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Abstract
A new Brauer-type Z -eigenvalue inclusion set for an even-order real tensor is pre-
sented. It is proved that it is tighter than the existing inclusion sets. As an application,
a sufficient condition for the positive definiteness of an even-order real symmetric
tensor (also a homogeneous polynomial form) and asymptotically stability of time-
invariant polynomial systems is given.

Keywords Even-order tensors · Z -eigenvalues · Inclusion sets · Positive
definiteness · Asymptotic stability
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1 Introduction

Let m and n be two positive integers with m ≥ 2 and n ≥ 2, [n] = {1, 2, . . . , n},
C (resp. R) be the set of all complex (resp. real) numbers, Rn be the set of all n-
dimensional real vectors,R[m,n] be the set of all orderm dimension n real tensors. Let
x = (x1, x2, . . . , xn)� ∈ R

n . Let A = (ai1i2...im ) ∈ R
[m,n], i.e.,

ai1i2...im ∈ R, i j ∈ [n], j ∈ [m].

Let Πm be the permutation group of m indices.If for any π ∈ Πm ,

Communicated by Rosihan M. Ali.

B Shunjie Bai
bsj1769752164@163.com

1 School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-022-01402-0&domain=pdf


13 Page 2 of 22 S. Bai

ai1i2...im = aiπ(1)iπ(2)...iπ(m)

then A is called a symmetric tensor [13].
If there are λ ∈ R and x = (x1, x2, . . . , xn)� ∈ R

n \ {0} such that

A xm−1 = λx and x�x = 1,

where A xm−1 is an n-dimensional vector, whose i-th component is

(
A xm−1

)
i
=

∑
i2,...,im∈[n]

aii2...im xi2 . . . xim ,

then λ is called a Z -eigenvalue of A and x is called a Z -eigenvector associated with
λ [10, 13]. Let σ(A ) be the set of all Z -eigenvalues of A .

The Z -identity tensor is introduced by the authors in [7, 8, 13]. A tensor E =
(ei1i2...im ) ∈ R

[m,n] withm even is called a Z -identity tensor if for any vector x ∈ R
n ,

E xm−1 = x and x�x = 1.

Note here that an even-order n dimension Z -identity tensor is not unique in general.
For instance, the following two tensors are both Z -identity tensors:

Case I. ([8, Definition 2.1]): Let E1 = (ei1i2...im ) ∈ R
[m,n], where

ei1i1i2i2...ik ik = 1, i1, i2, . . . , ik ∈ [n], and m = 2k;

Case II. ([7, Property 2.4]): Let E2 = (ei1i2...im ) ∈ R
[m,n], where

ei1...im = 1

m!
∑

π∈Πm

δiπ(1)iπ(2) δiπ(3)iπ(4) . . . δiπ(m−1)iπ(m)
,

where δ is the standard Kronecker delta, i,e., δi j = 1 if i = j and δi j = 0 if i �= j .
For convenient applications, the Z -identity tensor E2 = (ei jkl) ∈ R

[4,n] is listed as
follows:

ei jkl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if i = j = k = l,

1/3, if i = j �= k = l,

1/3, if i = k �= j = l,

1/3, if i = l �= j = k,

0, otherwise.

An even-order m dimension n real symmetric tensor A defines an m-th degree
homogeneous polynomial

f (x) = A xm =
∑

i1,i2,...,im∈[n]
ai1i2...im xi1xi2 . . . xim . (1)
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If f (x) > 0 for any x ∈ R
n \ {0}, then we call that f (x) is positive definite. It is

pointed out that f (x) is positive definite if and only ifA is positive definite [13, 14].
On the other hand, if all Z -eigenvalues of the real symmetric tensorA with order even
are positive, then A is positive definite and therefore f (x) is also positive definite.
The positive definiteness of f (x) has extremely important applications in real life. As
pointed out in some documents, it is widely used in spectral hypergraph theory [15,
16], automatic control [12] and the stability of nonlinear systems [1, 2].

For judging the positive definiteness of f (x), we must calculate all Z -eigenvalues
of an even-order real symmetric tensorA , or calculate the minimum Z -eigenvalue of
A . When all Z -eigenvalues of A are greater than 0, or the minimum Z -eigenvalue
of A is greater than 0, we can judge that f (x) is positive definite. However, if m or
n are very large, it is difficult to calculate all Z -eigenvalues of A and the minimum
Z -eigenvalue of A . In order to be able to solve this problem quickly, we can take a
very normal and simple method: we only need to judge the signs of all Z -eigenvalues,
but not to compute all Z -eigenvalues. In order to achieve this goal, one can construct a
set which includes all Z -eigenvalues ofA . If this set is just in the right-half complex
plane, then he can conclude that all Z -eigenvalues are positive, and consequently, A
is positive definite. The related results are shown in [8, 19–21, 24, 30, 31].

Wang et al. [25] gave the following Z -eigenvalue inclusion set for tensors as follows:

Theorem 1 [25, Theorem 3.2] Let A = (ai1...im ) ∈ R
[m,n]. Then

σ(A ) ⊆ L (A ) =
⋃
i∈[n]

⋂
j∈[n], j �=i

Li, j (A ).

where

Li, j (A ) = {z ∈ C : (| z | −(Ri (A )− | ai j ... j |)) | z |≤| ai j ... j | R j (A )}

and

Ri (A ) =
∑

i2,...,im∈[n]
| aii2...im | .

