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Abstract
This paper is concerned with a class of nonlocal dispersal problem with Dirichlet
boundary conditions. We analyze the limit of solutions when the dispersal kernel is
rescaled. Our main results reveal that the solutions of Dirichlet heat equation can be
approximated by the nonlocal dispersal equation. The investigation also shows that the
nonlocal dispersal equation is similar to the convection–diffusion equation by taking
another special kernel function.
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1 Introduction

Let K : R
N × R

N → R be a nonnegative, continuous function such that∫
RN K (y, x) dy = 1 for all x ∈ R

N . Nonlocal dispersal equation of the form

ut (x, t) =
∫

RN
K (x, y)u(y, t) dy − u(x, t), (1.1)

and variations of it have been widely used to model diffusion process [1, 3]. As
stated in [9, 11], if u(x, t) is thought as a density at position x at time t and the
probability distribution that individuals jump from y to x is given by K (x, y), then
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∫
RN K (x, y)u(y, t) dy denotes the rate at which individuals are arriving to position
x from all other places and u(x, t) = ∫

RN K (y, x)u(x, t) dy is the rate at which
they are leaving position x to all other places. This consideration, in the absence of
external sources, leads immediately to that u(x, t) satisfies (1.1). For recent references
on nonlocal dispersal equations, see [2–4, 17, 19] and references therein.

It is known from [1, 9] that nonlocal dispersal equation shares many properties with
the classical heat equation.Moreover, Cortazar et al. [6] proved that a suitable rescaled
nonlocal equation with convolution kernel function can approximate the classical heat
equation with Dirichlet boundary condition. We refer to [5, 13–16, 18] for the recent
study of nonlocal rescaled problems. In the present paper, we study nonlocal dispersal
problemwith non-homogeneous kernel functions. We then analyze the approximation
solutions when the dispersal kernel is rescaled. To do this, let us first consider the
nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN J (x, x − y)[u(y, t) − u(x, t)] dy in � × (0,∞),

u(x, t) = g(x, t) in RN\� × (0,∞),

u(x, 0) = u0(x) in �,

(1.2)

where � is a bounded smooth domain of RN , J : RN × R
N → R is a nonnegative

dispersal kernel such that
∫
RN J (x, y)dy = 1 for any x ∈ R

N . The function g(x, t)
is defined for x ∈ R

N\�, t > 0 and u0(x) is defined for x ∈ �. In (1.2), the values
of u(x, t) are prescribed outside �, which is analogous to the Dirichlet boundary
condition for heat equation [1, 4]. Throughout this paper, we make the following
assumptions.

(A1) J : R
N × R

N → R is nonnegative, smooth, J (0, 0) > 0, J (x, y) =
J (|x |, |y|) for x, y ∈ R

N .Moreover,
∫
RN J (x, y)dy = 1and

∫
RN J (x, y)|y|2dy <

∞ for any x ∈ R
N .

(A2) The function g(x, t) and u0(x) are smooth functions.

It follows from the assumption (A1) that the dispersal kernel function J may not
be a symmetric function. However, we shall prove that the rescaled nonlocal dispersal
equation of (1.2) is analogous to heat equation

⎧
⎪⎨

⎪⎩

ut (x, t) = �u(x, t) in � × (0,∞),

u(x, t) = g(x, t) in ∂� × (0,∞),

u(x, 0) = u0(x) in �.

(1.3)

Note that the regularity of solution u(x, t) to (1.3) is related to the properties of �,
u0(x) and g(x, t), see [7, 8]. So in this paper, we assume that u(x, t) is the unique
solution to (1.3) and

u ∈ C2+α,1+α/2(�̄ × [0, T ])
for some 0 < α < 1. Take ε > 0, we consider the rescaled kernel function of J (x) as
follows

Jε(x, ξ) = 1

εNd(x)
J

(

x,
ξ

ε

)

,
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here d(x) is given by

d(x) = 1

2N

∫

RN
J (x, y)|y|2dy. (1.4)

By (A1), we know that d(x) is positive and finite for x ∈ �. We then consider the
nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

(uε)t (x, t) = 1
ε2

∫
RN Jε(x, x − y)[uε(y, t) − uε(x, t)] dy in � × (0,∞),

uε(x, t) = g(x, t) in RN\� × (0,∞),

uε(x, 0) = u0(x) in �.

