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Abstract
We study parabolic equation with the tempered fractional Laplacian and logarithmic
nonlinearity by the direct method of moving planes. We first prove several important
theorems, such as asymptotic maximum principle, asymptotic narrow region principle
and asymptotic strong maximum principle for antisymmetric functions, which are crit-
ical factors in the process of moving planes. Then, we further derive some properties
of asymptotic radial solution to parabolic equation with the tempered fractional Lapla-
cian and logarithmic nonlinearity in a unit ball. These consequences can be applied to
investigate more nonlinear nonlocal parabolic equations.
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1 Introduction

In recent years, fractional parabolic equations have captured more and more scholars’
attention. In [1], Li and Chen presented some parabolic systems, which are extensively
used in the simulation of elementary chemical reactions. In [2], Wang and Chen proved
some Hopf’s lemmas and provide several examples concerning the application of
Hopf’s lemmas in deriving the properties of solutions for the following parabolic
equations:

∂z(x, t)

∂t
+ (−�)spz(x, t) = f (t, z(x, t)),

here 0 < s < 1 and 2 ≤ p < ∞. In [3], Chen, Wu and Wang considered fractional
parabolic equations with indefinite nonlinearities and proved the nonexistence of its
solution. In [4], Poláčik and Quittner introduced indefinite parabolic problem with the
regular Laplacian as follows,

∂z(x, t)

∂t
− �z(x, t) = a(x1)z

p(x, t), (x, t) ∈ R
n × R,

where x = (x1, x2, · · ·, xN ) ∈ R
n , t ∈ R, a is nondecreasing continuous function, and

they received the nonexistence of bounded positive solutions of the above equation.
In [5], in view of nonlocal parabolic problems, Chen, Wang and Niu developed the
asymptotic method of moving planes and applied it on bounded or unbounded domains.
More details can be seen in [6], [7].

To the best of authors’ knowledge, not much is known about parabolic equation
with the tempered fractional Laplacian and logarithmic nonlinearity. Here, we mainly
focus on the following equation:

∂z(x, t)

∂t
− (� + λ)

β
2 z(x, t) = az(x, t) ln | z(x, t) + 1 |p, (1.1)

where a, p > 0 and the tempered fractional Laplacian operator is defined as

(� + λ)
β
2 z(x, t) = −Cn,β,λP.V .

∫
Rn

z(x, t) − z(y, t)

eλ|x−y| | x − y |n+β
dy,

where β ∈ (0, 2), λ is a sufficient small positive constant and Cn,β,λ = �( n2 )

2π
n
2 |�(−β)|

.

P.V . presents the Cauchy principle value and �(t) = ∫ ∞
0 st−1e−sds is the

Gamma function. Moreover, let z ∈ C1,1
loc

⋂L2s , L2s = {z(·, t) ∈ L1
loc(R

n) |∫
Rn

|z(x,t)|
1+|x |n+β dx < +∞}.

The fractional Laplacian �
2
β is the generator of the β-stable Lévy process, in

which the second and all higher order moments diverge. It sometimes is referred to as
a shortcoming when applied to physical processes. So a parameter λ is introduced to
temper the temper Lévy process. The tempered Lévy flight has finite second moment,
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which solves the problem about the divergence of second moment of the jump length
of the Lévy flight. For a short time, the tempered Lévy flight exhibits the dynamics
of the Lévy flight, while after a sufficiently long time it turns to normal diffusion.
Moreover, the tempered fractional Laplacian equation governs the probability function
of position of the particles and some works on the tempered fractional Laplacian have
been done by scholars. For example, in [8], Zhang, Deng and Karniadakis established
numerical methods in the Riesz basis Galerkin framework with respect to the tempered
fractional Laplacian. In [9], Zhang, Hou, Ahmad and Wang studied the Choquard
equation involving a generalized nonlinear tempered fractional p-Laplacian. In [10],

considering the two-dimensional tempered fractional Laplacian (� + λ)
β
2 , Sun, Nie

and Deng derived the finite difference discretization and applied it to work out the
tempered fractional Poisson equation with Dirichlet boundary conditions. Moreover,
they also derived the error estimates. In addition, more results on tempered fractional
Laplacian operator can be found in [11, 12, 23].

