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Abstract
Given two graphs G1 of order n1 and G2, the neighborhood corona of G1 and G2,
denoted by G1�G2, is the graph obtained by taking one copy of G1 and taking n1
copies of G2, in the meanwhile, linking all the neighbors of the i-th vertex of G1 with
all vertices of the i-th copy of G2. In our work, we give some conditions that G1�G2
is not periodic. Furthermore, we demonstrate some sufficient conditions for G1�G2
having no perfect state transfer. Some examples are provided to explain our results. In
addition, for the reason that the graph admitting perfect state transfer is rare, we also
consider pretty good state transfer on neighborhood corona of two graphs. We show
some sufficient conditions for G1�G2 admitting pretty good state transfer.
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1 Introduction

Quantum walk is a natural generalization of classical random walk on graphs. In
1998, Farhi and Gutmann [19] firstly put forward the concept of continuous-time
quantum walk. Given a graph G, let A(G), L(G) and Q(G) be its adjacency matrix,
Laplacian matrix and signless Laplacian matrix, respectively. Suppose that X(G) is a
Hermitian matrix associated with G, then the unitary matrix HG(t) = exp(−it X(G))

is the transition matrix of continuous-time quantum walk corresponding to X(G) for
i2 = −1 and t > 0, where X(G)may be A(G), L(G), Q(G) and so on. In 2003, Bose
[6] studied the task of information transition in a quantum spin system. Christandl et al.
[13] showed that this task can be lessened to the question of perfect state transfer. Let
enx be a column vector of order n whose element of x-th position is 1 and 0, otherwise.
Sometimes, enx can be recorded briefly by ex . If

exp(−it X(G))ex = λey (1)

with |λ| = 1 for two vertices x, y ofG, then we say thatG admits perfect state transfer
(PST for short) relative to matrix X(G) between x and y at time t . Particularly, if
X(G) = A(G) (resp. L(G) or Q(G)), then G admits perfect state transfer (resp.
Laplacian perfect state transfer (LPST for short) or signless Laplacian perfect state
transfer (SLPST for short)).

Given that graphs admitting PST are rare, Godsil [22] proposed a new concept
called pretty good state transfer, whose restriction is more relaxing than that of PST.
The transpose of x is denoted as xT . If

|eTy exp(−iτ X(G))ex | > 1 − ε, (2)

for any ε > 0, then we say that G admits pretty good state transfer (PGST for short)
between two vertices x and y at time τ . Similarly, if X(G) = A(G) (resp. L(G) or
Q(G)), then G admits pretty good state transfer (resp. Laplacian pretty good state
transfer(LPGST for short) or signless Laplacian pretty good state transfer (SLPGST
for short)).

Recently, many articles focus on PST and PGST of composite graphs which are
obtained by some graph operations. For example, Li et al. [25] considered LPST and
LPGST of Q-graph. They showed that, for an r -regular graph G, if r + 1 is a prime,
then the Q-graph of G has no LPST but admits LPGST. Recently, Zhang et al. [36]
studied SLPST and SLPGST in Q-graph. Ackelsberg et al. [1] considered LPST and
LPGST of corona graphs. They showed that corona graph G ◦ H has no LPST, but it
occurs LPGSTunder some special conditions. In 2017,Ackelsberg et al. [2] considered
PST and PGST of corona graphs. They showed that G ◦ Kn has no PST and G ◦ K1
admits PGST under some suitable conditions. In 2021, Tian et al. [34] considered
SLPST and SLPGST of corona graphs. They demonstrated that K2 ◦H has no SLPST
between the two vertices of K2. They also showed that G ◦Km admits SLPGST under
some suitable condition. In 2021, Wang and Liu [35] considered LPST and LPGST
of edge complemented coronas. They gave some sufficient conditions such that edge
complemented coronaG�H has noLPST. They also showed thatG�H admits LPGST
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under some suitable conditions. Recently, Li et al. [26] gave some sufficient conditions
for extended neighborhood coronas to have Laplacian perfect state transfer. What is
noteworthy is that, due to some nice algebraic structures of Cayley graphs over finite
abelian groups, their PST and PGST have also received widely attention. For example,
Bašić [4, 5], Pal [30], Cheung andGodsil [12] gave some characterizations on circulant
graphs and cubelike graphs admitting PST. Tan et al. [33] presented a characterization
of Cayley graphs over abelian groups admitting PST, which generalized some known
results on circulant graphs and cubelike graphs. Along this line, PST onweight Cayley
graphs and PESTonCayley graphswere studied in [8] and [11], respectively. Recently,
PGST on Cayley graphs are also investigated in [10, 31]. For more details about these
directions, readers may refer to [3, 7, 9, 14–16, 18, 22, 28, 37] and the cited references
therein.

Motivated by the aforementioned results, we mainly focus on PST and PGST of
neighborhood corona of two graphs. Given two graphs G1 of order n1 and G2, the
neighborhood corona of G1 and G2, denoted by G1�G2, is the graph obtained by
taking one copy ofG1 and n1 copies ofG2, in the meanwhile, linking all the neighbors
of the i-th vertex of G1 with all vertices of the i-th copy of G2. In our work, we first
give some conditions that G1�G2 is not periodic. With the help of these conditions,
we demonstrate some sufficient conditions for G1�G2 having no PST. Furthermore,
some examples are provided to explain our results. Finally, for the reason that the
graph admitting PST is rare, we also consider PGST on neighborhood corona of two
graphs. We show some sufficient conditions for G1�G2 admitting PGST. It turns out
that G1�Kn2 with G1 admitting PST, C4�Kn2 and C4�G have PGST under some
special conditions.

2 Preliminaries

Throughout this paper, we only consider undirected simple graphs. Let jn and Jn be
the all-one column vector of order n and all-one square matrix of order n, respectively.
Let [n] be the set of {1, 2, . . . , n}.

