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Abstract
A linear forest is a graph consisting of vertex disjoint paths. Let l(G) denote the
maximum size of linear forests in G. Denote by δ(G) the minimum degree of G.

Recently, Duan, Wang and Yang gave an upper bound on the number of 3-cliques in
n-vertex graphs with l(G) = k − 1 and δ(G) = δ. Duan et al. gave an upper bound
hs(n, α′, δ) on the number of s-cliques in n-vertex graphs with prescribed matching
number α′ and minimum degree δ. But in some cases, these two upper bounds are
not obtained by the graph with minimum degree δ. For example, h2(15, 7, 3) = 77 is
attained by a unique graph of minimum degree 7, not 3. Motivated by these works,
we give sharp results about this problem. We determine the maximum number of s-
cliques in n-vertex graphs with l(G) = k−1 and δ(G) = δ.As a corollary of our main
results, we determine the maximum number of s-cliques in n-vertex graphs with given
matching number and minimum degree. Moreover, we also determine the maximum
number of copies of Kr1,r2 , the complete bipartite graph with class sizes r1 and r2, in
n-vertex graphs with l(G) = k − 1 and δ(G) = δ.

Keywords Generalized Turán number · Spanning linear forests · Minimum degree
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1 Introduction

We consider finite simple graphs and use standard terminology and notations. Denote
by V (G) and E(G) the vertex set and edge set of a graph G. The order of a graph is its
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number of vertices, and the size is its number of edges. For a vertex v in a graph, we
denote by d(v) and N (v) the degree of v and the neighborhood of v inG, respectively.
For S ⊆ V (G), we denote by NS(v) the set S ∩ N (v) and dS(v) = |NS(v)|. For two
vertices u and v, we use the symbol u ↔ v to mean that u and v are adjacent and
use u � v to mean that u and v are nonadjacent. For graphs, we will use equality
up to isomorphism, so G1 = G2 means that G1 and G2 are isomorphic. G denotes
the complement of a graph G. For two graphs G and H , G ∨ H denotes the join of
G and H , which is obtained from the disjoint union G + H by adding edges joining
every vertex of G to every vertex of H . Let Kr1,r2 denote the complete bipartite graph
with class sizes r1, r2 and let Ks denote the complete graph of order s. For a positive
integer k, let [k] := {1, 2, . . . , k}.

We denote by δ(G) the minimum degree of a graph G. The order of a longest path
in a graph G is called the detour order of G. The circumference c(G) of a graph G is
the length of a longest cycle in G. An s-clique is a clique of cardinality s. The order
of a maximum clique in a graph G is called the clique number of G. A linear forest is
a graph consisting of vertex disjoint paths and isolated vertices. The maximum linear
forest number l(G) is the maximum size of linear forests in G. A matching M is a
set of pairwise nonadjacent edges of G. The matching number α′(G) is the size of a
maximum matching in G.

Erdős and Gallai [5] determined the maximum size of graph with a prescribed
circumference or detour order. Generalizing this result, Luo [14] gave the maximum
number of s-cliques of graphwith a prescribed circumferenceor detour order.Recently,
Ning and Peng [17] generalized Luo’s work and gave the maximum number of s-
cliques of graphs with prescribed circumference c and minimum degree at least k. In
[21], Zykov determined the maximum number of s-cliques in graphs with given order
and clique number. For stability results about these topics, one can see [6, 7, 11, 13,
15, 17]. The problem of estimating the generalized Turán number has also received a
lot of attention; see [1, 8–10, 16].

Notation 1 Fix n − 1 ≥ k ≥ 1. Let F(n, k, δ) = Kδ ∨ (Kk−2δ + Kn−k+δ). Denote by
fs(n, k, δ) the number of s-cliques in F(n, k, δ); more precisely,

fs(n, k, δ) =
(
k − δ

s

)
+ (n − k + δ)

(
δ

s − 1

)
.

