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Abstract
In this paper, first we give the definition of F-copartial morphisms with an additive
exact substructure F of an exact structure E in an additive category A. Then, we
study many properties of F-copartial morphisms. Moreover, we define F-copartial
morphisms with a pure-exact structure F and with a finite pure-exact structure F in
the category of modules over a ring and call them copartial morphisms and finitely
copartial morphisms, respectively. We also investigate the relations between them
and give the new characterizations of finitely (singly) pure-projective modules, flat
modules and finitely (singly) projectivemodules with copartial morphisms and finitely
copartial morphisms. Finally, we define μ-partial morphisms for a defining matrix μ

and give a new characterization of semi-compact modules with μ-partial morphisms.

Keywords Copartial morphism · Finitely copartial morphism · Exact category
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1 Introduction

The notion of exact categories was originally due to Quillen (see, [21]). The theory of
exact categories is a generalization of abelian categories, and they play a quite useful
role in Representation Theory, AlgebraicGeometry, AlgebraicAnalysis andAlgebraic
K-Theory. On the other hand, exact categories are applicable in the study of filtered
objects and tilting theory while the classical theory of abelian theories does not apply.
This theory was developed by Bühler, Fu, Gillespie, Hovey, Keller, Krause, Neeman,
Šťovíček and possibly others, see [3, 7, 8, 11, 13, 14, 17, 18] and [20] and so on.

Recall that a short exact sequence of right R-modules is called pure if it remains
exact upon tensoring by any left module. Pure-injective modules are modules which
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are injective with respect to pure-exact sequences. Purity is a considerable interest for
logicians that are interested in the model theory of modules. Partial morphisms were
introduced byZiegler in [24] by usingmodel theory, in order to prove existence of pure-
injective envelopes. Ziegler realized that pure-injective modules extend other types of
morphisms and called those morphisms as partial morphisms. Partial morphisms were
also studied byMonariMartinez in [16] through algebraicmethods. She gave amatrix-
theoretic reformulation of partial morphisms by using system of linear equations. But
this algebraic translation of the notion of partial morphisms does not shed much
light about their role in the categorical study of purity. In [5], Cortés-Izurdiaga, Guil
Asensio, Kalebog̃az and Srivastava gave a categorical definition of this concept which
can be stated in any additive exact category. They first defined the partial morphisms
introduced by Ziegler in [24] in the module category over a ring. Then, they gave the
characterization of partial morphisms by using pushout: a homomorphism f : K −→
N is partial morphism with respect to the inclusion u of K in a module M if and only
if the induced morphism Ext1(−, f ) transforms u in a pure monomorphism. So it
allowed them to define partial morphismswith respect to an additive exact substructure
F of an exact structure E in an additive category A, and they called them F-partial
morphisms. As a dual notion of F-partial morphisms, in Sect. 2, we first define F-
copartial morphisms with an additive exact substructure F of an exact structure E in
an additive categoryA (Definition 2.1). The first aim of this paper is to study the main
properties of F-copartial morphisms (Proposition 2.5 and Proposition 2.7). Then, we
show thatF-copartialmorphisms characterizeF-projective objects (i.e., objectswhich
are projective with respect to F-deflations) (Theorem 2.10). In this section, we reveal
the close relationship between F-copartial morphisms with F-phantom morphisms
(see [7] for the definition and themain properties of phantommorphismswith respect to
the exact substructureF).We also study EX -copartial and EX -copartialmorphisms for
a given class of objectsX where EX (EX ) is denote the exact structure consisting of all
conflations A −→ B −→ C which are Hom(X ,−)-exact (respectively, Hom(−, X)-
exact) for every X ∈ X (Proposition 2.12 and Proposition 2.13). Then, we characterize
the objects ofM that every deflation endwithM is anF-deflation by usingF-copartial
morphisms (Theorem 2.14).

Let R be a ring and let A, C be left R-modules and f : A −→ C be
an epimorphism. It is well known that f is called M-pure if HomR(M, f ) :
HomR(M, A) −→ HomR(M,C) is an epimorphism. An epimorphism f is called
pure if f is M-pure for all finitely presented left R-modules M from [22] and an
epimorphism f is called finitely (singly) split if f is M-pure for all finitely generated
(cyclic) left R-modules M from [1]. We note that the exact structure EP is called
pure-exact structure if P is the class of all finitely presented left R-modules and EP
is called finite (single) pure-exact structure if P is the class of all finitely generated
(cyclic) left R-modules. As an application of F-copartial morphisms to pure-exact
structure F on the category of left R-modules over a ring R, we define copartial
morphisms (Definition 2.16) and give some results on copartial morphisms. Copar-
tial morphisms are exactly the dual versions of Ziegler partial morphisms. We give a
new characterization of pure-projective modules (M is called pure-projective if every
pure epimorphism onto M splits) by using copartial morphisms. In Sect. 3, we study
another application of F-copartial morphisms to finite (single) pure-exact structure
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F on the category of left R-modules over a ring R. We call them finitely (singly)
copartial morphisms (Definition 3.2). In [15], Mao called a morphism α : M −→ N
finitely phantom if the restriction of α to every finitely generated submodule of M
factors through a projective left R-module and he called a morphism α : M −→ N
Mittag–Leffler if for each morphism β : F −→ M with F finitely generated, there
exists a finitely presented left R-module L , ϕ : F −→ L and γ : L −→ M such
that αβ = αγϕ. In this paper, we relate finitely copartial morphisms to finitely phan-
tom morphisms and Mittag–Leffler morphisms (Corollary 3.3 and Proposition 3.4).
Another purpose of this paper is to investigate the relations between copartial mor-
phisms and finitely (singly) copartial morphisms. It is obvious that every finitely
(singly) copartial morphism is copartial morphism. In this work, we discuss when
every copartial morphism is finitely (singly) copartial (Proposition 3.8). In [1], finitely
(singly) pure-projective modules were defined. Azumaya called a left R-module M
finitely (singly) pure-projective if every pure epimorphism onto M is finitely (singly)
split. We also give new characterizations of finitely (singly) pure-projective modules,
flat modules and finitely (singly) projective modules with copartial morphisms and
with finitely (singly) copartial morphisms (Theorem 3.11, Corollary 3.15, Corollary
3.17). In this section, we show that some of our results are extensions of the results
proven by Azumaya in [1] and Mao in [15]. Our new characterizations also allow us
to give some categorical proofs of some results in [1].

