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Abstract

A new Brauer-type Z-eigenvalue inclusion set for an even-order real tensor is pre-
sented. It is proved that it is tighter than the existing inclusion sets. As an application,
a sufficient condition for the positive definiteness of an even-order real symmetric
tensor (also a homogeneous polynomial form) and asymptotically stability of time-
invariant polynomial systems is given.
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1 Introduction
Let m and n be two positive integers with m > 2 and n > 2, [n] = {1,2,...,n},
C (resp. R) be the set of all complex (resp. real) numbers, R” be the set of all n-

dimensional real vectors, R[] be the set of all order m dimension 7 real tensors. Let
x = (x1,x2,...,%) €R".Let = (aji,..;,) € R"™M ie.,

Aitiy..ipy € R, ij (S [I’l], ] € [m]

Let I7,, be the permutation group of m indices.If for any 7 € I,
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ailiZ---im = ain(l)in(Z)-"in(m)

then .7 is called a symmetric tensor [13].
If there are A € R and x = (x1, x7, ... ,xp) | €R” \ {0} such that

x™ V' =xx and x'x =1,

where .o7x™~! is an n-dimensional vector, whose i-th component is

m—1 § :
(JZ{X ) = Ajiy.imXip « Xy

1 . .
02, im€[n]

then A is called a Z-eigenvalue of &7 and x is called a Z-eigenvector associated with
A [10, 13]. Let o (<) be the set of all Z-eigenvalues of 7.

The Z-identity tensor is introduced by the authors in [7, 8, 13]. A tensor & =
(€iriy...in) € R with m even is called a Z-identity tensor if for any vector x € R”,

Tx=1.

Ex"'=x and x

Note here that an even-order n dimension Z-identity tensor is not unique in general.
For instance, the following two tensors are both Z-identity tensors:
Case L. ([8, Definition 2.1]): Let &1 = (e;,i5...i,,) € R where

€ijitirin.iziy = 1, 11,02,...,0k € [n], and m = 2k;
Case IL. ([7, Property 2.4]): Let &> = (ej,i,..i,,) € R where

1

= % Siﬂ(l)in(Z) 5in(3)in(4) M 8in(mfl)in(m) ’
“well,

ei,

where § is the standard Kronecker delta, i,e., §;j = 1ifi = jand §;; =0if i # j.
For convenient applications, the Z-identity tensor &> = (e;jx) € R4 s Tisted as
follows:

1, ifi=j=k=1,
1/3, ifi=j#k=I,

eijrl = \1/3, ifi=k#j=1I,
1/3, ifi=1+#j=k,
0, otherwise.

An even-order m dimension n real symmetric tensor </ defines an m-th degree
homogeneous polynomial

fx) = x" = Z Qiyin.igXiy Xiy + + - Xiyy - D

1,02, im €[N]
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If f(x) > 0 for any x € R" \ {0}, then we call that f(x) is positive definite. It is
pointed out that f(x) is positive definite if and only if .7 is positive definite [13, 14].
On the other hand, if all Z-eigenvalues of the real symmetric tensor <7 with order even
are positive, then o7 is positive definite and therefore f(x) is also positive definite.
The positive definiteness of f (x) has extremely important applications in real life. As
pointed out in some documents, it is widely used in spectral hypergraph theory [15,
16], automatic control [12] and the stability of nonlinear systems [1, 2].

For judging the positive definiteness of f(x), we must calculate all Z-eigenvalues
of an even-order real symmetric tensor .27, or calculate the minimum Z-eigenvalue of
<. When all Z-eigenvalues of .7 are greater than 0, or the minimum Z-eigenvalue
of o is greater than 0, we can judge that f(x) is positive definite. However, if m or
n are very large, it is difficult to calculate all Z-eigenvalues of <7 and the minimum
Z-eigenvalue of o7. In order to be able to solve this problem quickly, we can take a
very normal and simple method: we only need to judge the signs of all Z-eigenvalues,
but not to compute all Z-eigenvalues. In order to achieve this goal, one can construct a
set which includes all Z-eigenvalues of 7. If this set is just in the right-half complex
plane, then he can conclude that all Z-eigenvalues are positive, and consequently, .o/
is positive definite. The related results are shown in [8, 19-21, 24, 30, 31].

Wang et al. [25] gave the following Z-eigenvalue inclusion set for tensors as follows:

Theorem 1 [25, Theorem 3.2] Let 7 = (a;,. ;,) € RV, Then

s L= [ L.
i€ln] jelnl,j#i

where
L j(@)={zeC: (lz| —(Ri(H)— | aij..; D) | z|<|aij..j | Rj()}
and

Ri(e) = Z | Giis...i,

From Theorem 1, we can easily see that 0 € .2 (7). Therefore, this means that we
cannot use the set .Z (<) to determine the positive definiteness of a real symmetric
tensor .« of even order. However, there are many such similar sets, which can be seen
in detail [3-6, 9, 11, 17, 18, 23, 25-29]. Because 0 exists in these inclusion sets, we
cannot use such inclusion sets to determine the positive definiteness of even-order real
symmetric tensors.