The nonlocal property of the fractional Laplacian operator creates some difficulties
to study it. To overcome this difficulty, an extension method was introduced by Caf-
farelli and Slivestre [13], which converts the nonlocal problem into a high-dimensional
local one. It has been used by many authors (see [14] and the references therein). In
addition, the method of moving planes in integral forms also has been widely used
to study the nonlocal problems. However, some nonlocal operators cannot be solved
by the above method. In [15], Chen, Li and Li put forward a novel approach: a direct
method of moving planes method, which is a new idea to solve the fractional Lapla-
cian problems. In [16], Wang and Ren employed the direct method of moving planes
method to devote to a nonlinear Schrödinger equation with the fractional Laplacian
and Hardy potential. In addition, the radial symmetry result of standing waves have
been established. In [17], Zhang and Nie studied two nonlinear equations by the direct
method of moving planes concerning Logarithmic Laplacian. Numerous results can
be seen in [18]–[21].

In this article, we study parabolic equation involving the tempered fractional Lapla-
cian and logarithmic nonlinearity with the aid of the direct method of moving planes.
A great diversity of elliptic equations involving fractional Laplacian operator have
been studied by many authors. Here, we make a new attempt to study parabolic equa-
tion with the tempered fractional Laplacian and logarithmic nonlinearity to obtain
asymptotic symmetry and monotonicity of its radial solution. We believe that the basic
theory of such nonlinear temporary parallel problems established in this article will
provide theoretical support for many mathematical models coming from the real world
and will also help the development of numerical solutions of this type of problems.

2 Results

Before proving important theorems, we first define

Tα = {x = (x1, x2, · · ·, xn) ∈ R
n | x1 = α, for ∈ R}
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being the moving planes and

	α = {x ∈ R
n | x1 < α}

being the region to the left of 	α .
Also,

xα = (2α − x1, x2, · · ·, xn)

is the reflection of x about Tα . Meanwhile, we denote

zα(x, t) = z(xα, t) and Mα(x, t) = zα(x, t) − z(x, t).

From the above notation, Mα(x, t) is antisymmetric about Tα , a.e.,

Mα(x1, x2, · · ·, xn, t) = −Mα(2α − x1, (x1)
′
, t).

In order to state properties of solutions to parabolic equation, we need to define the
ρ-limit set of z :

ρ(z) := { ψ | ψ = lim z(·, tk) as tk → ∞}.

It follows from [22] that ρ(z) ⊂ C0(R
n) and ρ(z) is compact. Moreover, it satisfies

lim
t→∞ distC0(Rn)(z(x, t), ρ(z)) = 0.

whereC0(R
n) is the class of all continuous functions which vanishes to zero at infinity,

relative to the supremum norm defined finely. For each ψ(x) ∈ ρ(z), we define an
ρ-limit of ψα(x) as follows:

�α(x) = ψ(xα) − ψ(x) = ψα(x) − ψ(x).

For this part, we state important theorems as follows. The three theorems are
asymptotic narrow region principle (Lemma 2.1), asymptotic maximum principle
(Lemma 2.2) and asymptotic strong maximum principle (Lemma 2.3) concerning
antisymmetric functions, respectively.

Lemma 2.1 Suppose that  is a region in 	α , which is contained in

{ x | α − q < x1 < α }

for q small. Moreover, Mα(x, t) ∈ (C1,1
loc () ∩ L2s) × C1([t̄,∞)) is lower semi-

continuous and uniformly bounded with respect to x on , where t̄ is large enough,
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and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Mα(x,t)
∂t − (� + λ)

β
2 Mα(x, t) = [ap(ln | ξ(x, t) + 1 | + ξ(x,t)

ξ(x,t)+1 )]Mα(x, t), (x, t) ∈
 × [t̄, ∞),

Mα(x, t) ≥ 0, (x, t) ∈ (	α\) × [t̄, ∞),

Mα(x, t) = −Mα(xα, t), (x, t) ∈  × [t̄,∞),

(2.1)

where ξ(x, t) falls in between zα(x, t) and z(x, t).
Case 1: when  is bounded narrow region, for q being small enough , then

lim
t→∞

Mα(x, t) ≥ 0, ∀x ∈ ; (2.2)

Case 2: when  is unbounded region, if

lim
|x |→∞

Mα(x, t) ≥ 0, uniformly for t ≥ t̄ . (2.3)

Then, (2.2) still holds.