Suppose that G is a graph of order n and λ j is the eigenvalue of A(G) with mul-
tiplicity l j for j ∈ [p], where l1 + · · · + l p = n. The spectrum of A(G) is denoted

by Sp(G), then Sp(G) = {λl jj : j ∈ [p]}. Let {x ( j)
1 , x ( j)

2 , . . . , x ( j)
l j

} be an orthonomal
basis of the eigenvalue space Vλ j ofλ j . The eigenprojector ofλ j , denoted by fλ j (G), is

fλ j (G) = ∑l j
i=1 x

( j)
i (x ( j)

i )T and
∑p

j=1 fλ j (G) = I . Obviously, fλ j (G) fλk (G) = 0
for j �= k and fλ j (G) is an idempotent matrix. According to the eigenprojectors, we
get the spectral decomposition of A(G), i.e.,

A(G) = A(G)

p∑

j=1

fλ j (G) =
p∑

j=1

λ j fλ j (G). (3)
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Hence,

HG(t) = exp(−it A(G)) =
p∑

j=1

e−itλ j fλ j (G). (4)

The eigenvalue support of vertex x , denoted by suppG(x), is the set of eigenvalues
λ j such that fλ j (G)ex �= 0. Two vertices x and y are strongly cospectral whenever
fλ j (G)ex = ± fλ j (G)ey for any j ∈ [p]. Let S+ = {λ : fλ(G)ex = fλ(G)ey} and
S− = {λ : fλ(G)ex = − fλ(G)ey}.
Theorem 2.1 (Coutinho [14]) Assume that G is a graph with vertex set satisfying
|V (G)| ≥ 2, and u, v ∈ V (G). If λ0 is the maximum eigenvalue of G, then G admits
PST between the vertices u and v if and only if the following conditions hold.

(i) Two vertices, u and v, are strongly cospectral.
(ii) Nonzero elements in suppG(u) are either all integers or all quadratic integers.

Moreover, for each eigenvalue λ ∈ suppG(u), there exists a square-free integer �

and integers a, bλ such that,

λ = 1

2
(a + bλ

√
�).

Here, we allow � = 1 if all eigenvalues in suppG(u) are integers, and a = 0 if all
eigenvalues in suppG(u) are multiples of

√
�.

(iii) λ ∈ S+ if and only if
λ0 − λ

g
√

�
is even and λ ∈ S− if and only if

λ0 − λ

g
√

�
is odd,

where

g = gcd

({
λ0 − λ√

�
: λ ∈ suppG(u)

})

.

Moreover, if the conditions above hold, then the following also hold.

(1) There exists a minimum time τ0 > 0 at which PST occurs between u and v, and

τ0 = 1

g

π√
�

.

(2) The time of PST, τ is an odd multiple of τ0.
(3) The phase of PST is given by λ = e−iτλ0 .

In order to characterize graphs admitting PST (or PGST), the following two lemmas
play a crucial role in our study process.

Lemma 2.2 (Godsil [20]) If a graph G admits PST between two vertices u and v at
time t, then G is periodic at vertex u (or v) at time 2t .

Lemma 2.3 (Godsil [21]) A graph G at vertex v is periodic if and only if one of the
following conditions holds:
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(i) all elements of suppG(v) are integers;
(ii) for each eigenvalue of suppG(v), there is a square-free integer �, integer a and

corresponding some integer bλ so that λ = 1
2 (a + bλ

√
�).

Theorem 2.4 (Hardy and Wright [24]) Assume that 1, λ1, . . . , λm are linearly inde-
pendent overQ. Then, for any real numbers α1, . . . , αm and N > 0, ε > 0, there exist
integers α > N and γ1, . . . , γm such that

|αλk − γk − αk | < ε, (5)

for each k ∈ [m]. Equivalently, (5) can be restated by αλk − γk ≈ αk for omitting the
dependence on ε.

Lemma 2.5 (Richards [32]) The set {√� : � is a square-free integer} is linearly
independent over Q.

The following characterization of quadratic integer was originally given by
Dedekind in his supplements of lectures by Dirichlet (see [17]). For ease of read-
ing, Coutinho reproduced the proof of this result in [14].

Lemma 2.6 (Dirichlet and Dedekind [17]) A real number λ is a quadratic integer if
and only if there exist integers a, b and � such that � is square-free and one of the
following cases holds:

(i) λ = a + b
√

� and � ≡ 2, 3 (mod 4);
(ii) λ = 1

2 (a + b
√

�), � ≡ 1 (mod 4), and a and b have the same parity.

3 Neighborhood Corona of Graphs

We denote the neighborhood corona of graph G1 and G2 by G1�G2. Let the ordered
pair V (G1�G2) = V (G1)×(0∪V (G2)) be the vertex set ofG1�G2 and |V (G1)| =
n1, |V (G2)| = n2. According to the definition of G1�G2, the adjacency relation is
given by:

((x, y), (x ′, y′)) ∈ E(G1�G2) ⇐⇒
{ y = y′ = 0 and (x, x ′) ∈ E(G1) or

x = x ′ and (y, y′) ∈ E(G2) or

(x, x ′) ∈ E(G1) and exactly one of y and y′ is 0.

(6)

According to the adjacency relation above, we easily get the adjacency matrix of
G1�G2 as follows:

A(G1�G2) =
(

A(G1) A(G1) ⊗ jTn2
A(G1) ⊗ jn2 In1 ⊗ A(G2)

)

, (7)

where “⊗” denotes the Kronecker product of two matrices.
At first, we recall the adjacency spectrum of G1�G2, which is attributed to

Gopalapillai in [23].

123



11 Page 6 of 21 X.-Q. Zhang et al.

Theorem 3.1 (Gopalapillai [23]) Let G1 be any graph of order n1 and G2 be any k-
regular connected graph with n2 vertices. Let Sp(G1) = {λlii |i ∈ [p]} and Sp(G2) =
{ηl

′
j
j | j ∈ [q]}, where the power represents the multiplicity. Then, the eigenvalues of

A(G1�G2) are

(1)

λi+ =
λi + k +

√
(λi − k)2 + 4n2λ2i

2
(8)

and

λi− =
λi + k −

√
(λi − k)2 + 4n2λ2i

2
(9)

with multiplicity li for i ∈ [p].
(2) η j with multiplicity n1 for j ∈ [q] \ {1}.