We write f (n, k, δ) for f2(n, k, δ) which equals the size of F(n, k, δ). Erdős and
Gallai [5] determined the maximum size of n-vertex graph with α′(G) ≤ α′. The
graphs K2α′+1 and Kα′ ∨ Kn−α′ show that the bound given below is tight.

Theorem 1 [5] Let G be a graph on n vertices. If α′(G) ≤ α′, then e(G) ≤
max{(2α′+1

2

)
, f (n, 2α′ + 1, α′)}.

Notation 2 Let N (H ,G) denote the number of copies of H in G; e.g., N (K2,G) =
e(G).

Generalizing Theorem 1, Wang [19] determined the maximum number of s-cliques
of a graph with given order and matching number at most α′.
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Theorem 2 [19] Let G be a graph on n vertices. If α′(G) ≤ α′, then N (Ks,G) ≤
max{(2α′+1

s

)
, fs(n, 2α′ + 1, α′)}.

Obviously, a graph G with α′(G) ≤ α′ has l(G) < 2α′ + 1. Generalizing Theorem
1, Ning and Wang [18] proved the following result.

Theorem 3 [18] Let n− 1 ≥ k ≥ 1 and t = 	(k − 1)/2
. If G is a graph on n vertices
and l(G) < k, then e(G) ≤ max{(k2), f (n, k, t)}.

For a graph with given order and maximum linear forest number at most k − 1,
Zhang et al. [22] proved the following result.

Theorem 4 [22] Let n− 1 ≥ k ≥ 1 and t = 	(k − 1)/2
. If G is a graph on n vertices
and l(G) < k, then N (Ks,G) ≤ max{(ks), fs(n, k, t)}.

It is natural to ask the same question by putting constraints on the graphs. Recently,
Duan et al. [3] determined themaximumnumber of s-cliques of graphswith prescribed
order n, matching number k and minimum degree δ. Duan et al. [4] determined the
maximum number of 3-cliques in n-vertex graph with l(G) = k − 1 and δ(G) = δ.

Theorem 5 [3] If G is an n-vertex graph with α′(G) = α′ and δ(G) = δ, then
N (Ks,G) ≤ max{ fs(n, 2α′ + 1, δ), fs(n, 2α′ + 1, α′)}.
Theorem 6 [4] Let n − 1 ≥ k ≥ 1 and t = 	(k − 1)/2
. If G is an n-vertex graph
with l(G) = k − 1 and δ(G) = δ, then N (K3,G) ≤ max{ f3(n, k, δ), f3(n, k, t)}.

Let hs(n, α′, δ) = max{ fs(n, 2α′ + 1, δ), fs(n, 2α′ + 1, α′)}. Note that, for some
cases, this upper bound of s-cliques is not attained by a graph of minimum degree δ.

For example, h2(15, 7, 3) = 77 is attained by a unique graph of minimum degree 7,
not 3.Motivated by these works, we give a sharp result on this problem.We determine
the maximum number of s-cliques of n-vertex graphs with prescribed l(G) and δ(G).
Our main results are the following:

Notation 3 Fix n − 1 ≥ k ≥ 1. For t = 	(k − 1)/2
, let G(n, k, δ) denote the graph
obtained from Kt ∨ (Kk−2t + Kn−k+t ) by deleting t − δ edges that are incident to one
common vertex in Kn−k+t . Denote by gs(n, k, δ) the number of s-cliques in G(n, k, δ);
more precisely,

gs(n, k, δ) =
(
k − t

s

)
+ (n − k + t − 1)

(
t

s − 1

)
+

(
δ

s − 1

)
.

Theorem 7 Let n − 1 ≥ k ≥ 1. If G is an n-vertex graph with l(G) = k − 1 and
δ(G) = δ, then

N (Ks,G) ≤ max{ fs(n, k, δ), gs(n, k, δ)}.

