and AB-independence coloring game-vertex-critical graph, let us
show that χA

ig (G − x) = χAB
ig (G − x) = 2 for an arbitrary vertex x ∈ V (G). We

consider two cases.
If x ∈ V (C6), then the graph G − x is the disjoint union of paths P5 = v1v2v3v4v5

and P6 = w1w2w3w4w5w6. In this case, two colors are needed to finish an A-
independence and AB-independence coloring game on G − x if Alice starts the game
on vertex v3. The moves on P5 with color 1 are now fixed. Namely, vertices v1 and
v5 will be colored with color 1. Alice can also ensure that Bob will be the first to play
with color 1 on P6. If Bob colors w1 (or w6), Alice responds by coloring w5 (or w2),
if Bob colors w2 (or w5), Alice responds by coloring w4 (or w3), and if Bob colors
w3 (or w4), Alice responds by coloring w5 (or w2). When they finish using color 1,
the remaining vertices will all receive color 2 since they form and independent set.

If x ∈ V (P6), where P6 = w1w2w3w4w5w6, then we distinguish three possibil-
ities. If x = w1 (or x = w6), then the graph G − x is a disjoint union of C6 and
P5. Alice’s first move in an A-independence and AB-independence coloring game on
G − x is on vertex w4 (w3). Again, there are two more moves on P5 with color 1,
which means that Alice can ensure that Bob will be the first to use color 1 onC6. Alice
can then respond by coloring a vertex at distance two to Bob’s choice, and color it
also with color 1. When they finish using color 1, the remaining vertices will again all
receive color 2. Thus, χA

ig (G − x) = χAB
ig (G − x) = 2. The second possibility is that

x = w2 (x = w5). In this case, the graph G − x consists of C6, P1 and P4. If Alice
colors in her first move a vertex in P4 or P1, then two more moves are possible outside
C6 in the first round of the game, so Bob will again be the first to use color 1 onC6. For
the same reason as in the previous case it follows that χA

ig (G− x) = χAB
ig (G− x) = 2.

The last possible option is that x = w3 (or x = w4). Then, the graph G − x consists
of C6, P2 and P3. Since Alice wants Bob to be the first to make his move with color
1 on C6, she colors with color 1 in her first move either the vertex w4 (or w1) or the
vertex w6 (or w3). This will again force Bob to be the first to play on C6 and hence
χA
ig (G − x) = χAB

ig (G − x) = 2. �	
We further observe that there exist a lower, an upper and a mixed independence col-

oring game-vertex-critical graph. Moreover, the difference between the independence
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game chromatic number of a graph and the independence game chromatic number of
its vertex-deleted subgraph can be arbitrarily large.

Proposition 19 Let n ≥ 1 be a positive integer. There exists a χA
ig -lower-game-vertex-

critical and a χAB
ig -lower-game-vertex-critical graph G, such that χA

ig (G) − χA
ig (G −

x) = n and χAB
ig (G) − χAB

ig (G − x) = n for every vertex x ∈ V (G).

Proof Let n ≥ 1 be a positive integer and G = Kn+2,n+2 − M, where M is a
perfect matching. Denote the partite sets of G with A = {a1, a2, . . . , an+2} and
B = {b1, b2, . . . , bn+2} and let M = {a1b1, a2b2, . . . , an+2bn+2}. We know that
χA
ig (G) = χAB

ig (G) = n + 2 [8]. Let x ∈ V (G) be an arbitrary vertex. Assume
that Alice and Bob play an A-independence or an AB-independence coloring game
on G − x . Without loss of generality, suppose that x = a1. Alice’s first move is
to color the vertex b1 with color 1. Then, no vertex of A can be colored with color
1 since b1 is adjacent to all vertices of A in G − x . Therefore, all vertices of B
will be colored in the first round of the game and all vertices of A in the second
round of the game. It follows that χA

ig (G − x) = χAB
ig (G − x) = 2 and we get

χA
ig (G) − χA

ig (G − x) = χAB
ig (G) − χAB

ig (G − x) = (n + 2) − 2 = n. �	

Proposition 20 Let n ≥ 3 be a positive integer. There exists aχAB
ig -upper-game-vertex-

critical graph G, such that

{
χAB
ig (G) − χAB

ig (G − x) | x ∈ V (G)
}

= {−1,−2n + 3}.

Proof Let n ≥ 3 be a positive integer and G ′ be the disjoint union of graphs G1 =
(K2n,2n −M)u (M is a perfect matching in K2n,2n) and G2 = (K6,6 −M′)v (M′ is a
perfect matching in K6,6), where u is the universal vertex in G1 and v is the universal
vertex in G2. Graph G is obtained from G ′ by identifying both universal vertices u
and v, i.e., u = v.

First, we show that χAB
ig (G) = 3. The optimal first move for Alice in an AB-

independence coloring game on G using three colors is to color vertex u. Then, Bob
starts the second round of the game with color 2 by playing a vertex in either G1 − u
or G2 − u, say G1 − u. Alice responds in her next move by coloring a vertex in the
same partite set in G1 − u as Bob played in his first move. Since there are an even
number of vertices in G1 − u, Bob is forced to make his first move with color 2 in
G2 − u. Alice again plays in her next move in the same partite set in G2 − u as Bob
did. After the second round of the game, only one new color is needed to complete
the game, since the remaining uncolored vertices form an independent set. Therefore,
χAB
ig (G) = 3.
If we remove the vertex u from G it does not matter where Alice plays in her first

move. Without loss of generality assume that Alice makes her first move in G1 − u.
Bob responds by coloring a vertex lying opposite Alice’s colored vertex along the
edge ofM. In this way, no other vertex in G1 − u can receive color 1. Hence, Alice’s
next move will be in G2 − u. Bob colors next a vertex lying opposite Alice’s colored
vertex along the edge of M′ and the first round is complete. Alice starts the second
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round of the game and it goes exactly as the first round. It ends with two colored
vertices in G1 − u and two colored vertices in G2 − u. The continuation of the game
goes along the same lines, because Alice starts each new round of the game. The
game ends in 2n rounds and therefore χAB

ig (G − u) = 2n. This already shows that

χAB
ig (G) − χAB

ig (G − u) = −2n + 3.
We still need to show that the removal of all other vertices of G also increases the

independence game chromatic number of the vertex-deleted subgraph. Let x ∈ V (G)

be an arbitrary vertex different from u. We will show that χAB
ig (G − x) = 4. If Alice

played on u in her first move of the game on G − x , Bob would start the second round
of the game. He would play a vertex lying in the partite set of G1 − u or G2 − u to
which vertex x belongs. Thus, in this partite set, odd number of consecutive moves
would be played, which means that Alice would be the first to color the vertices in
the second one of the graphs G1 − u and G2 − u. Bob would then play on the vertex
opposite of Alice’s last colored vertex along the edge of M or M′. That would end
the second round of the game. Clearly, in the continuation of the game at least four
more rounds would be required. So playing u is not an optimal first move for Alice.

It turns out that playing the vertex lying opposite of x along the edge ofM orM′
is the optimal first move for Alice. Namely, in this case, in the graph of G1 − u or
G2−u, in which x lies, even number of moves are played in the first round (all vertices
from the same partite set), so Alice has the first move in the second one of the graphs
G1 − u or G2 − u. Bob completes this round of the game by playing his next move on
a vertex lying opposite to the vertex which Alice colored in her last move. Alice starts
the next round by coloring a vertex lying in the same partite set that contained x . All
vertices of this partite set must thus receive color 2. Since there are an odd number of
those vertices, Bob will be the first to play on the one graph G1 − u or G2 − u, which
does not contain x . Alice answers by coloring a vertex lying in the same partite set,
thus causing all the vertices of that partite set to be colored in the second round. After
the first two rounds, there remains an uncolored set of pairwise non-adjacent vertices
that can receive one color and the vertex u that must receive its own color. So the game
ends in four rounds.