(1.5)
Existence and uniqueness of solutions to (1.5) will be established in Sect. 2. We show
that there exists a unique solution uε(x, t) to (1.5) such that

uε ∈ C1([0,∞); L1(�)).

Now, we are ready to state the main result.

Theorem 1.1 Assume that u ∈ C2+α,1+α/2(� × [0, T ]) is the solution of (1.3) and
uε(x, t) is the solution of (1.5), respectively. Then, there exists C = C(T ) such that

sup
t∈[0,T ]

‖uε(·, t) − u(·, t)‖L∞(�) ≤ Cεα → 0 as ε → 0.

From Theorem 1.1, we can see that the nonlocal dispersal Eq. (1.5) is similar to the
Dirichlet heat equation (1.3). It follows from the classical works of Ignat and Rossi
[10] that the asymmetric nonlocal dispersal equationmay be similar to the convection–
diffusion equation. However, our result shows that the nonlocal dispersal Eq. (1.5)may
also be similar to the diffusion equation without convection.

In the second part of this paper, let us consider the nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

ut (x, t) = ∫
RN J (y, x − y)[u(y, t) − u(x, t)] dy in � × (0,∞),

u(x, t) = g(x, t) in RN\� × (0,∞),

u(x, 0) = u0(x) in �.

(1.6)

For ε > 0, we use the rescaled kernel function

J ε(y, ξ) = 1

εNd(x)
J

(

y,
ξ

ε

)

and study the rescaled nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

uε
t (x, t) = 1

ε2

∫
RN J ε(y, x − y)[uε(y, t) − uε(x, t)] dy in � × (0,∞),

uε(x, t) = g(x, t) in RN\� × (0,∞),

uε(x, 0) = u0(x) in �,

(1.7)
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here, d(x) is given in (1.4). Existence and uniqueness of solutions to (1.6) and (1.7)
will be established in Sect. 2. We show that there exists a unique solution uε(x, t) to
(1.5) such that

uε ∈ C1([0,∞); L1(�)).

In order to get a simple statement, we assume further that J satisfies the following
condition.

(A3) There exists c > 0 such that J (x, y) = 0 for |x | > c and |y| > c.

We shall prove that the rescaled nonlocal dispersal Eq. (1.7) will approximate the
convection–diffusion equation

⎧
⎪⎨

⎪⎩

ut = �u + q(x) · ∇u in � × (0,∞),

u(x, t) = g(x, t) in ∂� × (0,∞),

u(x, 0) = u0(x) in �,

(1.8)

where q(x) = (q1(x), q2(x), · · · , qN (x)) and qi (x) is given by

qi (x) = 1

d(x)

∫

RN

∂ J (x, y)

∂x
yyi dy

for i = 1, 2, · · · , N and y = (y1, y2, · · · , yN ).

Theorem 1.2 Assume that (A1) − (A3) hold. Let u ∈ C2+α,1+α/2(� × [0, T ]) be the
solution of (1.8) and uε(x, t) be the solution of (1.7), respectively. Then, we have

sup
t∈[0,T ]

‖uε(·, t) − u(·, t)‖L∞(�) → 0 as ε → 0.

By Theorem 1.2, we know that the nonlocal Dirichlet Eq. (1.7) is similar to the
classical convection–diffusion equation.Ourmain results reveal that nonlocal dispersal
equation with non-homogeneous kernel function may also be similar to convection–
diffusion equation.

The rest of the paper is organized as follows. In Sect. 2, we prove existence
and uniqueness of solutions to our nonlocal models. The main results are proved in
Sect. 3.

2 Existence and Uniqueness

In this section, we establish the existence and uniqueness of solutions to our main
models. Here by a solution of (1.2), it is understood in an integral sense.

Definition 2.1 A solution of (1.2) is a function u ∈ C([0,∞); L1(�)) such that

u(x, t) = u0(x)+
∫ t

0

∫

RN
J (x, x− y)[u(y, s)−u(x, s)] dyds, (x, t) ∈ �×(0,∞),

123
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and
u(x, t) = g(x, t), (x, t) ∈ R

N\� × (0,∞).