For an R-module M and for any index set I , MI means I -times direct product and
M (I ) means I -times direct sum of M . Each element of MI can be regarded as a row
vector with entries in M (we denote them by (xi )whose i-th entry is xi for each i ∈ I )
and each element of M (I ) can be regarded as a column vector with entries in M (we
denote them by [xi ] whose i-th entry is xi for each i ∈ I ) according to the context. If
n is a positive integer, Mn is defined to be MI = (M (I ))where I = {1, 2, ..., n}. Let
I and J be two index sets and let μ = [ai j ] be a row-finite I × J matrix over R. For
each row vector (ri ) ∈ R(I ), the product (ri )μ = ∑

i ri ai j is in R(J ), and one defines
a left R-homomorphism μ : R(I ) −→ R(J ) as (ri ) −→ (ri )μ. The cokernel of this
homomorphism is denoted by Coker(μ). For a left R-module M , in [1], Azumaya
called μ is a defining matrix of M (or μ defines M) if Coker(μ) ∼= M . In the last
section of this paper, in Sect. 4, we defineμ-partial morphisms for a defining matrixμ

in the module category as an extension of Ziegler partial morphism studied in [5]. By
using μ-partial morphisms, we give a new characterization of semi-compact modules
which is investigated in [2] (Proposition 4.6).

All rings in this paper are associativewith unit and allmodules are unitary. Through-
out the paper, we fix an exact category (A;E) for an additive category A with a
distinguished class E of kernel–cokernel pairs which play the role of short exact
sequences and an additive exact substructure F . Given a ring R, R-Mod is the cate-
gory of left modules over R whose objects are all left modules over R and morphisms
are all module homomorphisms between left R-modules.
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32 Page 4 of 23 B. Kalebog̃az

2 F -Copartial Morphisms

LetA be an additive category. A kernel–cokernel pair (i, p) inA is a pair of compos-
able morphisms

A
i

B
p

C

such that i is a kernel of p and p is a cokernel of i . If a class E of kernel–cokernel
pairs on A is fixed, an admissible monomorphism is a morphism i for which there
exists a morphism p such that (i, p) ∈ E . Similarly, an admissible epimorphism is a
morphism p for which there exists a morphism i such that (i, p) ∈ E .

An exact structure onA is a class E of kernel–cokernel pairs which is closed under
isomorphisms and satisfies the following axioms

E0 For every object A ∈ A, the identity morphism 1A is an admissible monomor-
phism.

E0op For every object A ∈ A, the identity morphism 1A is an admissible epimor-
phism.

E1 The class of admissible monomorphisms is closed under composition.
E1op The class of admissible epimorphisms is closed under composition.
E2 The pushout of an admissible monomorphism along an arbitrary morphism

exists and yields an admissible monomorphism, that is, for any admissible
monomorphism i : A −→ B and any morphism f : A −→ B ′, there is a
pushout diagram;

A

f

i
B

f ′

B ′ i ′
P

with i ′ an admissible monomorphism.
[E2op ]Thepullbackof an admissible epimorphismalong an arbitrarymorphismexists

and yields an admissible epimorphism, that is, for any admissible epimorphism
p : B −→ C and any morphism g : B ′ −→ C there is a pullback diagram;

Q

g′

p′
B ′

g

B
p

C

with p′ an admissible epimorphism.

An exact category is a pair (A, E) consisting of an additive categoryA and an exact
structure E on A. Elements of E are called short exact sequences. Keller [13] uses
conflation, inflation and deflation for what we call short exact sequence, admissible
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monomorphism and admissible epimorphism, respectively. Throughout the paper, we
also use this terminology. Let A be an object of A. An admissible quotient of A is a
quotient object U of an object A such that one (and any) quotient map p : A −→ U
is a deflation.

An exact substructure F of E is an exact structure on A such that each conflation
in F (which we shall call F-conflation) is a conflation in E . Inflations, deflations and
admissible quotient objects with respect toF will be calledF-inflations,F-deflations
and F-admissible quotient objects, respectively.

Partial morphisms are first defined by Ziegler in Model Theory of Modules in [24].
In [5], Cortés-Izurdiaga, Guil Asensio, Kalebog̃az, Srivastava give a categorical defi-
nition of partial morphisms relative to the pure-exact structure in the module category
by using pushout. Then, they extend the notion of partial morphisms to any additive
exact category (A, E). And they callF-partial morphism to the partial morphismwith
respect to an additive substructureF of an exact structure E in an additive categoryA.
As a dual of this notion, we begin with defining theF-copartial morphisms as follows:

Definition 2.1 Let X and Y be objects of A. An F-copartial morphism (respectively,
F-copartial isomorphism) f from X to Y is a morphism f : X −→ U whereU is an
admissible quotient of Y with quotient map p : Y −→ U , such that in the pullback
of f along p;

Q

f

p
X

f

Y
p

U

p is anF-deflation (respectively, p and f areF-deflations). We shall call the quotient
object U the codomain of f .

Remark 2.2 The definition of F-copartial morphism does not depend on the selected
quotient morphism of p : Y −→ U . Let v : Y −→ V be an equivalent epimorphism
to p : Y −→ U . That means there exists an isomorphism w : U −→ V such that
wp = v, then f is an F-copartial morphism (respectively, F-copartial isomorphism)
if and only ifw f is anF-copartial morphism (respectively,F-copartial isomorphism).

Next lemma is used in the rest of the paper. It is a special case of the dual of the
Obscure Axiom [3, Proposition 2.16].