From Theorem 1, we can easily see that 0 ∈ L (A ). Therefore, this means that we
cannot use the set L (A ) to determine the positive definiteness of a real symmetric
tensorA of even order. However, there are many such similar sets, which can be seen
in detail [3–6, 9, 11, 17, 18, 23, 25–29]. Because 0 exists in these inclusion sets, we
cannot use such inclusion sets to determine the positive definiteness of even-order real
symmetric tensors.

In order to overcome this drawback, Li et al. [8] presented a Z -eigenvalue inclusion
interval with n parameters for even-order real tensors as follows:
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Theorem 2 [8, Theorem 2.2] Let A = (ai1...im ) ∈ R
[m,n] with m even. Then for any

real vector α = (α1, . . . , αn)
� ∈ R

n,

σ(A ) ⊆ G (A , α) :=
⋃
i∈[n]

(
Gi (A , α) := {z ∈ R :| z − αi |≤ Ri (A , αi )}

)
,

where

Ri (A , αi ) =
∑

i2,...,im∈[n],
eii2 ...im �=0

|aii2...im − αi eii2...im | +
∑

i2,...,im∈[n],
eii2 ...im=0

|aii2...im |.

In order to be able to locate the Z -eigenvalues more accurately, Shen et al. [22]
gave the following inclusion set.

Theorem 3 [22, Theorem 1] Let A = (ai1...im ) ∈ R
[m,n] and E ∈ R

[m,n] be a Z-
identity tensor. For any real vector α = (α1, . . . , αn)

� ∈ R
n, then

σ(A ) ⊆ Υ (A , α) =
⋃
i∈[n]

⋂
j∈[n], j �=i

Υi, j (A , α),

where

Υi, j (A , α) = {z ∈ R : (| z − αi | −R j
i (A , αi )) | z − α j |

≤| ai j ... j − αi ei j ... j | R j (A , α j )},

and

R j
i (A , αi ) = Ri (A , αi )− | ai j ... j − αi ei j ... j | .

The remainder of this paper is organized as follows. In Sect. 2, we give a new
Z -eigenvalues inclusion set with parameters and prove that it is tighter than that in The-
orems 2 and 3. In Sect. 3, we consider two applications of the obtained Z -eigenvalue
inclusion sets. The first application is to give a sufficient condition for positive definite-
ness of an even-order real symmetric tensors (also homogeneous polynomial forms).
The second application is to judge the asymptotically stability of time-invariant poly-
nomial systems. Finally, some concluding remarks are given to end this paper in
Sect. 4.

2 Main Results

In this section, we give a new inclusion set Ω(A , α) and prove that it is tighter than
the inclusion set G (A , α) in Theorem 2 and the inclusion set Υ (A , α) in Theorem 3.
Before giving the set Ω(A , α), we first give some notations and a lemma. Let

Δ ={(i2, . . . , im) : i2 �= · · · �= im, or only two of i2, . . . , im ∈ [n] are the same},
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Δ ={(i2, . . . , im) : (i2, . . . , im) /∈ Δ, i2, . . . , im ∈ [n]},
N ={(i2, . . . , im) : i2, . . . , im ∈ [n]}.

Obviously,

Δ ∩ Δ = ∅, N = Δ ∪ Δ, and Δ = N when Δ = ∅.

Let

Λi ={(i2, . . . , im) : eii2...im �= 0, i2, . . . , im ∈ [n]},
Λi ={(i2, . . . , im) : eii2...im = 0, i2, . . . , im ∈ [n]},

and

rΔ∩Λi
i (A , αi ) = 1

(m − 2)
m−2
2

∑
(i2,...,im )∈Δ∩Λi

| aii2...im − αi eii2...im |,

rΔ∩Λi
i (A , αi ) =

∑

(i2,...,im )∈Δ∩Λi

| aii2...im − αi eii2...im |,

rΔ∩Λi
i (A ) = 1

(m − 2)
m−2
2

∑

(i2,...,im )∈Δ∩Λi

| aii2...im |,

rΔ∩Λi
i (A ) =

∑

(i2,...,im )∈Δ∩Λi

| aii2...im |,

ri (A , αi ) = rΔ∩Λi
i (A , αi ) + rΔ∩Λi

i (A , αi ) + rΔ∩Λi
i (A ) + rΔ∩Λi

i (A ). (2)

Then by 1

(m−2)
m−2
2

≤ 1 for m ≥ 3, it can be seen that

ri (A , αi ) ≤ Ri (A , αi ), i ∈ [n]. (3)

Lemma 1 [21, Lemma 2.2] Let x21 + x22 + · · · + x2n = 1, where xi ∈ R, i ∈ [n]. If
y1, y2, . . . , yk are arbitrary k entries of x1, x2, . . . , xn, then

| y1 || y2 | · · · | yk |≤ 1

k
k
2

.

Theorem 4 Let A = (ai1...im ) ∈ R
[m,n] with m even. Then for any α =

(α1, . . . , αn)
� ∈ R

n,

σ(A ) ⊆ Ω(A , α) =
⋃
i∈[n]

⋂
j∈[n], j �=i

Ωi, j (A , α), (4)
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where

Ωi, j (A , α) = {z ∈ R : (|z − αi | − ri (A , αi )+ | ai j ... j |)|z − α j | ≤ |ai j ... j |r j (A , α j )}.

