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Abstract
Using Mujica’s linearization theorem, we extend to the holomorphic setting some
classical characterizations of compact (weakly compact, Rosenthal, Asplund) lin-
ear operators between Banach spaces such as the Schauder, Gantmacher and
Gantmacher–Nakamura theorems and the Davis–Figiel–Johnson–Pełczynski, Rosen-
thal and Asplund factorization theorems.

Keywords Vector-valued holomorphic mapping · Operator ideal · Linearization ·
Factorization theorems · Schauder’s theorem
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Introduction

S. Dineen [6, p. 417] pointed out that a remarkable result due to K. F. Ng [18] provides
a Banach space G∞(U ) whose dual is isometrically isomorphic to the Banach space
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H∞(U ) of all bounded holomorphic complex-valued functions on an open subset U
of an arbitrary complex Banach space E , endowed with the supremum norm.

J. Mujica presented in [16, Theorem 2.1] a linearization theorem for bounded
holomorphic mappings which is a refinement of Dineen’s idea. Specifically, he
proved that there exist a Banach space G∞(U ) and a bounded holomorphic map-
ping δU : U → G∞(U ) satisfying the following universal property: for each complex
Banach space F and each bounded holomorphic mapping f : U → F , there exists a
unique bounded linear operator T f : G∞(U ) → F such that T f ◦δU = f . R. Ryan [23]
had previously obtained a polynomial version of Mujica’s theorem by using a tensor
product approach. In [7], P. Galindo, D. García andM.Maestre established a lineariza-
tion theorem for holomorphic mappings of bounded type. Moreover, J. Mujica and
L. Nachbin also obtained in [17] a linearization theorem for holomorphic functions
between locally convex spaces.

Applying Ng’s theorem, Mujica defined the space G∞(U ) as the norm-closed lin-
ear subspace ofH∞(U )∗ formed by those functionals which are τc-continuous when
restricted to the closed unit ball ofH∞(U ), where τc denotes the compact-open topol-
ogy on H∞(U ). The correspondence f �→ T f is an isometric isomorphism between
the space H∞(U , F) of all bounded holomorphic mappings from U into F with the
supremum norm, and the space L(G∞(U ); F) of all continuous linear operators from
G∞(U ) into F with the operator norm. The mapping δU : U → G∞(U ) is defined
by δU (x) = δ(x), where δ(x) is the evaluation functional at x defined on H∞(U ).
The proof of Theorem 2.1 in [16] shows that the closed unit ball of G∞(U ) coincides
with the norm-closed absolutely convex hull of δU (U ). In particular, G∞(U ) is the
norm-closed linear hull of δU (U ) inH∞(U )∗.

In Section 3 of his paper [16], Mujica briefly dealt with holomorphic mappings
that have compact type range. To be more precise, he showed that a mapping
f ∈ H∞(U , F) has relatively compact range (respectively, relatively weakly compact
range, finite rank) if and only if its linearization T f ∈ L(G∞(U ); F) is a compact
(respectively, weakly compact, bounded finite-rank) operator. Our purpose in this
paper is to complete the study initiated by Mujica.

From a local point of view, the properties of compactness, weak compactness,
Rosenthal and Asplund for holomorphic mappings from U into F were addressed
by R. M. Aron and M. Schottenloher [2], R. Ryan [24], M. Lindström [13] and N.
Robertson [21], respectively. Let us recall that a mapping f : U → F is said to
be locally compact (respectively, locally weakly compact, locally Rosenthal, locally
Asplund) if every point x ∈ U has a neighborhood Vx ⊆ U such that f (Vx ) is
relatively compact (respectively, relatively weakly compact, Rosenthal, Asplund) in
F . Clearly, every mapping f : U → F having relatively compact range (respectively,
relatively weakly compact range, Rosenthal range, Asplund range) is locally compact
(respectively, locally weakly compact, locally Rosenthal, locally Asplund); however,
the converse is not true in general for mappings f ∈ H∞(U , F) (see Example 3.2 in
[16] for the first two types of mappings).

We have organized this note as follows. In Sect. 1, we recall Mujica’s linearization
theorem and some of its consequences that will be needed to establish our results.With
the aid of the notion of transpose mapping of a bounded holomorphic mapping, Sect. 2
is devoted to the analogues for bounded holomorphic mappings of the results due to
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Schauder, Gantmacher and Nakamura on the compactness and weak compactness of
the adjoint of a bounded linear operator between Banach spaces.We suggest the reader
to compare our results with Schauder and Gantmacher type theorems for holomorphic
mappings of bounded type established by M. González and J. M. Gutiérrez [8–10]
and R. Ryan [23, 24].

As a main result, we show that some factorization theorems for bounded linear
operators between Banach spaces can be extended to the holomorphic setting. This
is the case of the Davis–Figiel–Johnson–Pełczynski factorization theorem [5] which
states that every weakly compact operator factors through a reflexive Banach space,
the Rosenthal factorization theorem (see [1]) which asserts that every Rosenthal oper-
ator factors through a Banach space not containing �1, and the Asplund factorization
theorem which assures that every Asplund operator factors through an Asplund space
(see [4, Theorem 5.3.5]).