Lemma 2.3 Let X, Y , Z be objects of A. If an F-deflation f : Z −→ Y factors
through a deflation p : X −→ Y as follows:

Z

f
g

X
p

Y

then p is an F-deflation too.
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Proof Let i : K −→ X be the kernel of p. If we take the pullback g along i , we get
the following commutative diagram:

Q

g

i
Z

g

f
Y

K
i

X
p

Y

Since f is an F-deflation and i is the kernel of f , then i is an F-inflation. Since the
left square is pushout by [19, Example 3, page 93], i is also an F-inflation. Thus, p is
an F-deflation. ��

One of the main purposes of this paper is to develop this new subject ofF-copartial
morphisms for some exact substructure F . Now we give some basic properties of
F-copartial morphisms. Some of them are the duals of the results that obtained in [5].
So we give some of them without any proofs.

Lemma 2.4 Let Y be an object of A, U an admissible quotient of Y with the quotient
map p : Y −→ U and f an F-copartial morphism from any object X ofA to Y with
codomain U. If f is an F-deflation, then p is an F-deflation.

Proof Let us take the pullback of f along p. Then, we get the following commutative
diagram:

Q

f

p
X

f

Y
p

U

with f p = p f . Since f is an F-copartial morphism, p is an F-deflation. As the
morphism f is an F-deflation, the composition f p is also an F-deflation. Then, p is
also an F-deflation by Lemma 2.3. ��
Proposition 2.5 Let X, Y , Z be objects of A and U, an admissible quotient of Y with
the quotient morphism p : Y −→ U.

1. p is anF-deflation if and only if for any object X ofA, every morphism f : X −→
U is F-copartial from X to Y with codomain U.
Moreover, suppose that p be an F-deflation. A morphism f : X −→ U is an F-
deflation if and only if f is anF-copartial isomorphism from X to Y with codomain
U.

2. If f : X −→ U is a morphism, then f defines anF-copartial isomorphism from X
to Y with codomain U if and only if f is a deflation, f is anF-copartial morphism
from X to Y with codomain U and p is anF-copartial morphism from Y to X with
codomain U.
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3. Let

η : A
u

Y
p

U

be a conflation whose cokernel is p : Y −→ U. Then, a morphism f : X −→ U
defines an F-copartial morphism from X to Y with codomain U if and only if
Ext( f , A)(η) ∈ F .

4. If f : X −→ U is an F-copartial morphism (respectively, F-copartial iso-
morphism) from X to Y with codomain U and g is any morphism (respectively,
F-deflation) from Z to X, then f g is an F-copartial morphism (respectively, F-
copartial isomorphism) from Z to Y with codomain U.

5. If f : X −→ Z is an F-deflation and g : Z −→ U is any morphism such that
the composition g f is anF-copartial morphism (respectively,F-copartial isomor-
phism) from X to Y with codomain U, then g is also an F-copartial morphism
(respectively, F-copartial isomorphism) from Z to Y with codomain U.

6. If f and g are F-copartial morphisms from X to Y with codomain U, then f + g
is an F-copartial morphism from X to Y .

7. If f : X −→ U is an F-copartial morphism (respectively, F-copartial isomor-
phism) from X to Y with codomain U and g : Z −→ Y is an F-deflation, then f
is an F-copartial morphism (respectively, F-copartial isomorphism) from X to Z
with codomain U.

8. If f : X −→ U be any morphism such that pullback of f along p as in the
following commutative diagram:

Q1

f

p
X

f

Y
p

U

then g : Z −→ X is an F-copartial morphism from Z to Q1 with codomain X if
and only if f g is an F-copartial morphism from Z to Y with codomain U.

Proof (1) Let p : Y −→ U be an F-deflation and f be any morphism from an object
X to U . The pullback along any F-deflation is an F-deflation, so that any morphism
f : X −→ U is an F-copartial morphism. Conversely, if we take X = U , then
p : Y −→ U is an F-deflation by Lemma 2.4.

Moreover, as a consequence of Lemma 2.3, f is an F-deflation if and only if it is
an F-copartial isomorphism.

The proofs of (2), (3), (4), (6) and (7) are the duals of Proposition 2.5 in [5].
(5) Let f : X −→ Z be an F-deflation and g : Z −→ U be any morphism such

that g f is an F-copartial morphism (respectively, F-copartial isomorphism). If we
take the pullbacks of g along p and f along p, then we get the following commutative
diagram:
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Q2

f ′

p′
X

f

Q1

g

p
Z

g

Y
p

U

The outer diagram is also the pullback of g f along p. Since g f is anF-copartial mor-
phism (respectively,F-copartial isomorphism), then p′ is anF-deflation (respectively,
p′ and g f ′ areF-deflations). Then, by Lemma 2.3, p is anF-deflation (respectively, p
and g areF-deflations) since f is anF-deflation. Thus, g is anF-copartial morphism
(respectively, F-copartial isomorphism).

(8) Suppose that g : Z −→ X be anF-copartial morphism. Let us take the pullback
of g along p. Then, we get the following commutative diagram with the outer diagram
is the pullback of f g along p:

Q2

g′

p′
Z

g

Q1

f

p
X

f

Y
p

U

Since g is anF-copartial morphism, then p′ is anF-deflation. So f g is anF-copartial
morphism from Z to Y with codomain U .

Converse is clear. ��
Corollary 2.6 Let Y be an object of A and U an admissible quotient of Y with the
quotient map p : Y −→ U. 1U is an F-copartial morphism from U to Y with
codomain U if and only if p is an F-deflation.

Now we give some properties of F-copartial morphisms (F-copartial isomor-
phisms) in a commutative diagram as follows:

Proposition 2.7 Consider the following commutative diagram with two conflations:

A

ψ

f1
B

ϕ

g1
C

γ

X
f2

Y
g2

Z

1. If g1 : B −→ C is an F-deflation, then γ is an F-copartial morphism from C to
Y with codomain Z.
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2. If g1 : B −→ C and ϕ : B −→ Y are F-deflations, then γ is an F-copartial
isomorphism from C to Y with codomain Z.