In order to overcome this drawback, Li et al. [8] presented a Z-eigenvalue inclusion
interval with n parameters for even-order real tensors as follows:
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Theorem 2 [8, Theorem 2.2] Let &/ = (a;,..;,) € R vpith m even. Then for any
real vector o = (ay, ..., ay) | e R

o) S @)= | (% @) =z € Ril 2= |< R/ a)}),
i€[n]
where
Ri(, i)=Y iy iy = Cilityiny| + Y |iiy_iy .

i,..., im€[n], i2,.00s im€ln],
Ciiy.im F Ciiy..im =

In order to be able to locate the Z-eigenvalues more accurately, Shen et al. [22]
gave the following inclusion set.

Theorem 3 [22, Theorem 1] Let o7/ = (a;,..;,) € R and & € R pe a Z-

identity tensor. For any real vector « = (a1, . . ., ozn)—r € R”, then
o) ST ()= | Y( @),
i€[n] jelnl, j#i
where

T j( @ a)={zeR:(Jz—a; | —Rij(ﬂ»ai)) lz—oj|
<l aij..j — aieij..j | Rj(, aj)},

and
RI (o, o) = Ri(A, ai)— | aij.j —ieijj | .

The remainder of this paper is organized as follows. In Sect.2, we give a new
Z-eigenvalues inclusion set with parameters and prove that it is tighter than that in The-
orems 2 and 3. In Sect. 3, we consider two applications of the obtained Z-eigenvalue
inclusion sets. The first application is to give a sufficient condition for positive definite-
ness of an even-order real symmetric tensors (also homogeneous polynomial forms).
The second application is to judge the asymptotically stability of time-invariant poly-
nomial systems. Finally, some concluding remarks are given to end this paper in
Sect. 4.

2 Main Results
In this section, we give a new inclusion set £2(<7, o) and prove that it is tighter than
the inclusion set 4 (<7, ) in Theorem 2 and the inclusion set 7' (<7, «) in Theorem 3.

Before giving the set £2(<7, ), we first give some notations and a lemma. Let

A ={(z,...,0pm) 1 i2 # -+ # iy, oronly two of ip, ..., i, € [n] are the same},
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A New Brauer-Type Z-Eigenvalue Inclusion Set for Even-Order Tensors Page50f22 13

A={(i2, .. rim): (i2yeoorim) & Avin, ..., im € [n]},
N ={(i2, ..., in) 102, ..., im € [n]}.
Obviously,
ANA=@, N=AUA, and A =N when A = 0.
Let
A ={(i2, ... im) Ciiy...ipm #0, i2,...,0ipm €[n]},
A =iy o yim) @ €iyiy = 0, iy ...y im €[]},
and

ANA;
r; (A, i) =

——3 Z | Giiy...ir, — @i€iiy...iy, |,
(m—=2)"2" (i, _iSeAna;
ANA;
ri TN ) = > | ity — iCiiy.iyy |5
(240 nsim)EANA;
AN, 1
ri TNA) = — Z | diis...iyy |,
(m—=2) 2 i NeAnd;
ANA;
o () = Z | @iy iy |,
(i2..sim)EANA;

ri(l o) = r2MN (o o)+ P (g + 20N () + 20 (). (2)

Then by % < 1 for m > 3, it can be seen that

(m-2)"2

ri(, o) < Ri(, ), i € [n]. 3)

Lemma1 [21, Lemma 2.2] Let x% + x22 + -+ x,% =1, where x; € R, i € [n]. If

Y1, Y2, ..., Yk are arbitrary k entries of x1, x2, ..., X,, then
1
[yitlly2 b Py IS —-
k2
Theorem4 Let o/ = (a;,..i,) € R with m even. Then for any a =
(a17 "'9(:‘511)—r [S an

s @)= ]) [ Qi 0, )
I

€ln] jelnl, j#i
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13 Page6of22 S. Bai

where
Qi (@, 0) ={zeR: (lz —oy| —ri (&, )+ | aij.j Dz —ajl <lajj. jlrj(,a))}.