We refer to the book of R. E. Megginson [14] for a complete study on weak topolo-
gies and linear operators on Banach spaces; to the monograph of J. Mujica [15] for
the theory of holomorphic mappings on Banach spaces; and to the book of A. Pietsch
[20] for the theory of operator ideals.

Notation. Through the paper, given a complex Banach space E , we denote by

BE ,
◦
B E , SE and E∗ the closed unit ball, the open unit ball, the unit sphere and the

dual space of E , respectively. For a set A ⊆ E , lin(A), lin(A), co(A), co(A), aco(A)

and aco(A) stand for the linear hull, the norm-closed linear hull, the convex hull,
the norm-closed convex hull, the absolutely convex hull, the norm-closed absolutely
convex hull of A in E , respectively. If E and F are locally convex Hausdorff spaces,
L(E; F) denotes the vector space of all continuous linear operators from E into F .
Unless stated otherwise, if E and F are Banach spaces, we will understand that they
are endowed with the norm topology. Given T ∈ L(E; F), T ∗ : F∗ → E∗ denotes
the adjoint operator of T .

Wewill sometimes use the following notation: for each x ∈ E and x∗ ∈ E∗, 〈x∗, x〉
is defined to be x∗(x).

1 Preliminaries

Let U be an open subset of a complex Banach space E . We know that H∞(U ) is a
Banach space under the supremum norm and it is actually a dual Banach space. In fact,
there are different ways to construct a predual of H∞(U ). The most straightforward
one is as the norm-closed linear subspace of H∞(U )∗ generated by the functionals
δ(x) ∈ H∞(U )∗ with x ∈ U , defined by

〈δ(x), f 〉 = f (x)
(

f ∈ H∞(U )
)
.

Theorem 2.1 in [16] justifies the following notation.

Definition 1.1 Let U be an open subset of a complex Banach space E . The space
G∞(U ) is the norm-closed linear subspace of H∞(U )∗ given by lin {δ(x) : x ∈ U }.
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For consistency with the preceding notation, we may consider the mapping
δU : U → G∞(U ) defined by δU (x) = δ(x) for x ∈ U .

In [16], Mujica established the following properties of G∞(U ) and δU .

Theorem 1.2 [16, Theorem 2.1] Let E be a complex Banach space and let U be an
open set in E.

(1) δU : U → G∞(U ) is a holomorphic mapping with ‖δ(x)‖ = 1 for all x ∈ U.
(2) For every complex Banach space F and every mapping f ∈ H∞(U , F), there

exists a unique operator T f ∈ L(G∞(U ); F) such that T f ◦ δU = f , that is, the
diagram

U

G∞(U ) F

f
δU

T f

commutes. Furthermore,
∥
∥T f

∥
∥ = ‖ f ‖∞.

(3) For every complex Banach space F, the mapping JU ,F : f �→ T f is an isometric
isomorphism fromH∞(U , F) ontoL(G∞(U ); F). Its inverse J−1

U ,F is the mapping
T �→ T ◦ δU from L(G∞(U ); F) onto H∞(U , F).

(4) H∞(U ) is isometrically isomorphic to G∞(U )∗, via the mapping JU :=
JU ,C : H∞(U ) → G∞(U )∗ given by

JU ( f ) = T f ( f ∈ H∞(U )).

As a consequence, we have

〈JU ( f ), δU (x)〉 = f (x) ( f ∈ H∞(U ), x ∈ U ).

(5) The closed unit ball of G∞(U ) coincides with the norm-closed absolutely convex
hull of δU (U ).

FromTheorem 1.2 (4), we immediately deduce that on bounded subsets ofH∞(U ),
the weak* topology agrees with the topology of pointwise convergence.

Corollary 1.3 Let U be an open subset of a complex Banach space E. Let ( fi ) be a
net in H∞(U ) and f ∈ H∞(U ).

(1) If ( fi ) → f weak* in H∞(U ), then ( fi ) → f pointwise on U.
(2) If ( fi ) is bounded inH∞(U ) and ( fi ) → f pointwise on U, then ( fi ) → f weak*

in H∞(U ).

Using Corollary 1.3, we obtain the following result.
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Corollary 1.4 Let E and F be complex Banach spaces, let U and V be open subsets
of E and F, respectively, and let f : U → V be a holomorphic mapping. Then,
there exists a unique operator f̂ ∈ L(G∞(U );G∞(V )) such that f̂ ◦ δU = δV ◦ f .
Furthermore, || f̂ || = 1.

Proof Let C f : H∞(V ) → H∞(U ) be the composition operator defined by

C f (g) = g ◦ f (g ∈ H∞(V )).