If Alice colors in her first move a vertex in the partite set that contained x (without
loss of generality say x ∈ V (G2 − u)), then the game also lasts four rounds. Bob
clearly colors in his next move the vertex lying opposite Alice’s colored vertex along
the edge of M′. Then, Alice must color a vertex in G1 − u and Bob plays again on
the vertex lying opposite of Alice’s last colored vertex along the edge of M. This
concludes the first round of the game. Alice starts the second round. She colors the
vertex opposite of x along the edge ofM′. Then, all the remaining uncolored vertices
of this partite set in G2 − u must be colored in this round. Since there are an odd
number of them, Bob will be the first to start coloring the vertices in G1 − u with
the color 2. Alice then plays on a vertex in the same partite set of this graph in which
Bob played last. This ensures that all vertices of this partite set will be colored in the
second round. Henceforth, the gamewill last twomore rounds. In one of the remaining
rounds, vertex u will be colored, and in the other, all the remaining uncolored vertices
of G.
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Lastly, if Alice starts the game by playing on a vertex lying in the partite set opposite
of x , but not exactly on the vertex lying opposite of x along the edge ofM′, the strategy
for Alice andBob is exactly the same as in the previous case. The only difference is that
Bob’s and Alice’s first moves swap. We see that χAB

ig (G − x) = 4, and consequently

χAB
ig (G) − χAB

ig (G − u) = 3 − 4 = −1, which concludes the proof. �	

Proposition 21 Let n ≥ 2 be a positive integer. There exists an χAB
ig -mixed-game-

vertex-critical graph G, such that

{
χAB
ig (G) − χAB

ig (G − x) | x ∈ V (G)
}

= {1,−2n + 3,−2n + 1}.

Proof Let n ≥ 2 be a positive integer. Let G1 = (K2n,2n − M)u (M is a perfect
matching), where u is the universal vertex in G1, G2 = (K2n+2,2n+2 − M′)v (M′ is
a perfect matching), where v is the universal vertex in G2, and G3 = (K2n+2,2n+2 −
M′′)w (M′′ is a perfect matching), where w is the universal vertex in G3. Graph G is
the graph obtained from graphs G1, G2, G3 by adding edges uv, vw and uw.

First, we show that χAB
ig (G) = 4. Suppose that Alice and Bob play an AB-

independence coloring game on G. Alice starts the first round of the game. Clearly,
Alice should start the game by playing on one of the vertices u, v, or w. It does not
matter on which of these vertices she starts the game. In all three cases, the same num-
ber of colors is needed to complete the game. Therefore, suppose that Alice colors
u in her first move. Now, the remaining vertices in G1, and vertices v and w can no
longer receive color 1. Thus, Bob colors in his first move one of the vertices in G2 −v

or G3 − w. Say he colors a vertex in G2 − v. Alice responds by coloring a vertex in
the same partite set. After this move, all vertices in this partite set must be colored in
the first round of the game. Since the number of vertices in this partite set is even, Bob
is forced to be the first to use color 1 on a vertex in G3 − w. Again, Alice responds
by coloring a vertex in the same partite set. With such a move she ensures that all
vertices of this partite set are also colored in the first round of the game. When all the
vertices in this partite set are colored, the first round of the game ends, as no vertex
can be colored with color 1. Since Alice makes the final move in the first round of the
game, Bob begins the second round of the game. His goal is to force Alice to be the
first to color an uncolored vertex of G1 − u, so in his first move he colors one of the
vertices v orw, say v. After his first move in the second round no vertex of G2 −v can
be colored with color 2. Because Alice does not want to be the first to color a vertex
of G1 − u, she colors one of the vertices of G3 − w which can still receive color 2.
Bob follows her in this move by coloring the vertex of the same partite set in his next
move. Since they have an even number of moves on this partite set and Alice started
coloring it, she will be the first to color one of the uncolored vertices of G1 − u. Bob
responds by coloring the opposite vertex along the edge of M. After this move, the
second round is over, since no other vertex can be colored with color 2. Alice starts the
third round of the game. She wants Bob to be the first to color the uncolored vertices
in G1 − u, so she colors w first. All uncolored vertices of G2 − v must be colored in
the third round of the game. Since Bob is the first who starts coloring them and there
are an even number of these vertices, he will have the first move with color 3 in the
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graph G3 − w. Alice responds by coloring a vertex in the same partite set. After this
move, all uncolored vertices in this partite set can receive color 3 and all the remaining
uncolored vertices color 4. We conclude that χAB

ig (G) = 4.

Next, we prove that χAB
ig (G − x) = 3 if x ∈ V (G)\{u, v, w}. Assume that Alice

and Bob play an AB-independence coloring game on G − x . The first move belongs
to Alice. If x ∈ G1, Alice’s optimal first move is to color the vertex u, if x ∈ G2
the vertex v and if x ∈ G3 the vertex w. Suppose that x ∈ G1 and that Alice colors
the vertex u in her first move (the strategy for Alice to win the game on G − x with
three colors in the other two described cases is analogous). Then, Bob has to make
his first move on one of the partite set of the graphs G2 − v or G3 − w, say G2 − v.
Alice responds by coloring a vertex in the same partite set. Then, all vertices in this
partite set have to receive color 1 and since their number is even, Bob will be the first
to color the vertices in one of the partite sets of G3 − w (note that vertices v and w

can no longer receive color 1, since their neighbor u is colored with 1). Again, Alice
colors in her next move a vertex in the same partite set. Now, all vertices in this partite
set must be colored in the first round of the game, and because their number is even,
Alice makes the last move in this round. This means that the first move of the second
round of the game belongs to Bob. If he colors some uncolored vertex inG1−u, Alice
responds by coloring an uncolored vertex in the same partite set in her next move.
With such a move, she ensures that all vertices in this partite set will receive color 2.
Additionally, if Alice has the first move in the second round of the game on a vertex of
V (G2)∪V (G3), she colors the vertex v (orw) in this move. Then, no vertex ofG2−v

(or G3 −w) can receive color 2 and all uncolored vertices of G3 −w (or G2 −v) must
be colored in the second round of the game. On the contrary, if Bob has his first move
with color 2 on a vertex of V (G2) ∪ V (G3), and he colors in this move the vertex in
G2 − v (or G3 − w), then Alice responds by coloring the vertex w (or v) in her next
move. With such strategy, she ensures that no vertex of G3 − w (or G2 − v) receives
color 2 and since all the uncolored vertices of G2 − v must now be colored in the
second round of the game, the game ends in the third round. Secondly, if Bob makes
his first movewith the color 2 on v (orw), then Alice colors in her next move the vertex
lying opposite of x along the edge ofM. In this way, she ensures that all the vertices
in the same partite set will also receive color 2 as the last colored vertex. In this way,
also all uncolored vertices of G3 − w (or G2 − v) will be colored in the second round
of the game. If the second round goes as described, then an independent set of vertices
remains uncolored and the game concludes in the next round. Finally, if Bob starts
the second round of the game by playing a vertex in G2 − v (or G3 − w), then Alice
responds by coloring the vertex w (or v) in her next move. Now, if Bob colors in some
of his next moves a vertex in G1 − u, then Alice responds by coloring an uncolored
vertex in the same partite set in her next move, ensuring that all vertices in this partite
set will receive color 2. Otherwise, if Alice has to make the first move using color 2
on a vertex of G1 − u, then she colors the vertex lying opposite of x along the edge of
M. After this move from Alice, it is clear which vertices will receive color 2 in this
round of the game and all the remaining uncolored vertices will receive color 3 in the
next round. It follows that χAB

ig (G − x) = 3, and hence χAB
ig (G) − χAB

ig (G − x) = 1.
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It remains to prove that χAB
ig (G − x) = 2n + 1 if x = v or x = w and that