Proof Let A be any Z-eigenvalue of o7 and x = (x,...,x,)| € R"\{0} be a Z-
eigenvector associated with A. Then

Ax" N =ax =2&x" and xTx=1. 5)
Let |x;|=maxX;¢[,] |x;|. Then for any s € [n] and s # ¢, we have

()\, — Ot,)x, :)\.Xt — 0 Xy = )\,.xt — atéaxtm_l

= E Atiy...imXiy « + « Xiyy, — Ot E Ctis...imXiy + - Xiy,

i2,...,im€[n] i2,...,im€[n]

= E (@tiy..iyy — ArCriy...ing)Xiy + - - Xiyy
i2,osim€ln]

= E (@tiy...ig — Ar€rin...iy ) Xiy + - - Xi,
(i2,.,.,im)€AﬁA[
+ Z (@tiy..iyy — AtCtiy. iy ) Xiy - - - Xiy,
(i21-eim)EANA,
+ E Atiy...ipXiy - - - Xiy,
(i2,~-~sim)EAmZt
R ) m
+ E Atiy..iyyXip + - - Xiy, T Ats.. 5Xg
(i2-esim) ECANAD\((s,....8)}

-1

Taking the modulus in above equation and using the triangle inequality and Lemma 1,
we have

h—allxl < D gy — Gerigeiy || X0 || X, |
(i2y..rim)EAN A,

+ Z | Qriy..ig — %trin.ipy 1| Xiy | - | Xiy, |

({2, im)EANA,
+ Y iy, x| ] X, |

(i2,0nsim) AN A,

-1

+ > | Gty 1| iy 1o | Xy |+ | atrs s 1] 2 ™

(i21ensim) ECANAD\{(s, ..., 8)}

< Do i — ety iy 131 1o | Y2 1% |
(i2,...,im)EANA;
-1

+ Z | Qris..ipy — CtCrin..ipy || Xt "

(i2,sim)€ANA,
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+ > am Nzl zma |l x|

(i24eerim) EANA,

—1 —1

+ > | Griyi |12 "7 s | x5 |

(i2ens i) ECANAD\{(s, ... 8))

1
= s Z | Qriy...iyy — %teris..ipy 1| Xt |

(m—=2)"7" (i, ieana,
+ Z | Qriy..iyy — Cteris..ipy || X1 |

(i2yensim) EANA,
1
t—= Z | @riy..iyy || Xz |
(m—2)2 i eAnd,

- > | Gt 1| % |+ | s ] x5 |
({250 im) ECANAD\{(s, .., 8))

= M ) L L S ) L | )
+ (" = s 1) 1 |+ s 5 |
= i @)= s s D1 |+ a1l |, ©)

which implies that
(1A — ol = ri( e+ | ars...s DIxel = lars..s|Ixs - )

In (6), [¥1], ..., |ym—2] and |z1], ..., |Zm—2| are taken by the following two ways:

(a) Ifip # ... # ip, then we can enlarge any one of |x2, ..., |x,]| to |x;| and keep
the others (can be taken as |y1|, ..., |ym—2| and |z1], . . ., |Zm—2]) unchanged.

(b) If only two of i, ..., i, are the same, then we can enlarge one of the two
same elements to |x;| and keep others (can be taken as |yil,..., |ym—2| and
|z1l, - - ., |Zm—2|) unchanged.

If |xs] > 01n (7), then from (5), we can get

(A — og)xy = Axg — asé”x:,"_l

= E Asis..iyXip + -« Xiy, — Qg E Csin...imXin + -+ Xip

i2,....im€[n] i2,..,im€[n]

E (siy..iyy — Us€sin. iy ) Xiy - - - Xiyy
({2, im)EANAss

+ E (siy...ig — UsCsin..iyy ) Xiy - - - Xi,
(i3, im ) EAN Ay

+ E Asiy iy Xiy - - - Xiy,
(iz,...,l'm)GAﬂZS
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13  Page8of22 S. Bai

+ E Qs iy Xip « + + Xipy s
(iZs---»im)EZﬂZs

and
[A — agllxs] < Z | Asis..i,y — XsCsin.ipy || Xiy | oo | Xi,, |
(02, im) EAN Ay
+ Z | Asin..iy — UsCsiy. . ip ” Xiy | . | Xip, |

(i2,sim) €AN Ay

+ D iy % | x|

(i2>~~sim)EAst

+ D iy 1%y |, |

(iz,...,im)EZmZS

< > iy — ®ssigiy 11 Lo L yma | x|
(i2,..sim ) EAN Ay
—1
+ Z | Gsiy..ig — sCsin. iy || X0 "
(i24eenim)EAN Ay
+ > asipi, Nzl zmea | x|

(i2v--«sl.m)EAmZS

—1
+ D i % "

(iz,...,im)EZﬂZS

1
=——3 > | Gsis..iy = Asesip.i 1| X |
(m—=2)"2" (i, iyeAna,
+ Z | Gsiy..ipy — sCsin..iny || Xz |

(i24eeesim) EAN Ay

1
+ = Z | Gsiy..ipy 1] Xt |

-2
m—=2) 2 eAnd,

+ Y sy X

(i2,..rim) EAN Ay
=r8M (o ay) | x| +rE0N (A ag) | x|
+ 130 () | x| ArfM () | x|
=rs(A, a5) | x|, ®)

which leads to

1A — asllxs| < rg(, ) |xe]. ©)