The solution of (1.6) can be defined by a similar way. Since the argument for (1.6)
is analogous, we first study the model (1.2). Existence and uniqueness will be obtained
by Banach’s fixed point theorem. Fix t0 > 0 and consider the space

Xt0 = {
w ∈ C([0, t0];L1(�))}.

We then know that Xt0 is a Banach space with norm

|||w||| = max
0≤t≤t0

||w||L1(�).

Define T : Xt0 → Xt0 by

Tu0 (w)(x, t) = u0(x) +
∫ t

0

∫

RN
J (x, x − y)[u(y, s) − u(x, s)] dyds, (x, t) ∈ � × (0,∞),

where it is assumed that

u(x, t) = g(x, t), (x, t) ∈ R
N\� × (0,∞).

Lemma 2.2 Assume that u0, v0 ∈ L1(�). Then, there exists C > 0 depending only on
J and � such that

|||Tu0(w) − Tv0(z)||| ≤ Ct0|||u − v||| + ||u0 − v0||L1(�)

for u, v ∈ Xt0 .

Proof Note that

||Tu0(u) − Tv0(z)||L1(�)

≤
∫

�

∣
∣
∣
∣

∫ t

0

∫

RN
J (x, x − y)([u(y, s) − v(y, s)] − [u(x, s) − v(x, s]) dyds

∣
∣
∣
∣

× dx + ||u0 − v0||L1(�)

≤
∫ t

0

∫

�

∫

�

J (x, x − y)|u(y, s) − v(y, s)| dydxds

+
∫ t

0

∫

�

∫

�

J (x, x − y)|u(y, s) − v(y, s)| dydxds + ||u0 − v0||L1(�),

we obtain that

|||Tu0(w) − Tv0(z)||| ≤ Ct0|||u − v||| + ||u0 − v0||L1(�)

for some C > 0. �	
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Theorem 2.3 For every u0 ∈ L1(�), there exists a unique solution u(x, t) to (1.2) and

u ∈ C1([0,∞); L1(�)). (2.1)

Proof By the definition of Tu0 , we know that Tu0 maps Xt0 into Xt0 . Then, it follows
from Lemma 2.2 that Tu0 is a contraction map if we choose t0 small enough such that
Ct0 < 1. By Banach’s fixed point theorem, we get the existence and uniqueness of
solutions in the interval [0, t0]. Then, we take u(x, t0) ∈ L1(�) as initial value and we
can obtain a solution up to [0, 2t0]. Iterating this procedure, we get a solution u(x, t)
such that

u ∈ C([0,∞); L1(�)). (2.2)

But for any δ 
= 0 and t > 0, we have

u(x, t + δ) − u(x, t)

=
∫ t+δ

t

∫

RN
J (x, x − y)[u(y, s) − u(x, s)] dyds.

It follows from (2.2) and Lebesgue theorem that

lim
δ→0+

u(x, t + δ) − u(x, t)

δ
=

∫

RN
J (x, x − y)[u(y, t) − u(x, t)] dyds.

Hence, we know that (2.1) holds. �	
Analogously, we obtain the following result.

Theorem 2.4 For every u0 ∈ L1(�), there exists a unique solution u(x, t) to (1.6) and

u ∈ C1([0,∞); L1(�)).

At the end of this section, we give the comparison principle. The sub-super solutions
are defined as follows.

Definition 2.5 A function u ∈ C((0, T ); L1(�)) is a super-solution to (1.2) if

⎧
⎪⎨

⎪⎩

ut (x, t) ≥ ∫
RN J (x, x − y)[u(y, t) − u(x, t)] dy, x ∈ �, t > 0,

u(x, t) ≥ g(x, t), x ∈ R
N\�, t > 0,

u(x, 0) ≥ u0(x), x ∈ �.

The sub-solution is defined analogously by reversing the inequalities.
We have the following results on sub-super solutions. One can see [6] for a similar

proof.

Theorem 2.6 Assume that u(x, t), v(x, t) are a pair of super-sub solutions to (1.2).
Then, u(x, t) ≥ v(x, t) for (x, t) ∈ � × (0,∞).