Proof Case 1: let m be a constant. Set

M̂α(x, t) = emtMα(x, t),

then M̂α(x, t) satisfies

∂M̂α(x, t)

∂t
− (� + λ)

β
2 M̂α(x, t)

= [m + ap(ln | ξ(x, t) + 1 | + ξ(x, t)

ξ(x, t) + 1
)]M̂α(x, t), (x, t)

∈  × [t̄,∞). (2.4)

Nevertheless, proving (2.2) is equivalent to prove the following (2.5),

M̂α(x, t) ≥ min{0, inf


M̂α(x, t̄)}, (x, t) ∈  × [t̄, T ), ∀ T > t̄ . (2.5)

Suppose that (2.5) is not false, under the condition that Mα on  × [t̄, T ] is lower
semi-continuous, there is (x

′
, t

′
) ∈  × (t̄, T ], then

M̂α(x
′
, t

′
) = min

	α×(t̄,T ]
M̂α(x, t) < min{0, inf


M̂α(x, t̄)}, (2.6)

then we have

∂M̂α(x
′
, t

′
)

∂t
≤ 0 (2.7)
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and

− (� + λ)
β
2 M̂α(x

′
, t

′
)

=Cn,β,λP.V .

∫
Rn

M̂α(x
′
, t

′
) − M̂α(y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy

=Cn,β,λP.V .

∫
	α

M̂α(x
′
, t

′
) − M̂α(y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy+

Cn,β,λP.V .

∫
Rn\	α

M̂α(x
′
, t

′
) − M̂α(y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy

=Cn,β,λP.V .

∫
	α

M̂α(x
′
, t

′
) − M̂α(y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy+

Cn,β,λP.V .

∫
	α

M̂α(x
′
, t

′
) − M̂α(y, t

′
)

eλ|x ′−yα | | x ′ − yα|n+β
dy

≤Cn,β,λP.V .

∫
	α

2M̂α(x
′
, t

′
)

eλ|x ′−yα | | x ′ − yα|n+β
dy

= C

eλq · qβ
M̂α(x

′
, t

′
).

(2.8)

Here, we suppose

D = {y | q < y1 − (x
′
)1 < 2q, | y′ − (x

′
)
′ |< q},

in consequence

∫
	α

1

eλ|x ′−yα | | x ′ − yα|n+β
dy ≥

∫
D

1

eλ|x ′−yα | | x ′ − yα|n+β
dy

≥ m1

eλq · qn+β
· | D |

= m1

eλq · qβ
.

Hence, by (2.4), we obtain

∂M̂α(x
′
, t

′
)

∂t
= (� + λ)

β
2 M̂α(x

′
, t

′
) +

[
m + ap(ln | ξ(x

′
, t

′
) + 1 | + ξ(x

′
, t

′
)

ξ(x ′
, t ′) + 1

)

]

M̂α(x
′
, t

′
) ≥

[
− m1

eλq · qβ
+ m + ap(ln | ξ(x

′
, t

′
) + 1 | + ξ(x

′
, t

′
)

ξ(x ′
, t ′) + 1

)

]
M̂α(x

′
, t

′
).

(2.9)
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We choose small enough q such that in (2.9),

[− m1

eλq · qβ
+ m + ap(ln | ξ(x

′
, t

′
) + 1 | + ξ(x

′
, t

′
)

ξ(x ′
, t ′) + 1

)]M̂α(x
′
, t

′
) > 0,

which contradicts (2.7).
Since Mα is bounded, by the definition of boundedness, we have m2 > 0 and for

(x, t) ∈  × [t̄, T ),∀ T > t̄

M̂α(x, t) ≥ min{0, inf


M̂α(x, t̄)} ≥ −m2. (2.10)

As a result,

Mα(x, t) ≥ e−mt (−m2),∀ t > t̄ .

Taking the limit as t → ∞, we get

lim
t→∞

Mα(x, t) ≥ 0, x ∈ .