Clearly, C f ∈ L(H∞(V );H∞(U )) with ||C f || = 1. We claim that JU ◦ C f ◦ J−1
V is

weak*-to-weak* continuous from G∞(V )∗ into G∞(U )∗. Let (φi ) be a net in G∞(V )∗
and φ ∈ G∞(V )∗. Assume that (φi ) → φ weak* in G∞(V )∗. By [14, Corollary
2.6.10], (φi ) is norm-bounded in G∞(V )∗. Clearly, (J−1

V (φi )) → J−1
V (φ) weak*

in H∞(V ). Hence, (J−1
V (φi )) → J−1

V (φ) pointwise on V by Corollary 1.3 (1). In
particular, (J−1

V (φi ) ◦ f ) → J−1
V (φ) ◦ f pointwise on U . As the net (J−1

V (φi ) ◦ f )

is norm-bounded since
∥∥∥J−1

V (φi ) ◦ f
∥∥∥∞ ≤

∥∥∥J−1
V (φi )

∥∥∥∞ = ‖φi‖ for all i , Corollary

1.3 (2) guarantees that (J−1
V (φi ) ◦ f ) → J−1

V (φ) ◦ f weak* in H∞(U ), that is,
(C f (J−1

V (φi ))) → C f (J−1
V (φ)) weak* in H∞(U ). Finally, (JU (C f (J−1

V (φi )))) →
JU (C f (J−1

V (φ))) weak* in G∞(U )∗, and this proves our claim.
Now, by [14, Corollaries 3.1.11 and 3.1.5], there is a unique operator f̂ ∈

L(G∞(U );G∞(V )) such that ( f̂ )∗ = JU ◦ C f ◦ J−1
V . Clearly, || f̂ || = ||( f̂ )∗|| =

||C f || = 1. Given g ∈ H∞(V ) and x ∈ U , we have

〈
( f̂ )∗(JV (g)), δU (x)

〉 = 〈
JV (g) ◦ f̂ , δU (x)

〉 = 〈
JV (g), f̂ (δU (x))

〉

and

〈
(JU ◦ C f ◦ J−1

V )(JV (g)), δU (x)
〉
= 〈

JU (C f (g)), δU (x)
〉 = 〈JU (g ◦ f ), δU (x)〉

= g( f (x)) = 〈JV (g), δV ( f (x))〉 .

From above, we infer that

〈
JV (g), f̂ (δU (x))

〉 = 〈JV (g), δV ( f (x))〉 (g ∈ H∞(V ), x ∈ U ),

the surjectivity of JV : H∞(V ) → G∞(V )∗ yields

〈
φ, f̂ (δU (x))

〉 = 〈φ, δV ( f (x))〉 (φ ∈ G∞(V )∗, x ∈ U ),

and this implies that f̂ ◦ δU = δV ◦ f . �

We finish this section with some results related to the transpose of a bounded
holomorphic mapping.
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Let U be an open subset of a complex Banach space E , let F be a complex Banach
space and let f ∈ H∞(U , F). Given ϕ ∈ F∗, it is clear that ϕ ◦ f : U → C is
holomorphic with

|(ϕ ◦ f )(x)| ≤ ‖ϕ‖ ‖ f (x)‖ ≤ ‖ϕ‖ ‖ f ‖∞

for all x ∈ U . Hence, ϕ ◦ f ∈ H∞(U ) with ‖ϕ ◦ f ‖∞ ≤ ‖ϕ‖ ‖ f ‖∞. This justifies
the following.

Definition 1.5 Let U be an open subset of a complex Banach space E , let F be a
complex Banach space and f ∈ H∞(U , F). We will call the transpose mapping
f t : F∗ → H∞(U ) defined by f t (ϕ) = ϕ ◦ f the transpose of f.

Clearly, f t is linear and continuous with || f t || ≤ ‖ f ‖∞. In fact, || f t || = ‖ f ‖∞.
Indeed, for 0 < ε < ‖ f ‖∞, take x ∈ U such that ‖ f (x)‖ > ‖ f ‖∞ − ε. By Hahn–
Banach theorem, there exists φ ∈ F∗ with ‖φ‖ = 1 such that φ( f (x)) = ‖ f (x)‖. We
have

∥
∥ f t

∥
∥ ≥ sup

0 �=ϕ∈F∗

∥∥ f t (ϕ)
∥∥∞

‖ϕ‖ ≥ ‖φ ◦ f ‖∞
‖φ‖ = ‖φ ◦ f ‖∞

≥ |φ( f (x))| = ‖ f (x)‖ > ‖ f ‖∞ − ε.

Letting ε → 0, one obtains || f t || ≥ ‖ f ‖∞, as desired. Moreover, note that

〈
(JU ◦ f t )(ϕ), δ(x)

〉 = 〈JU (ϕ ◦ f ), δ(x)〉
= ϕ( f (x)) = 〈

ϕ, T f (δ(x))
〉

= 〈
(T f )

∗(ϕ), δ(x)
〉

for all ϕ ∈ F∗ and x ∈ U , and since G∞(U ) = lin(δU (U )), we deduce that JU ◦ f t =
(T f )

∗, that is, f t = J−1
U ◦ (T f )

∗. We have proved the following.