@ Springer
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Note here that |y1], ..., |ym—2| and |z1], ..., |zm—2] in (8) are taken in the same way
as in (6).
Multiplying (7) and (9) yields
(A — o] =1 (A o)+ | ags..s DI — asllxel|xs] < las..s|rs (2, as) x| xs].
Furthermore, by | x; || x5 |> 0, we can get
(I = o] = re (@ o)+ | ars.s DIA — o] < ags. slrs (o, o), (10)

which implies that

A€ 2 (A, ). an

implies that (10) holds, consequently, (11) holds.
By the arbitrariness of s € [n], s # t, we have

re [ 2, w).
seln],s#t

Furthermore, by the uncertainty of choosing ¢ € [n], we have

relJ ) 2. o).

te[n] se[n],s#t
Consequently, o (&) C (<, ). O

The following comparison theorem shows that the Z-eigenvalue inclusion set
2(4/, a) in Theorem 4 is tighter (that is, can capture all Z-eigenvalue of .27 more
accurate ) than those in Theorems 2 and 3.

Theorem 5 Let &/ = (a,..i,) € R Then for any a = (ay, ..., a,) | € R,
A, a) ST (A, a) CY(A,a).

Proof From Corollary 1 of [22], it can be seen that 7 (&, o) C ¥ (<7, ). Below we
only need to prove 2(<7, @) C T («/, «). Letz € (<7, ). Then there are i, j € [n]
andi # j suchthatz € &; (&, @), ie.,

(A —ai| = ri( A, o)+ | aij..j DIA —aj| < laij..jlrj(, aj). (12)
For Cases I and II of the Z-identity tensor, we have ¢;; . ; = 0, that is,

| aij..j —oreij.j 1=l aij..j|.
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13 Page 10 of 22 S.Bai

By (3), we have

R;/(«@f, a;) = Ri (A, a;)— | ajj..j — ajejj..j |

= Ri(A, )~ | ajj...j |> ri( A, ai)— | aij..j |-
By (12), we have
(lz—ai | =R/ (F,a) | z—aj |=(z—oj| —ri(, @)+ | aij..j DIz — ;]

<laij..jlrj(, aj)
< laij.j —aieij..j | Rj(, aj),

ie.,

(z—ai | =R (A, 0) | z—aj |Z| aij..j — aieij.j | Ri(, aj),
which implies that z € 7} j(#7, a). Hence, 2(#/, @) C T (&, a). O

As ri(<,a;), i € [n], are related to the Z-identity tensor & and the order and
dimension of <7, we list the specific form of £2(<7, «) in Theorem 4 with m = 4 and
m = 6 by using the similar methods as [21, Corollary 2 and Corollary 3] follows.

Corollary 1 Let o/ = (a;ju) € R&1 Then for any « = (aq,...,a,)" € R, (4)
holds, where r; (<, a;) are taken by the following two cases:

(1) If the Z-identify tensor & is taken as &1, then
1
ri(e,a;) = 5; | aiijj — o | + | @ijii — ;|
J#l

+%(R,-(%) + ) layji =) lai |>-
]

J#i Jj€ln
(ii) If the Z-identify tensor & is taken as &>, then
1 1 1 1
ri( i) = Z ( | aiijj — zoi | + 1 aijij — zoi | + | aijji — o | )
Py 3 3 3
J#
+ | Gijii — o | +7; (),
where
~ 1
ri() = E(Ri(ﬂ)+z laijjj | =D (aiijj |+ Laijij | + 1 aijji D= | aijii | )
J# J#

Corollary 2 Let o7 = (a;,..is) € RO Then for any « = (aq, ..., a,) " € R™, (4)
holds, r; (<, ;) are taken by the following two cases:
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(1) If the Z-identify tensor & is taken as &1, then

ri(e, o) = Z | aiijjkk — o |

J-keln]
Ri()— > laijjkk ], 2<n<3;
+ Jj.keln]
Ri()— Y |aiijjkk | —% > | aijiise |, n >4
J.keln] (j.k,l,s,t)eA

(i) If the Z-identify tensor & is taken as &, then (2) holds and

) 1 1
ANA;
r; (ﬂ,Oﬁ)ZB Z ' . Z N ‘aiiz..‘iﬁ —Bai‘,
JFEkFE (2,0 06) el (T, j, j k. k))}
ZﬁA,‘ 1
r; (&, a;) = lagiiiii — o] + Z < o Z - ’aiiz...is — 5%
J#EL {(i,ie) el (i, ), )}
1
+ Z ’aiiz...i(, — 5% )

{G2,...i6)}el( (i, )., ], )}

riAﬁAi(%)Zl—z{ Z ( Z ‘aiiz...i6’