Theorem 2.7 Assume that u(x, t), v(x, t) are a pair of super-sub solutions to (1.6).
Then, u(x, t) ≥ v(x, t) for (x, t) ∈ � × (0,∞).

123
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3 Proof of Main Results

In this section, we shall prove the main results of this paper. We first consider the case
of nonlocal dispersal Eq. (1.2).

Proof of Theorem 1.1 In (1.3), the functions g(x, t) and u0(x) are smooth, and we then
can extend u(x, t) to thewhole space, see [8, 12]. Let ṽ(x, t) be aC2+α,1+α/2 extension
of u(x, t) to RN × [0, T ] and consider the operator

Lε(ω) = 1

ε2

∫

RN
Jε(x, x − y)[ω(y, t) − ω(x, t)] dy.

We can see that ṽ(x, t) satisfies

⎧
⎪⎨

⎪⎩

ṽt (x, t) = Lε(̃v)(x, t) + Fε(x, t), x ∈ �, t ∈ (0, T ],
ṽ(x, t) = g(x, t) + G(x, t), x ∈ R

N\�, t ∈ (0, T ],
ṽ(x, 0) = u0(x), x ∈ �,

(3.1)

where
Fε(x, t) = −Lε(̃v)(x, t) + �ṽ(x, t).

Since G(x, t) = ṽ(x, t) − g(x, t) is smooth and G(x, t) = 0 for x ∈ ∂�, we can find
M1 > 0, such that

|G(x, t)| ≤ M1ε (3.2)

for x satisfying dist(x, ∂�) ≤ ε.
The existence and uniqueness of solution uε(x, t) to (1.5) are followed by Theorem

2.3. Define ωε(x, t) = ṽ(x, t) − uε(x, t), then we get

⎧
⎪⎨

⎪⎩

(ωε)t (x, t) = Lε(ωε)(x, t) + Fε(x, t), x ∈ �, t ∈ (0, T ],
ωε(x, t) = G(x, t), x ∈ R

N\�, t ∈ (0, T ],
ωε(x, 0) = 0, x ∈ �.

Note that ṽ ∈ C2+α,1+α/2(� × [0, T ]), we claim that there exists M2 > 0 such that

sup
t∈[0,T ]

‖Fε‖L∞(�) = sup
t∈[0,T ]

‖�ṽ − Lε(̃v)‖L∞(�) ≤ M2ε
α. (3.3)

In fact, we know that

�ṽ(x, t) − Lε(̃v)(x, t)

= �ṽ(x, t) − 1

ε2d(x)

∫

RN
Jε(x, x − y)[̃v(y, t) − ṽ(x, t)] dy

= �ṽ(x, t) − 1

εN+2d(x)

∫

RN
J

(

x,
x − y

ε

)

[̃v(y, t) − ṽ(x, t)] dy

= �ṽ(x, t) − 1

ε2d(x)

∫

RN
J (x, z)[̃v(x − εz, t) − ṽ(x, t)] dz.

123
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But ṽ ∈ C2+α,1+α/2(� × [0, T ]), a simple argument from Taylor’s theorem shows
that

�ṽ(x, t) − Lε(̃v)(x, t)

= �ṽ(x, t) + 1

εd(x)

N∑

i=1

∂ṽ(x, t)

∂xi

∫

RN
J (x, z)zi dz

− 1

2d(x)

N∑

i, j=1

∂2ṽ(x, t)

∂xi∂x j

∫

RN
J (x, z)zi z j dz + O(εα).

By the assumption (A1), we have

∫

RN
J (x, z)zi dz = 0

for i = 1, 2 · · · , N and ∫

RN
J (x, z)zi z j dz = 0

for i, j = 1, 2 · · · , N and i 
= j . Accordingly,

�ṽ(x, t) − Lε(̃v)(x, t)

= �ṽ(x, t) − 1

2d(x)

N∑

i=1

∂2ṽ(x, t)

∂x2i

∫

RN
J (x, z)z2i dz + O(εα)

= O(εα).

Hence,
sup

t∈[0,T ]
‖Fε‖L∞(�) = sup

t∈[0,T ]
‖�ṽ − Lε(̃v)‖L∞(�) ≤ M2ε

α.