Case 2: While  is unbounded domain, we know that the minimum value point of
M̂α(x, t) can be obtained by assuming condition (2.3). Then, a final conclusion is
reached through a process equivalent to Case 1.
This completes the proof. ��
Lemma 2.2 Suppose that  ⊂ 	α is bounded and N (x, t) ∈ (C1,1

loc () ∩ L2s) ×
C1([0,∞)) is lower semi-continuous with respect to x on , if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂N (x,t)
∂t − (� + λ)

β
2 N (x, t) ≥ [ap(ln | ξ(x, t) + 1 | + ξ(x,t)

ξ(x,t)+1 )]N (x, t), (x, t) ∈
 × [0,∞),

N (xα, t) = −N (x, t), (x, t) ∈ 	α × [0,∞),

N (x, t) ≥ 0, (x, t) ∈ (	α\) × [0,∞),

N (x, 0) ≥ 0, x ∈ ,

where ξ(x, t) falls in between zα(x, t) and z(x, t), then for (x, t) ∈ ×[0, T ], ∀ T >

0,

N (x, t) ≥ 0. (2.11)

Proof Set

N̂ (x, t) = emt N (x, t),

then N̂ (x, t) satisfies
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N̂ (x,t)
∂t − (�+λ)

β
2 N̂ (x, t)≥[m+2a(ln | ξ(x, t)+1 |+ ξ(x,t)

ξ(x,t)+1 )]N̂ (x, t), (x, t) ∈
 × [0,∞).

(2.12)

We assert that

N̂ (x, t) ≥ inf


N̂ (x, 0), (x, t) ∈  × [t̄, T ].

Suppose it is violated, in view of the continuity of N (x, t), we can obtain that there is
(x

′
, t

′
) ∈  × (0, T ], then

N̂ (x
′
, t

′
) = min

	α×(0,T ] N̂ (x, t) < 0,

We choose m < 0 such that

m + ap(ln | ξ(x
′
, t

′
) + 1 | + ξ(x

′
, t

′
)

ξ(x ′
, t ′) + 1

) < 0,

then

[m + ap(ln | ξ(x
′
, t

′
) + 1 | + ξ(x

′
, t

′
)

ξ(x ′
, t ′) + 1

)]N̂ (x
′
, t

′
) > 0.

However,

∂ N̂ (x
′
, t

′
)

∂t
≤ 0

and

− (� + λ)
β
2 N̂ (x

′
, t

′
)

= Cn,β,λP.V .

∫
Rn

N̂ (x
′
, t

′
) − N̂ (y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy

= Cn,β,λP.V .

∫
	α

N̂ (x
′
, t

′
) − N̂ (y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy+

Cn,β,λP.V .

∫
Rn\	α

N̂ (x
′
, t

′
) − N̂ (y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy

= Cn,β,λP.V .

∫
	α

N̂ (x
′
, t

′
) − N̂ (y, t

′
)

eλ|x ′−y| | x ′ − y |n+β
dy+

Cn,β,λP.V .

∫
	α

N̂ (x
′
, t

′
) − N̂ (y, t

′
)

eλ|x ′−yα | | x ′ − yα|n+β
dy

≤ Cn,β,λP.V .

∫
	α

2N̂ (x
′
, t

′
)

eλ|x ′−yα | | x ′ − yα|n+β
dy

< 0.
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This yields a contradiction with (2.12). Therefore,

N (x, t) ≥ 0.

��
Lemma 2.3 Suppose that Mα(x, t) ∈ (C1,1

loc()∩L2s)×C1([t̄,∞)) is bounded, where
t̄ is large enough, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Mα(x,t)
∂t − (� + λ)

β
2 Mα(x, t) = [ap(ln | ξ(x, t) + 1 | + ξ(x,t)

ξ(x,t)+1 )]Mα(x, t), (x, t)
∈ 	α × [t̄,∞),

Mα(x, t) = −Mα(xα, t), (x, t) ∈ 	α × [t̄,∞),

lim
t→∞

Mα(x, t) ≥ 0, x ∈ 	α,

(2.13)

where ξ(x, t) falls in between zα(x, t) and z(x, t). Assume that �α is greater than 0
somewhere in 	α .