χAB
ig (G − x) = 2n + 3 if x = u. If x = v (or x = w), then Alice starts the first

round of the game on u. With such a move she ensures that 2n + 1 colors are enough
to finish the game on G − x . If Alice had started the game by coloring either w or
v, 2n + 3 colors would have be needed to complete the game. Otherwise, if x = u,
then Alice stars the game by coloring v (or w). With such a move she ensures that
2n + 3 colors are enough to finish the game on G − x . Since the continuation of the
game is regardless of whether x = u, x = v or x = w, we consider just the case
when x = v. In this case, Alice colors the vertex u in her first move of the game.
Then, Bob has to color some vertex in one of the partite sets of the graphs G2 − v

or G3 − w, say G2 − v. Alice responds by coloring a vertex in the same partite set.
After Alice’s move, all vertices in this partite set have to receive color 1. Since the
number of vertices in this partite set is even, Bob is forced to take the first move in
a partite set of G3 − w. Again, Alice responds by coloring the vertex in the same
partite set. In the continuation of the first round of the game, all vertices in this partite
set receive color 1. Since Alice made the final move in the first round, Bob begins
the second round of the game. His optimal first move is to color vertex w. Then, all
uncolored vertices of the graph G2 − v will have to be colored in the second round of
the game. Since Alice has to be the first to color a vertex in G2 − v, and their number
is even, Alice will be the first to color some uncolored vertex of the graph G1 − u in
this round. Bob responds by coloring the vertex lying opposite of Alice’s last colored
vertex along the edge of M. After this move, no other uncolored vertex can receive
color 2 and the second round of the game is over. In the third round of the game Alice
has the first move. All uncolored vertices in G3 − w can be colored in this round.
Since their number is even, and Alice and Bob alternate turns, Bob colors the last
of the uncolored vertices in G3 − w. Therefore, Alice is forced to start coloring the
uncolored part of G1 − u. No matter where she plays, Bob respond by coloring the
vertex lying opposite of Alice’s last colored vertex along the edge ofM. After Bob’s
move, the third round of the game is over and 4n − 4 vertices of the graph G1 − u
remain uncolored. Since Alice has the first move in the new round of the game, only
two vertices are colored in each of the subsequent rounds. Namely, Alice colors in
each round of the game some uncolored vertex and Bob the vertex lying opposite of
Alice’s colored vertex along the edge ofM. Thus, another 2n−2 rounds are required
to complete the game. All together, the game lasts 2n − 2 + 3 = 2n + 1 rounds. It
follows that χAB

ig (G−v) = 2n+1, and χAB
ig (G)−χAB

ig (G−v) = −2n+3. In the case

where x = u, we get χAB
ig (G − u) = 2n+ 3, and χAB

ig (G)−χAB
ig (G − u) = −2n+ 1.

�	
We conclude this section with a characterization of 2-χA

ig -game-vertex-critical

(2-χAB
ig -game-vertex-critical) and connected 3-χA

ig -lower-game-vertex-critical (3-

χAB
ig -lower-game-vertex-critical) graphs. In order to do this, we will need the

characterization of connected graphs G with χA
ig (G) = 2 (χAB

ig (G) = 2) [8], which
will be heavily used in the proofs. Since this characterization is far from trivial, we
state it as separate theorem.
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Theorem 22 ([8]) If G is a connected graph with at least one edge, then the following
statements are equivalent:

(1) χA
ig (G) = 2;

(2) χAB
ig (G) = 2;

(3) G is a bipartite graph with the bipartition V (G) = (X1, X2), and there exists an
i ∈ {1, 2} and a vertex x in Xi , which is adjacent to all vertices from X j , where
{i, j} = {1, 2}.

Theorem 22 introduces a vertex with a special property in bipartite graphs. Hence,
if G is a bipartite graph with the bipartition V (G) = (X1, X2), and there exists an
i ∈ {1, 2} and a vertex x in Xi , which is adjacent to all vertices from X j , {i, j} = {1, 2},
then we will call x a dominating vertex in G.

Proposition 23 Let G be a connected graph. Graph G is a 2-χA
ig -game-vertex-critical

(2-χAB
ig -game-vertex-critical) graph if and only if G = K2.

Proof Clearly, χA
ig (K2) = χAB

ig (K2) = 2 and χA
ig (K2 − x) = χAB

ig (K2 − x) = 1 for
every vertex x ∈ V (K2).

Now assume that G is a 2-χA
ig -vertex-critical (2-χ

AB
ig -game-vertex-critical), con-

nected graph. Since χA
ig (G) = 2 (χAB

ig (G) = 2), then G is by Theorem 22 a bipartite
graph with the bipartition V (G) = (X1, X2) for which there exists an i ∈ {1, 2} and
a dominating vertex x ′ ∈ Xi . If |X j | = 1, j �= i , and y the unique vertex in X j , then
G is a star graph with the central vertex y. If there exists a vertex x ∈ V (Xi ), x �= x ′,
then G − x is a also a star graph, and hence χA

ig (G − x) = χAB
ig (G − x) = 2, which

means that G is not a 2-χA
ig -game-vertex-critical (2-χAB

ig -game-vertex-critical) graph.
The other case is that x ′ is the only vertex in Xi , which gives G = K2. However, if
|X j | ≥ 2, then removing any vertex y ∈ X j yields a bipartite graph with the bipar-
tition V (G) = (X1, X2\{y}) such that the vertex x ′ ∈ Xi is adjacent to all vertices
from X2\{y}. Again by Theorem 22, χA

ig (G − y) = χAB
ig (G − y) = 2 and G is not a

2-χA
ig -game-vertex-critical (2-χAB

ig -game-vertex-critical) graph. �	
Before we characterize connected 3-χB

ig-lower-game-vertex-critical (3-χAB
ig -lower-

game-vertex-critical) graphs, we need the following two lemmas. Even though they
have a trivial proofs, their use considerably simplifies both independence coloring
games in the proof of Theorem 26.

Lemma 24 Assume that Alice and Bob play an A- or AB-independence coloring game
on a connected graph G, and Alice colors in her first move a vertex u ∈ V (G). If there
exists a vertex v ∈ V (G), such that d(u, v) ≥ 3, then at least three different colors
are needed to finish the game on G.

Proof If Alice colors vertex u ∈ V (G) with a color, then Bob chooses a vertex
w ∈ V (G) on a shortest path between u and v such that d(u, w) = 3 (this is possible
because d(u, v) ≥ 3), and colors it with the same color. Both vertices that lie on a
shortest path between u and w will have to receive each their own private color in
the forthcoming rounds of the game, since they are adjacent, and one of them is also
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adjacent to u and the other to w. Hence, at least three different colors are needed to
finish the game on G. �	
Lemma 25 Let G be a connected graph and H its proper connected subgraph,
V (G)\V (H) �= ∅. Then, there exists a vertex x ∈ V (G)\V (H) such that G − x
is connected.