This gives that (3.3) holds.
Now, denote

w(x, t) = M1ε
αt + M2ε.

For x ∈ �, we have

wt (x, t) − Lε(w)(x, t) = M1ε
α ≥ Fε(x, t) = (wε)t (x, t) − Lε(wε)(x, t). (3.4)

In view of (3.1–3.2), by choosing M2 large, we obtain

w(x, t) ≥ wε(x, t)

for x ∈ R
N\� such that dist(x, ∂�) ≤ ε and t ∈ [0, T ]. Moreover, it is clear that

w(x, 0) = K2ε ≥ wε(x, 0) = 0. (3.5)

123
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Thanks to (3.4–3.5), we have w(x, t) is the super-solution of (3.1). This yields

wε(x, t) ≤ w(x, t) = K1ε
αt + K2ε.

By a similar way, we can show that

w = −K1ε
αt − K2ε

is a sub-solution and

wε(x, t) ≥ w(x, t) = −K1ε
αt − K2ε.

Hence,
sup

t∈[0,T ]
‖uε(·, t) − u(·, t)‖L∞(�) ≤ Cεα → 0 as ε → 0

and we end the proof. �	
In order to prove Theorem 1.2, we consider the elliptic equation

⎧
⎪⎨

⎪⎩

vt (x, t) = ∑N
i, j=1 a

ε
i j (x)

∂2v(x,t)
∂xi ∂x j

+ ∑N
i=1 q

ε
i (x)

∂v(x,t)
∂xi

in � × (0,∞),

v(x, t) = g(x, t) in ∂� × (0,∞),

v(x, 0) = u0(x) in �,

(3.6)

where ε > 0, the coefficients

aε
i j (x) = 1

2d(x)

∫

RN
J (x − εz, z)zi z j dz

and

qε
i (x) = − 1

εd(x)

∫

RN
J (x − εz, z)zi dz

for i, j = 1, 2 · · · , N . We know from [8, 12] that (3.6) admits a unique solution

vε ∈ C2+α,1+α/2(�̄ × [0, T ]).

We then have the following results.

Lemma 3.1 Assume that (A1) − (A3) hold. Let v(x, t) and vε(x, t) be the solutions
of (1.8) and (3.6), respectively. Then, we have

sup
t∈[0,T ]

‖vε(·, t) − v(·, t)‖L∞(�) → 0 as ε → 0. (3.7)

Proof Since

lim
ε→0

∫

RN
J (x − εz, z)zi z j dz =

∫

RN
J (x, z)zi z j dz uniformly in �̄

123
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for i, j = 1, 2, · · · , N and

∫

RN
J (x, z)zi z j dz = 0

for i 
= j , we get

lim
ε→0

aε
i j (x) =

{
1 if i = j,

0 if i 
= j .

On the other hand, we have

lim
ε→0

∫

RN

1

ε
J (x − εz, z)zi dz = −

∫

RN

∂ J (x, z)

∂x
zzi dz.

and so
lim
ε→0

qε
i (x) = qi (x) uniformly in �̄

for i = 1, 2, · · · , N . Hence, we know that (3.7) holds. �	
Lemma 3.2 Assume that (A1) − (A3) hold. Let vε(x, t) be the solution of (3.6) and
uε(x, t) be the solution of (1.7), respectively. Then, we have

sup
t∈[0,T ]

‖uε(·, t) − vε(·, t)‖L∞(�) → 0 as ε → 0.

Proof Let ṽε(x, t) ∈ R
N × [0, T ] be the extension of vε(x, t) to RN × [0, T ], where

vε(x, t) is the unique solution to (3.6). Define the operator

Lε(ω) = 1

ε2

∫

RN
J ε(y, x − y)[ω(y, t) − ω(x, t)] dy.

Then, ṽε(x, t) satisfies

⎧
⎪⎨

⎪⎩

ṽε
t (x, t) = Lε(̃vε)(x, t) + Fε(x, t), x ∈ �, t ∈ (0, T ],

ṽε(x, t) = g(x, t) + G(x, t), x ∈ R
N\�, t ∈ (0, T ],

ṽε(x, 0) = u0(x), x ∈ �,

where

Fε(x, t) = −Lε(̃vε)(x, t) +
N∑

i, j=1

aε
i j (x)

∂2ṽε(x, t)

∂xi∂x j
+

N∑

i=1

qε
i (x)

∂ṽε(x, t)

∂xi
.