In particular, if there is some i0 ∈ [p] such that λi0 = 0, then

λi0+ =
λi0 + k +

√
(λi0 − k)2 + 4n2λ2i0

2
= k (10)

and

λi0− =
λi0 + k −

√
(λi0 − k)2 + 4n2λ2i0

2
= 0 (11)

with multiplicity li0 .

Proposition 3.2 Let G1 be any graph with n1 vertices and G2 be a k-regular graph

with n2 vertices. Let Sp(G1) = {λi li |i ∈ [p]} and Sp(G2) = {η j
l ′j | j ∈ [q]}, where

the respective multiplicities of λi and η j are li and l ′j for i ∈ [p], j ∈ [q].
(i) If λi �= 0 for any i ∈ [p], then

(1) the eigenprojector of eigenvalue λi± of A(G1�G2) is

Fλi± (G1�G2) = λi
2

(λi± − k)2 + n2λi 2

(
(λi±−k)2

λi
2 fλi (G1)

(λi±−k)
λi

fλi (G1) ⊗ jTn2
(λi±−k)

λi
fλi (G1) ⊗ jn2 fλi (G1) ⊗ Jn2

)

(12)

for i ∈ [p];
(2) the eigenprojector of eigenvalue η j of A(G1�G2) is

Fη j (G1�G2) =
(
0 0
0 In1 ⊗ ( fη j (G2) − δη j ,k

1
n2
Jn2)

)

(13)

for j ∈ [q].

123



Quantum State Transfer on Neighborhood Corona of Two Graphs Page 7 of 21 11

Hence, the spectrum decomposition of A(G1�G2) is given by:

A(G1�G2) =
p∑

i=1

∑

±
λi±Fλi±(G1�G2) +

q∑

j=1

η j Fη j (G1�G2). (14)

(i) If there is some i0 ∈ [p] such that λi0 = 0, then

(1) the eigenprojector of eigenvalue λi± of A(G1�G2) is

Fλi± (G1�G2) = λi
2

(λi± − k)2 + n2λi 2

(
(λi±−k)2

λi
2 fλi (G1)

(λi±−k)
λi

fλi (G1) ⊗ jTn2
(λi±−k)

λi
fλi (G1) ⊗ jn2 fλi (G1) ⊗ Jn2

)

(15)

for i ∈ [p] and i �= i0;
(2) the eigenprojector of eigenvalue η j of A(G1�G2) is

Fη j (G1�G2) =
(
0 0
0 In1 ⊗ fη j (G2)

)

(16)

for j ∈ [q] and j �= 1;
(3) the eigenprojector of eigenvalue k of A(G1�G2) is

Fk(G1�G2) = 1

n2

(
0 0
0 f0(G1) ⊗ Jn2

)

+
(
0 0
0 In1 ⊗ ( fk(G2) − 1

n2
Jn2)

)

.

(17)

(4) the eigenprojector of eigenvalue 0 of A(G1�G2) is

F0(G1�G2) =
(

f0(G1) 0
0 0

)

. (18)

Hence, the spectrum decomposition of A(G1�G2) is given by:

A(G1�G2) =
∑

i �=i0

∑

±
λi±Fλi±(G1�G2) +

q∑

j=2

η j Fη j (G1�G2)

+kFk(G1�G2) + 0F0(G1�G2). (19)

Proof (i) Suppose that {x (i)
j | j ∈ [li ]} is the set of all orthonormal eigenvectors of

eigenvalue λi of G1 and {y( j)
i |i ∈ [l ′j ]} is the set of all orthonormal eigenvectors of

eigenvalue η j of G2 for i ∈ [p], j ∈ [q]. The eigenvectors of A(G1�G2) can be
easily obtained from the proof of Theorem 2.1 in [23]. For the convenience of readers,

123



11 Page 8 of 21 X.-Q. Zhang et al.

we give the detailed proof. Let

X j
i± = |λi |

√
(λi± − k)2 + n2λ2i

(
λi±−k

λi
x (i)
j

x (i)
j ⊗ jn2

)

for j ∈ [li ], i ∈ [p]. According to (7), then

A(G1�G2)X
j
i± = |λi |√

(λi±−k)2+n2λ2i

(
A(G1) A(G1) ⊗ jTn2

A(G1) ⊗ jn2 In1 ⊗ A(G2)

) (
λi±−k

λi
x (i)
j

x (i)
j ⊗ jn2

)

= |λi |√
(λi±−k)2+n2λ2i

(
(λi± − k + n2λi )x

(i)
j

λi±x (i)
j ⊗ jn2

)

= λi± |λi |√
(λi±−k)2+n2λ2i

(
λi±−k

λi
x (i)
j

x (i)
j ⊗ jn2

)

= λi±X j
i±

for i ∈ [p] and j ∈ [li ], where the last equality holds because (λi± − k + n2λi )λi =
(λi± − k)λi±. Hence, according to the definition of eigenprojector, one gets

Fλi± (G1�G2) =
li∑

j=1

X j
i±(X j

i±)
T

=
li∑

j=1

λi
2

(λi± − k)2 + n2λi 2

⎛

⎝
λi±−k

λi
x(i)
j

x(i)
j ⊗ jn2

⎞

⎠

⎛

⎝
λi±−k

λi
x(i)
j

x(i)
j ⊗ jn2

⎞

⎠

T

= λi
2

(λi± − k)2 + n2λi 2

⎛

⎝
(λi±−k)2

λi
2 fλi (G1)

(λi±−k)
λi

fλi (G1) ⊗ jn2
T

(λi±−k)
λi

fλi (G1) ⊗ jn2 fλi (G1) ⊗ Jn2

⎞

⎠ .