Proof Let λ be any Z -eigenvalue of A and x = (x1, . . . , xn)� ∈ R
n\{0} be a Z -

eigenvector associated with λ. Then

A xm−1 = λx = λE xm−1 and x�x = 1. (5)

Let |xt |=maxi∈[n] |xi |. Then for any s ∈ [n] and s �= t , we have

(λ − αt )xt = λxt − αt xt = λxt − αtE xm−1
t

=
∑

i2,...,im∈[n]
ati2...im xi2 . . . xim − αt

∑
i2,...,im∈[n]

eti2...im xi2 . . . xim

=
∑

i2,...,im∈[n]
(ati2...im − αt eti2...im )xi2 . . . xim

=
∑

(i2,...,im )∈Δ∩Λt

(ati2...im − αt eti2...im )xi2 . . . xim

+
∑

(i2,...,im )∈Δ∩Λt

(ati2...im − αt eti2...im )xi2 . . . xim

+
∑

(i2,...,im )∈Δ∩Λt

ati2...im xi2 . . . xim

+
∑

(i2,...,im )∈(Δ∩Λt )\{(s,...,s)}
ati2...im xi2 . . . xim + ats...s x

m−1
s .

Taking the modulus in above equation and using the triangle inequality and Lemma 1,
we have

|λ − αt ||xt | ≤
∑

(i2,...,im )∈Δ∩Λt

| ati2...im − αt eti2...im || xi2 | . . . | xim |

+
∑

(i2,...,im )∈Δ∩Λt

| ati2...im − αt eti2...im || xi2 | . . . | xim |

+
∑

(i2,...,im )∈Δ∩Λt

| ati2...im || xi2 | . . . | xim |

+
∑

(i2,...,im )∈(Δ∩Λt )\{(s,...,s)}
| ati2...im || xi2 | . . . | xim | + | ats...s || xs |m−1

≤
∑

(i2,...,im )∈Δ∩Λt

| ati2...im − αt eti2...im || y1 | . . . | ym−2 || xt |

+
∑

(i2,...,im )∈Δ∩Λt

| ati2...im − αt eti2...im || xt |m−1
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+
∑

(i2,...,im )∈Δ∩Λt

| ati2...im || z1 | . . . | zm−2 || xt |

+
∑

(i2,...,im )∈(Δ∩Λt )\{(s,...,s)}
| ati2...im || xt |m−1 + | ats...s || xs |m−1

≤ 1

(m − 2)
m−2
2

∑
(i2,...,im )∈Δ∩Λt

| ati2...im − αt eti2...im || xt |

+
∑

(i2,...,im )∈Δ∩Λt

| ati2...im − αt eti2...im || xt |

+ 1

(m − 2)
m−2
2

∑

(i2,...,im )∈Δ∩Λt

| ati2...im || xt |

+
∑

(i2,...,im )∈(Δ∩Λt )\{(s,...,s)}
| ati2...im || xt | + | ats...s || xs |

= rΔ∩Λt
t (A , αt ) | xt | +rΔ∩Λt

t (A , αt ) | xt | +rΔ∩Λt
t (A ) | xt |

+
(
rΔ∩Λt
t (A )− | ats...s |

)
| xt | + | ats...s || xs |

= (rt (A , αt )− | ats...s |) | xt | + | ats...s || xs |, (6)

which implies that

(|λ − αt | − rt (A , αt )+ | ats...s |)|xt | ≤ |ats...s ||xs |. (7)

In (6), |y1|, . . . , |ym−2| and |z1|, . . . , |zm−2| are taken by the following two ways:

(a) If i2 �= . . . �= im , then we can enlarge any one of |x2|, . . . , |xm | to |xt | and keep
the others (can be taken as |y1|, . . . , |ym−2| and |z1|, . . . , |zm−2|) unchanged.

(b) If only two of i2, . . . , im are the same, then we can enlarge one of the two
same elements to |xt | and keep others (can be taken as |y1|, . . . , |ym−2| and
|z1|, . . . , |zm−2|) unchanged.
If |xs | > 0 in (7), then from (5), we can get

(λ − αs)xs = λxs − αsE xm−1
s

=
∑

i2,...,im∈[n]
asi2...im xi2 . . . xim − αs

∑
i2,...,im∈[n]

esi2...im xi2 . . . xim

=
∑

(i2,...,im )∈Δ∩Λs

(asi2...im − αsesi2...im )xi2 . . . xim

+
∑

(i2,...,im )∈Δ∩Λs

(asi2...im − αsesi2...im )xi2 . . . xim

+
∑

(i2,...,im )∈Δ∩Λs

asi2...im xi2 . . . xim
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+
∑

(i2,...,im )∈Δ∩Λs

asi2...im xi2 . . . xim ,

and

|λ − αs ||xs | ≤
∑

(i2,...,im )∈Δ∩Λs

| asi2...im − αsesi2...im || xi2 | . . . | xim |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im − αsesi2...im || xi2 | . . . | xim |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im || xi2 | . . . | xim |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im || xi2 | . . . | xim |

≤
∑

(i2,...,im )∈Δ∩Λs

| asi2...im − αsesi2...im || y1 | . . . | ym−2 || xt |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im − αsesi2...im || xt |m−1

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im || z1 | . . . | zm−2 || xt |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im || xt |m−1

≤ 1

(m − 2)
m−2
2

∑
(i2,...,im )∈Δ∩Λs

| asi2...im − αsesi2...im || xt |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im − αsesi2...im || xt |

+ 1

(m − 2)
m−2
2

∑

(i2,...,im )∈Δ∩Λs

| asi2...im || xt |

+
∑

(i2,...,im )∈Δ∩Λs

| asi2...im || xt |

= rΔ∩Λt
s (A , αs) | xt | +rΔ∩Λt

s (A , αs) | xt |
+ rΔ∩Λs

s (A ) | xt | +rΔ∩Λs
s (A ) | xt |

= rs(A , αs) | xt |, (8)

which leads to

|λ − αs ||xs | ≤ rs(A , αs)|xt |. (9)
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Note here that |y1|, . . . , |ym−2| and |z1|, . . . , |zm−2| in (8) are taken in the same way
as in (6).