Besides, since G(x, t) = ṽε(x, t) − g(x, t) is smooth and G(x, t) = 0 if x ∈ ∂�,
then there exists M1 > 0 such that

|G(x, t)| ≤ M1ε

for x such that dist(x, ∂�) ≤ ε.

123
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Denote wε(x, t) = ṽε(x, t) − uε(x, t), then we have

⎧
⎪⎨

⎪⎩

wε
t (x, t) = Lε(wε)(x, t) + Fε(x, t), x ∈ �, t ∈ (0, T ],

wε(x, t) = G(x, t), x ∈ R
N\�, t ∈ (0, T ],

wε(x, 0) = 0, x ∈ �.

We claim that for ε > 0 is small, there exists M2 > 0 such that

sup
t∈[0,T ]

||Fε||L∞(�) ≤ M2ε
α. (3.8)

In fact, we always have

N∑

i, j=1

aε
i j (x)

∂2ṽε(x, t)

∂xi∂x j
+

N∑

i=1

qε
i (x)

∂ṽε(x, t)

∂xi
− Lε(̃vε)(x, t)

=
N∑

i, j=1

aε
i j (x)

∂2ṽε(x, t)

∂xi∂x j

+
N∑

i=1

qε
i (x)

∂ṽε(x, t)

∂xi
− 1

εN+2d(x)

∫

RN
J

(

y,
x − y

ε

)

[̃v(y, t) − ṽ(x, t)] dy.

Set z = (x − y)/ε, then we get

1

εN+2

∫

RN
J

(

y,
x − y

ε

)

[̃v(y, t) − ṽ(x, t)] dy

= 1

ε2

∫

RN
J (x − εz, z)[̃v(x − εz, t) − ṽ(x, t)] dz

= 1

ε2

∫

RN
J (x − εz, z)

[
N∑

i=1

∂ṽ(x, t)

∂xi
(−εzi )

+1

2

N∑

i, j=1

∂2ṽ(x, t)

∂xi∂x j
(−εzi )(−εz j ) + O(ε2+α)

⎤

⎦ dz

= −
∫

RN

N∑

i=1

1

ε
J (x − εz, z)zi

∂ṽ(x, t)

∂xi
dz

+ 1

2

∫

RN

N∑

i, j=1

J (x − εz, z)zi z j
∂2ṽ(x, t)

∂xi∂x j
dz + O(εα),

this also shows that (3.8) holds,
Denote

w(x, t) = K1ε
αt + K2ε.
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For x ∈ �, by the claim above, we have

w(x, t) − L̃(w̄)(x, t) = K1ε
α ≥ Fε(x, t) = (wε)t (x, t) − Lε(wε)(x, t). (3.9)

We can take K2 large enough such that

w(x, t) ≥ M1ε ≥ |G(x, t)|

for x ∈ R
N\� satisfying dist(x, ∂�) ≤ ε and t ∈ [0, T ]. Moreover, we have

w(x, 0) = K2ε > wε(x, 0) = 0. (3.10)

Thanks to (3.9–3.10), we use the comparison principle to obtain

wε(x, t) ≤ w(x, t) = K1ε
αt + K2ε.

Similarly, we can show that

wε(x, t) ≥ w(x, t) = −K1ε
αt − K2ε.

Hence,
sup

t∈[0,T ]
||uε(·, t) − v(·, t)||L∞(�) ≤ Cεα.

We end the proof. �	
At last, let v ∈ C2+α,1+α/2(� × [0, T ]) be the solution of (1.8). Then, we have

‖uε(·, t) − v(·, t)‖L∞(�) ≤ ‖vε(·, t) − v(·, t)‖L∞(�) + ‖uε(·, t) − vε(·, t)‖L∞(�).

It follows from Lemmas 3.1–3.2 that

sup
t∈[0,T ]

‖uε(·, t) − v(·, t)‖L∞(�) → 0 as ε → 0

and we end the proof of Theorem 1.2.
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