Proposition 1.6 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). Then f t ∈ L(F∗;H∞(U )) with
|| f t || = ‖ f ‖∞. Furthermore, f t = J−1

U ◦ (T f )
∗.

We next see that the mapping f �→ f t identifies H∞(U , F) with the subspace of
L(F∗;H∞(U )) formed by all weak*-to-weak* continuous linear operators from F∗
intoH∞(U ) (see [14, Corollary 3.1.12]).

Proposition 1.7 Let U be an open subset of a complex Banach space E and let F be
a complex Banach space. The mapping f �→ f t is an isometric isomorphism from
H∞(U , F) onto L((F∗, w∗); (H∞(U ), w∗)).

Proof Let f ∈ H∞(U , F). Clearly, f t = J−1
U ◦(T f )

∗ ∈ L((F∗, w∗); (H∞(U ), w∗))
by Theorem 1.2 (2) and [14, Theorem 3.1.11]. Moreover, we have || f t || = ‖ f ‖∞ by
Proposition 1.6. It remains to show the surjectivity of the mapping in the statement.
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Take T ∈ L((F∗, w∗); (H∞(U ), w∗)). Then, JU ◦ T ∈ L((F∗, w∗); (G∞(U )∗, w∗))
and, by [14, Theorem 3.1.11], there is a S ∈ L(G∞(U ); F) such that S∗ = JU ◦ T .
By Theorem 1.2 (3), there exists f ∈ H∞(U , F) such that T f = S. Hence, T =
J−1

U ◦ (T f )
∗ = f t , as desired. �

2 Linearization of Holomorphic Mappings with Compact Type Range

Let us recall that a bounded linear operator between Banach spaces T : E → F is said
to be compact (separable, weakly compact, Rosenthal, Asplund) if T (BE ) is relatively
compact (respectively, separable, relatively weakly compact, Rosenthal, Asplund) in
F .

We denote by F(E, F), F(E, F), K(E, F), S(E, F), W(E, F), R(E, F) and
A(E, F) the linear spaces of bounded finite-rank linear operators, approximable linear
operators (i.e., operators which are the norm limits of bounded finite-rank operators),
compact linear operators, bounded separable linear operators, weakly compact linear
operators, Rosenthal linear operators and Asplund linear operators from E into F ,
respectively. The following inclusions are known:

F(E, F) ⊆ F(E, F) ⊆ K(E, F) ⊆ W(E, F) ⊆ R(E, F) ∩ A(E, F),

K(E, F) ⊆ S(E, F).

Our aim is to study the following holomorphic variants of these concepts. IfU is an
open subset of a complex Banach space E and F is a complex Banach space, we will
consider bounded holomorphic mappings f : U → F that have a range f (U ) ⊆ F
satisfying an algebraic or topological property as, for instance, finite-dimensional
range, relatively compact range, separable range, relatively weakly compact range,
Rosenthal range or Asplund range.

Note that if T ∈ L(E, F), then T is a compact (respectively, separable, weakly
compact, Rosenthal, Asplund) linear operator if and only if the holomorphic map-
ping T | ◦

B E
has relatively compact (respectively, separable, relatively weakly compact,

Rosenthal, Asplund) range.
The study of the connections between these compactness properties of a mapping

f ∈ H∞(U , F) and its corresponding associated operator T f ∈ L(G∞(U ); F) was
initiated by Mujica in Propositions 3.1 and 3.4 of [16]. Apparently, these results are
the only known on this question and they have been included here with their proofs
for the convenience of the reader. We have divided our study for the different types of
holomorphic mappings considered.
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20 Page 8 of 16 A. Jiménez-Vargas et al.

2.1 Bounded Finite-Rank Holomorphic Mappings

Let us recall (see [16, p. 72]) that a mapping f : U → F has finite rank if lin( f (U ))

is a finite dimensional subspace of F in which case this dimension is called the rank
of f and denoted by rank( f ). Let H∞

F (U , F) denote the linear space of all bounded
finite-rank holomorphic mappings from U to F .

Theorem 2.1 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). The following are equivalent:

(1) f : U → F has finite rank.
(2) T f : G∞(U ) → F has finite rank.
(3) f t : F∗ → H∞(U ) has finite rank.

In that case, rank( f ) = rank(T f ) = rank((T f )
∗) = rank( f t ).

Proof Recall that f (U ) = T f (δU (U )) by Theorem 1.2 (2).
(1) ⇔ (2) ( [16, Proposition 3.1 (a)]): If f has finite rank, then lin( f (U )) is finite

dimensional and therefore closed in F . We have

T f (G∞(U )) = T f (lin(δU (U ))) ⊆ T f (lin(δU (U )))

= lin(T f (δU (U ))) = lin( f (U )) = lin( f (U ))

and hence T f has finite rank. Conversely, if T f has finite rank, then f has finite rank
since

lin( f (U )) = lin(T f (δU (U ))) = T f (lin(δU (U )))

⊆ T f (lin(δU (U ))) = T f (G∞(U )).