Multiplying (7) and (9) yields

(|λ − αt | − rt (A , αt )+ | ats...s |)|λ − αs ||xt ||xs | ≤ |ats...s |rs(A , αs)|xt ||xs |.

Furthermore, by | xt || xs |> 0, we can get

(|λ − αt | − rt (A , αt )+ | ats...s |)|λ − αs | ≤ |ats...s |rs(A , αs), (10)

which implies that

λ ∈ Ωt,s(A , α). (11)

If |xs | = 0 in (7), by |xt | > 0, we have |λ − αt | − rt (A , αt )+ | ats...s |≤ 0, which
implies that (10) holds, consequently, (11) holds.

By the arbitrariness of s ∈ [n], s �= t , we have

λ ∈
⋂

s∈[n],s �=t

Ωt,s(A , α).

Furthermore, by the uncertainty of choosing t ∈ [n], we have

λ ∈
⋃
t∈[n]

⋂
s∈[n],s �=t

Ωt,s(A , α).

Consequently, σ(A ) ⊆ Ω(A , α). ��
The following comparison theorem shows that the Z -eigenvalue inclusion set

Ω(A , α) in Theorem 4 is tighter (that is, can capture all Z -eigenvalue of A more
accurate ) than those in Theorems 2 and 3.

Theorem 5 Let A = (ai1...im ) ∈ R
[m,n]. Then for any α = (α1, . . . , αn)

� ∈ R
n,

Ω(A , α) ⊆ Υ (A , α) ⊆ G (A , α).

Proof From Corollary 1 of [22], it can be seen that Υ (A , α) ⊆ G (A , α). Below we
only need to proveΩ(A , α) ⊆ Υ (A , α). Let z ∈ Ω(A , α). Then there are i, j ∈ [n]
and i �= j such that z ∈ Ωi, j (A , α), i.e.,

(|λ − αi | − ri (A , αi )+ | ai j ... j |)|λ − α j | ≤ |ai j ... j |r j (A , α j ). (12)

For Cases I and II of the Z -identity tensor, we have ei j ... j = 0, that is,

| ai j ... j − αt ei j ... j |=| ai j ... j | .
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By (3), we have

R j
i (A , αi ) = Ri (A , αi )− | ai j ... j − αi ei j ... j |

= Ri (A , αi )− | ai j ... j |≥ ri (A , αi )− | ai j ... j | .

By (12), we have

(| z − αi | −R j
i (A , αi )) | z − α j |≤ (|z − αi | − ri (A , αi )+ | ai j ... j |)|z − α j |

≤ |ai j ... j |r j (A , α j )

≤ | ai j ... j − αi ei j ... j | R j (A , α j ),

i.e.,

(| z − αi | −R j
i (A , αi )) | z − α j |≤| ai j ... j − αi ei j ... j | R j (A , α j ),

which implies that z ∈ Υi, j (A , α). Hence, Ω(A , α) ⊆ Υ (A , α). ��
As ri (A , αi ), i ∈ [n], are related to the Z -identity tensor E and the order and

dimension of A , we list the specific form of Ω(A , α) in Theorem 4 with m = 4 and
m = 6 by using the similar methods as [21, Corollary 2 and Corollary 3] follows.

Corollary 1 Let A = (ai jkl) ∈ R
[4,n]. Then for any α = (α1, . . . , αn)

� ∈ R
n, (4)

holds, where ri (A , αi ) are taken by the following two cases:

(i) If the Z-identify tensor E is taken as E1, then

ri (A , αi ) = 1

2

∑
j �=i

| aii j j − αi | + | aiiii − αi |

+1

2

(
Ri (A ) +

∑
j �=i

| ai j j j | −
∑
j∈[n]

| aii j j |
)
.

(ii) If the Z-identify tensor E is taken as E2, then

ri (A , αi ) = 1

2

∑
j �=i

(
| aii j j − 1

3
αi | + | ai ji j − 1

3
αi | + | ai j j i − 1

3
αi |

)

+ | aiiii − αi | +r̃i (A ),

where

r̃i (A ) = 1

2

(
Ri (A ) +

∑
j �=i

| ai j j j | −
∑
j �=i

(| aii j j | + | ai ji j | + | ai j j i |)− | aiii i |
)
.

Corollary 2 Let A = (ai1...i6) ∈ R
[6,n]. Then for any α = (α1, . . . , αn)

� ∈ R
n, (4)

holds, ri (A , αi ) are taken by the following two cases:
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(i) If the Z-identify tensor E is taken as E1, then

ri (A , αi ) =
∑

j,k∈[n]
| aii j jkk − αi |

+

⎧⎪⎨
⎪⎩

Ri (A ) − ∑
j,k∈[n]

| aii j jkk |, 2 ≤ n ≤ 3;
Ri (A ) − ∑

j,k∈[n]
| aii j jkk | − 15

16

∑
( j,k,l,s,t)∈Δ

| ai jklst |, n ≥ 4.