JFERAED (2, nie)}e{( (L)L j kD))

+ E ‘aiiz...i(s’

{G2,...i6)}e{(m (i1, j,k.D)))
+ Z Giiy...ig
(G2, i)} el (f, .k .k D))

+ Z ‘aiiz...is D

{(2....i6)}e{( (. J. . k.D)}

+ Z < Z ‘aiiz...ib

JFEkFEIFEsEL N (2. -i6) Y (T (L) K L5)))

+ Z ‘aiiz...iG )
{G2,....i6)}el( (j. /. k.1.5))}
+ Z Z ’aiiz...iﬁ

JFEkFEIFEsFEpFEi {(in,....i0) Yel( (j .k, 1,s,p)}
riAM" (&) = Ri(A) — |ajiiiii| — 16V,-AM" ()

- E E ‘aiiz...i()

JFkFE (2, i0) E{( (] .k, K))}

(=

JFEL G2 nie)}e{( (L jL )}

L

Ajiy...ig

@ Springer



13 Page12o0f22 S.Bai
+ Z ’aiiz‘..iﬁ )

{(G2,sig)}el (i, j .0}
where {(7(i, j,k,l,s))} represents the set of all permutations of indexes
i,j,k,1,s.

3 Applications

In this section, two applications are considered. By using the inclusion set £2 (<7, «) in
Theorem 4, we give sufficient conditions for the positive definiteness of an even-order
real symmetric tensor (also the homogeneous polynomial forms) and the asymptoti-
cally stability of time-invariant polynomial systems.

3.1 Positive Definiteness of Homogeneous Polynomial Forms

Based on the inclusion interval ¢ (<7, ) in Theorem 2, Li et al. in [8] obtained a
sufficient condition of the positive definiteness of an even-order tensor as follows.

Definition 1 [8, Definition3.1]Let &7 € RI™" withmevenanda = («;, ..., a,)" €
R, We call o/ an a-strictly diagonally dominant tensor of even order if

o > Ri(JZ{,Oli), i € [n] (13)

Theorem 6 [8, Theorem 3.2] Let &/ = (aj,..i,) € R with m even, and X be a
Z-eigenvalue of <7 . If o is an a-strictly diagonally dominant tensor with all a; > 0
foreachi € [n], then .. > 0. Furthermore, if <7 is also symmetric, then <7 is positive
definite, consequently, f(x) defined in (1) is positive definite.

Based on the inclusion interval 7" (27, ) in Theorem 3, Shen et al. in [22] obtained
a sufficient condition of the positive definiteness of an even-order weakly symmetric
tensor as follows.

Theorem 7 [22, Theorem 3] Let A be a Z-eigenvalue of &/ = (a;,..;,) € RUm.7]
and & € R be q Z-identity tensor. If there exists a positive real vector @ =
(a1, ..., o))" andi, j € [n] with j # i such that

(o = Rl @) ) > aiy..; = ieij..j | Ryt ), (14)

then A > 0. Further, if &/ weakly symmetric, then <7 is positive definite and f (x)
defined in (1) is positive definite.

Based on the inclusion interval £2 (47, «) in Theorem 4, a sufficient condition for
the positive definiteness of an even-order tensor can be obtained.
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A New Brauer-Type Z-Eigenvalue Inclusion Set for Even-Order Tensors Page130f22 13

Definition 2 Let.</ = (a;,.;,) € R with m even. Ifthereisa = (a1, ..., a,) " €
R” such that for any i, j € [n] and j # i,

(loj| = ri (A, o)+ | aij...j Dlejl > laij. . jlrj(<, a;), (15)

then we call & an even-order double «-strictly diagonally dominant tensor.

Now, the relationship between «-strictly diagonally dominant tensors and double
a-strictly diagonally dominant tensors is discussed.

Theorem 8 Let &/ = (a;,..;,) € R I of is an a-strictly diagonally dominant
tensor, then </ is a double a-strictly diagonally dominant tensor.

Proof Let o7 be an «-strictly diagonally dominant tensor. Then for each i € [n], we
have

leei| > Ri (o, ;) = ri (<, @;),

that is,
i > ri (A, o),
which implies that
lo| —ri (o, o) + lagj..j| > laij...jl, j€lnl, j#i. (16)
For this index j € [n], we have
loaj|>ri(«,aj). a7

Multiplying (16) and (17) yields (15), which implies that . is a double «-strictly
diagonally dominant tensor. O

Theorem9 Let &7 = (a;,..,) € R vith m even and A be any Z-eigenvalue of <7 .
If there is positive vector o = (aq, ..., an) | € R" such that < is a double a-strictly
diagonally dominant tensor, then ). > 0. Furthermore, if o/ is symmetric, then <7 is
positive definite and, consequently, f(x) is positive definite.