Furthermore, in this case, we have rank( f ) = rank(T f ).
(2) ⇔ (3): Since the space F(E, F) of bounded finite-rank linear operators is a

completely symmetric operator ideal (see [20, 4.4.7]), we have

T f ∈ F(G∞(U ), F) ⇔ (T f )
∗ ∈ F(F∗,G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ F(F∗,H∞(U )).

In this case, we now have rank(T f ) = rank((T f )
∗) = rank( f t ). �

2.2 Holomorphic Mappings with Relatively Compact Range

We denote by H∞
K (U , F) the linear space of all holomorphic mappings from U to

F that have relatively compact range. The equivalence (1) ⇔ (3) of the next result
is a version for holomorphic mappings with relatively compact range of the classical
Schauder’s theoremon the relationship of the compactness of a bounded linear operator
between Banach spaces and its adjoint.
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Theorem 2.2 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). The following are equivalent:

(1) f : U → F has relatively compact range.
(2) T f : G∞(U ) → F is compact.
(3) f t : F∗ → H∞(U ) is compact.
(4) f t : F∗ → H∞(U ) is bounded-weak*-to-norm continuous.
(5) f t : F∗ → H∞(U ) is compact and bounded-weak*-to-weak continuous.
(6) f t : F∗ → H∞(U ) is compact and weak*-to-weak continuous.

Proof (1) ⇔ (2) ( [16, Proposition 3.1 (b)]): Since δU (U ) ⊆ BG∞(U ), if T f ∈
K(G∞(U ), F), then T f (δU (U )) must be relatively compact in F , and therefore
f ∈ H∞

K (U , F) since f (U ) = T f (δU (U )) by Theorem 1.2 (2). Conversely, since
BG∞(U ) = aco(δU (U )) by Theorem 1.2 (5), one has

T f (BG∞(U )) = T f (aco(δU (U ))) ⊆ aco(T f (δU (U ))) ⊆ aco(T f (δU (U ))).

So, if f ∈ H∞
K (U , F), then T f (δU (U )) is relatively compact in F , hence

aco(T f (δU (U ))) is compact in F by Mazur’s compactness theorem ( [14, Theorem
2.8.15]) and the fact that aco(A) = co(DA) for any subset A of a normed space E ,
whereD denotes the closed unit disc ofC. Therefore T f (BG∞(U )) is relatively compact
in F , which means that T f ∈ K(G∞(U ), F).

(2) ⇔ (3): Applying Schauder’s theorem [14, Theorem 3.4.15] and [14, Proposi-
tion 3.4.10], we have

T f ∈ K(G∞(U ), F) ⇔ (T f )
∗ ∈ K(F∗,G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ K(F∗,H∞(U )),

(2) ⇔ (4): Similarly, one obtains

T f ∈ K(G∞(U ), F) ⇔ (T f )
∗ ∈ L((F∗, bw∗);G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ L((F∗, bw∗);H∞(U )),

by [14, Theorem 3.4.16], where bw∗ denotes the bounded weak* topology.
(4) ⇔ (5) ⇔ (6) follows directly from [12, Proposition 3.1]. �
Next, we identify H∞

K (U , F) with the subspace of L((F∗, w∗); (G∞(U ), w∗))
consisting of all bounded-weak*-to-norm continuous linear operators from F∗ into
H∞(U ).

Proposition 2.3 Let U be an open subset of a complex Banach space E and let F be
a complex Banach space. The mapping f �→ f t is an isometric isomorphism from
H∞

K (U , F) onto L((F∗, bw∗);H∞(U )).

Proof Let f ∈ H∞
K (U , F). Then, f t ∈ L((F∗, bw∗);H∞(U )) by Theorem

2.2 and || f t || = ‖ f ‖∞ by Proposition 1.6. To prove the surjectivity, take
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20 Page 10 of 16 A. Jiménez-Vargas et al.

T ∈ L((F∗, bw∗);H∞(U )). Then, JU ◦ T ∈ L((F∗, bw∗);G∞(U )∗). If QG∞(U )

denotes the natural injection from G∞(U ) into G∞(U )∗∗, then QG∞(U )(γ ) ◦
JU ◦ T ∈ L((F∗, bw∗);C) for all γ ∈ G∞(U ) and, by [14, Theorem 2.7.8],
QG∞(U )(γ ) ◦ JU ◦ T ∈ L((F∗, w∗);C) for all γ ∈ G∞(U ), that is, JU ◦ T ∈
L((F∗, w∗); (G∞(U )∗, w∗)) by [14, Corollary 2.4.5]. Hence, JU ◦ T = S∗ for some
S ∈ L(G∞(U ); F) by [14, Theorem 3.1.11]. Note that S∗ ∈ L((F∗, bw∗);G∞(U )∗)
and this means that S ∈ K(G∞(U ), F) by [14, Theorem 3.4.16]. Now, S = T f

for some f ∈ H∞
K (U , F) by Theorem 1.2 (3) and Theorem 2.2. Finally, we have

T = J−1
U ◦ S∗ = J−1

U ◦ (T f )
∗ = f t . �

2.3 Bounded Holomorphic Mappings with Separable Range

We denote by H∞
S (U , F) the space of all mappings f ∈ H∞(U , F) such that f (U )

is separable. Clearly, H∞
K (U , F) is contained inH∞

S (U , F).