Proof We build a spanning tree in the graph G and let L ⊂ V (G) denote the set of
all its leaves. If there exists a vertex x ∈ L and x /∈ V (H), then obviously G − x
is connected. Otherwise, if such a vertex does not exist, then for every vertex x ∈ L
also x ∈ V (H) holds true, which means that all leaves of the spanning tree belong
to H . Since by the assumption H is connected, it follows that for an arbitrary vertex
x ∈ V (G)\V (H) also G − x must be connected. �	

Consequently, for an arbitrary connected graph G there exists a vertex x ∈ V (G)

for which G− x is connected graph. This result is obtained from Lemma 25 if we take
the empty graph for H . For the purpose of the following theorem, we denote with C+

4
the graph obtained from C4 by adding one pendant neighbor to each vertex of C4.

Theorem 26 Let G be a connected graph. Graph G is a 3-χA
ig -lower-game-vertex-

critical (3-χAB
ig -lower-game-vertex-critical) graph if and only if G is P6, C3, C

+
4 , C5,

or C6.

Proof It is easy to see that P6, C3, C5 and C6 are 3-χA
ig -lower-game-vertex-critical

and 3-χAB
ig -lower-game-vertex-critical graphs.

Next, we show that C+
4 is a 3-χA

ig -lower-game-vertex-critical and 3-χAB
ig -lower-

game-vertex-critical graph. Clearly, χA
ig (C

+
4 ) = χAB

ig (C+
4 ) = 3 since wherever Alice

starts the first round of the game, there always exists a vertex at the distance 3 of
Alice’s chosen vertex, hence by Lemma 24, at least three different colors are needed
to finish the game on C+

4 . When we remove an arbitrary vertex x ∈ C+
4 , there exists

a vertex y in graph C+
4 − x which has distance at most 2 to every other vertex of the

connected component of C+
4 − x to which y belongs. Note that the other connected

component of C+
4 − x , if it exists, consists of a single vertex. If Alice colors y in the

first round of the game played on C+
4 − x , the game ends in two rounds. Therefore,

χA
ig (C

+
4 − x) = χAB

ig (C+
4 − x) = 2 for an arbitrary x ∈ V (C+

4 ).

To prove the other direction assume that G is a 3-χA
ig -lower-game-vertex-critical

(3-χAB
ig -lower-game-vertex-critical) graph. Note that if G contains an odd cycle as a

proper subgraph, then we can remove a vertex from G that does not belong to this
cycle, and the remaining graph will still contain an odd cycle as a subgraph. Hence,
at least three colors will be needed to color it.

We remove an arbitrary vertex x ∈ V (G). We may assume that χA
ig (G) =

χAB
ig (G) = 3 and χA

ig (G − x) = χAB
ig (G − x) = 2. Namely, if χA

ig (G − x) =
χAB
ig (G − x) = 1, then G − x is formed from isolated vertices, and since G is con-

nected it must be a star graph. Thus χA
ig (G) = χAB

ig (G) = 2, which is a contradiction.
Since G − x requires two colors to be properly colored, it must be a disjoint union of
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connected bipartite graphs B1, . . . , Bk , k ≥ 1, and isolated vertices z1, . . . , z�, � ≥ 0.
The vertex x must be adjacent to all bipartite graphs and all isolated vertices in G,
since G is by assumption a connected graph. For every i ∈ {1, . . . , k} let us denote
both partite sets of Bi with Xi and Yi . It is clear that |Xi | ≥ 1 and |Yi | ≥ 1 for every
i ∈ {1, . . . , k}, since for otherwise the vertices of those partite sets would belong to
isolated vertices. We split the proof into three cases.

Case 1: k ≥ 3.

If there exists an i ∈ {1, . . . , k} such that x is adjacent to vertices of both partite sets
Xi and Yi in G, then G must contain an odd cycle as a proper subgraph in which case
it cannot be a 3-χA

ig -lower-game-vertex-critical (3-χAB
ig -lower-game-vertex-critical)

graph. Thus, x can be adjacent to the vertices of only one partite set of every bipartite
subgraph of G. Without loss of generality we may assume that x is adjacent only
to the vertices of Xi for every i ∈ {1, . . . , k}. If x is adjacent to all vertices of Xi

for every i ∈ {1, . . . , k}, then it is a dominating vertex in G and by Theorem 22
we have χA

ig (G) = χAB
ig (G) = 2, which is a contradiction. Hence, there exists an

i ∈ {1, . . . , k}, and a vertex x ′ ∈ Xi , such that xx ′ /∈ E(G). Now by Lemma 25
we remove a vertex v ∈ V (Bj ), j �= i , such that the remaining graph G − v stays
connected. Since G − v is still a bipartite graph with no dominating vertex, it has
χA
ig (G−v) �= 2 andχAB

ig (G−v) �= 2 byTheorem22. Since clearly alsoχA
ig (G−v) �= 1

and χAB
ig (G − v) �= 1, we have χA

ig (G − v) ≥ 3 and χAB
ig (G − v) ≥ 3, which is a

contradiction.

Case 2: k = 2.

If there exists an i ∈ {1, 2} such that x is adjacent to vertices of both partite sets Xi

and Yi in G, then G must contain an odd cycle as a proper subgraph in which case
it cannot be a 3-χA

ig -lower-game-vertex-critical (3-χAB
ig -lower-game-vertex-critical)

graph. Thus, x can be adjacent to the vertices of only one partite set, say X1 and X2.
If x is adjacent to all vertices of X1 and X2, then it is a dominating vertex and by
Theorem 22 we have χA

ig (G) = χAB
ig (G) = 2, which is a contradiction. Therefore,

there exists an i ∈ {1, 2}, and a vertex x ′ ∈ Xi , such that xx ′ /∈ E(G).

Subcase 2.1: � ≥ 1.

We remove the vertex z1 to obtain the graphG−z1. SinceG−z1 is still a bipartite graph
that does not have a dominating vertex, if follows fromTheorem 22 that χA

ig (G−z1) �=
2 and χAB

ig (G − z1) �= 2. Since clearly also χA
ig (G − z1) �= 1 and χAB

ig (G − z1) �= 1,

we have χA
ig (G − z1) ≥ 3 and χAB

ig (G − z1) ≥ 3, which is again a contradiction.

Subcase 2.2: � = 0.

If |Y j | ≥ 2, j �= i , than removing any vertex v ∈ V (Bj ), such that the remaining
graph G − v stays connected (such a vertex v exists by Lemma 25), yields a bipartite
graph with no dominating vertex, which by Theorem 22 gives χA

ig (G − v) �= 2 and

χAB
ig (G − v) �= 2. Since also χA

ig (G − v) �= 1 and χAB
ig (G − v) �= 1, we have

χA
ig (G − v) ≥ 3 and χAB

ig (G − v) ≥ 3, which is a contradiction. Hence, |Y j | = 1. Let
us denoted with y j the only vertex in Y j . If also |X j | ≥ 2, then removing any vertex
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u ∈ X j , such that the remaining graph G − u stays connected (such a vertex u exists
by Lemma 25), again yields a bipartite graph with no dominating vertex, which by
Theorem 22 gives χA