(ii) If the Z-identify tensor E is taken as E2, then (2) holds and

rΔ∩Λi
i (A , αi ) = 1

16

∑
j �=k �=i

∑
{(i2,...,i6)}∈{(π(i, j, j,k,k))}

∣∣∣aii2...i6 − 1

15
αi

∣∣∣,

rΔ∩Λi
i (A , αi ) = |aiiii i i − αi | +

∑
j �=i

( ∑
{(i2,...,i6)}∈{(π(i,i,i, j, j))}

∣∣∣aii2...i6 − 1

5
αi

∣∣∣

+
∑

{(i2,...,i6)}∈{(π(i, j, j, j, j))}

∣∣∣aii2...i6 − 1

5
αi

∣∣∣
)

,

rΔ∩Λi
i (A ) = 1

16

{ ∑
j �=k �=l �=i

( ∑
{(i2,...,i6)}∈{(π(i, j, j,k,l))}

∣∣∣aii2...i6
∣∣∣

+
∑

{(i2,...,i6)}∈{(π(i,i, j,k,l))}

∣∣∣aii2...i6
∣∣∣

+
∑

{(i2,...,i6)}∈{(π( j, j,k,k,l))}

∣∣∣aii2...i6
∣∣∣

+
∑

{(i2,...,i6)}∈{(π( j, j, j,k,l))}

∣∣∣aii2...i6
∣∣∣
)

+
∑

j �=k �=l �=s �=i

( ∑
{(i2,...,i6)}∈{(π(i, j,k,l,s))}

∣∣∣aii2...i6
∣∣∣

+
∑

{(i2,...,i6)}∈{(π( j, j,k,l,s))}

∣∣∣aii2...i6
∣∣∣
)

+
∑

j �=k �=l �=s �=p �=i

∑
{(i2,...,i6)}∈{(π( j,k,l,s,p))}

∣∣∣aii2...i6
∣∣∣
}
,

rΔ∩Λi
i (A ) = Ri (A ) − |aiiii i i | − 16rΔ∩Λi

i (A )

−
∑
j �=k �=i

∑
{(i2,...,i6)}∈{(π(i, j, j,k,k))}

∣∣∣aii2...i6
∣∣∣

−
∑
j �=i

( ∑
{(i2,...,i6)}∈{(π(i,i,i, j, j))}

∣∣∣aii2...i6
∣∣∣
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+
∑

{(i2,...,i6)}∈{(π(i, j, j, j, j))}

∣∣∣aii2...i6
∣∣∣
)

,

where {(π(i, j, k, l, s))} represents the set of all permutations of indexes
i, j, k, l, s.

3 Applications

In this section, two applications are considered. By using the inclusion setΩ(A , α) in
Theorem 4, we give sufficient conditions for the positive definiteness of an even-order
real symmetric tensor (also the homogeneous polynomial forms) and the asymptoti-
cally stability of time-invariant polynomial systems.

3.1 Positive Definiteness of Homogeneous Polynomial Forms

Based on the inclusion interval G (A , α) in Theorem 2, Li et al. in [8] obtained a
sufficient condition of the positive definiteness of an even-order tensor as follows.

Definition 1 [8,Definition 3.1] LetA ∈ R
[m,n] withm even andα = (α1, . . . , αn)

� ∈
R
n . We call A an α-strictly diagonally dominant tensor of even order if

αi > Ri (A , αi ), i ∈ [n]. (13)

Theorem 6 [8, Theorem 3.2] Let A = (ai1...im ) ∈ R
[m,n] with m even, and λ be a

Z-eigenvalue of A . If A is an α-strictly diagonally dominant tensor with all αi > 0
for each i ∈ [n], then λ > 0. Furthermore, ifA is also symmetric, thenA is positive
definite, consequently, f (x) defined in (1) is positive definite.

Based on the inclusion interval Υ (A , α) in Theorem 3, Shen et al. in [22] obtained
a sufficient condition of the positive definiteness of an even-order weakly symmetric
tensor as follows.

Theorem 7 [22, Theorem 3] Let λ be a Z-eigenvalue of A = (ai1...im ) ∈ R
[m,n]

and E ∈ R
[m,n] be a Z-identity tensor. If there exists a positive real vector α =

(α1, . . . , αn)
� and i, j ∈ [n] with j �= i such that

(
αi − R j

i (A , αi )
)

α j >| ai j ... j − αi ei j ... j | R j (A , α j ), (14)

then λ > 0. Further, if A weakly symmetric, then A is positive definite and f (x)
defined in (1) is positive definite.

Based on the inclusion interval Ω(A , α) in Theorem 4, a sufficient condition for
the positive definiteness of an even-order tensor can be obtained.
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Definition 2 LetA = (ai1...im ) ∈ R
[m,n] withm even. If there is α = (α1, . . . , αn)

� ∈
R
n such that for any i, j ∈ [n] and j �= i ,

(|αi | − ri (A , αi )+ | ai j ... j |)|α j | > |ai j ... j |r j (A , α j ), (15)

then we call A an even-order double α-strictly diagonally dominant tensor.

Now, the relationship between α-strictly diagonally dominant tensors and double
α-strictly diagonally dominant tensors is discussed.

Theorem 8 Let A = (ai1...im ) ∈ R
[m,n]. If A is an α-strictly diagonally dominant

tensor, then A is a double α-strictly diagonally dominant tensor.

Proof Let A be an α-strictly diagonally dominant tensor. Then for each i ∈ [n], we
have

|αi | > Ri (A , αi ) ≥ ri (A , αi ),

that is,

|αi | > ri (A , αi ),

which implies that

|αi | − ri (A , αi ) + |ai j ... j | > |ai j ... j |, j ∈ [n], j �= i . (16)

For this index j ∈ [n], we have

| α j |> r j (A , α j ). (17)

Multiplying (16) and (17) yields (15), which implies that A is a double α-strictly
diagonally dominant tensor. ��
Theorem 9 LetA = (ai1...im ) ∈ R

[m,n] with m even and λ be any Z-eigenvalue ofA .
If there is positive vector α = (α1, . . . , αn)

� ∈ R
n such thatA is a double α-strictly

diagonally dominant tensor, then λ > 0. Furthermore, if A is symmetric, then A is
positive definite and, consequently, f (x) is positive definite.