This theorem is sharp as shown by the examples F(n, k, δ) and G(n, k, δ). As
a corollary of our main result, we determine the maximum number of s-cliques in
n-vertex graphs with prescribed matching number and minimum degree.
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Corollary 8 If G is an n-vertex graph with α′(G) = α′ and δ(G) = δ, then

N (Ks,G) ≤ max{ fs(n, 2α′ + 1, δ), gs(n, 2α′ + 1, δ)}.

In [19], Wang also determined the maximum number of copies of Kr1,r2 in bipartite
graphs with given matching number. In [22], Zhang et al. determined the maximum
number of copies of Kr1,r2 in bipartite graphs with given maximum linear forest
number. Their proofs are mainly based on the shifting method. However, the shifting
method used in [19, 22] seems not to work for the case of general graphs. In this paper,
we can determine the maximum number of copies of Kr1,r2 in n-vertex graphs with
given l(G) and δ(G).

Notation 4 Let F(n, k, δ) = Kδ ∨ (Kk−2δ + Kn−k+δ). We order the vertices of
F(n, k, δ) in Kn−k+δ with x1, . . . , xn−k+δ.Let r = r1+r2.Note that, for i ∈ [n−k+δ],
the number of copies of Kr1,r2 containing xi in F(n, k, δ) − {x1, . . . , xi−1} is
1
c

∑2
j=1

(
δ
r j

)(n−r j−i
r−r j−1

)
, where c = 1 if r1 �= r2, and c = 2 otherwise. The number

of copies of Kr1,r2 in Kδ ∨ Kk−2δ is
1
c

(k−δ
r

)( r
r1

)
. Denote by fr1,r2(n, k, δ) the number

of Kr1,r2 in F(n, k, δ); more precisely,

fr1,r2(n, k, δ) =1

c

⎡
⎣n−k+δ∑

i=1

2∑
j=1

(
δ

r j

)(
n − r j − i

r − r j − 1

)
+

(
k − δ

r

)(
r

r1

)⎤
⎦ .

Denote by gr1,r2(n, k, δ) the number of Kr1,r2 in G(n, k, δ), where G(n, k, δ) is
defined in Notation 3. For the same reason, the number of copies of Kr1,r2 in G(n, k, δ)
is

gr1,r2(n, k, δ) = 1

c

⎡
⎣ 2∑

j=1

(
δ

r j

)(
n − r j − 1

r − r j − 1

)
+

n−k+t∑
i=2

2∑
j=1

(
t

r j

)(
n − r j − i

r − r j − 1

)

+
(
k − t

r

)(
r

r1

)⎤
⎦ ,

where c = 1 if r1 �= r2, and c = 2 otherwise.

Theorem 9 Let n − 1 ≥ k ≥ 1. If G is an n-vertex graph with l(G) = k − 1 and
δ(G) = δ, then

N (Kr1,r2 ,G) ≤ max{ fr1,r2(n, k, δ), gr1,r2(n, k, δ)}.

This theorem is sharp as shown by the examples F(n, k, δ) and G(n, k, δ). By
Theorem 9, we have the following corollary determining the maximum number of
Kr1,r2 in n-vertex graph with given matching number and minimum degree.

Corollary 10 If G is an n-vertex graph with α′(G) = α′ and δ(G) = δ, then

N (Kr1,r2 ,G) ≤ max{ fr1,r2(n, 2α′ + 1, δ), gr1,r2(n, 2α′ + 1, δ)}.
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2 Proof of theMain Results

To prove Theorem 7, we will need the following definitions and lemmas.

Definition 1 (Bondy and Chvátal [2]) The k-closure of G is the graph obtained from
G by iteratively joining nonadjacent vertices with degree sum at least k until there is
no more such a pair of vertices.

Definition 2 (t-disintegration of a graph, Kopylov [12]) Let G be a graph and t be a
natural number. Delete all vertices of degree at most t from G; for the resulting graph
G ′, we again delete all vertices of degree at most t from G ′. Iterating this process until
we finally obtain a graph, denoted by D(G; t), such that either D(G; t) is a null graph
or δ(D(G; t)) ≥ t + 1. The graph D(G; t) is called the (t + 1)-core of G.