ig (G − u) �= 2 and χAB
ig (G − u) �= 2. Since also χA

ig (G − u) �= 1

and χAB
ig (G − u) �= 1, we have χA

ig (G − u) ≥ 3 and χAB
ig (G − u) ≥ 3, which is a

contradiction. Thus, |X j | = 1. Let us denoted with x j the only vertex in X j . Clearly,
xx j ∈ E(G) and x j y j ∈ E(G), since G is connected. Similarly, if |Yi | ≥ 2, then
we remove a vertex v ∈ V (Bi )\{x ′}, such that the remaining graph G − v stays
connected. Note that this is possible by Lemma 25 because of |Yi | ≥ 2. Namely, if
|Yi | = 1, then x ′ might be the only vertex that can be removed, and this is precisely
what we do not want. The graph G − v is bipartite and does have a dominating vertex,
which by Theorem 22 gives χA

ig (G − v) �= 2 and χAB
ig (G − v) �= 2. Since also

χA
ig (G−v) �= 1 and χAB

ig (G−v) �= 1, we have χA
ig (G−v) ≥ 3 and χAB

ig (G−v) ≥ 3,
which is a contradiction. Hence, |Yi | = 1. Let us denoted with yi the only vertex in
Yi . Also, if |Xi | ≥ 3, then removing any vertex u ∈ X j\{x ′}, such that the remaining
graph G − u stays connected which exists by Lemma 25, again yields a bipartite
graph with no dominating vertex, which by Theorem 22 gives χA

ig (G − u) �= 2 and

χAB
ig (G − u) �= 2. Since also χA

ig (G − u) �= 1 and χAB
ig (G − u) �= 1, we have

χA
ig (G − u) ≥ 3 and χAB

ig (G − u) ≥ 3, which is a contradiction. Thus, |Xi | = 2. Let
us denoted with xi the only vertex in Xi\{x ′}. Clearly, xxi ∈ E(G), xi yi ∈ E(G) and
x ′yi ∈ E(G) since G is connected. What we obtained is G = P6, which is one of the
3-χA

ig -lower-game-vertex-critical (3-χAB
ig -lower-game-vertex-critical) graphs.

Case 3: k = 1.

From this point on let X = X1 and Y = Y1 denote both partite sets of B1. If � ≥ 0
and x is adjacent to vertices of both partite sets X and Y in G, then G must contain
an odd cycle as a proper subgraph in which case it cannot be a 3-χA

ig -lower-game-

vertex-critical (3-χAB
ig -lower-game-vertex-critical) graph. Thus, x can be adjacent to

the vertices of only one partite set, say X . If x is adjacent to all vertices of X , then it
is dominating vertex and by Theorem 22 we have χA

ig (G) = χAB
ig (G) = 2, which is a

contradiction. Therefore, there exists a vertex x ′ ∈ X , such that xx ′ /∈ E(G).

Subcase 3.1: � ≥ 2.

We remove the vertex z1 to obtain the graphG−z1. SinceG−z1 is still a bipartite graph
with no dominating vertex, Theorem 22 gives χA

ig (G− z1) �= 2 and χAB
ig (G− z1) �= 2.

Since clearly also χA
ig (G − z1) �= 1 and χAB

ig (G − z1) �= 1, we have χA
ig (G − z1) ≥ 3

and χAB
ig (G − z1) ≥ 3, which is again a contradiction.

Subcase 3.2: � = 1. Let us denote with z = z1 the only isolated vertex in G − x , and

let x1, . . . , xa , a ≥ 1, be the vertices in X\{x ′} that are adjacent to x (note that a = 0
is not possible since G is connected). Since G is bipartite and χA

ig (G) = χAB
ig (G) = 3,

xi ’s cannot be dominating vertices. However, since G − z is also a connected bipartite
graph, and we want χA

ig (G − z) = χAB
ig (G − z) = 2, G − z must have a dominating

vertex. By construction, vertices of X cannot be dominating vertices of G − z; hence,
there exists a vertex y′ ∈ Y such that y′ is adjacent to every vertex of X . Since xi is
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not a dominating vertex in G, there exists yi ∈ Y such that xi yi /∈ E(G) for every
i ∈ {1, . . . , a}. Note that some of the vertices yi might represent the same vertex. Since
vertices xi and yi are not adjacent in the bipartite graph G, we have dG(xi , yi ) ≥ 3.
Moreover, since y′ ∈ Y is a dominating vertex, it follows that dG(xi , yi ) = 3 for every
i ∈ {1, . . . , a}. For every i ∈ {1, . . . , a} we find a shortest path Li , |V (Li )| = 3, in
G between vertices xi and yi (xi and yi are the endvertices of Li ). Note that some of
the paths Li might intersect each other. We define the set

S = V (G)\
(

a⋃

i=1

V (Li ) ∪ {z, x, y′, x ′}
)

.

If S �= ∅, then we remove a vertex u ∈ S such that the graph G − u remains
connected (such a vertex exists by Lemma 25). Suppose that Alice and Bob play an
A- or AB-independence coloring game on the graph G − u. If Alice colors a vertex
v ∈ V (G − u)\{z, x, x1, . . . , xa} in her first move, then dG−u(v, z) ≥ 3; if Alice
colors xi , i ∈ {1, . . . , a}, in her first move, then dG−u(xi , yi ) ≥ 3; if Alice colors
x in her first move, then dG−u(x, x ′) = 3; if Alice colors z in her first move, then
dG−u(z, y′) = 3. Considering all possibilities, and using Lemma 24, at least three
different colors are needed to finish the game on G − u, which is a contradiction. We
may therefore assume that S = ∅, which means that

V (G) =
(

a⋃

i=1

V (Li ) ∪ {z, x, y′, x ′}
)

.

We define the set T = V (G)\{z, x, x1, . . . , xa, y1, . . . , ya, y′, x ′}, and split the
proof with respect to the positive integer a ≥ 1.

Suppose first that a = 1. If x ′ /∈ V (L1), then G − x ′ is connected, and we let Alice
and Bob play an A- or AB-independence coloring game on the graph G − x ′. If Alice
colors a vertex v ∈ V (G − x ′)\{z, x, x1} in her first move, then dG−x ′(v, z) ≥ 3; if
Alice colors either x1 or x in her firstmove, thendG−x ′(x1, y1) = 3 anddG−x ′(x, y1) =
4 (note that the shortest path L1 between x and y1 goes through x1); if Alice colors
z in her first move, then dG−x ′(z, y′) = 3. Considering all possibilities, and using
Lemma 24, at least three different colors are needed to finish the game on G − x ′,
which is a contradiction. However, if x ′ ∈ V (L1), then by the structure of G, and
dG(x1, y1) = 3, x ′ must be adjacent to y1. If T �= ∅, then there exists exactly one vertex
u ∈ T . By the structure ofG,G−u is the path P6, and since χA

ig (P6) = χAB
ig (P6) = 3,

G cannot be a 3-χA
ig -lower-game-vertex-critical (3-χAB

ig -lower-game-vertex-critical)
graph. Therefore, T = ∅. In this case, V (G) = {z, x, x1, y1, y′, x ′}, and obeying all
the given adjacencies, we get G = P6, which is one of the 3-χA

ig -lower-game-vertex-

critical (3-χAB
ig -lower-game-vertex-critical) graphs.