Proof Suppose on the contrary that λ ≤ 0. According to Theorem 4, we have λ ∈
Ω(A , α), which implies that there are i, j ∈ [n] and i �= j such that λ ∈ Ωi, j (A , α),
i.e.,

(|λ − αi | − ri (A , αi )+ | ai j ... j |)|λ − α j | ≤ |ai j ... j |r j (A , α j ). (18)

On the other hand, by αi > 0, α j > 0, λ ≤ 0 and (15), it follows that

(|λ − αi | − ri (A , αi ) + |ai j ... j |)|λ − α j | ≥ (|αi | − ri (A , αi )+ | ai j ... j |)|α j |
> |ai j ... j |r j (A , α j ). (19)
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13 Page 14 of 22 S. Bai

It is easy to see that (18) and (19) contradict each other. Consequently, λ > 0.
Furthermore, if A is symmetric tensor, then all Z -eigenvalues of A are positive,
which implies that A is positive definite and, consequently, f (x) is positive definite.

��
Finally, an example is given to verify the effectiveness of Theorem 9. Before that,

a lemma is recalled.

Lemma 2 [21, Lemma 4.2] Let

g(x) = x − 1

a

∑
i∈[n]

|x − bi | − c

be a real-valued function about x, where a is a positive integer, bi ∈ R and b1 ≤ b2 ≤
. . . ≤ bn with n ≥ a, and c ∈ R.

(I) Assume that a is odd.
(I.i) If n is odd, then

max
x∈R g(x) = 1

a

⎛
⎜⎝

n+a
2∑

i=1

bi −
n∑

i= n+a
2 +1

bi

⎞
⎟⎠ − c, (20)

and this takes place for every x ∈ [bn+a
2

, bn+a
2 +1] if b n+a

2
�= bn+a

2 +1, and only for
x = bn+a

2
if b n+a

2
= bn+a

2 +1. Note that let [bn+a
2

, bn+a
2 +1] be [bn+a

2
,+∞) if b n+a

2 +1
does not exist.

(I.ii) If n is even, then

max
x∈R g(x) = 1

a

⎛
⎜⎝

n+a−1
2∑

i=1

bi −
n∑

i= n+a+3
2

bi

⎞
⎟⎠ − c, (21)

and this maximum is reached when x = bn+a+1
2

.

(II) Assume that a is even. If n is odd, then (21) holds. And if n is even, then (20) holds.

Example 1 Let A = (ai jkl) ∈ R
[4,3] with entries defined as follows:

a1111 = 2.6, a2222 = 3.2, a3333 = 2, a1112 = a1121 = a1211 = a2111 = 0.4,

a1122 = a1212 = a1221 = a2112 = a2121 = a2211 = 0.9,

a1133 = a1313 = a1331 = a3113 = a3131 = a3311 = 1.1,

a1233 = a1323 = a1332 = a2133 = a2313 = a2331 = 0.4,

a3123 = a3132 = a3213 = a3231 = a3312 = a3321 = 0.3,

a2223 = a2232 = a2322 = a3222 = 0.4,

a2233 = a2323 = a2332 = a3223 = a3232 = a3322 = 1,
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Table 1 Numerical results of (15) with the Z -identify tensor E1

(|αi | − ri (A , αi )+ | ai j ... j |)|α j | |ai j ... j |r j (A , α j )

i = 1 and j = 2 0.400 0

i = 1 and j = 3 1.200 0

i = 2 and j = 1 1.875 0.96

i = 2 and j = 3 0.200 0

i = 3 and j = 1 1.125 0

i = 3 and j = 2 2.000 1.56

and ai jkl = 0 for otherwise.
Our goal is to judge the positive definiteness ofA . Because of the formof Ri (A , αi )

and ri (A , αi ) being related to the Z -identify tensor E , we now divide two cases to
consider the positive definiteness of A .

Case I. Let the Z -identify tensor E be E1 = (ei jkl) ∈ R
[4,3], i.e.,

e1111 = e1122 = e1133 = e2222 = e2211 = e2233 = e3333 = e3311 = e3322 = 1,

and ei jkl = 0 for otherwise.
Proposition 1 of [21] shows that Theorem 6 cannot be used to judge the positive

definiteness ofA when the Z -identify tensor E in Ri (A , αi ) is taken as E1. Now, we
consider usingTheorem7 to judge the positive definiteness ofA . Letα = (2.5, 4, 2)�.
By

(α2 − R1
2(A , α2))α1 = −4.25 < 1.88 =| a2111 − α2e2111 | R1(A , α1),

it can be seen that (14) does not hold for i = 2 and j = 1, which implies that we
cannot use Theorem 7 to judge the positive definiteness of A for this α. However,
for this α, we can use Theorem 9 to judge the positive definiteness of A . In fact, by
the numerical results of (15) listed in Table1, it can be seen that (15) holds for all
i, j ∈ [n] and j �= i , which implies that we can use Theorem 9 to judge the positive
definiteness of A .

We also use the Z -eigenvalue inclusion sets to judge the positive definiteness of
A . By Theorem 1, we have

L (A ) =
{
z ∈ C :| z |≤ 5.9 + √

45.21

2

}
.

By Theorem 2, we have

G (A , α) = {z ∈ R :| z − 4 |≤ 13.5}.

By Theorem 3, we have

Υ (A , α) = {z ∈ R : (| z − 4 | −5.7) | z − 2.5 |≤ 1.88}.
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Fig. 1 Comparisons ofL (A ),
G (A , α), Υ (A , α) and
Ω(A , α) with E1 and
α = (2.5, 4, 2)�

By Theorem 4, we have

Ω(A , α) = {z ∈ R : (| z − 4 | −3.25) | z − 2.5 |≤ 0.96}.