Proof (1) Let us take the pullback of γ along g2. Then, we get the following commu-
tative diagram:

Q

γ

g2
C

γ

Y
g2

Z

By the universal property of pullback, we get the morphism h : B −→ Q with
g2h = g1 and γ h = ϕ. So g2 is an F-deflation by Lemma 2.3. Therefore, γ is an
F-copartial morphism from C to Y with codomain Z .

(2) Let us take the pullback of γ along g2. Then, we get the following commutative
diagram:

Q

γ

g2
C

γ

Y
g2

Z

By the universal property of pullback, we get the morphism h : B −→ Q with
g2h = g1 and γ h = ϕ. So g2 and γ are F-deflations by Lemma 2.3. Therefore, γ is
an F-copartial isomorphism from C to Y with codomain Z . ��
Corollary 2.8 Let X and Y be objects of A and U an admissible quotient of Y with
the quotient map p : Y −→ U and f : X −→ U be a morphism. If there exists a
morphism g : X −→ Y such that pg = f , then f is an F-copartial morphism from
X to Y with codomain U.

Given P an object of A and p : A −→ C an deflation. Recall that P is called
p-projective (or projective with respect to p) if for each morphism f : P −→ C
there exist a morphism g : P −→ A with pg = f . P is said that projective object
in A if it is projective with respect to each deflation. Projective objects with respect
to F-deflations will be called F-projective objects. We shall say that A has enough
projective objects if for each objects A in A, there exists a deflation P −→ A with a
projective object P inA. After these definitions, we can give the duals of Proposition
2.5 (4) and Theorem 2.8 in [5].

Proposition 2.9 Let Y be an object of A, U an admissible quotient of Y with the
quotient map p : Y −→ U and f an F-copartial morphism from any object X of A
to Y with codomain U. Then,

1. If there exists h : Y −→ X such that f h = p, then f is an F-copartial isomor-
phism.
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2. The converse of (1) is true if Y is F-projective.

Proof The proof is the dual of the proof of Proposition 2.5 (4) in [5]. ��
In the next theorem, we give a characterization of F-projective objects by F-

copartial morphisms.

Theorem 2.10 An object X of A is F-projective if and only if any F-copartial mor-
phism f from X to any object Y with codomain U, where U is any admissible quotient
of Y with the quotient map p : Y −→ U, extends to a morphism g : X −→ Y .

Proof If X is an F-projective object and f is an F-copartial morphism from X to Y ,
we can get the following pullback:

Q

f

p
X

f

Y
p

U

with an F-deflation p. Because of the F-projectivity of X , there exists a morphism
w : X −→ Q such that 1X = pw. Then, f w is a morphism from X to Y with
f = p f w.
Conversely, if v : Y −→ V is an F-deflation and f : X −→ V is any morphism,

then by Proposition 2.5 (1), f is anF-copartial morphism from X to Y . By hypothesis,
there exists g : X −→ Y such that vg = f . Then, X is an F-projective object. ��

Phantom morphisms were introduced by Gnacadja [9] in the category of modules
over a finite group ring and studied by Herzog [10] for a general module category. In
[7], phantom morphisms with respect to the exact substructure F have been defined.
A morphism f : X −→ A is called F-phantom if the pullback of any conflation (end
with A) along f gives a conflation that belongs to F (equivalently if Ext( f , B) ∈ F
for each conflation of the form η : B −→ C −→ A).

In the next corollary,we characterizeF-phantommorphisms in termsofF-copartial
morphisms as follows.

Corollary 2.11 Let f : X −→ U be a morphism in A. f is an F-phantom morphism
if and only if for every admissible quotient map p : Y −→ U f is an F-copartial
morphism from X to Y with codomain U.

Proof Let f : X −→ U be an F-phantom morphism and p : Y −→ U be an
admissible quotient map. Let i : K −→ Y be the kernel of p. Then, Ext( f , K ) ∈ F
by the definition of F-phantom morphism. So the pullback of f along p is an F-
deflation. Therefore, f is an F-copartial morphism. We can get the converse by the
similar way. ��

Given a class X of objects, EX is the class of all HomA(X ,−)-exact conflations,
i.e., those conflations

A −→ C −→ B
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such that

HomA(X , A) −→ HomA(X ,C) −→ HomA(X , B)

is a short exact sequence in the category of abelian groups for each X ∈ X . Dually,
EX is the class of all HomA(−,X )-exact conflations, that is, those conflations

A −→ C −→ B

such that

HomA(B, X) −→ HomA(C, X) −→ HomA(A, X)

is a short exact sequence in the category of abelian groups for each X ∈ X . Both EX
and EX are exact substructures of E from [3, Exercise 5.6].

Now we will give the characterizations of EX -copartial and EX -copartial mor-
phisms for a given class of objects X .

Proposition 2.12 Let X be a class of objects, X and Y be two objects of A, U an
admissible quotient of Y with the quotient map p : Y −→ U and f : X −→ U be a
morphism. Then, the followings are equivalent:

1. f is an EX -copartial morphism from X to Y with codomain U.
2. For each morphism g : Z −→ X with Z ∈ X , there exists h : Z −→ Y with

ph = f g.

Proof Proof is the dual of Proposition 2.10 in [5]. ��
Proposition 2.13 Suppose that there exists enought injective objects. Let X be a class
of objects, X and Y be two objects of A, U an admissible quotient of Y with the
quotient map p : Y −→ U and f : X −→ U be a morphism. Then, the followings
are equivalent:

1. f is an EX -copartial morphism.
2. For each commutative diagram

Y

ϕ1

p
U

ϕ2

M
α

N

in which Kerα ∈ X , there exists g : X −→ M such that αg = ϕ2 f .