Lemma 11 [18] Suppose there are two vertices u and v in V (G) satisfying d(u) +
d(v) ≥ k and u � v. Then, l(G + uv) ≤ k − 1 if and only if l(G) ≤ k − 1.

Lemma 12 [20] SupposeG is a graph that contains a linear forest F with k−1 edges. If
u and v are vertices that are end points of different paths in F and dG(u)+dG(v) ≥ k,
then G contains a linear forest with k edges.

Note that, if G has maximum linear forest number k − 1, the minimum degree of
G is at most 	(k − 1)/2
 by Lemma 12. Now we are ready to prove Theorem 7.

Proof of Theorem 7. It is easy to verify that the graphs F(n, k, δ) and G(n, k, δ) stated
in Notations 1 and 3 are graphs of order n, maximum linear forest number k − 1 and
minimum degree δ. The number of copies of s-cliques in F(n, k, δ) or G(n, k, δ) is
fs(n, k, δ) or gs(n, k, δ).
Let G be an n-vertex graph with l(G) = k − 1 and δ(G) = δ. Let w be a vertex

of G with minimum degree δ. If there exist two vertices u, v ∈ V (G)\{w} such that
u � v and dG(u) + dG(v) ≥ k, we denote by G1 the graph G + uv. For the graph
G1, we again choose u1, v1 ∈ V (G1)\{w} with u1 � v1, dG1(u) + dG1(v) ≥ k,
and denote by G2 the graph G1 + u1v1. Iterating this process until we finally obtain
a graph, denoted by Q, such that for any x, y ∈ V (Q)\{w} and x � y, we have
dQ(x) + dQ(y) ≤ k − 1. Obviously, δ(Q) = δ and l(Q) = k − 1 by Lemma 11.

Let t = 	 k−1
2 
. Denote by D = D(Q; t) the (t + 1)-core of Q, i.e., the resulting

graph of applying t-disintegration to Q. We distinguish two cases.
Case 1. D is a null graph.Without loss of generality, let xi be the i-th deleted vertex.

Since δ(Q) ≤ 	 k−1
2 
 = t by Lemma 12, we can always let x1 = w. By the definition

of t-disintegration, we have dQi (xi ) ≤ t, 2 ≤ i ≤ n − t . Note that, once the vertex x

is deleted, we delete at most
(dQ(x)
s−1

)
copies of Ks . For the last t vertices, the number

of Ks is at most
(t
s

)
. Thus,

N (Ks, Q) ≤
(

δ

s − 1

)
+ (n − t − 1)

(
t

s − 1

)
+

(
t

s

)
≤ gs(n, k, δ).

Case 2. D is not a null graph. Let d = |D|. We claim that V (D) is a clique and
δ ≤ k − d.

123



22 Page 6 of 11 L. Zhang

For all u, v ∈ V (D), we have dD(u) ≥ t + 1, dD(v) ≥ t + 1. Since every
nonadjacent pair of vertices has degree sum at most k − 1 in Q and dQ(u) + dQ(v) ≥
dD(u) + dD(v) ≥ 2t + 2 ≥ k, we have u and v are adjacent in Q, i.e., V (D) is a
clique.

We next prove δ ≤ k−d. Suppose d ≥ k−δ+1, and hence, dD(u) ≥ d−1 ≥ k−δ

for all u ∈ V (D). Since V (D) is a clique and dD(u) ≥ t + 1 for all u ∈ V (D), we
have d ≥ t + 2. Thus, every vertex in V (Q)\V (D) is not adjacent to at least two
vertices in D. Let x ∈ V (Q)\V (D), and y ∈ V (D) is not adjacent to x . Note that,
w ∈ V (Q)\V (D).We distinguish two cases. If V (Q)\V (D) = {w},we have x = w

and |D| = n−1. Then, there is a Hamiltonian path between x and y as D is a complete
graph. Since l(G) = k − 1 ≤ n − 2, we get a contradiction. If V (Q) \ V (D) �= {w},
we can choose x �= w.Note that, dQ(x) ≥ δ,we have dQ(x)+dQ(y) ≥ δ+k−δ = k.
According to the structure of graph Q, we get a contradiction. Thus, d ≤ k − δ, i.e.,
δ ≤ k − d.