(20)

Let Y ii ′
j =

(
0

ei ′ ⊗ y( j)
i

)

for j ∈ [q] and i ∈ [l ′j ], i ′ ∈ [n1] , where ei ′ is the

characteristic vector of order n1 and y( j)
i is a unit vector orthogonal to jn2 . Then,

A(G1�G2)Y ii ′
j =

(
A(G1) A(G1) ⊗ jTn2

A(G1) ⊗ jn2 In1 ⊗ A(G2)

)(
0

ei ′ ⊗ y( j)
i

)

= η j

(
0

ei ′ ⊗ y( j)
i

)

= η j Y ii ′
j .
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Thus,

Fη j (G1�G2) =
n1∑

i ′=1

l j ′∑

i=1
Y ii ′
j (Y ii ′

j )T

=
n1∑

i ′=1

l j ′∑

i=1

(
0

ei ′ ⊗ y( j)
i

) (
0

ei ′ ⊗ y( j)
i

)T

=
n1∑

i ′=1

⎛

⎜
⎝

0 0

0 ei ′(ei ′)
T ⊗

l j ′∑

i=1
y( j)
i (y( j)

i )
T

⎞

⎟
⎠

=
(
0 0
0 In1 ⊗ fη j (G2)

)

,

where j ∈ [q] \ {1}. If j = 1,

Fη1(G1�G2) = Fk(G1�G2) =
(
0 0
0 In1 ⊗ ( fk(G2) − 1

n2
Jn2)

)

.

Therefore, the spectral decomposition of A(G1�G2) is given by:

A(G1�G2) =
p∑

i=1

∑

±
λi±Fλi±(G1�G2) +

q∑

j=1

η j Fη j (G1�G2).

(ii) If there is some i0 ∈ [p] such that λi0 = 0, then λi0+ = k and λi0− = 0. Similar
to the proof of (i), we only need to compute Fk(G1�G2) and F0(G1�G2). Let

X j
i0+ = 1√

n2

(
0

x (i0)
j ⊗ jn2

)

and X j
i0− =

(
x (i0)
j
0

)

for j ∈ [li0 ]. Then,

A(G1�G2)X
j
i0+ = 1√

n2

(
A(G1) A(G1) ⊗ jTn2

A(G1) ⊗ jn2 In1 ⊗ A(G2)

) (
0

x (i0)
j ⊗ jn2

)

= k√
n2

(
0

x (i0)
j ⊗ jn2

)

and

A(G1�G2)X
j
i0− =

(
A(G1) A(G1) ⊗ jTn2

A(G1) ⊗ jn2 In1 ⊗ A(G2)

) (
x (i0)
j
0

)

= 0

(
x (i0)
j
0

)
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for j ∈ [li0 ]. Thus, we have

Fk(G1�G2) =
li0∑

j=1
X j
i0+(X j

i0+)
T +

(
0 0
0 In1 ⊗ ( fk(G2) − 1

n2
Jn2 )

)

=
li0∑

j=1

1
n2

(
0

x (i0)
j ⊗ jn2

) (
0

x (i0)
j ⊗ jn2

)T

+
(
0 0
0 In1 ⊗ ( fk(G2) − 1

n2
Jn2 )

)

= 1
n2

⎛

⎜
⎝

0 0

0
li0∑

j=1
x (i0)
j (x (i0)

j )
T ⊗ Jn2

⎞

⎟
⎠ +

(
0 0
0 In1 ⊗ ( fk(G2) − 1

n2
Jn2 )

)

= 1
n2

(
0 0
0 f0(G1) ⊗ Jn2

)

+
(
0 0
0 In1 ⊗ ( fk(G2) − 1

n2
Jn2 )

)

and

F0(G1�G2) =
li0∑

j=1

X j
i0−(X j

i0−)
T =

⎛

⎜
⎝

li0∑

j=1
x (i0)
j (x (i0)

j )
T
0

0 0

⎞

⎟
⎠ =

(
f0(G1) 0

0 0

)

.

Therefore, the spectral decomposition of A(G1�G2) is given by:

A(G1�G2) =
∑

i �=i0

∑

±
λi±Fλi±(G1�G2) +

q∑

j=2

η j Fη j (G1�G2)

+kFk(G1�G2) + 0F0(G1�G2).

��
Proposition 3.3 Let G1 be any connected graph with n1 vertices and G2 be any k-
regular graph with n2 vertices. For u, v ∈ V (G1),

(i) if λ j �= 0 for any j ∈ [p], then
e(u,0) exp(−it A(G1�G2))e(v,0) =

p∑

j=1

e−it
λ j+k
2 eu fλ j (G1)ev

(

cos
�λ j t

2

+i
k − λ j

�λ j

sin
�λ j t

2

)

, (21)

where �λ j =
√

(λ j − k)2 + 4n2λ2j for j ∈ [p].
(ii) if there is some j0 ∈ [p] such that λ j0 = 0, then

e(u,0) exp(−it A(G1�G2))e(v,0)

=
∑

j �= j0

e−it
λ j+k
2 eu fλ j (G1)ev(cos

�λ j t

2
+ i

k − λ j

�λ j

sin
�λ j t

2
) + eu f0(G1)ev,

(22)

where �λ j =
√

(λ j − k)2 + 4n2λ2j for j ∈ [p] and j �= j0.
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Proof (i) Since λ j �= 0 for any j ∈ [p], according to (14), then the transition matrix
of A(G1�G2) is given by:

exp(−it A(G1�G2)) =
p∑

j=1

∑

±
e−itλ j±Fλ j±(G1�G2) +

q∑

j ′=1
e−itη j ′ Fη

j
′ (G1�G2) .