Proof Suppose on the contrary that A < 0. According to Theorem 4, we have A €
2(«, ), which implies that there are i, j € [n]andi # jsuchthat A € £2; (4, ),
ie.,

(A —ail = ri(, o)+ | aij..j DIk — o)l < laij..jlrj(, a;). (13)
On the other hand, by o; > 0, «; > 0, A < 0 and (15), it follows that

(A —ai| = ri(, o) + lajj. iDL — ol = (| —ri(e, i)+ | aij...j Dlel
> lajj.. jlrj(e, aj). (19)
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13 Page 14 0f 22 S. Bai

It is easy to see that (18) and (19) contradict each other. Consequently, A > O.
Furthermore, if 7 is symmetric tensor, then all Z-eigenvalues of <7 are positive,
which implies that .o is positive definite and, consequently, f(x) is positive definite.

O

Finally, an example is given to verify the effectiveness of Theorem 9. Before that,
a lemma is recalled.

Lemma 2 [21, Lemma 42] Let
g(xX) =x X bi| —c
i€[n] l
4SS

be a real-valued function about x, where a is a positive integer, b; € R and by < by <
. < b, withn > a, and c € R.

(I) Assume that a is odd.
(L) Ifn is odd, then

maﬂé(g(x)—— Zb— Z bi | —c, (20)

n+a 41

and this takes place for every x € [bn;ra , b%ﬂ] ifb% * b#ﬂ, and only for
X = b% lfb% = b%+1' Note that let [b%, b%+l] be [b%, +00) lfb%—i—l
does not exist.

(Lii) Ifn is even, then

n+a 1

1
max g(x) = — Zb— Z b | —c, Q1)

i=1 i n+a+3

and this maximum is reached when x = bn+a+1.
(IT) Assume that a is even. If n is odd, then (21) holds. And if n is even, then (20) holds.

Example 1 Let o7 = (a;j11) € R*3) with entries defined as follows:

ajnn = 2.6, axx» =32, a3z =2, ajpe=an =ap =a =04,
aje = apiz2 = appi = a2 = a2121 = a1 = 0.9,

a1133 = ai313 = 41331 = 43113 = az131 = azz;; = 1.1,

ai233 = ay33 = aj33 = a2133 = a2313 = az33) = 0.4,

azi23 = 43132 = a3z = az3p = a3z = azzp; = 0.3,

axn3 = a3y = axzxn = a3 = 0.4,

a33 = 2323 = 2332 = 43223 = A3232 = A3z = 1,
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Table 1 Numerical results of (15) with the Z-identify tensor &7

(il = ri (& i)+ | ajj..j Dlejl lajj...jlri(, o))
i=landj=2 0.400 0
i=1landj=3 1.200 0
i=2andj=1 1.875 0.96
i=2and j=3 0.200 0
i=3and j =1 1.125 0
i=3and j =2 2.000 1.56

and a;jy; = 0 for otherwise.

Our goal is to judge the positive definiteness of .. Because of the form of R; (<7, «;)
and r; (<7, o;) being related to the Z-identify tensor &, we now divide two cases to
consider the positive definiteness of o7

Case I. Let the Z-identify tensor & be &1 = (e;ju) € R43 e,

el111 = e1122 = €1133 = €222 = €11 = €233 = €3333 = €331] = €332 = 1,

and e; i = 0 for otherwise.

Proposition 1 of [21] shows that Theorem 6 cannot be used to judge the positive
definiteness of &7 when the Z-identify tensor & in R; (<7, ;) is taken as &7]. Now, we
consider using Theorem 7 to judge the positive definiteness of 7. Leta = (2.5,4,2)".
By

(a2 — Ry (o, ap))ay = —4.25 < 1.88 =| aa111 — aaean11 | Ri(, 1),

it can be seen that (14) does not hold for i = 2 and j = 1, which implies that we
cannot use Theorem 7 to judge the positive definiteness of .« for this «. However,
for this «, we can use Theorem 9 to judge the positive definiteness of 7. In fact, by
the numerical results of (15) listed in Table 1, it can be seen that (15) holds for all
i,j € [n]and j # i, which implies that we can use Theorem 9 to judge the positive
definiteness of .«

We also use the Z-eigenvalue inclusion sets to judge the positive definiteness of
&/ . By Theorem 1, we have

5.9+ /4521
L(A) = ze@:|z|5+}.

By Theorem 2, we have
Y, a)={zeR:|z—4|<13.5}.
By Theorem 3, we have

T(a)={zeR:(|z—4]|-57)|z—2.5]|< 1.88}.
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By Theorem 4, we have

QA 0)={zeR:(z—4]-325|z—2.5]|<0.96}.