Let D′ be the (k − d + 1)-core of Q, i.e., the resulting graph of applying (k − d)-
disintegration to Q. Since d ≥ t + 2, we obtain k − d ≤ t . Therefore, D ⊆ D′. There
are two cases.

(a) If D′ = D, then |D′| = |D| = d. By the definition of (k − d)-disintegration, we
have

N (Ks, Q) ≤
(

δ

s − 1

)
+ (n − d − 1)

(
k − d

s − 1

)
+

(
d

s

)

=
(

δ

s − 1

)
+ λs(n, k, k − d)

≤ max{ fs(n, k, δ), gs(n, k, δ)},

where λs(n, k, x) = (n − k + x − 1)
( x
s−1

) + (k−x
s

)
. The third inequality follows

from the condition δ ≤ k − d ≤ t and that the function λs(n, k, x) is convex for
x ∈ [δ, t].

(b) Otherwise, D′ �= D. Let u ∈ V (D′)\V (D). Since d ≥ t + 2, we deduce that u is
not adjacent to at least two vertices in D. We choose one of the vertices and denote
it by v, and then dQ(u)+dQ(v) ≥ k−d+1+d−1 ≥ k. Since every nonadjacent
pair of vertices has degree sum at most k − 1, we obtain a contradiction and the
Theorem is proved. 
�
To prove Theorem 9, we need the following definition and lemma.

Definition 3 h(x) is a convex function of x if and only if h(x+1)+h(x−1)−2h(x) ≥
0.

Lemma 13 hr1,r2(n, k, x) = 1
c

[∑n−k+x
i=2

∑2
j=1

( x
r j

)(n−r j−i
r−r j−1

) + ( k−x
r1+r2

)(r1+r2
r1

)]
is a

convex function of x, where c = 1 if r1 �= r2, and c = 2 otherwise.

Proof Note that, fr1,r2(n, k, x) is the number of copies of Kr1,r2 in F(n, k, x) and

hr1,r2(n, k, x) = fr1,r2(n, k, x) − 1
c

(( x
r1

)(n−r1−1
r2−1

) + ( x
r2

)(n−r2−1
r1−1

))
. Let H(n, k, x) =
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Kx ∨(Kk−2x +Kn−1−k+x ).Then, hr1,r2(n, k, x) denote the number of copies of Kr1,r2
in H(n, k, x). Let r = r1 + r2. Assume that r1 �= r2. For the case r1 = r2, the proof
is similar and is omitted. Note that, the number of copies of Kr1,r2 inside Kx ∨ Kk−2x

is
(k−x

r

)( r
r1

)
, and the number of copies of Kr1,r2 not inside Kx ∨ Kk−2x of H(n, k, x)

is
∑2

j=1

( x
r j

) ((n−1−r j
r−r j

) − (k−x−r j
r−r j

))
. Hence,

hr1,r2(n, k, x) =
(
k − x

r

)(
r

r1

)
+

2∑
j=1

(
x

r j

) ((
n − 1 − r j
r − r j

)
−

(
k − x − r j
r − r j

))
.

Note that,

hr1,r2(n, k, x + 1) − hr1,r2(n, k, x)

= −
(
k − 1 − x

r − 1

)(
r

r1

)
+

2∑
j=1

(
x

r j − 1

)(
n − r j − 1

r − r j

)

+
2∑
j=1

((
x

r j

)(
k − x − r j − 1

r − r j − 1

)
−

(
x

r j − 1

)(
k − x − r j − 1

r − r j

))
,

we have

hr1,r2(n, k, x + 1) + hr1,r2(n, k, x − 1) − 2hr1,r2(n, k, x)

≥
(
k − 1 − x

r − 2

)(
r

r1

)
+

2∑
j=1

(
x − 1

r j − 2

)(
n − r j − 1

r − r j

)

−
2∑
j=1

((
x − 1

r j − 2

)(
k − r j − 1 − x

r − r j

)
+

(
x − 1

r j

)(
k − 1 − x − r j
r − r j − 2

))

≥
(
k − 1 − x

r − 2

)(
r

r1

)
−

2∑
j=1

(
x − 1

r j

)(
k − 1 − x − r j
r − r j − 2

)
.