(23)

From (23), (12) and (13), then the element of exp(−it A(G1�G2)) relevant to vertices
(u, 0) and (v, 0) is given by:

e(u,0) exp(−it A(G1�G2))e(v,0)

= e(u,0)

p∑

j=1

∑

±
e−itλ j±Fλ j±(G1�G2)e(v,0)

+e(u,0)

q∑

j ′=1
e−itη j ′ Fη

j
′ (G1�G2)e(v,0)

=
p∑

j=1
e−it

λ j+k
2

∑

±
e∓it

�λ j
2

λ j
2

(λ j±−k)2+n2λ j
2

(λ j±−k)2

λ j
2 eu fλ j (G1)ev

=
p∑

j=1
e−it

λ j+k
2 eu fλ j (G1)ev

∑

±
e∓it

�λ j
2

(λ j±−k)2

(λ j±−k)2+n2λ j
2

=
p∑

j=1
e−it

λ j+k
2 eu fλ j (G1)ev

(
(λ j+−k)2

(λ j+−k)2+n2λ j
2 + (λ j−−k)2

(λ j−−k)2+n2λ j
2

)

cos
�λ j t

2

+
(

(λ j−−k)2

(λ j−−k)2+n2λ j
2 − (λ j+−k)2

(λ j+−k)2+n2λ j
2

)

i sin
�λ j t

2 .

In the light of (8) and (9), we obtain the following three equalities,

(λ j+ − k)(λ j− − k) = −n2λ
2
j , (24)

(λ j+ − k)2 + (λ j− − k)2 = (λ j − k)2 + 2n2λ
2
j , (25)

and

(λ j− − k)2 − (λ j+ − k)2 = �λ j (k − λ j ). (26)

Thus,

(λ j+ − k)2

(λ j+ − k)2 + n2λ j
2

+ (λ j− − k)2

(λ j− − k)2 + n2λ j
2

= 1
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and

(λ j− − k)2

(λ j− − k)2 + n2λ j
2

− (λ j+ − k)2

(λ j+ − k)2 + n2λ j
2

= k − λ j

�λ j

.

Therefore,

e(u,0) exp(−it A(G1�G2))e(v,0) =
p∑

j=1

e−it
λ j+k
2 eu fλ j (G1)ev

(

cos
�λ j t

2

+i
k − λ j

�λ j

sin
�λ j t

2

)

.

(ii) If there is some j0 ∈ [p] such that λ j0 = 0, then the proof is totally similar to
that of (i), here we omit it. ��

4 Perfect State Transfer

In this section, we mainly focus on PST of neighborhood corona of two graphs. First
we recall the following lemma.

Lemma 4.1 (Li, Liu and Zhang [27]) Let G be a k-regular connected graph with n
vertices, for any vertex v of G.

(i) If G is not a complete graph, then |suppG(v)| ≥ 3;
(ii) If G is a complete graph, then |suppG(v)| = 2.

Proof Suppose that {λi |i ∈ [p]} is the set of all distinct eigenvalues of A(G) and
λ1 > λ2 > · · · > λp. Denote the eigenprojector of eigenvalue λi by fλi (G). Since G
is k-regular, then L(G) = D(G) − A(G) = k In − A(G). Let {θi |i ∈ [p]} be the set
of all distinct eigenvalues of L(G) and θ1 < θ2 < · · · < θp, then θi = k − λi . It is
clear that fλi (G) = fθi (G) for the regular graph G. Since, for any θi ∈ suppL(G)(v),
fθi (G)ev �= 0, then λi ∈ suppG(v) for fλi (G)ev = fθi (G)ev �= 0. Conversely,
since, for any λi ∈ suppG(v), fλi (G)ev �= 0, then θi ∈ suppL(G)(v) for fθi (G)ev =
fλi (G)ev �= 0. Therefore, we obtain the desired results from Lemma 4.2 in [27]. ��
Lemma 4.2 If 0 is not an eigenvalue of A(G1) and G2 is a k-regular graph. Then,
(v, 0) is periodic whenever (v,w) is periodic in G1�G2 for v ∈ V (G1),w ∈ V (G2).

Proof According to (12) and (13), it is obvious that the element of suppG1�G2
(v, 0)

contains in suppG1�G2
(v,w). If (v,w) is periodic in G1�G2, then (v, 0) is periodic

in G1�G2 according to Lemma 2.3. ��
Lemma 4.3 Let G1 be a connected graph and G2 be a k-regular graph. Suppose that
there is some i ∈ [p] such that the eigenvalue λi = 0 for A(G1). For any v ∈ V (G1)

and w ∈ V (G2),
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(i) if 0 /∈ suppG1
(v), then (v, 0) is periodic in G1�G2 whenever (v,w) is periodic

in G1�G2;
(ii) if 0 ∈ suppG1

(v), then suppG1�G2
(v, 0) \ {0} ⊆ suppG1�G2

(v,w).

Proof (i) Assume that 0 /∈ suppG1
(v). According to the (ii) of Proposition 3.2, one

has suppG1�G2
(v, 0) ⊆ suppG1�G2

(v,w). Now, we obtain the desired results from
Lemma 2.3.

(ii) If 0 ∈ suppG1
(v), then f0(G1)ev �= 0. According to (18), we easily obtain that

F0(G1�G2)e(v,0) �= 0 and F0(G1�G2)e(v,w) = 0. Hence, 0 ∈ suppG1�G2
(v, 0),

but 0 /∈ suppG1�G2
(v,w). ��

Theorem 4.4 Assume that G1 is an r-regular connected integral graph with n1 ver-
tices. Let G2 be a k-regular graph with n2 vertices. If

√
(r − k)2 + 4n2r2 is not an

integer, then (v,w) is not periodic for any v ∈ V (G1), w ∈ V (G2) ∪ {0} in G1�G2.
Moreover, there is no PST in G1�G2.

Proof Since G1 is r -regular, then A(G1)jn1 = r jn1 . According to the definition of
eigenprojector, the eigenprojector of eigenvalue r in G1 is given by fr (G1) = 1

n1
Jn1

as G1 is a connected graph. Therefore, fr (G1)ev �= 0 for any v ∈ V (G1). In other
words, r ∈ suppG1

(v) for any v ∈ V (G1).
Suppose that G1�G2 admits PST between vertex (v, 0) and another vertex. Then,

(v, 0) is periodic in G1�G2. According to Lemma 2.3 and Theorem 2.1, nonzero

elements of suppG1�G2
(v, 0) are all integers or the form of a+b

√
�

2 for integer a,
square-free integer � and some integer b.