Theorem 2.4 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). Consider the following assertions:

(1) f : U → F has separable range.
(2) T f : G∞(U ) → F has separable range.
(3) (T f )

∗ : F∗ → G∞(U )∗ has separable range.
(4) f t : F∗ → H∞(U ) has separable range.

Then, (1) ⇔ (2) ⇐ (3) ⇔ (4).

Proof (1) ⇔ (2): We next use some inclusions obtained in the proof of Theorem 2.1.
If f (U ) is separable, then so is lin( f (U )), and since T f (G∞(U )) ⊆ lin( f (U )), we
deduce that T f (G∞(U )) is separable. Conversely, if T f (G∞(U )) is separable, then so
is f (U ) since f (U ) ⊆ lin( f (U )) ⊆ T f (G∞(U )).

(3) ⇔ (4):We apply that the spaceS(E, F) of all bounded linear operators between
Banach spaces having separable range is an operator ideal (see [20, 1.8.2]).

(3) ⇒ (2): We apply that if T ∈ L(E; F) and T ∗ ∈ L(F∗; E∗), then T ∈ S(E, F)

(see [20, 4.4.8]). �

2.4 Approximable Bounded Holomorphic Mappings

We now enlarge the set of bounded finite-rank holomorphic mappings as follows. We
say that a mapping f ∈ H∞(U , F) is approximable if it is the limit in the uniform
norm of a sequence of mappings of H∞

F (U , F). The set of such mappings will be
denoted by H∞

F (U , F).
Next, we see that every approximable mapping f ∈ H∞(U , F) has relatively

compact range.

Proposition 2.5 Let U be an open subset of a complex Banach space E and let F be
a complex Banach space. Then, H∞

F (U , F) ⊆ H∞
K (U , F).
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Proof Let f ∈ H∞
F (U , F). Hence, there is a sequence ( fn)n∈N in H∞

F (U , F) such
that ‖ fn − f ‖∞ → 0 as n → ∞. Since T fn ∈ F(G∞(U ), F) by Theorem 2.1,
F(G∞(U ), F) ⊆ K(G∞(U ), F) and

∥∥T fn − T f
∥∥ = ∥∥T fn− f

∥∥ = ‖ fn − f ‖∞ for
all n ∈ N, we deduce that T f ∈ K(G∞(U ), F) by [14, Corollary 3.4.9], and so
f ∈ H∞

K (U , F) by Theorem 2.2. �
An application of the principle of local reflexivity obtained by C. V. Hutton [11]

shows that an operator T ∈ L(E; F) can be approximated by bounded finite-rank
linear operators from E into F if and only if T ∗ can be approximated by bounded
finite-rank linear operators from F∗ into E∗. We now invoke Hutton’s theorem to
obtain the following.

Theorem 2.6 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and f ∈ H∞(U , F). The following are equivalent:

(1) f : U → F can be approximated by bounded finite-rank holomorphic mappings.
(2) T f : G∞(U ) → F can be approximated by bounded finite-rank linear operators.
(3) f t : F∗ → H∞(U ) can be approximated by bounded finite-rank linear operators.

Proof We have

f ∈ H∞
F (U , F) ⇔ T f ∈ F(G∞(U ), F)

⇔ (T f )
∗ ∈ F(F∗,G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ F(F∗,H∞(U ))

by Theorem 1.2 (3) and Theorem 2.1 for the first equivalence, Hutton’s theorem [11,
Theorem 2.1] for the second one, and the operator ideal property of F(E, F) for the
third one [20, 4.2.2]. �

2.5 Holomorphic Mappings with RelativelyWeakly Compact Range

The Davis–Figiel–Johnson–Pełczynski factorization theorem [5] asserts that any
weakly compact linear operator between Banach spaces factors through a reflexive
Banach space. We now extend this result to holomorphic mappings with relatively
weakly compact range and give also the analogs of Gantmacher and Gantmacher–
Nakamura theorems for such mappings.

We will denote by H∞
W (U , F) the linear space of all holomorphic mappings from

U to F that have relatively weakly compact range. Clearly, H∞
K (U , F) is contained

inH∞
W (U , F).