The Z-eigenvalue inclusion sets £ (&), Y (<, ), T (<, a), 2(</, ) and the
exact Z-eigenvalues are drawn in Fig. 1, where they are represented by black dotted
boundary, green stippled boundary, blue dotted boundary, red solid boundary and black
“4.” respectively.

Case II. Let the Z-identify tensor & be & = (e;jx) € R4*3] je.,

1 1
el = e =ep33 =1, e =epnpp=en = 30 €133 = e = el = o,
and e;ji; = 0O for otherwise.
Then
Ri (o, a;)
1 1 1
=laiii —ei |+ (| aiijj — 3% |+ laijij = sei |+ L aijji = 300 1) + v,
J#i
where

Vi = Ri(A)— | ajiii | —Z(I ajijj | + 1 aijij | +1aiji 1), i€l[3]
J#i
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Table 2 Numerical results of (15) with the Z-identify tensor &>

(il = ri (& i)+ | ajj..j Dlejl lajj...jlri(, o))
i=landj=2 5.100 0
i=1landj=3 12.000 0
i=2andj =1 6.625 0.32
i=2and j=3 13.200 0
i=3and j =1 1.625 0
i=3and j =2 1.500 0.32

Firstly, we use Theorem 6 to judge the positive definiteness of 7. Suppose that
there is @ = (a1, a2, @3) " € R? such that (13) holds, which implies that

1 1 1
flei) =i —laiiii — il = Y ( laigjj — 3%l +laijij — el +laijji = Feil
J#

1
==z Bloy — aiiiil + Y (ley — aijj| + let — 3aijij| + let — 3aijjil)
i#i
>Vi.

By Lemma 2, we have

max f(o)) =2 < 2.4 =y,
aléR
max f(op) =2.5 < 2.8 =y,
areR

max f(a3) = 1.7 < 2.2 = y3,

a3zeR

which shows that there is not «1, a2 and a3 such that (13) holds and implies that we
cannot use Theorem 6 to judge the positive definiteness of 7.

Secondly, we use Theorem 7 to judge the positive definiteness of o7, Let @ =
(2.5,3,6)". By

(a3 — R3(o/, a3))as = —3 < 0.56 =| aznz — aze3n | Ra(, o),

it can be seen that (14) does not hold for i = 3 and j = 1, which implies that we
cannot use Theorem 7 to judge the positive definiteness of 7.

However, for this & = (2.5,3,6) ", we can use Theorem 9 to judge the positive
definiteness of .<7. The numerical results of (15) are listed in Table 2. From Table 2, it
can be seen that (15) holds for all i, j € [n] and j # i, which implies that we can use
Theorem 9 to judge the positive definiteness of .. In fact, all Z-eigenvalues of <7 are
2.0000, 2.0035, 2.0224, 2.1335, 2.2539, 3.2022, 3.4147 and 3.7271.
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Fig.2 Comparisons of .2 (<), 157
Y(,a), T (<, a)and
(4, ) with & and R RE.
a=25,3,6" 10}

We also use the Z-eigenvalue inclusion sets to judge the positive definiteness of
. Leta = (2.5,3,6) . By Theorem 2, we have

YA ,a)={zeR:|z—6]|<11.9}.
By Theorem 3, we have
T, a)={zeR:(|z—6]|-6.7)|z—-25|<0}.
By Theorem 4, we have
A, a)={zeR:(|z—6|—-535)]z—-25|<0}.

The Z-eigenvalue inclusion sets £ (&), G (<, ), T (, a), 2(</, ) and the
exact Z-eigenvalues are drawn in Fig.2, where they are represented by black dotted
boundary, green stippled boundary, blue dotted boundary, red solid boundary and black
“+,” respectively.

From Figs. 1 and 2, it is easy to see that:

(1) 0 e L),0 € Y9,a) and 0 € T (<, a); consequently, the sets £ (),
9 (o, a) and T (&7, ) cannot be used to judge the positive definiteness of .<7.
(i) o (&) C 2(«,a) C CT, where C* denotes the set of all complex numbers with
positive real part, which implies that all Z-eigenvalues of <7 are positive and hence
4/ is positive definite.
(i) o(o/) C (o, a) C Y(,a) C 9(, &), and L (/) and 2(/, @) do not
contain each other.

This example shows that no matter we take the Z-identify tensor & as &1 or &>, we
can use Theorems 4 and 9 to judge the positive definiteness of the even-order tensors.
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3.2 Asymptotically Stability of Time-Invariant Polynomial Systems
Consider the asymptotically stability of the time-invariant polynomial system
Tii=odOx+adOx3 . g @O% (22)

where &) = (ai,..i,) € REAM ¢ =24, 2k,and x = (x1,...,x,)"; see [,
2]. A sufficient condition such that the nonlinear system (22) above is asymptotically
stable is gave by Deng et al. in [1] as follows.