Then �α(x) is greater than 0 in 	α .

Proof For every ψ ∈ ρ(z), notice that the definition of ρ(z), we infer that there exists
tk and tk → ∞, Mα(x, tk) → �α(x). Let

Mk(x, t) = Mα(x, t + tk − 1).

It follows that

∂Mk (x,t)
∂t − (� + λ)

β
2 Mk(x, t) = [ap(ln | ξk(x, t) + 1 | + ξk (x,t)

ξk (x,t)+1 )]Mk(x, t), (x, t) ∈
	α × [t̄,∞),

with ξk(x, t) = ξ(x, t + tk − 1). In view of standard parabolic regularity estimates
[22], leads to

∂Mk(x, t)

∂t
− (� + λ)

β
2 Mk(x, t) → ∂M∞(x, t)

∂t
− (� + λ)

β
2 M∞(x, t),

ξk(x, t) → ξ∞(x, t), k → ∞,

where (x, t) ∈ 	α × [0, 2] and M∞(x, t) is Hölder continuous with respect to x and
t .
Let t = 1, we have

Mα(x, tk) = Mk(x, 1) → M∞(x, 1) = �α(x), k → ∞.

Choose m > 0, then

m + 2a(ln | ξ∞(x, t) + 1 | + ξ∞(x, t)

ξ∞(x, t) + 1
) > 0.
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Let

M̂(x, t) = emtM∞(x, t).

By lim
t→∞

Mα(x, t) ≥ 0, we get

M̂(x, t) ≥ 0, in 	α × [0, 2].

Base on above, we can see that

∂M̂(x,t)
∂t − (� + λ)

β
2 M̂(x, t) = [m + ap(ln | ξ∞(x, t)

+1 | + ξ∞(x,t)
ξ∞(x,t)+1 )]M̂(x, t) ≥ 0,

(x, t) ∈ 	α × [0, 2]. (2.14)

Considering the assumption that �α is greater than 0 somewhere in 	α , through
continuity, we derive that there is a set E ⊂⊂ 	α , then

�α(x) > m3 > 0, x ∈ E . (2.15)

here m3 is a constant.
Because M∞(x, t) is continuous, by the definition of continuity, we have 0 < ε0 <

1, then

M∞(x, t) >
m4

2
, (x, t) ∈ E × [1 − ε0, 1 + ε0].

To simplify, we transform E ×[1−ε0, 1+ε0] into E ×[0, 2]. For (x, t) ∈ E ×[0, 2],
we attain

M∞(x, t) >
m4

2
. (2.16)

Considering arbitrary x̂ ∈ 	α\E , define γ = min{dist(x̂, E), dist(x̂, Tα)}, thus
Bγ (x̂) ⊂ 	α\E .

Then, we set up a lower solution in Bγ (x̂) × [0, 2]. Let

M(x, t) = ζE∪Eα (x)M̂(x, t) + ετ(t)h(x),

with

ζE∪Eα (x) =
{

1 x ∈ E ∪ Eα,

0 other ,
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τ(t) =
{

1 t ∈ [ 1
2 , 1],

0 t /∈ [0, 2],
h(x) = (γ 2− | x − x̂ |2)s+ − (γ 2− | x − x̂α |2)s+.

Observing that h(x̂) = γ 2s , h(x̂α) = −h(x̂). In the meantime,

− (� + λ)
β
2 h(x) ≤ m5, (2.17)

where m5 is an invariable.
Considering (x, t) ∈ Bγ (x̂) × [0, 2], we deduce

− (� + λ)
β
2 (ζE∪Eα

(x)M̂(x, t))

= Cn,β,λP.V .

∫
Rn

ζE∪Eα
(x)M̂(x, t) − ζE∪Eα

(y)M̂(y, t)

eλ|x−y| | x − y |n+β
dy

= Cn,β,λP.V .

∫
Rn

−ζE∪Eα
(y)M̂(y, t)

eλ|x−y| | x − y |n+β
dy

= Cn,β,λP.V .

∫
E

−M̂(y, t)

eλ|x−y| | x − y |n+β
+ Cn,β,λP.V .