Theorem 2.7 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). The following are equivalent:

(1) f : U → F has relatively weakly compact range.
(2) T f : G∞(U ) → F is weakly compact.
(3) There exist a reflexive complex Banach space G, an operator T ∈ L(G; F) and a

mapping g ∈ H∞(U , G) such that f = T ◦ g.
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(4) f t : F∗ → H∞(U ) is weakly compact.
(5) f t : F∗ → H∞(U ) is weak*-to-weak continuous.

Proof (1) ⇔ (2) ( [16, Proposition 3.1 (b)]): It follows with a similar proof to that
of the equivalence (1) ⇔ (2) of Theorem 2.2 by taking into account that the norm
closure andweak closure of the convex hull of a subset of a normed space coincide [14,
Corollary 2.5.18] and that the norm-closed convex hull of a weakly compact subset
of a Banach space is itself weakly compact [14, Theorem 2.8.14].

(2) ⇒ (3): Applying the Davis–Figiel–Johnson–Pełczynski theorem, there exist a
reflexive complexBanach spaceG andoperators T ∈ L(G; F) and S ∈ L(G∞(U ); G)

such that T f = T ◦ S. Taking g := S ◦ δU ∈ H∞(U , G), we conclude that f =
T f ◦ δU = T ◦ S ◦ δU = T ◦ g.

(3) ⇒ (1): f (U ) = T (g(U )) is relatively weakly compact because T is weak-
to-weak continuous by [14, Theorem 2.5.11] and g(U ) is relatively weakly compact
in G since it is a bounded subset of the reflexive Banach space G (see [14, Theorem
2.8.2]).

(2) ⇔ (4): We have

T f ∈ W(G∞(U ), F) ⇔ (T f )
∗ ∈ W(F∗,G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ W(F∗,H∞(U )),

by Gantmacher’s theorem [14, Theorem 3.5.13] and [14, Proposition 3.5.11].
(2) ⇔ (5): We have

T f ∈ W(G∞(U ), F) ⇔ (T f )
∗ ∈ L((F∗, w∗); (G∞(U )∗, w))

⇔ f t = J−1
U ◦ (T f )

∗ ∈ L((F∗, w∗); (H∞(U ), w))

byGantmacher–Nakamura’s theorem [14, Theorem3.5.14] and [14, Corollary 2.5.12].
�

We next identify H∞
W (U , F) with the subspace of L((F∗, w∗); (G∞(U ), w∗))

formed by all weak*-to-weak continuous linear operators from F∗ intoH∞(U ).

Proposition 2.8 Let U be an open subset of a complex Banach space E and let F be
a complex Banach space. The mapping f �→ f t is an isometric isomorphism from
H∞

W (U , F) onto L((F∗, w∗); (H∞(U ), w)).

Proof In view of Theorem 2.7 and Proposition 1.6, we only need to show that the
mapping in the statement is surjective. Let T ∈ L((F∗, w∗); (H∞(U ), w)). Then,
JU ◦ T ∈ L((F∗, w∗); (G∞(U )∗, w)) by [14, Theorem 2.5.11], and this last set is
contained inL((F∗, w∗); (G∞(U )∗, w∗)) since the weak topology is stronger than the
weak* topology on the dual of a normed space. It follows that JU ◦ T = S∗ for some
S ∈ L(G∞(U ); F)by [14,Theorem3.1.11].Hence, S∗ ∈ L((F∗, w∗); (G∞(U )∗, w))

and, by Gantmacher–Nakamura’s theorem [14, Theorem 3.5.14], S ∈ W(G∞(U ), F).
Now, S = T f for some f ∈ H∞

W (U , F) by Theorem 1.2 (3) and Theorem 2.7. Finally,

T = J−1
U ◦ S∗ = J−1

U ◦ (T f )
∗ = f t , as desired. �
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2.6 Bounded Holomorphic Mappings with Rosenthal Range

Given Banach spaces E and F , a set A ⊆ E is called Rosenthal (or conditionally
weakly compact) if every sequence in A admits a weak Cauchy subsequence, and
a bounded linear operator T : E → F is called a Rosenthal operator if T (BE ) is a
Rosenthal subset of F . It is known (see, for example, [1]) that T : E → F is Rosenthal
if and only if it factors through a Banach space that does not contain an isomorphic
copy of �1.

We now prove a similar result for holomorphic mappings with Rosenthal range, and
the Rosenthal factorization theorem then allows us to factor these mappings through a
Banach space not containing an isomorphic copy of �1. We denote byH∞

R(U , F) the
linear space of all bounded holomorphic mappings from U to F that have Rosenthal
range. Clearly,H∞

W (U , F) is contained inH∞
R(U , F).

Theorem 2.9 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). The following are equivalent:

(1) f : U → F has Rosenthal range.
(2) T f : G∞(U ) → F is Rosenthal.
(3) There exist a complex Banach space G which does not contain an isomorphic

copy of �1, an operator T ∈ L(G; F) and a mapping g ∈ H∞(U , G) such that
f = T ◦ g.