Theorem 10 [1, Theorem 3.3] For the nonlinear system X' in (22), if—szf'(’) is positive
definite, where t = 2,4, ..., 2k, then the equilibrium point of X is asymptotically
stable.

By Theorems 9 and 10, a sufficient condition for the asymptotically stability can
be given.

Theorem 11 For the nonlinear system X in (22), if —/ D) satisfies all conditions of
Theorem 9, wheret = 2,4, ..., 2k, then the equilibrium point of X is asymptotically
stable.

Example 2 Consider the following polynomial system

X X1 = —=5x1 +2xp + 2x3 — 2.6xf — 0.9x12x2 — 3.3x1x32 — 2.7x1x§ — 1.8xzx§,
X2 = 2x1 — 5x2 + 2x3 — 0.5x] — 3.2x3 — 0.6x7x3
—3.0x0xF — 2.7x7xp — 1.8x1x3,
%3 = 21 + 2x3 — 5x3 — 0.2x3 — 2.4x3 — 3.3x7x3 — 3.0x7x3 — 3.6x1x2x3.

Apparently, X can be written as ¥ = .o/ P x 4+ .o/ ®x3, where x = (x1, x2, x3) T,

-5 2 2
dP =12 -5 2
2 2 -5

and 7@ = (aijki) € RI*3] whose entries are as follows:

ajiy = —2.6, axpn =-32, auz=-24,

aji = arp) = apn = a = —0.3,

ajze = apiz2 = dai) = a2 = a2i21 = axi; = —0.9,
ai133 = ai313 = a1331 = 4113 = az131 = aszz;; = —1.1,
ap33 = a3 = a3z = a133 = ax313 = az33; = —0.6,
as123 = a3z = axiz = a3 = a3z = a3z = —0.6,
axo3 = axz = axsyn = azp = —0.2,

ax33 = a3 = a3z = azn3 = a3z = azzn = —1.0,
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Table 3 Numerical results of (15) with the Z-identify tensor & for —.o/ @

(il = ri (=D @)+ | ajjjj Dletj ] la;jjjlrj (=™ aj)
i=1land j =2 0.80 0
i=1land j =3 1.54 0
i=2andj =1 225 0.84
i=2andj=3 1.12 0
i=3and j =1 1.35 0
i=3and j =2 2.00 0.72

Table 4 Numerical results of (15) with the Z-identify tensor &, for —.o/ @

(loj| = ri (=D, @)+ | ajjjj Dlej] laijjjlrj (=@, a))
i=1landj=2 3.00
i=1land j =3 3.50
i=2and j=1 13.25 1.2
i=2and j =3 5.00
i=3and j =1 4.75
i=3and j =2 3.30 0.1

and a;jx; = 0 for otherwise.

It is easy to see that —a7?) is positive definite. Now, we judge the positive defi-
niteness of —o7 @ by taking the Z-identify tensor & as & and &.

Case I. Let the Z-identify tensor & be &1 = (e;ju) € RI4:31,

Taking ¢ = (3,4, 2.8)T, the numerical results of (15) are listed in Table 3. From
Table 3, it can be seen that (15) holds for all i, j € [3] and i # j. Hence, —d® s
positive definite by Theorem 9.

Case II. Let the Z-identify tensor & be & = (e;jx1) € R431

Taking @ = (5,3,2) ", the numerical results of (15) are listed in Table4. From
Table4, it can be seen that (15) holds for all i, j € [3] and i # j, which implies that
—.a/@ is positive definite by Theorem 9.

All in all, no matter the Z-identify tensor & is taken as &) or &>, we can both
judge the positive definiteness of —.o7® by Theorem 9. In fact, all Z-eigenvalues
of —a/® are 1.8287, 1.9538, 2.2721, 2.4000, 3.0829, 3.0838, 3.0954, 3.8162 and
3.9610. Furthermore, by Theorem 11, the equilibrium point of X' is asymptotically
stable.

4 Conclusions
In this paper, we firstly presented a new Z-eigenvalue inclusion set £2 (<7, ) in The-

orem 4. Subsequently, we in Theorem 5 proved that it is tighter than the inclusion
set ¥ (7, a) in Theorem 2.2 of [8] and the inclusion set 7" («7, @) in Theorem 1 of
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[22]. As an application of the new set §2 (<7, «), we obtained a sufficient condition for
the positive definiteness of an even-order real symmetric tensor (also homogeneous
polynomial forms) in Theorem 9 and obtained a sufficient condition for the asymptot-
ically stability of time-invariant polynomial systems in Theorem 11. Finally, we used
Examples 1 and 2 to verify the validity of Theorems 9 and 11.

However, how to choose appropriate parameter vector « to minimize the Z-
eigenvalue inclusion set £2(<, @) in Theorem 4 is still an unsolved problem. We
will continue to study this problem in the future.
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