The Z -eigenvalue inclusion sets L (A ), G (A , α), Υ (A , α), Ω(A , α) and the
exact Z -eigenvalues are drawn in Fig. 1, where they are represented by black dotted
boundary, green stippled boundary, blue dotted boundary, red solid boundary and black
“+,” respectively.

Case II. Let the Z -identify tensor E be E2 = (ei jkl) ∈ R
[4,3], i.e.,

e1111 = e2222 = e3333 = 1, e1122 = e1212 = e1221 = 1

3
, e1133 = e1313 = e1331 = 1

3
,

and ei jkl = 0 for otherwise.
Then

Ri (A , αi )

=| aiiii − αi | +
∑
j �=i

(
| aii j j − 1

3
αi | + | ai ji j − 1

3
αi | + | ai j j i − 1

3
αi |

)
+ γi ,

where

γi = Ri (A )− | aiiii | −
∑
j �=i

(| aii j j | + | ai ji j | + | ai j j i |), i ∈ [3].

123



A New Brauer-Type Z-Eigenvalue Inclusion Set for Even-Order Tensors Page 17 of 22 13

Table 2 Numerical results of (15) with the Z -identify tensor E2

(|αi | − ri (A , αi )+ | ai j ... j |)|α j | |ai j ... j |r j (A , α j )

i = 1 and j = 2 5.100 0

i = 1 and j = 3 12.000 0

i = 2 and j = 1 6.625 0.32

i = 2 and j = 3 13.200 0

i = 3 and j = 1 1.625 0

i = 3 and j = 2 1.500 0.32

Firstly, we use Theorem 6 to judge the positive definiteness of A . Suppose that
there is α = (α1, α2, α3)

� ∈ R
3 such that (13) holds, which implies that

f (αi ) := αi − |aiiii − αi | −
∑
j �=i

(
|aii j j − 1

3
αi | + |ai ji j − 1

3
αi | + |ai j j i − 1

3
αi |

)

= αi − 1

3

⎡
⎣3|αi − aiiii | +

∑
j �=i

(|αi − 3aii j j | + |αi − 3ai ji j | + |αi − 3ai j j i |)
⎤
⎦

>γi .

By Lemma 2, we have

max
α1∈R

f (α1) = 2 < 2.4 = γ1,

max
α2∈R

f (α2) = 2.5 < 2.8 = γ2,

max
α3∈R

f (α3) = 1.7 < 2.2 = γ3,

which shows that there is not α1, α2 and α3 such that (13) holds and implies that we
cannot use Theorem 6 to judge the positive definiteness of A .

Secondly, we use Theorem 7 to judge the positive definiteness of A . Let α =
(2.5, 3, 6)�. By

(α3 − R2
3(A , α3))α2 = −3 < 0.56 =| a3222 − α3e3222 | R2(A , α2),

it can be seen that (14) does not hold for i = 3 and j = 1, which implies that we
cannot use Theorem 7 to judge the positive definiteness of A .

However, for this α = (2.5, 3, 6)�, we can use Theorem 9 to judge the positive
definiteness ofA . The numerical results of (15) are listed in Table2. From Table2, it
can be seen that (15) holds for all i, j ∈ [n] and j �= i , which implies that we can use
Theorem 9 to judge the positive definiteness ofA . In fact, all Z -eigenvalues ofA are
2.0000, 2.0035, 2.0224, 2.1335, 2.2539, 3.2022, 3.4147 and 3.7271.
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Fig. 2 Comparisons ofL (A ),
G (A , α), Υ (A , α) and
Ω(A , α) with E2 and
α = (2.5, 3, 6)�

We also use the Z -eigenvalue inclusion sets to judge the positive definiteness of
A . Let α = (2.5, 3, 6)�. By Theorem 2, we have

G (A , α) = {z ∈ R :| z − 6 |≤ 11.9}.

By Theorem 3, we have

Υ (A , α) = {z ∈ R : (| z − 6 | −6.7) | z − 2.5 |≤ 0}.

By Theorem 4, we have

Ω(A , α) = {z ∈ R : (| z − 6 | −5.35) | z − 2.5 |≤ 0}.

The Z -eigenvalue inclusion sets L (A ), G (A , α), Υ (A , α), Ω(A , α) and the
exact Z -eigenvalues are drawn in Fig. 2, where they are represented by black dotted
boundary, green stippled boundary, blue dotted boundary, red solid boundary and black
“+,” respectively.

From Figs. 1 and 2, it is easy to see that:

(i) 0 ∈ L (A ), 0 ∈ G (A , α) and 0 ∈ Υ (A , α); consequently, the sets L (A ),
G (A , α) and Υ (A , α) cannot be used to judge the positive definiteness of A .

(ii) σ(A ) ⊆ Ω(A , α) ⊂ C
+, whereC+ denotes the set of all complex numbers with

positive real part, which implies that all Z -eigenvalues ofA are positive and hence
A is positive definite.

(iii) σ(A ) ⊆ Ω(A , α) ⊆ Υ (A , α) ⊆ G (A , α), and L (A ) and Ω(A , α) do not
contain each other.

This example shows that no matter we take the Z -identify tensor E as E1 or E2, we
can use Theorems 4 and 9 to judge the positive definiteness of the even-order tensors.
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3.2 Asymptotically Stability of Time-Invariant Polynomial Systems

Consider the asymptotically stability of the time-invariant polynomial system

Σ : ẋ = A (2)x + A (4)x3 + · · · + A (2k)x2k−1, (22)

where A (t) = (ai1...it ) ∈ R
[t,n], t = 2, 4, . . . , 2k, and x = (x1, . . . , xn)�; see [1,

2]. A sufficient condition such that the nonlinear system (22) above is asymptotically
stable is gave by Deng et al. in [1] as follows.