Proof (1) ⇔ (2): It can be proved similarly as the same equivalence in Theorem 2.2
taking into account that the norm-closed absolutely convex hull of a Rosenthal subset
of a Banach space is itself Rosenthal (see [13, p. 357]).

(2) ⇒ (3): Rosenthal factorization theorem (see e.g., [1]) gives a complex Banach
space G not containing an isomorphic copy of �1 and operators T ∈ L(G; F) and
S ∈ L(G∞(U ); G) such that T f = T ◦ S. If we write g := S ◦ δU ∈ H∞(U , G), then
f = T f ◦ δU = T ◦ S ◦ δU = T ◦ g.

(3) ⇒ (1): Notice that f (U ) = T (g(U )) where T is weak-to-weak continuous
[14, Theorem 2.5.11] and g(U ) is Rosenthal in G by Rosenthal’s �1-theorem [22]. �

2.7 Holomorphic Mappings with Asplund Range

By [4, Definition 5.1.2], a bounded set D ⊆ E is said to be Asplund or to have the
Asplund property if every convex continuous function f : E → R is D-differentiable
on a residual subset of E . A Banach space E is called anAsplund space if every convex
continuous function f : E → R is Fréchet differentiable on a dense Gδ set in E . This
definition is due to E. Asplund [3] under the name strong differentiability space. We
refer to R. D. Bourgin [4, Theorem 5.2.11] and R. R. Phelps [19, Theorem 2.34] for
some equivalent formulations of the concept of Asplund set in a Banach space. In
particular, we remark that the Asplund spaces are the Banach spaces for which each
separable subspace has a separable dual. We will also use the paper [25] by C. Stegall
for the properties of Asplund sets and Asplund operators in Banach spaces (see also
Theorem 5.5.4 in [4]).
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Following [25, Definition 1.2], we say that a closed, bounded, convex subset K
of a Banach space E has the Radon–Nikodym property (RNP) if for any finite mea-
sure space (	,
,μ), every m : 
 → E that is μ-continuous, countably additive,
of finite variation, with average range {μ(E)−1m(E) : E ∈ 
, μ(E) > 0} ⊆ K , is
representable by a Bochner integrable function. A Banach space E has RNP if every
closed, bounded and convex subset of E has RNP. By [25, Theorem 2.8], a Banach
space E is an Asplund space if and only if E∗ has RNP.

Given two Banach spaces E and F , we say that an operator T ∈ L(E; F) is
Radon–Nikodým if T factors through a Banach space W with W having RNP. We
denote by RN (E, F) the linear space of all Radon–Nikodým operators from E into
F . According to [25, Theorem 2.11], we have that T ∈ A(E, F) if and only if
T ∗ ∈ RN (F∗, E∗).

We will denote by H∞
A (U , F) the linear space of all holomorphic mappings from

U to F such that f (U ) is an Asplund subset of F . Clearly, H∞
W (U , F) is contained

inH∞
A (U , F).

Theorem 2.10 Let U be an open subset of a complex Banach space E, let F be a
complex Banach space and let f ∈ H∞(U , F). The following are equivalent:

(1) f : U → F has Asplund range.
(2) T f : G∞(U ) → F is Asplund.
(3) There exist a complex Asplund space G, an operator T ∈ L(G; F) and a mapping

g ∈ H∞(U , G) such that f = T ◦ g.
(4) f t : F∗ → H∞(U ) is Radon–Nikodým.

Proof (1) ⇔ (2): Since f (U ) is an Asplund set and T f (BG∞(U )) ⊆ aco( f (U )), then
T f (BG∞(U )) is anAsplund set by Lemmas 1.3 and 1.4 in [25] and Theorem 5.5.4 in [4].
(2) ⇒ (3): If T f ∈ A(G∞(U ), F), then Theorem 2.11 in [25] assures that T f = T ◦ S
with S ∈ L(G∞(U ); G) and T ∈ L(G; F), where G is a complex Asplund space.
Taking g := S ◦ δU ∈ H∞(U , G), we have f = T f ◦ δU = T ◦ S ◦ δU = T ◦ g.
(3) ⇒ (1): f (U ) = T (g(U )) is an Asplund set by Theorem 2.8, Theorem 1.13 and
Lemma 1.7 in [25]. (2) ⇔ (4): By [25, Theorem 2.11], [20, 24.2] and Proposition
1.6, we have

T f ∈ A(G∞(U ), F) ⇔ (T f )
∗ ∈ RN (F∗,G∞(U )∗)

⇔ f t = J−1
U ◦ (T f )

∗ ∈ RN (F∗,H∞(U )). �

Combining Theorem 1.2 (3) with the results stated above, we see that the isometric
isomorphism f �→ T f from H∞(U , F) onto L(G∞(U ); F) induces the following
identifications.

Corollary 2.11 Let U be an open subset of a complex Banach space E and let F be
a complex Banach space. The mapping f �→ T f is an isometric isomorphism from
H∞

I (U , F) onto I(G∞(U ), F) in the cases I = F ,K,S,F ,W,R,A.
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