Proof Proof is the dual of Proposition 2.11 in [5]. ��
Now we will characterize the objects of M that every deflation end with M is an

F-deflation.
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Theorem 2.14 Let M be an object ofA. Every deflation end with M is an F-deflation
if and only if for any object N and its quotient object U with the quotient map p :
N −→ U, every morphism from M to U is an F-copartial morphism from M to N
with codomain U.

Proof Let every deflation end with M is an F-deflation and let for an object N and its
quotient U with a deflation p : N −→ U , f be a morphism from M to U . If we take
the pullback of f along p, we get the following commutative diagram:

Q

f

p
M

f

N
p

U

By assumption, p : Q −→ M is an F-deflation. So f is an F-copartial morphism
from M to Y with codomain U .

For the converse, let us take a deflation p : A −→ M . By assumption, 1M is an
F-copartial morphism from M to A with codomain M . Then, by Corollary 2.6 p is
an F-deflation. ��
Proposition 2.15 Let M and M ′ be objects of A and let there be an F-deflation
u : M −→ M ′. If any deflation end with M is an F-deflation, then any deflation end
with M ′ is an F-deflation.

Proof For an object N and its quotient object U with the quotient map p : N −→ U ,
let us take a morphism f from M ′ to U . Then, we get the following commutative
diagram by taking pullbacks of f along p and of u along p:

Q2

u′

p′
M

u

Q1

f

p
M ′

f

N
p

U

By assumption, the deflation p′ : Q2 −→ M is an F-deflation. Then, p is also an
F-deflation by Lemma 2.3. Therefore, f is an F-copartial morphism. By Theorem
2.14, any deflation end with M ′ is an F-deflation. ��

Let R be a ring, A and C be left R-modules and f : A −→ C be an epimorphism.
f is called pure epimorphism if HomR(M, f ) : HomR(M, A) −→ HomR(M,C) is
an epimorphism for all finitely presented left R-modules M . Let B be the kernel of
f . Then by the theorem of Fieldhouse [6] and Warfield [22], f is pure if and only if
B is pure in A in the sense that the natural homomorphism N ⊗R B −→ N ⊗R A
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derived from the inclusion map B −→ A is a monomorphism for all right R-modules
N . Moreover, by Cohn’s theorem in [4], this is equivalent to the condition that every
finite system of linear equations over B which is solvable in A is also solvable in B.
On the other hand, for every commutative diagram

R(m)

f

g
R(n)

0 B
u

A

with n,m ∈ N, there exists a morphism h : R(n) −→ B with hg = f if and only
if u : B −→ A is a pure monomorphism (B is pure in A) from [23]. The conflation
B −→ A −→ C is called pure conflation if f is a pure epimorphism (or u is a pure
monomorphism).

Definition 2.16 An F-copartial morphism (F-copartial isomorphism) with a pure-
exact substructureF in the category of R-Mod is called copartial morphism (copartial
isomorphism). That means:

Let X and Y be left R-modules. A copartial morphism (respectively, copartial
isomorphism) f from X to Y is a morphism f : X −→ U whereU is a quotient of Y
with quotient map p : Y −→ U , such that in the pullback of f along p;

Q

f

p
X

f

Y
p

U

p is a pure epimorphism (respectively, p and f are pure epimorphisms). We shall call
the quotient module U the codomain of f .

Remark 2.17 If P is the class of all finitely presented modules, the exact structure EP
consists of all pure conflations and it is called pure-exact structure on R-Mod. And as
a consequence of Proposition 2.12, EP -copartial morphisms are exactly the copartial
morphisms for the class of all finitely presented modules P in R-Mod.

The projective objects with respect to pure-exact sequences on R-Mod are called
pure-projective modules (see [23]). As a corollary of Theorem 2.10, we get that the
new characterization of pure-projective modules by copartial morphisms.

Corollary 2.18 An R-module P is pure-projective if and only if any copartialmorphism
from P to any module X with codomain U, where U is any quotient of X, extends to
a morphism g : P −→ X.

Now we give some applications of F-copartial morphisms to the pure-exact struc-
ture F that we will use them in the rest of this paper.
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Corollary 2.19 Let X, Y and U be left R-modules with an epimorphism p : Y −→ U.
1U is a copartial morphism from U to Y with codomain U if and only if p is a pure
epimorphism.

Corollary 2.20 Let X, Y be left R-modules and p : Y −→ U be an epimorphism.
If f : X −→ U is a copartial morphism (respectively, copartial isomorphism) from
X to Y with codomain U and g : Z −→ X be any morphism (respectively, pure
epimorphism), then f g is an copartialmorphism (respectively, copartial isomorphism)
from Z to Y with codomain U.

3 Finitely Copartial Morphisms

Let M be a left R-module. Let A, C be left R-modules and f : A −→ C an epimor-
phism. The epimorphism f is called M-pure if HomR(M, f ) : HomR(M, A) −→
HomR(M,C) is an epimorphism or in other words for each homomorphism ψ :
M −→ C there exists a homomorphism ϕ : M −→ A such that f ϕ = ψ (see [1]).
Thus, an epimorphism f : A −→ C is called pure if f is M-pure for all finitely
presented left R-modules M . In Sect. 2, we also recall some other equivalent condi-
tions of pure epimorphisms. In [1], Azumaya replaces the class of finitely presented
modules with the class of finitely generated modules in the definition of purity and
the author yields a series of some meaningful results.

Let A,C be left R-modules and f : A −→ C be an epimorphism. In [1], they called
f finitely (singly) split if f is M-pure for all finitely generated (cyclic) R-modules M ,
that means, f is finitely (singly) split if Hom(M, f ) : Hom(M, A) −→ Hom(M,C)

is an epimorphism for all finitely generated (cyclic) left R-modules M . Clearly, every
finitely split epimorphism is both pure and singly split. Let B be a submodule of A.
They said that A is a finite (single) extension of B if the factor module A/B is finitely
generated (cyclic) and B is finitely (singly) split in A if, for every submodule A′ of A
which is a finite (single) extension of B, B is a direct summand of A′.