Case 1: Nonzero elements of suppG1�G2
(v, 0) are all integers. Since r ∈

suppG1
(v), then Fr±(G1�G2)e(v,0) �= 0 for fr (G1)ev �= 0. Hence λr± ∈

suppG1�G2
(v, 0). Since all the elements of suppG1�G2

(v, 0) are integers, then λr+,

λr−, and λr+ − λr− are integers. According to λr+ = r+k+
√

(r−k)2+4n2r2

2 and

λr− = r+k−
√

(r−k)2+4n2r2

2 , one has

λr+ − λr− =
√

(r − k)2 + 4n2r2. (27)

The left of (27) is an integer but the right of (27) is not an integer. This contradicts
that nonzero elements of suppG1�G2

(v, 0) are integers.

Case 2: All the elements of suppG1�G2
(v, 0) are the form of a+b

√
�

2 for integer
a, square-free integer � and some integer b. According to Lemma 4.1, there is λ ∈
suppG1

(v) and λ �= r , such that λ± ∈ suppG1�G2
(v, 0) for fλ(G1)ev �= 0. Notice that

r± ∈ suppG1�G2
(v, 0) and

√
(r − k)2 + 4n2r2 is not an integer. Let λ± = a+b±

√
�

2
for integer a, square-free integer � > 1 and some integer b±. In the light of (24), one
has

(λ+ − k)(λ− − k) = −n2λ
2. (28)
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According to the form of λ±, we obtain the following equality:

1

4
[(a − 2k)2 + b+b−�] + 1

4
(a − 2k)(b+ + b−)

√
� = −n2λ

2. (29)

Since
√

� is irrational, (29) holds if and only if either a − 2k = 0, or b+ + b− = 0.
If b+ + b− = 0, then a = λ+ + λ− = λ + k, which implies that |suppG1

(v)| = 1.

At that time, it contradicts with Lemma 4.1. If a − 2k = 0, then λ± = k + b±
√

�
2 .

Therefore,

(λ+ − k) + (λ− − k) = λ − k. (30)

The left of (30) is a rational multiple of
√

�, but the right of (30) is an integer. Thus,
(30) can not hold, which means that λ± can not be the form of quadratic integer.
Therefore, not all the elements of suppG1�G2

(v, 0) are the form of quadratic integer.
According toCase 1 andCase 2, (v, 0) is not periodic inG1�G2 for any v ∈ V (G1)

by Lemma 2.3. Furthermore, (v,w) is not periodic in G1�G2 for any v ∈ V (G1)

and any w ∈ V (G2) ∪ {0} by Lemma 4.2. Finally, according to Lemma 2.2, there is
no PST in G1�G2. ��

InTheorem4.4,weproved that there is noPST inG1�G2 when
√

(r − k)2 + 4n2r2

is a non-integer for two regular graphs G1 and G2. Thus, a natural problem arises: if√
(r − k)2 + 4n2r2 is an integer, must G1�G2 have PST? The answer is negative.

First observe that the neighborhood corona K2�G2 is just the usual corona K2 ◦ G2
for the complete graph K2. Let K2�Kn2 , if n2 = l(l + 1) for any positive integer
l, then

√
1 + 4n2 is an integer. However, Fan and Godsil [18] proved that K2�Kn2

has no PST for all n2. In addition, as stated by the reviewer, we usually want to know
whether there exists a neighborhood corona graph admitting PST. In fact, if we admit
G1 to be a multigraph, then the neighborhood corona graphs admitting PST really
do exist. For example, Ackelsberg et al. [2] proved that, for any positive integer l,
K2(2)�K4l2−1 admits PST between the vertices of K2(2) at time π

2 , where K2(2) is
the digon (a multigraph on two vertices which are connected by two parallel edges).
This fact also shows that it is interesting to study PST of multigraphs or weighted
graphs.

Remark that, inTheorem4.4,we consider the existence of PST for the neighborhood
corona G1�G2 in the case where both graphs are regular. In what follows, we shall
consider the case when the graph G1 is non-regular.

Theorem 4.5 Assume that G1 is any connected graph. Let G2 be any connected k-
regular graph with n2 vertices. If there exists nonzero element λi ∈ suppG1

(v) such

that λi ∈ Z
√

�′ for some i ∈ [p] and some square-free integer �′ > 1, where Z is
the set of all integers. Then, (v,w) is not periodic in G1�G2 for v ∈ V (G1), and any
w ∈ V (G2) ∪ {0}.
Proof Suppose that there is PST in G1�G2 between vertex (v, 0) and another vertex,
then (v, 0) is periodic in G1�G2. Thus, according to Lemma 2.3 and Theorem 2.1,
nonzero elements of suppG1�G2

(v, 0) are either all integers, or all quadratic integers.
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Case 1: Nonzero elements of suppG1�G2
(v, 0) are all integers.

Since λi ∈ suppG1
(v), then fλi (G1)ev �= 0. According to (12), then λi± ∈

suppG1�G2
(v, 0) for Fλi±(G1�G2)e(v,0) �= 0. Hence λi+ and λi− are both integers.

Furthermore, λi+ + λi− is also an integer. According to (8) and (9),

λi+ + λi− = λi + k. (31)

Since λi ∈ Z
√

�′ is an irrational number, then the right of (31) is an irrational number.
However, the left of (31) is an integer, it is impossible. Hence, not all suppG1�G2

(v, 0)
are integers.

Case 2: There is some integer a and square-free integer� such that all the elements

of suppG1�G2
(v, 0) are the form of

a+bλi±
√

�

2 for some integer bλi± relevant to λi±.
Notice that here � is different from the previous �′ in the statement of the theorem.