In order to prove hr1,r2(n, k, x) is a convex function of x, by Definition 3, it is enough
to prove the following inequality:

(
k − 1 − x

r − 2

)(
r

r1

)
≥

2∑
j=1

(
x − 1

r j

)(
k − 1 − x − r j
r − r j − 2

)
,

which simplifies to

1 ≥
2∑
j=1

r j (r j − 1)

r(r − 1)

(x − 1)(x − 2) . . . (x − r + r j )

(k − x − 1)(k − x − 2) . . . (k − x − r + r j )
.
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Since k ≥ 2x and r = r1 + r2, we have

2∑
j=1

r j (r j − 1)

r(r − 1)

(x − 1)(x − 2) . . . (x − r + r j )

(k − x − 1)(k − x − 2) . . . (k − x − r + r j )
<

2∑
j=1

r j (r j − 1)

r(r − 1)
≤ 1.

Thus, hr1,r2(n, k, x) is a convex function of x . This completes the proof. 
�
The proof of Theorem 9 follows the same steps as the proof of Theorem 7. So we

will omit some details.

Proof of Theorem 9. It is easy to verify that the graphs F(n, k, δ) and G(n, k, δ) stated
in Notations 1 and 3 are graphs of order n, maximum linear forest number k − 1
and minimum degree δ. By Notation 4, the number of copies of Kr1,r2 in F(n, k, δ)
is fr1,r2(n, k, δ) and the number of copies of Kr1,r2 in G(n, k, δ) is gr1,r2(n, k, δ),
respectively.

Let Q be defined as in Theorem 7 and let D = D(Q; t) denote the (t + 1)-core of
Q. We distinguish two cases.

Case 1. D is a null graph. As the proof of Theorem 7, let xi be the i-th deleted
vertex and x1 = w. First, consider the case r1 = r2. Note that, once the vertex xi is
deleted, we delete at most

(dQ(xi )
r1

)(n−r1−i
r1−1

)
copies of Kr1,r1 . For the last t vertices, the

number of Kr1,r1 is at most 1
2

( t
2r1

)(2r1
r1

)
. Thus,

N (Kr1,r1 , Q) ≤
(

δ

r1

)(
n − r1 − 1

r1 − 1

)
+

n−t∑
i=2

(
t

r1

)(
n − r1 − i

r1 − 1

)
+ 1

2

(
t

2r1

)(
2r1
r1

)

≤ gr1,r1(n, k, δ).

Next, we consider the case of r1 �= r2. Let r = r1 + r2. Note that, once the vertex
xi is deleted, we delete at most

∑2
j=1

(dQ(xi )
r j

)(n−r j−i
r−r j−1

)
copies of Kr1,r2 . For the last t

vertices, the number of Kr1,r2 is at most
( t
r1+r2

)(r1+r2
r1

)
. Thus,

N (Kr1,r2 , Q) ≤
2∑
j=1

(
δ

r j

)(
n − r j − 1

r − r j − 1

)
+

n−t∑
i=2

2∑
j=1

(
t

r j

)(
n − r j − i

r − r j − 1

)
+

(
t

r

)(
r

r1

)

≤ gr1,r2(n, k, δ).

Case 2. D is not a null graph. Let d = |D|. The same argument as in the proof of
Theorem 7 also shows that D is a complete graph and δ ≤ k − d.