∫
E

−M̂(yα, t)

eλ|x−yα | | x − yα |n+β
dy

= Cn,β,λP.V .

∫
E
(

1

eλ|x−yα | | x − yα |n+β
− 1

eλ|x−y| | x − y |n+β
)M̂(y, t)dy

≤ −m6,

(2.18)

where m6 > 0. In the light of (2.17) with (2.18), then

∂M(x, t)

∂t
− (� + λ)

β
2 M(x, t) = ετ ′(t)h(x) − (� + λ)

β
2 (ζE∪Eα (x)M̂(x, t)) − ετ(t)

(� + λ)
β
2 h(x) ≤ ετ ′(t)h(x) − m6 + ετ(t)m5.

Next, take ε > 0 small enough, we have

∂M(x, t)

∂t
− (� + λ)

β
2 M(x, t) ≤ 0. (2.19)

Let N (x, t) = M̂(x, t) − M(x, t), by (2.14) and (2.19), we can get

∂N (x,t)
∂t − (� + λ)

β
2 N (x, t) ≥ [ap(ln | ξk(x, t) + 1 |

+ ξk (x,t)
ξk (x,t)+1 )]N (x, t), (x, t) ∈ Bγ (x̂)

×[0, 2].

Also,

N (x, t) = M̂(x, t) − M(x, t) ≥ 0, (x, t) ∈ (	α\Bγ (x̂)) × [0, 2],
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and

N (x, 0) ≥ 0, x ∈ 	α.

As a result, by Theorem 2.2, we have

N (x, t) ≥ 0, (x, t) ∈ Bγ (x̂) × [0, 2].

which means

N (x, t) = emtM∞(x, t) − ετ(t)h(x) ≥ 0, (x, t) ∈ Bγ (x̂) × [0, 2].

Let t = 1, thus τ(t) = 1. So

M∞(x, 1) ≥ e−mεh(x), x ∈ Bγ (x̂).

In view of h(x̂) = γ 2s , we can get

�α(x̂) = e−mεγ 2s > 0. (2.20)

Since x̃ is arbitrary in 	α\E , by (2.15) and (2.20), we obtain

�α(x) > 0, x ∈ 	α.

The proof is completed. ��

3 Example

In this section, we will apply above theorems to study the properties of asymptotic
radial solution for the parabolic problem in B1(0) by using the direct moving planes.

Lemma 3.1 Let z(x, t) ∈ (C1,1
loc (B1(0)) ∩ C(B1(0))) × C1((0,∞)) be a positive

uniformly bounded solution of the following equation

{
∂z(x,t)

∂t − (� + λ)
β
2 z(x, t) = az(x, t) ln | z(x, t) + 1 |p, (x, t) ∈ B1(0) × (0,∞),

z(x, t) = 0, (x, t) ∈ Bc
1(0) × (0, ∞),

(3.1)

where a > 0. Then two conclusions can be derived as follows:

(H1) ψ(x) = 0.
(H2) ψ(x) is necessarily radical symmetric. Moreover, it is strictly decreasing with

respect to the origin.

123



Asymptotic Radial Solution of Parabolic... Page 13 of 16 1

Proof Choose arbitrary direction from the origin as the positive direction of x1, the
following Tα , 	α , xα , zα , Mα , ψ , �α have be introduced in Section 2. Set

α = {x ∈ B1(0) | x1 < α}.

By (3.1), we can get

⎧⎪⎨
⎪⎩

∂Mα(x,t)
∂t − (� + λ)

β
2 Mα(x, t) = [ap(ln | ξ(x, t) + 1 | + ξ(x,t)

ξ(x,t)+1 )]Mα(x, t), (x, t) ∈
α × (0,∞),

Mα(x, t) = −Mα(xα, t), (x, t) ∈ α × (0, ∞),

(3.2)

where ξ(x, t) falls in between zα(x, t) and z(x, t).
For case (H1), given that ψ(x) = 0, the above conclusion can be derived easily. So

here we consider case (H2), that is ψ �= 0 in B1(0). The proof of the above theorem
can be accomplished by two steps.