Now suppose that a ≥ 2. First suppose that there exists j ∈ {1, . . . , a} such that
G − x j is connected (note that in the case a = 1, G − x1 is always disconnected). We
let Alice and Bob play an A- or AB-independence coloring game on the graph G− x j .
If Alice colors a vertex v ∈ V (G − x j )\{z, x, x1, . . . , x j−1, x j+1, . . . , xa} in her first
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move, then dG−x j (v, z) ≥ 3; if Alice colors xi , i ∈ {1, . . . , a}\{ j}, in her first move,
then dG−x j (xi , yi ) = 3; if Alice colors x in her first move, then dG−x j (x, x

′) = 3; if
Alice colors z in her first move, then dG−x j (z, y

′) = 3. Considering all possibilities,
and usingLemma24, at least three different colors are needed to finish the gameonG−
x j , which is a contradiction. Therefore, wemay assume thatG−xi is disconnected for
every i ∈ {1, . . . , a}. By the structure ofG,G−yi is connected for every i ∈ {1, . . . , a}
(yi is an endvertex of the path Li ). Now suppose that for some j ∈ {1, . . . , a} there
exists an h ∈ {1, . . . , a}, h �= j , such that x j yh /∈ E(G). Then, dG(x j , yh) ≥ 3.
Suppose that Alice and Bob play an A- or AB-independence coloring game on the
graph G − y j . If Alice colors a vertex v ∈ V (G − y j )\{z, x, x1, . . . , xa} in her first
move, then dG−y j (v, z) ≥ 3; if Alice colors xi , i ∈ {1, . . . , a}\{ j}, in her first move,
then dG−y j (xi , yi ) = 3; if Alice colors x j in her first move, then dG−y j (x j , yh) ≥ 3;
if Alice colors x in her first move, then dG−y j (x, x

′) = 3; if Alice colors z in her
first move, then dG−y j (z, y

′) = 3. Considering all possibilities, and using Lemma 24,
at least three different colors are needed to finish the game on G − y j , which is a
contradiction. Thus we may assume that for every i ∈ {1, . . . , a} and every j ∈
{1, . . . , a}, j �= i , xi y j ∈ E(G). This means that if a ≥ 3, then G − xi is connected
for every i ∈ {1, . . . , a}, which is a contradiction, since we assumed that G − xi is
disconnected for every i ∈ {1, . . . , a}. Hence, a = 2. If T �= ∅, then we remove a
vertex u ∈ T such that the graph G − u remains connected (such a vertex exists by
Lemma 25). Suppose that Alice and Bob play an A- or AB-independence coloring
game on the graph G − u. If Alice colors a vertex v ∈ V (G − u)\{z, x, x1, x2}
in her first move, then dG−u(v, z) ≥ 3; if Alice colors x1 in her first move, then
dG−u(x1, y1) = 3; if Alice colors x2 in her first move, then dG−u(x2, y2) = 3; if Alice
colors x in her first move, then dG−u(x, x ′) = 3; if Alice colors z in her first move,
then dG−u(z, y′) = 3. Considering all possibilities, and using Lemma 24, at least
three different colors are needed to finish the game on G−u, which is a contradiction.
Therefore, T = ∅. In this case V (G) = {z, x, x1, x2, y1, y2, y′, x ′}, and obeying all
the given adjacencies, we get G = C+

4 , which is one of the 3-χ
A
ig -lower-game-vertex-

critical (3-χAB
ig -lower-game-vertex-critical) graphs.

Subcase 3.3: � = 0.

We see that G − x must be a connected and bipartite graph. We again denote with
X = X1 and Y = Y1 both partite sets of G − x . If x is adjacent to vertices of both
partite sets X and Y in G, then G must contain an odd cycle. Let C2n+1, n ≥ 1, be a
smallest odd (induced) cycle in G. If G contains C2n+1 as a proper subgraph, then it is
not a 3-χA

ig -lower-game-vertex-critical (3-χAB
ig -lower-game-vertex-critical) graph. If

we remove a vertex inG that does not belong toC2n+1, then at least three colors will be
required to complete the game. Therefore, we may assume that G = C2n+1. If n = 1
or n = 2, then G = C3 and G = C5 are 3-χA

ig -lower-game-vertex-critical (3-χAB
ig -

lower-game-vertex-critical) graphs. Let us consider the remaining case n ≥ 3, and
denoteG = C2n+1 = v1v2 . . . v2n+1, where vivi+1 ∈ E(G) for all i ∈ {1, . . . , 2n+1}
(modulo 2n+1). Assume that Alice and Bob play an A- or AB-independence coloring
game on G−v2n+1, and suppose that Alice colors vertex vi . Because of symmetry we
may assume that i ≤ n. Clearly, vi (vi+1) cannot be adjacent to vi+2 (vi+3), since G
would contain C3 as a subgraph, which is not possible. Also, vi cannot be adjacent to
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vi+3, because v1 . . . vivi+3 . . . v2n+1 would form a (2n − 1)-cycle in G, which is also
not possible, since C2n+1 is a smallest cycle in G. This means that dG(vi , vi+3) = 3,
and by Lemma 24, at least three different colors are needed to finish the game on
G. Therefore, G = C2n+1, n ≥ 3, is not a 3-χA

ig -lower-game-vertex-critical (3-χAB
ig -

lower-game-vertex-critical) graph.
What remains to consider is the case, when x is adjacent to vertices of only one

partite sets X and Y , say X . In this case, G is clearly also a bipartite graph. Let us
denote with x1, . . . , xa , a ≥ 1, the vertices in X\{x ′} that are adjacent to x (note
that again a = 0 is not possible since G is connected). Since G is bipartite and
χA
ig (G) = χAB

ig (G) = 3, xi ’s cannot be dominating vertices. However, since G − x is

also a bipartite graph, and we want χA
ig (G − x) = χAB

ig (G − x) = 2, G − x must by
Theorem 22 have a dominating vertex. The vertices of Y cannot be dominating vertices
ofG−x , for otherwise a dominating vertex ofG−x would also be a dominating vertex
ofG, which is a contradiction to the fact that χA

ig (G) = χAB
ig (G) = 3. Therefore, there

must exist a vertex in X which is not adjacent to x and is adjacent to every vertex
of Y . Without loss of generality let that be our predefined vertex x ′ ∈ X . Since xi ’s
are not dominating vertices in G, there exists yi ∈ Y such that xi yi /∈ E(G) for
every i ∈ {1, . . . , a}, and we have dG(xi , yi ) ≥ 3 for every i ∈ {1, . . . , a}. Note that
some of the vertices yi ’s might represent the same vertex. Moreover, since x ′ ∈ X
is a dominating vertex, it follows that dG(xi , yi ) = 3 for every i ∈ {1, . . . , a} and
hence, there exists a path Li , |V (Li )| = 3, between vertices xi and yi for every
i ∈ {1, . . . , a}. Similarly, we observe that dG(x, x ′) = 3. Namely, since xx ′ /∈ E(G)

and G is bipartite, we have dG(x, x ′) ≥ 3. Since x ′ is a dominating vertex in G − x
and a �= 0, there exists a vertex y′ ∈ V (G − x) such that x ′y′ ∈ E(G − x) and
y′x1 ∈ E(G− x). We can also observe that if there exists a vertex v ∈ Y\{y1, . . . , ya}
such that G − v is connected, then χA

ig (G − v) = χAB
ig (G − v) ≥ 3. Namely, if

Alice colors a vertex w ∈ V (G−v)\{x, x ′, x1, . . . , xa, y1, . . . ya}, w ∈ Y , in her first
move, then there exists a vertex x ′′ ∈ X such that dG−v(w, x ′′) ≥ 3 for otherwise
w would be a dominating vertex in G, which contradicts the assumption that the
vertices of Y cannot be dominating vertices in G; if Alice colors a vertex w ∈ V (G −
v)\{x, x ′, x1, . . . , xa, y1, . . . ya}, w ∈ X , in her first move, then dG−v(w, x) ≥ 3; if
Alice colors x or x ′ in her first move, then dG−v(x, x ′) = 3; if Alice colors xi or yi ,
i ∈ {1, . . . , a}, in her first move, then dG−v(xi , yi ) = 3. Considering all possibilities,
and using Lemma 24, at least three different colors are needed to finish the game
on G − v, which is a contradiction. From now on we may assume that G − v is
disconnected for every v ∈ Y\{y1, . . . , ya}. We split the proof with respect to the
positive integer a ≥ 1.