According to Case 1, λi± ∈ suppG1�G2
(v, 0). Since (λi − k)2 + 4n2λ2i is an

irrational number according to λi ∈ Z
√

�′, then there is an integer a and square-free

integer � > 1 such that λi± = a+bλi±
√

�

2 for some integer bλi± corresponding to λi±.
In the light of (24), then (λi+ − k)(λi− − k) = −n2λ2i . According to the form of λi±,
one has, by a simple calculation,

1

4
[(a − 2k)2 + bλi+bλi−�] + 1

4
(a − 2k)(bλi+ + bλi−)

√
� = −n2λ

2
i . (32)

Since λi ∈ Z
√

�′, then −n2λ2i is an integer. Since � > 1, then
√

� is an irrational
number. In the light of (32), we obtain that either a − 2k = 0, or bλi+ + bλi− = 0.
If bλi+ + bλi− = 0, then a = λi+ + λi− = λi + k. It contradicts that a is an integer
beacause λi ∈ Z

√
�′ is an irrational number. If a − 2k = 0, then a = 2k. Hence

λi+ = k + bλi+
√

�

2 and λi− = k + bλi−
√

�

2 . According to the equalities above, then

(λi+ − k) + (λi− − k) = λi − k (33)

After taking square both sides of (33), we easily obtain that the left side is a rational
number, but the right side is irrational, a contradiction. Therefore, neither a − 2k = 0
nor bλi+ + bλi− = 0. Furthermore, nonzero elements of suppG1�G2

(v, 0) are not all
quadratic integers.

Now, it follows from Case 1, Case 2 and Lemma 2.3 that (v, 0) is not periodic in
G1�G2. Therefore, (v,w) is not periodic in G1�G2 from Lemma 4.3. ��
Theorem 4.6 The neighborhood corona P3�G has no PST for a connected k-regular
graph G.

Proof It is known that Sp(P3) = {√2, 0,−√
2}. By a simple calculation, then the

eigenvalue support of the middle vertex is the set {√2,−√
2} and the eigenvalue

support of the endpoints of P3 are the set {√2, 0,−√
2}. Based on Theorem 4.5,

(v, 0) is not a periodic vertex in P3�G for any v ∈ V (P3), then (v,w) is not a
periodic vertex in P3�G for any v ∈ V (P3), w ∈ V (G) ∪ {0}. According to Lemma
2.2, P3�G has no PST. ��
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5 Pretty Good State Transfer

Given that the neighborhood corona graphs having PST are rare, it is meaningful for
us to search some neighborhood corona graphs admitting PGST. In this section, we
mainly study PGST in neighborhood corona of two graphs.

Theorem 5.1 Assume that G1 has PST at time π
g between vertices x and y, where g is

defined in Theorem 2.1. If
√
4n2 + 1 is not an integer, then there is PGST in G1�Kn2

between vertices (x, 0) and (y, 0).

Proof Since G1 has PST at time π
g , then all eigenvalues λ j are integers by Theorem

2.1 for j ∈ [p]. The following proof is divided into two cases.
Case 1: 0 /∈ suppG1

(y).
According to (i) of Proposition 3.3, we have

e(x,0) exp(−it A(G1�Kn2))e(y,0) =
p∑

j=1

e−it
λ j
2 ex fλ j (G1)ey

(

cos
�λ j t

2

+i
−λ j

�λ j

sin
�λ j t

2

)

, (34)

where �λ j =
√

(4n2 + 1)λ2j for j ∈ [p]. Since fλ j (G1)ey = 0 for λ j /∈ suppG1
(y),

then

e(x,0) exp(−it A(G1�Kn2))e(y,0) =
∑

λ j∈suppG1
(y)

e−it
λ j
2 ex fλ j (G1)ey

(

cos
�λ j t

2

+i
−λ j

�λ j

sin
�λ j t

2

)

. (35)

In order to prove that G1�Kn2 has PGST between (x, 0) and (y, 0), we need to find
a time t0 such that

∣
∣
∣
∣
∣
∣

∑

λ j∈suppG1
(y)

e−it0
λ j
2 ex fλ j (G1)ey(cos

�λ j t0
2

+ i
−λ j

�λ j

sin
�λ j t0
2

)

∣
∣
∣
∣
∣
∣
≈ 1.

Since
√
4n2 + 1 is not an integer, then �λ j =

√
(4n2 + 1)λ2j is not an integer for

integer λ j ∈ suppG1
(y). Let �λ j = a j

√
b j for each λ j ∈ suppG1

(y), where a j ,
b j ∈ Z+ and b j is the square-free part of �2

λ j
. Then, the disjoint union {1} ∪ {√b j :

λ j ∈ suppG1
(y)} is linearly independent overQ byLemma 2.5. According to Theorem

2.4, there are integers α and c j for each λ j ∈ suppG1
(y) such that

α
√
b j − c j ≈ − 1

2g

√
b j . (36)
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If b j = b j ′ for two different eigenvalues λ j , λ j ′ ∈ suppG1
(y), then c j = c j ′ . Multi-

plying 4a j to two sides of (36), we have �λ j ≈ 4a j c j
4α+ 2

g
. Let t0 = (4α + 2

g )π . Then,

cos
�λ j t0

2 ≈ cos 2a j c jπ = 1. Hence,

∣
∣e(x,0) exp(−it0A(G1�Kn2))e(y,0)

∣
∣

=
∣
∣
∣
∣
∣
∣

∑

λ j∈suppG1
(y)

e−it0
λ j
2 ex fλ j (G1)ey(cos

�λ j t0
2 + i−λ j

�λ j
sin

�λ j t0
2 )

∣
∣
∣
∣
∣
∣

≈
∣
∣
∣
∣
∣
∣

∑

λ j∈suppG1
(y)

e−it0
λ j
2 ex fλ j (G1)ey

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

λ j∈suppG1
(y)

e−i πg λ j ex fλ j (G1)ey

∣
∣
∣
∣
∣
∣

= 1,

where the last equality holds by Theorem 2.1.
Case 2: 0 ∈ suppG1

(y).
According to (ii) of Proposition 3.3, if there exists 0 = λ j0 ∈ suppG1

(y), then

e(x,0) exp(−it A(G1�Kn2))e(y,0) =
∑

j �= j0

e−it
λ j
2 ex fλ j (G1)ey

(
cos

�λ j t

2

+i
−λ j

�λ j

sin
�λ j t

2

)
+ ex f0(G1)ey, (37)

where �λ j =
√

(4n2 + 1)λ2j for j �= j0. Similar to the discussion in Case 1, we can

obtain desired result based on the equalities 1 = e−i πg 0 and e−it0
λ j
2 = e−i πg λ j .