For an R-module M and for any index set I , MI means I -times direct product
and M (I ) means I -times direct sum of M . Each element of MI can be regarded as a
row vector with entries in M (we denote them by (xi ) whose i-th entry is xi for each
i ∈ I ) and each element of M (I ) can be regarded as a column vector with entries in
M (we denote them by [xi ] whose i-th entry is xi for each i ∈ I ). If n is a positive
integer, Mn is defined to be MI = (M (I )) where I = {1, 2, ..., n}. Let I and J be
two index sets, and let μ = [ai j ] be a row-finite I × J matrix over R. For each row
vector (ri ) ∈ R(I ), the product (ri )μ = ∑

i ri ai j is in R(J ) and this gives a left R-
homomorphism μ : R(I ) −→ R(J ) with the mapping (ri ) −→ (ri )μ. The cokernel of
this homomorphism is denoted byCoker(μ). For a left R-module M , in [1], Azumaya
called μ is a defining matrix of M (or μ defines M) if Coker(μ) ∼= M , i.e., if there is
an exact sequence:

R(I ) μ
R(J ) θ

M

where θ is an epimorphism.
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LetM be any left R-module. For an index J , let [u j | j ∈ J ] be a systemof generators
of M . Then, the mapping (s j ) −→ (s j )[u j ] defines an epimorphism R(J ) −→ M .
For an index set I , let [μi |i ∈ I ] be a system of generators of the kernel of this
epimorphism, and let μ be the (row-finite) I × J matrix whose i-th row is μi for each
i ∈ I . Then, the mapping (ri ) −→ (ri )μ = ∑

riμi gives an epimorphism from R(I )

onto the kernel. Therefore, we have an exact sequence

R(I ) μ
R(J ) M

and so μ is a defining matrix of M . The matrix depends on the choice of generators
[u j ] and [μi ]. Thus, defining matrices of M are not necessarily unique. It is obvious
that M is finitely generated or cyclic if and only if M has a defining matrix of finite
columns or of single column, respectively, while M is finitely presented if and only if
M has a defining matrix of finite rows and columns, i.e., a finite matrix.

Let μ = [ai j ] be any row-finite I × J matrix over R and V a left R-module. By a
system of linear equations forμin V, we mean a system of linear equations of the form∑

j ai j x j = vi for i ∈ I , where [vi ] is a given vector in V I . Let A be a left R-module
and B a submodule of A with inclusion u : B −→ A and μ be a defining matrix of
any module. In [1], they called that B is μ-pure in A (or u is μ-pure monomorphism)
if a system of linear equations for μ in B is solvable in B whenever it is solvable in
A.

Corollary 3.1 Let u : B −→ A be a monomorphism. Then the following conditions
are equivalent:

1. u is aμ-pure monomorphism (B isμ-pure in A) for all matricesμ of finite (single)
column over R.

2. For any commutative diagram with m ∈ N;

Rn

α

f
R(m)

g

0 B
u

A

there exists a homomorphism h : R(m) −→ B such that h f = α.

Let M be a left R-module, μ be a defining matrix of M and f : A −→ C be an
epimorphismwith kernel B. In [1, Proposition 1], Azumaya proved that f isM-pure if
and only if B isμ-pure in A. In [1, Page 119], he had the theorem of Cohn, Fieldhouse
and Warfield that f is a pure epimorphism if and only if B is pure in A if and only
if B is μ-pure in A for all finite matrices μ over R. Then, in [1, Theorem 3], he also
proved that f is a finitely (singly) split epimorphism if and only if B is μ-pure in A
for all matrices μ of finite columns (single column) over R and B is finitely (singly)
split in A.

In this paper, we called the conflation B −→ A −→ C is μ-pure conflation if u
is μ-pure monomorphism (or f is M-pure epimorphism). μ-pure conflations for all
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finite matrices μ over R in R-Mod are coincide with pure-exact sequences. We call a
conflation finite (single) pure conflation if it is a μ-pure conflation for all matrices μ

of finite columns (one column) over R in R-Mod.
If P is the class of all finitely generated (cyclic) modules, the exact structure EP

consists of all finite (single) pure conflations and in this paper we call this exact
structure finite (single) pure-exact structure on R-Mod. As an another application of
F-copartial morphisms to finite pure-exact structureF on the category of R-Mod, we
give the following definition. One of the purposes of this paper is to investigate of
F-copartial morphisms with finite (single) pure-exact structure F on R-Mod.

Definition 3.2 An F-copartial morphism (F-copartial isomorphism) with the finite
(single) pure-exact structure F in the category of R-Mod is called finitely (singly)
copartial morphism (finitely (singly) copartial isomorphism). That means,

Let X and Y be left R-modules. A finitely (singly) copartial morphism (finitely
(singly) copartial isomorphism) f from X to Y is a morphism f : X −→ U whereU
is a quotient of Y with a quotient map p : Y −→ U , such that pullback of f along p:

Q

f

p
X

f

Y
p

U

p is a finitely (singly) split epimorphism (respectively, p and f are finitely (singly)
split epimorphisms). We shall call the quotient module U the codomain of f .

In [15], a morphism α : M −→ N of left R-modules is called a finitely phan-
tom morphism if for each morphism β : F −→ M with F finitely generated, the
composition αβ factors through a projective (or free) left R-module, or equivalently
if the restriction of α to every finitely generated submodule of M factors through a
projective left R-module. If we take F as a finite pure-exact structure on R-Mod in
Lemma 2.11, we get the following corollary by using [15, Theorem 2.5].

Corollary 3.3 Let X and U be left R-modules and f : X −→ U be any morphism. f
is a finitely phantom morphism if and only if for any epimorphism p : Y −→ U f is
a finitely copartial morphism from X to Y with codomain U.

Recall that a morphism α : M −→ N is called a Mittag–Leffler morphism if
for each morphism β : F −→ M with F finitely generated, there exists a finitely
presented left R-module L , ϕ : F −→ L and γ : L −→ M such that αβ = αγϕ.