Suppose first that a = 1. Observe that there exists a vertex u ∈ X such that
dG(y′, u) = 3 (otherwise y′ would be a dominating vertex, which is a contradiction
since there are no dominating vertices in Y ).

First consider the case when y1u ∈ E(G). If there exists a vertex y′′ ∈ Y\{y1, y′},
then we assumed that G − y′′ is disconnected. This means that y′′ has a pendant
neighbor x ′′ ∈ X . Namely, if there existed a vertex v ∈ Y , v �= y′′, such that
x ′′v ∈ E(G), then G − y′′ would be connected because x ′ is adjacent to every
vertex of Y . Since x ′′ is a pendant vertex in G, G − x ′′ is connected. Similarly,
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if there is a vertex of Y\{y1, y′} that is adjacent to x1, then y′ must also have a
pendant neighbor in X , since we assumed that G − y′ is disconnected. Suppose
that Alice and Bob play an A- or AB-independence coloring game on the graph
G − x ′′. If Alice colors a vertex w ∈ V (G − x ′′)\{x, x1, y′, x ′, y1, u}, w ∈ Y , in
her first move, then either dG−x ′′(w, x1) = 3 (if w and x1 are not adjacent) or w

has distance 3 to a pendant neighbor of y′ (such a neighbor exists if w and x1 are
adjacent); if Alice colors a vertex w ∈ V (G − x ′′)\{x, x1, y′, x ′, y1, u}, w ∈ X , in
her first move, then dG−x ′′(w, x) ≥ 3; if Alice colors x or x ′ in her first move, then
dG−x ′′(x, x ′) = 3; if Alice colors x1 or y1 in her first move, then dG−x ′′(x1, y1) = 3;
if Alice colors y′ or u in her first move, then dG−x ′′(y′, u) = 3. Considering all
possibilities, and using Lemma 24, at least three different colors are needed to fin-
ish the game on G − x ′′, which is a contradiction. This means that we can consider
only the case when Y = {y1, y′}. Hence, if V (G)\{u, x, x1, y1, y′, x ′} �= ∅, then
there exists a vertex v ∈ V (G)\{u, x, x1, y1, y′, x ′} that also belongs to X , and since
Y = {y1, y′}, G − v must be connected. Suppose that Alice and Bob play an A-
or AB-independence coloring game on the graph G − v. If Alice colors a vertex
w ∈ V (G − v)\{x, x1, y′, x ′, y1, u}, w ∈ X , in her first move, then dG−v(w, x) ≥ 3;
if Alice colors x or x ′ in her first move, then dG−v(x, x ′) = 3; if Alice colors x1 or
y1 in her first move, then dG−v(x1, y1) = 3; if Alice colors y′ or u in her first move,
then dG−v(y′, u) = 3. Considering all possibilities, and using Lemma 24, at least
three different colors are needed to finish the game on G−v, which is a contradiction.
Therefore, V (G) = {x, x1, y1, y′, x ′, u}, and obeying all the given adjacencies, we get
G = P6, which is one of the 3-χA

ig -lower-game-vertex-critical (3-χAB
ig -lower-game-

vertex-critical) graphs.
Next, consider the case when y1u /∈ E(G). Then, there exists a vertex y′′ ∈ Y such

that y′′u ∈ E(G). If there also exists a vertex y′′′ ∈ Y\{y1, y′, y′′}, then we assumed
that G− y′′′ is disconnected. Analogs to the previous case, y′′′ has a pendant neighbor
x ′′ ∈ X . Similarly, if there is a vertex of Y\{y1, y′, y′′} that is adjacent to x1, then y′
must also have a pendant neighbor in X , since we assumed thatG− y′ is disconnected.
Suppose that Alice and Bob play an A- or AB-independence coloring game on the
graph G − x ′′. If Alice colors a vertex w ∈ V (G − x ′′)\{x, x1, y′, x ′, y1, u}, w ∈ Y ,
in her first move, then either dG−x ′′(w, x1) = 3 (if w and x1 are not adjacent) or w

has distance 3 to a pendant neighbor of y′ (such a neighbor exists if w and x1 are
adjacent); if Alice colors a vertex w ∈ V (G − x ′′)\{x, x1, y′, x ′, y1, u}, w ∈ X , in
her first move, then dG−x ′′(w, x) ≥ 3; if Alice colors x or x ′ in her first move, then
dG−x ′′(x, x ′) = 3; if Alice colors x1 or y1 in her first move, then dG−x ′′(x1, y1) = 3;
if Alice colors y′ or u in her first move, then dG−x ′′(y′, u) = 3. Considering all pos-
sibilities, and using Lemma 24, at least three different colors are needed to finish the
game on G − x ′′, which is a contradiction. This means that we can consider only the
case when Y = {y1, y′, y′′}. If x1y′′ /∈ E(G) and V (G)\{u, x, x1, y1, y′, x ′, y′′} �= ∅,
then there exists a vertex v ∈ V (G)\{u, x, x1, y1, y′, x ′, y′′} that also belongs to X
and since Y = {y1, y′, y′′}, G − v must be connected. Suppose that Alice and Bob
play an A- or AB-independence coloring game on the graph G − v. If Alice colors
a vertex w ∈ V (G − v)\{x, x1, y′, x ′, y1, u, y′′}, w ∈ X , in her first move, then
dG−v(w, x) ≥ 3; if Alice colors x or x ′ in her first move, then dG−v(x, x ′) = 3;
if Alice colors x1 or y1 in her first move, then dG−v(x1, y1) = 3; if Alice colors y′
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or u in her first move, then dG−v(y′, u) = 3; if Alice colors y′′ in her first move,
then dG−v(y′′, x1) = 3. Considering all possibilities, and using Lemma 24, at least
three different colors are needed to finish the game on G − v, which is a contra-
diction. If x1y′′ /∈ E(G) and V (G) = {u, x, x1, y1, y′, x ′, y′′}, then G − y1 is the
path P6 and since χA

ig (P6) = χAB
ig (P6) = 3, G cannot be a 3-χA

ig -lower-game-vertex-

critical (3-χAB
ig -lower-game-vertex-critical) graph. What remains to consider is the

case x1y′′ ∈ E(G). Since we assumed that G − y′ must be disconnected, then y′
must have a pendant neighbor x ′′ ∈ X . If V (G) �= {u, x, x1, y1, y′, x ′, y′′, x ′′}, then
there exists a vertex v ∈ V (G)\{u, x, x1, y1, y′, x ′, y′′, x ′′} that also belongs to X ,
which means that G − v is again connected. Suppose that Alice and Bob play an
A- or AB-independence coloring game on the graph G − v. If Alice colors a ver-
tex w ∈ V (G − v)\{x, x1, y′, x ′, y1, u, y′′, x ′′}, w ∈ X , in her first move, then
dG−v(w, x) ≥ 3; if Alice colors x or x ′ in her first move, then dG−v(x, x ′) = 3;
if Alice colors x1 or y1 in her first move, then dG−v(x1, y1) = 3; if Alice colors y′
or u in her first move, then dG−v(y′, u) = 3; if Alice colors y′′ or x ′′ in her first
move, then dG−v(y′′, x ′′) = 3. Considering all possibilities, and using Lemma 24,
at least three different colors are needed to finish the game on G − v, which is a
contradiction. Hence, V (G) = {u, x, x1, y1, y′, x ′, y′′, x ′′}, and obeying all the given
adjacencies, we get G = C+

4 , which is one of the 3-χA
ig -lower-game-vertex-critical

(3-χAB
ig -lower-game-vertex-critical) graphs.