Therefore, there exists PGST on G1�Kn2 between (x, 0) and (y, 0).

Theorem 5.1 gives a sufficient condition such that G1�Kn2 admits PGST when
G1 has PST at π

g . It is well known that C4 has PST between its two antipodal vertices
at π

2 . Therefore, we immediately obtain the following corollary.

Corollary 5.2 If
√
1 + 4n2 is not an integer, then C4�Kn2 admits PGST.

Proof Recall that Sp(C4) = {2, 02,−2} and C4 has PST at time π
2 between two

antipodal vertices (see [14]). Without loss of generality, suppose that C4 admits PST
between vertices v1 and v3. According to the definition of eigenvalue support, then
suppC4

(v1) = {2, 0,−2} = suppC4
(v3). Since

√
1 + 4n2 is not an integer and e−i π2 0 =

1, then C4�Kn2 admits PGST at vertices (v1, 0) and (v3, 0) by Theorem 5.1. ��
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Theorem 5.2 implies that C4�Kn2 admits PGST when
√
1 + 4n2 is not an integer

andG2 = Kn2 is not a connected graph.Next,we consider PGSTonC4�G2 whenever
G2 is a k-regular connected graph.

Theorem 5.3 Assume that G2 is a k-regular connected graph with vertices n2. If
neither of

√
(2 + k)2 + 16n2 and

√
(2 − k)2 + 16n2 is an integer and k = 0(mod4),

then C4�G2 admits PGST.

Proof Suppose that V (C4) = {v1, v2, v3, v4}. According to the proof of Theorem
5.2, Sp(C4) = {2, 02,−2} and suppC4

(v1) = suppC4
(v3) = {2, 0,−2}. Let S =

suppC4
(v3). Since fλ j (C4)ev3 = 0 for any λ j /∈ S, then Proposition 3.3 implies that

e(v1,0) exp(−it A(C4�G2))e(v3,0)

=
∑

λ j �=0

e−it
λ j+k
2 ev1 fλ j (C4)ev3

(

cos
�λ j t

2
+ i

k − λ j

�λ j

sin
�λ j t

2

)

+ ev1 f0(C4)ev3 ,

(38)

where �λ j =
√

(λ j − k)2 + 4n2λ2j for j ∈ {1, 3}. Hence, in order to prove that

C4�G2 occurs PGST between vertices (v1, 0) and (v3, 0), we only need to find some
t0 such that

∣
∣e(v1,0) exp(−it0A(C4�G2))e(v3,0)

∣
∣

=
∣
∣
∣
∣
∣
∣

∑

λ j �=0

e−it0
λ j+k
2 ev1 fλ j (C4)ev3(cos

�λ j t0

2
+ i

k − λ j

�λ j

sin
�λ j t0

2
) + ev1 f0(C4)ev3

∣
∣
∣
∣
∣
∣

≈ 1.

(39)

Since λ1 = 2 and λ3 = −2, obviously, �λ3 = √
(2 + k)2 + 16n2 and �λ1 =√

(2 − k)2 + 16n2. Based on the given condition, neither of
√

(2 + k)2 + 16n2 and√
(2 − k)2 + 16n2 is an integer, then�λ j = a j

√
b j for j ∈ {1, 3}, where a j , b j ∈ Z+

and b j is square-free part of �2
λ j
. It is not difficult to see that {1} ∪ {√b j : j ∈ {1, 3}}

is linearly independent overQ. According to Theorem 2.4, there are integers α and d j

such that

α
√
b j − d j ≈ −1

4

√
b j . (40)

If
√
b1 = √

b3, then d1 = d3. Multiplying 4a j on both sides of (40), then

(4α + 1)a j
√
b j ≈ 4d ja j implies �λ j ≈ 4d j a j

(4α+1) . Take t0 = (4α + 1)π . By a simple
calculation,

cos
�λ j t0
2

≈ cos

4d j a j
(4α+1) (4α + 1)π

2
= cos 2a jd jπ = 1.
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Thus,

∣
∣e(v1,0) exp(−it0A(C4�G2))e(v3,0)

∣
∣

=
∣
∣
∣
∣
∣
∣

∑

λ j �=0

e−it0
λ j+k
2 ev1 fλ j (C4)ev3 (cos

�λ j t0
2

+ i
k − λ j

�λ j

sin
�λ j t0
2

) + ev1 f0(C4)ev3

∣
∣
∣
∣
∣
∣

≈
∣
∣
∣
∣
∣
∣

∑

λ j �=0

e−it0 k
2 e−it0

λ j
2 ev1 fλ j (C4)ev3 + ev1 f0(C4)ev3

∣
∣
∣
∣
∣
∣
.

(41)

Since e−it0 k
2 = 1 whenever k = 0(mod4), e−it0

λ j
2 = e−i π2 λ j and e−i π2 0 = 1, then

∣
∣
∣
∣
∣
∣

∑

λ j �=0

e−it0 k
2 e−it0

λ j
2 ev1 fλ j (C4)ev3 + ev1 f0(C4)ev3

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

λ j �=0

e−i π2 λ j ev1 fλ j (C4)ev3 + e−i π2 0ev1 f0(C4)ev3

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

λ j∈S
e−i π2 λ j ev1 fλ j (C4)ev3

∣
∣
∣
∣
∣
∣

= 1,

(42)

where the last equality holds as C4 admits PST at time π
2 between vertices v1 and v3.

��
Example The complete graph K5 is a 4-regular connected graph, then k = 4 and n2 =
5. By a simple calculation,

√
(2 + k)2 + 16n2 = √

116 and
√

(2 − k)2 + 16n2 =√
84. Neither of

√
(2 + k)2 + 16n2 and

√
(2 − k)2 + 16n2 is an integer, thenC4�K5

admits PGST.
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