Proposition 3.4 Let X, Y andU be left R-modules and f : X −→ U beanymorphism.
If f is a Mittag–Leffler morphism, then for any pure epimorphism p : Y −→ U f is
a finitely copartial morphism from X to Y with codomain U.

Proof Let f : X −→ U be a Mittag–Leffler morphism and p : Y −→ U be a pure
epimorphism. If we take the pullback f along p, we get the following commutative
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diagram:

Q

f

p
X

f

Y
p

U

Now to show that p is a finitely split epimorphism, take a finitely generated module
F and a morphism g : F −→ X . Since f is a Mittag–Leffler morphism, there exists
a finitely presented module A, α : A −→ X and β : F −→ A such that f g = f αβ.
Since p is a pure epimorphism and A is a finitely presented module, there exists a
morphism h : A −→ Y such that ph = f α. Then, we get that phβ = f αβ = f g.
By the universal property of pullback, there exists a morphism ϕ : F −→ Q such that
g = pϕ. Therefore, p is finitely split, so f is a finitely copartial morphism. ��
Proposition 3.5 Let X, Y and U be left R-modules and f : X −→ U be any epimor-
phism. If for any epimorphism p : Y −→ U f is a finitely copartial morphism from
X to Y with codomain U, then f is a Mittag–Leffler morphism.

Proof By [15, Theorem 2.13, (1) 	⇒ (3)] and by Corollary 3.3 . ��
Remark 3.6 Let X , Y be left R-modules and U be a quotient of Y . Every finitely
copartial morphism from X to Y with codomain U is copartial morphism from X to
Y with codomain U . But the converse is not true.

Example 3.7 Let F be a field, R = ∏∞
i=1 F and I = ⊕∞

i=1 F . Then, R/I is a flat
R-module but it is not finitely projective by [12, page 1611]. Thus, the identitiy map
1R/I is a copartial morphism which is not finitely copartial.

Proposition 3.8 Let R be a ring. Then, the following are equivalent:

1. R is left Noetherian.
2. Every copartial morphism is finitely copartial.
3. Every copartial morphism is singly copartial.

Proof (1) 	⇒ (2) Let f : X −→ U be a copartial morphism and let p : Y −→ U
be an epimorphism. If we take the pullback of f along p, we get the following
commutative diagram:

Q

f

p
X

f

Y
p

U

with p is a pure epimorphism. So p is finitely split by [1, Proposition 6]. Thus, f is a
finitely copartial morphism.

(2) 	⇒ (3) Clear.
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(3) 	⇒ (1) Let L be a left ideal of R. We will show that L is finitely generated.
Let us take an epimorphism p : X −→ U and any copartial morphism f from R/L
to any module X with codomain U . Then, take the pullback of f along p:

Q

f

p
R/L

f

X
p

U

Since f is copartial, by assumption (3) it is singly copartial. So p is singly split. Since
R/L is cyclic, there exists h : R/L −→ Q. So we can extend copartial morphism f
to a morphism from R/L to X . By Corollary 2.18, R/L is pure-projective. So R/L is
finitely presented. By [19, Proposition 3.2, page 11], L is finitely generated. Thus, R
is Noetherian. ��

If we apply Lemma 2.4, Proposition 2.5 (5) to a finite (single) pure-exact structure
F , we get the following corollaries to use in the sequel.

Corollary 3.9 Let X and Y be left R-modules, U be a quotient of Y with the quotient
map p : Y −→ U and f be a finitely (singly) copartial morphism from X to Y with
codomain U. If f is finitely (singly) split, then p is finitely (singly) split.

Corollary 3.10 Let X and Y be left R-modules and U be a quotient of Y with the
quotient map p : Y −→ U. If f : X −→ Z is a finitely split epimorphism and
g : Z −→ U is any morphism such that g f is a finitely copartial morphism from X
to Y with codomain U, then g is also a finitely copartial morphism from Z to Y with
codomain U.

Let M be a left R-module. Recall that M is called pure-projective if every pure
epimorphism onto M splits. A ring R is called left pure-semisimple if each left R-
module is pure-projective. In [1], Azumaya called M finitely (singly) pure-projective
if every pure epimorphism onto M is finitely (singly) split. It is clear that every pure-
projective module is finitely pure-projective.

Nowwe give a new characterization of finitely pure-projective modules with copar-
tial morphisms:

Theorem 3.11 Let P be a left R-module. P is finitely pure-projective if and only if
every copartial morphism from P to any module X with codomain U, where U is a
quotient of X, is a finitely copartial morphism from P to X with codomain U.

Proof Let P be finitely pure-projective and f be a copartial morphism from P to X
with codomainU , whereU is a quotient of X with quotient map p : X −→ U . Then,
we get the following commutative diagram by taking pullback of f along p:

Q

f

p
P

f

X
p

U

123



F -Copartial Morphisms Page 19 of 23 32

with pure epimorphism p. As P is finitely pure-projective, p is a finitely split epimor-
phism. Thus, f is a finitely copartial morphism from P to X with codomain U .

Conversely, let us take a pure epimorphism p from A to P . Since p is a pure-
epimorphism, 1P is a copartial morphism by Corollary 2.19. By assumption, 1P is a
finitely copartial morphism. Then, p is finitely split by Lemma 3.9. Therefore, P is a
finitely pure-projective module. ��
Proposition 3.12 The following are equivalent for the ring R:

1. R is left Noetherian.
2. Any left R-module M is finitely pure-projective.
3. Any left R-module M is singly pure-projective.

Proof By Theorem 3.11 and Proposition 3.8. ��
Corollary 3.13 A left Noetherian ring R is left pure-semisimple if and only if every
finitely (singly) pure-projective module is pure-projective.

Proof It is clear from Proposition 3.12. ��
In the next proposition, we give the alternative proof for [1, Corollary 8], by using

Theorem 3.11.

Proposition 3.14 Let P an P ′ be left R-modules, and let there be a finitely (singly)
split epimorphism u : P −→ P ′. If P is finitely (singly) pure-projective, then so is P ′
too.