Finally, let a ≥ 2. The graph G − xi is connected for every i ∈ {1, . . . , a}, because
every neighbor of xi , except x , is adjacent to x ′, and since a ≥ 2, vertices x and x ′ are
connected by at least two paths of order 3, one going through xi , i ∈ {1, . . . , a}, and
the other through some x j , j �= i . If there exists a vertex v ∈ Y\{y1, . . . , ya}, then
we assumed that G − v is disconnected. This means that v has a pendant neighbor
u ∈ X . Since the vertex v ∈ Y cannot be a dominating vertex in G, there exists
a vertex x ′′ ∈ X such that vx ′′ /∈ E(G). Let Alice an Bob play an A- or AB-
independence coloring game on the graph G − x1. Without loss of generality we
may assume that x ′′ �= x1. If x1 = x ′′, then we let Alice an Bob play an A- or
AB-independence coloring game on the graph G − x2, and the proof goes along the
same lines. If Alice colors a vertexw ∈ V (G− x1)\{v, x, x ′, x2, . . . , xa, y1, . . . , ya},
w ∈ Y , in her first move, then dG−x1(w, u) = 3, since w is not adjacent to u; if
Alice colors a vertex w ∈ V (G − x1)\{v, x, x ′, x2, . . . , xa, y1, . . . , ya}, w ∈ X , in
her first move, then dG−x1(w, x) ≥ 3; if Alice colors x or x ′ in her first move, then
dG−x1(x, x

′) = 3; if Alice colors xi or yi , i ∈ {2, . . . , a}, in her first move, then
dG−x1(xi , yi ) = 3; if Alice colors y1 in her first move, then dG−x1(y1, u) = 3, since
y1 is not adjacent to u; if Alice colors v in her first move, then dG−x1(v, x ′′) = 3.
Considering all possibilities, and using Lemma 24, at least three different colors are
needed to finish the game on G − x1, which is a contradiction. We have thus seen
that Y = {y1, . . . , ya}. If V (G)\{x, x ′, x1, . . . , xa, y1, . . . , ya} �= ∅, then there exists
a vertex u ∈ V (G)\{x, x ′, x1, . . . , xa, y1, . . . , ya} that also belongs to X and since
Y = {y1, . . . , ya}, G − u must be connected. Suppose that Alice and Bob play an
A- or AB-independence coloring game on the graph G − u. If Alice colors a ver-
tex w ∈ V (G − u)\{x, x ′, x1, . . . , xa, y1, . . . , ya}, w ∈ X , in her first move, then
dG−u(w, x) ≥ 3; if Alice colors x or x ′ in her first move, then dG−u(x, x ′) = 3;
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if Alice colors xi or yi , i ∈ {1, . . . , a}, in her first move, then dG−u(xi , yi ) = 3.
Considering all possibilities, and using Lemma 24, at least three different colors
are needed to finish the game on G − u, which is a contradiction. What remains
to consider is the case V (G) = {x, x ′, x1, . . . , xa, y1, . . . , ya}. If there exist indices
j, h ∈ {1, . . . , a}, j �= h, such that xh y j /∈ E(G), then we let Alice and Bob play an
A- or AB-independence coloring game on the graph G − x j . If Alice colors x or x ′
in her first move, then dG−x j (x, x

′) = 3; if Alice colors xi or yi , i ∈ {1, . . . , a}\{ j},
in her first move, then dG−x j (xi , yi ) = 3; if Alice colors y j in her first move, then
dG−x j (xh, y j ) = 3. Considering all possibilities, and using Lemma 24, at least three
different colors are needed to finish the game on G − x j , which is a contradiction.
Finally, we have that xh y j ∈ E(G) for every two indices j, h ∈ {1, . . . , a}, j �= h,
and consequently all yi ’s are distinct (we have a of them). Obeying all adjacencies in
G and V (G) = {x, x ′, x1, . . . , xa, y1, . . . , ya}, we get G = Ka+1,a+1 − M, where
M is a perfect matching in G. We know that χA

ig (G) = χAB
ig (G) = a + 1 [8], and

since we have χA
ig (G) = χAB

ig (G) = 3, it follows that a = 2. Thus, G = K3,3 − M,

which is isomorphic toC6 and is therefore one of the 3-χA
ig -lower-game-vertex-critical

(3-χAB
ig -lower-game-vertex-critical) graphs. �	

6 Concluding Remarks

Despite many results presented in this paper, there is still a lot to research regarding
game chromatic vertex-criticality. For instance, we did not give an answer to the
question of existence of a χi -game-vertex-critical graph G such that the difference
χi (G) − χi (G − x), x ∈ V (G), is arbitrarily large. However, we did prove that this
difference is 1 for k-χi -lower-game-vertex-critical graphs when k ∈ {2, 3, 4}, which
might lead us to think that this is true for all k-χi -lower-game-vertex-critical graphs.
Since we were not able to find any χi -mixed-game-vertex-critical graphs, some weird
behavior might occur with them (if they even exist). To be more precise, the only
ϕ-mixed-vertex-critical graphs we were able to find were for ϕ = χAB

ig . Our first
concluding thoughts lead us to propose the first two problems.

Problem 1 Does there exist aχi -game-vertex-critical graph G such that the difference
χi (G) − χi (G − x), x ∈ V (G), is arbitrarily large?

Problem 2 Find a ϕ-mixed-game-vertex-critical graph for ϕ ∈ {χg, χi , χ
A
ig }.

As for the χi -upper-game-vertex-critical graphs, we constructed a graph in which
the removal of a specific vertex causes the indicated chromatic number to increase, but
unfortunately this graph is not vertex-critical. The constructed graph G is shown in
Fig. 1. It is easy to see that χi (G) = 3. Namely, if Ann indicates vertices in the order
f , e, g, h, x, d, c, b, a, Bob always has only one available color to properly color
every selected vertex, and hence, she wins the indicated coloring game on G using
three colors. Moreover, the graph G − x is well known under the name “the twisted
diamond” and in [17] it was proven that χi (G − x) = 4. For this reason, we suspect
that the χi -upper-game-vertex-critical graphs do exist.
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Fig. 1 Graph G with χi (G) = 3
and χi (G − x) = 4

We found all k-ϕ-vertex-critical graphs for k = 2, but solving this problem for k ≥ 3
becomes considerably more challenging. Nevertheless, we were able to give a char-
acterization of (connected) 3-ϕ-lower-vertex-critical graphs, ϕ ∈ {χg, χi , χ

A
ig , χ

AB
ig },

with the crown jewel being Theorem 26, which characterizes connected 3-(χA
ig ,χ

AB
ig )-

lower-vertex-critical graphs. However, this results still relies on the assumption
“lower.” The removal of the extra assumption leads us to our final problem.

Problem 3 Characterize (connected)3-ϕ-game-vertex-critical graphs forϕ ∈ {χg, χi ,

χA
ig , χ

AB
ig }.
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