Let D′ be the (k − d + 1)-core of Q, i.e., the resulting graph of applying (k − d)-
disintegration to Q. Since d ≥ t + 2, we obtain k − d ≤ k − t − 2 ≤ t . Therefore,
D ⊆ D′. If D �= D′, by a similar discussion in Theorem 7, we can get a contradiction.
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Otherwise, D′ = D, then |D′| = |D| = d. If r1 = r2, by the definition of (k − d)-
disintegration, we have

N (Kr1,r1 , Q) ≤
(

δ

r1

)(
n − r1 − 1

r1 − 1

)
+

n−d∑
i=2

(
k − d

r1

)(
n − r1 − i

r1 − 1

)
+ 1

2

(
d

2r1

)(
2r1
r1

)

=
(

δ

r1

)(
n − r1 − 1

r1 − 1

)
+ hr1,r1(n, k, k − d)

≤ max{ fr1,r1(n, k, δ), gr1,r1(n, k, δ)}, (1)

where

hr1,r1(n, k, x) =
n−k+x∑
i=2

(
x

r1

)(
n − r1 − i

r1 − 1

)
+ 1

2

(
k − x

2r1

)(
2r1
r1

)
.

By Lemma 13, we have hr1,r1(n, k, x) is convex for x . Inequality (1) can be obtained
from the condition δ ≤ k − d ≤ t and that the function hr1,r1(n, k, x) is convex for
x ∈ [δ, t]. If r1 �= r2, we count the number of copies of Kr1,r2 as follows.

N (Kr1,r2 , Q) ≤
2∑
j=1

(
δ

r j

)(
n − r j − 1

r − r j − 1

)
+

n−d∑
i=2

2∑
j=1

(
k − d

r j

)(
n − r j − i

r − r j − 1

)
+

(
d

r

)(
r

r1

)

=
2∑
j=1

(
δ

r j

)(
n − r j − 1

r − r j − 1

)
+ hr1,r2 (n, k, k − d)

≤ max{ fr1,r2 (n, k, δ), gr1,r2 (n, k, δ)}, (2)

where

hr1,r2(n, k, x) =
n−k+x∑
i=2

2∑
j=1

(
x

r j

)(
n − r j − i

r − r j − 1

)
+

(
k − x

r1 + r2

)(
r1 + r2

r1

)
.

Inequality (2) can be obtained from the condition δ ≤ k − d ≤ t and that the function
hr1,r2(n, k, x) is convex for x ∈ [δ, t].

This completes the proof. 
�

3 Concluding Remarks

In this paper, we determine the maximum number of s-cliques of an n-vertex graph
with prescribed maximum linear forest number and minimum degree. As a corollary
of our main result, we determine the maximum number of s-cliques in n-vertex graphs
with prescribed matching number and minimum degree. Moreover, we also determine
the maximum number of copies of Kr1,r2 in n-vertex graphs with given maximum
linear forest number and minimum degree. All results in our paper are sharp. Note
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that, in [3], Duan et al. gave two results which are stability versions of Theorem 5 for
s = 2. Naturally, it is interesting to consider the stability versions of Theorem 7. We
leave it as a work in future.

Acknowledgements The author would like to thank two anonymous referees for helpful suggestions, and
he is grateful to Professor Xingzhi Zhan for his constant support and guidance andYuxuan Liu for conducive
discussions and careful reading of a draft. This research was supported by the NSFC grants 12271170 and
Science and Technology Commission of Shanghai Municipality (STCSM) grant 22DZ2229014.

References

1. Alon, N., Shikhelman, C.: Many T copies in H -free graphs. J. Combin. Theory Ser. B 121, 146–172
(2016)

2. Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)
3. Duan, X.Z., Ning, B., Peng, X., Wang, J., Yang, W.H.: Maximizing the number of cliques in graphs

with given matching number. Discrete Appl. Math. 287, 110–117 (2020)
4. Duan, X.Z., Wang, J., Yang, W.H.: The generalized Turán number of linear forests. (Chin.) Adv. Math.

(China) 49(4), 406–412 (2020)
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