Step 1. We prove the following inequality,

�α ≥ 0, x ∈ α, for all  ∈ æ(z), when > −1 and close enough to − 1. (3.3)

Since when (x, t) ∈ Bc
1(0) × (0,∞), z(x, t) = 0, consequently

Mα(x, t) ≥ 0, x ∈ 	α\α, t ∈ (0,∞).

Together with (3.2), we use Theorem 2.1 to derive (3.3).
Step 2. On account of (3.3), we will move the plane Tα as long as the inequality

holds. Let

α0 = sup{ ≤ 0 | 9¯(x) ≥ 0, ∀ ∈ æ(z), x ∈ 3¯, ¯ ≤ }, (3.4)

then we explain

α0 = 0.

If not, in view of (3.4), then

�α0(x) ≥ 0, x ∈ α0 .

We Firstly show that for every ψ ∈ ρ(z), there is x1 ∈ 	α0 , then

�α0(x
1) > 0. (3.5)

If (3.5) is not true, in case that there is ψ̄ ∈ ρ(z),

�̄α0(x) = ψ̄α0(x) − ψ(x) ≡ 0 in 	α0 .
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Otherwise, z(x, t) = 0, (x, t) ∈ Bc
1(0)×(0,∞). As a result, ψ̄(x) ≡ 0 in Bc

1(0)∩	α0 .
Morewhile, by continuity there is x0 ∈ B1(0), then ψ̄(x0) = 0.

For above ψ̄ , we know that there is tk and it satisfies tk → ∞, z(x, tk) → ψ̄(x).
Then in view of [22], we have

∂z∞(x, t)

∂t
− (� + λ)

β
2 z∞(x, t) = az∞(x, t) ln | z∞(x, t) + 1 |p

and z∞(x, 1) = ψ̄(x). Observing that z∞(x, t) ≥ 0, we get ∂z∞(x0,1)
∂t ≤ 0 and

−(� + λ)
β
2 z∞(x0, 1) = Cn,β,λP.V .

∫
B1(0)

−z∞(y, 1)

eλ|x0−y| | x0 − y |n+β
dy < 0.

Since ψ̄ �= 0 in B1(0), there ensures z∞(y, 1) �= 0. Therefore, az∞(x0, 1) ln |
z∞(x0, 1) + 1 |2< 0. This is a contradiction. So (3.5) is established.

Now taking account of Theorem 2.3, it is clear that for every ψ ∈ ρ(z),

�α0(x) > 0, x ∈ α0 . (3.6)

It follows that for any δ > 0, there is a general constant m7, then

�α0(x) ≥ m7 > 0, x ∈ α0−δ. (3.7)

Because �α is continuous, we deduce that ε > 0, satisfies

�α(x) ≥ C0

2
> 0, x ∈ α0−δ,∀α ∈ (α0, α0 + ε), (3.8)

which implies

Mα(x, t) ≥ 0, x ∈ α0−δ,∀α ∈ (α0, α0 + ε).

For δ, ε > 0 being small enough, it is clear that for α ∈ (α0, α0 + ε), α\α0−δ is a
narrow region. Then taking account of Theorem 2.1, one can get

�α(x) ≥ 0, ∀x ∈ α\α0−δ. (3.9)

Together with (3.8), then

�α(x) ≥ 0, ∀x ∈ α, ∀α ∈ (α0, α0 + ε), ∀ψ ∈ ρ(z),

which yields a contradiction. Consequently, α0 = 0. Thus,
�0(x) ≥ 0, x ∈ 0

or

123



Asymptotic Radial Solution of Parabolic... Page 15 of 16 1

ψ(x1, · · ·, xn) ≥ ψ(−x1, · · ·, xn), 0 < x1 < 1. (3.10)

Because the direct of x1 is arbitrary, we derive the radial symmetry of ψ(x).
The monotone property follows from

�α > 0, x ∈ α, ∀ − 1 < α < 0,

which is similar to the process of (3.6). ��

4 Conclusion

In this paper, we deal with parabolic equation with the tempered fractional Lapla-
cian and logarithmic nonlinearity. First, we prove asymptotic maximum principle,
asymptotic narrow region principle and asymptotic strong maximum principle for
antisymmetric functions. Then, we prove some properties of parabolic equation in a
unit ball.
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