Theorem 10 [1, Theorem 3.3] For the nonlinear systemΣ in (22), if−A (t) is positive
definite, where t = 2, 4, . . . , 2k, then the equilibrium point of Σ is asymptotically
stable.

By Theorems 9 and 10, a sufficient condition for the asymptotically stability can
be given.

Theorem 11 For the nonlinear system Σ in (22), if −A (t) satisfies all conditions of
Theorem 9, where t = 2, 4, . . . , 2k, then the equilibrium point of Σ is asymptotically
stable.

Example 2 Consider the following polynomial system

Σ : ẋ1 = −5x1 + 2x2 + 2x3 − 2.6x31 − 0.9x21 x2 − 3.3x1x
2
3 − 2.7x1x

2
2 − 1.8x2x

2
3 ,

ẋ2 = 2x1 − 5x2 + 2x3 − 0.5x31 − 3.2x32 − 0.6x22 x3
−3.0x2x

2
3 − 2.7x21 x2 − 1.8x1x

2
3 ,

ẋ3 = 2x1 + 2x2 − 5x3 − 0.2x32 − 2.4x33 − 3.3x21 x3 − 3.0x22 x3 − 3.6x1x2x3.

Apparently, Σ can be written as ẋ = A (2)x + A (4)x3, where x = (x1, x2, x3)�,

A (2) =
⎛
⎝

−5 2 2
2 −5 2
2 2 −5

⎞
⎠

and A (4) = (ai jkl) ∈ R
[4,3] whose entries are as follows:

a1111 = −2.6, a2222 = −3.2, a3333 = −2.4,

a1112 = a1121 = a1211 = a2111 = −0.3,

a1122 = a1212 = a1221 = a2112 = a2121 = a2211 = −0.9,

a1133 = a1313 = a1331 = a3113 = a3131 = a3311 = −1.1,

a1233 = a1323 = a1332 = a2133 = a2313 = a2331 = −0.6,

a3123 = a3132 = a3213 = a3231 = a3312 = a3321 = −0.6,

a2223 = a2232 = a2322 = a3222 = −0.2,

a2233 = a2323 = a2332 = a3223 = a3232 = a3322 = −1.0,
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Table 3 Numerical results of (15) with the Z -identify tensor E1 for −A (4)

(|αi | − ri (−A (4), αi )+ | ai j j j |)|α j | |ai j j j |r j (−A (4), α j )

i = 1 and j = 2 0.80 0

i = 1 and j = 3 1.54 0

i = 2 and j = 1 2.25 0.84

i = 2 and j = 3 1.12 0

i = 3 and j = 1 1.35 0

i = 3 and j = 2 2.00 0.72

Table 4 Numerical results of (15) with the Z -identify tensor E2 for −A (4)

(|αi | − ri (−A (4), αi )+ | ai j j j |)|α j | |ai j j j |r j (−A (4), α j )

i = 1 and j = 2 3.00 0

i = 1 and j = 3 3.50 0

i = 2 and j = 1 13.25 1.2

i = 2 and j = 3 5.00 0

i = 3 and j = 1 4.75 0

i = 3 and j = 2 3.30 0.1

and ai jkl = 0 for otherwise.
It is easy to see that −A (2) is positive definite. Now, we judge the positive defi-

niteness of −A (4) by taking the Z -identify tensor E as E1 and E2.
Case I. Let the Z -identify tensor E be E1 = (ei jkl) ∈ R

[4,3].
Taking α = (3, 4, 2.8)�, the numerical results of (15) are listed in Table3. From

Table3, it can be seen that (15) holds for all i, j ∈ [3] and i �= j . Hence, −A (4) is
positive definite by Theorem 9.

Case II. Let the Z -identify tensor E be E2 = (ei jkl) ∈ R
[4,3].

Taking α = (5, 3, 2)�, the numerical results of (15) are listed in Table4. From
Table4, it can be seen that (15) holds for all i, j ∈ [3] and i �= j , which implies that
−A (4) is positive definite by Theorem 9.

All in all, no matter the Z -identify tensor E is taken as E1 or E2, we can both
judge the positive definiteness of −A (4) by Theorem 9. In fact, all Z -eigenvalues
of −A (4) are 1.8287, 1.9538, 2.2721, 2.4000, 3.0829, 3.0838, 3.0954, 3.8162 and
3.9610. Furthermore, by Theorem 11, the equilibrium point of Σ is asymptotically
stable.

4 Conclusions

In this paper, we firstly presented a new Z -eigenvalue inclusion set Ω(A , α) in The-
orem 4. Subsequently, we in Theorem 5 proved that it is tighter than the inclusion
set G (A , α) in Theorem 2.2 of [8] and the inclusion set Υ (A , α) in Theorem 1 of
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[22]. As an application of the new setΩ(A , α), we obtained a sufficient condition for
the positive definiteness of an even-order real symmetric tensor (also homogeneous
polynomial forms) in Theorem 9 and obtained a sufficient condition for the asymptot-
ically stability of time-invariant polynomial systems in Theorem 11. Finally, we used
Examples 1 and 2 to verify the validity of Theorems 9 and 11.

However, how to choose appropriate parameter vector α to minimize the Z -
eigenvalue inclusion set Ω(A , α) in Theorem 4 is still an unsolved problem. We
will continue to study this problem in the future.
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