Proof Let f be any copartial morphism from P ′ to Y with codomain U with an
epimorphism p : Y −→ U . By Corollary 2.20, f u is a copartial morphism from P to
Y with codomain U . Since P is finitely (singly) pure-projective, then f u is a finitely
(singly) copartial morphism. So f is a finitely (singly) copartial morphism from P ′ to
Y with codomainU by Corollary 3.10. Thus, P ′ is finitely (singly) pure-projective. ��

Let M be a left R-module. M is called flat if for any right R-module A and a
submodule B of A the natural homomorphism κ ⊗ M : B ⊗R M −→ A ⊗R M is a
monomorphism, where κ is the inclusion map B −→ A. The flatness for M is equiv-
alent to the condition that every epimorphism onto M is pure in [19, Proposition 11.1,
page 371]. And recall that M is called finitely (singly) projective if every epimorphism
onto M is finitely (singly) split (see [1]). Clearly, M is finitely projective if and only
if M is flat and finitely pure-projective.

If F is a pure-exact structure on R-Mod category, Theorem 2.14 gives us the
characterization of flat modules and Proposition 2.15 gives us the result of Wisbauer
(see [23, 36.1]) as follows.

Corollary 3.15 M is a flat R-module if and only if for any module N and its quotient
U with an epimorphism p : N −→ U, every morphism from M to U is a copartial
morphism from M to N with codomain U.

Corollary 3.16 Let M and M ′ be R-modules, and let there be a pure epimorphism
M −→ M ′. If M is flat, then so is M ′ too.
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If F is a finite pure-exact structure on R-Mod category, Theorem 2.14 gives us
the characterization of finitely projective modules and Proposition 2.15 gives us the
results of Azumaya (see [1, Corollary 13 and Proposition 15]) as follows.

Corollary 3.17 M is a finitely (singly) projective R-module if and only if for anymodule
N and its quotient U with an epimorphism p : N −→ U, every morphism from M to
U is a finitely (singly) copartial morphism from M to N with codomain U.

Corollary 3.18 Let M and M ′ be R-modules, and let there be a finitely (singly) split
epimorphism M −→ M ′. If M is finitely (singly) projective, then so is M ′ too.

Corollary 3.19 Let R be a left Noetherian ring. Then, every flat left R-module is finitely
projective.

Proof By Proposition 3.8, Corollary 3.15 and Corollary 3.17. ��

4 �-partial Morphisms

To give the dual notion of finitely (singly) copartial morphism in R-Mod category,
first we define μ-partial morphisms for a defining matrix μ. μ-partial morphisms are
extensions of the partial morphisms that mention in [5].

Definition 4.1 Let X , Y be left R-modules and μ be a defining matrix of any module.
A μ-partial morphism (respectively, μ-partial isomorphism) f from X to Y is a
morphism f : U −→ Y whereU is a submodule of X with an inclusion u : U −→ X
such that in the pushout of f along u,

U

f

u
X

f

Y
u

P

u is aμ-pure monomorphism (respectively, u and f areμ-pure monomorphisms). We
shall call U the domain of f .

Remark 4.2 μ-partialmorphisms for all finitematricesμover R in R-Mod category are
partial morphisms in the sense of Ziegler which are studied in [5].μ-partial morphisms
for all matrices μ of finite columns (one column) over R in R-Mod category are just
the dual versions of finite (singly) copartial morphisms.

In [1], it is defined that Q is finitely (singly) pure-injective if Q is finitely (singly)
split in every pure extension of Q. Clearly, it is equivalent to condition that Q is
direct summand of every finite (single) pure-extension of Q. On the other hand, in
[1] Q is called finitely (singly) compact if Q satisfies the condition of the algebraic
compactness for all row finite matrices of finite (single) column(s). (instead of all row
finite matrices).

123



F -Copartial Morphisms Page 21 of 23 32

Proposition 4.3 Let M be a left R-module. M is finitely (singly) pure-injective if and
only if every pure monomorphism start with M is a μ-pure monomorphism for all
matrices μ of finite columns (one column).

Proof It is clear from [1, Theorem 3]. ��
We can give the characterization of finitely (singly) pure-injective left R-modules

with μ-partial morphisms.

Proposition 4.4 Let Q be a left R-module. Q is finitely (singly) pure-injective if and
only if every partial morphism from any module X to Q with domain U, where U is a
submodule of X, is μ-partial morphism from X to Q with domain U for all matrices
μ of finite columns (one column).

Proof Let f be a partial morphism from X to Q with domainU . If we take the pushout
of f along u, we get the following commutative diagram:

U

f

u
X

f

Q
u

P

with u is a pure-monomorphism. Since Q is finitely (singly) pure-injective, u is a
μ-pure monomorphism for all matrices μ of finite columns (one column) over R by
Proposition 4.3. Therefore, f is μ-partial morphism from X to Q with domain U for
all matrices μ of finite columns (one column).

Conversely, let us take a pure monomorphism u : Q −→ A start with Q. Then,
1Q is a partial morphism from A to Q with domain Q from [5, Proposition 5]. By
assumption, 1Q is a μ-partial morphism for all matrices μ of finite columns (one
column). By the Obscure Axiom in [3], u is μ-pure monomorphism for all matrices μ

of finite columns (one column). Therefore, Q is finitely (singly) pure-injective from
Proposition 4.3. ��

In [2, Theorem 1.8], they give some characterizations of semi-compact modules.
We give some of them in the following:

Corollary 4.5 Let M be a left R-module. Then the followings are equivalent:

1. M is semi-compact.
2. M is singly pure-injective.
3. Every pure monomorphism start with M is singly split monomorphism.

Now, as a consequence of all these results we can give a new characterization of
semi-compact modules:

Proposition 4.6 Let Q be an R-module. Q is semi-compact if and only if every partial
morphism from any module X to Q with domain U, where U is a submodule of X is
μ-partial morphism for all matrices μ of one column from X to Q with domain U.
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