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Abstract

In this paper, we consider a backward problem for the stochastic convection—diffusion
equation. The source term is driven by the fraction Brownian motion. We illustrate
the regularity of the mild solution and prove the instability of this problem. In order
to overcome the ill-posedness, we apply a truncated regularization method to obtain a
stable numerical approximation to u (x, t). Convergence estimates are presented under
the a-priori parameter choice rule. Finally, some numerical experiments are given to
show the effectivity of the regularization method.
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1 Introduction

In recent decades, the backward heat conduction problem (BHCP) [15, 16, 23, 40] is
very important in environmental science, energy development, fluid mechanics and
electronic science. It aims at detecting the previous status of physical field from its
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present information. It is well known that such a problem is severely ill-posed in the
Hadamard sense [5, 37]. That is to say, a small perturbation of the measurements may
cause a large change in the solution. At present, there are a lot of research achievements
on the BHCP of deterministic situation.

On the one hand, the classical convection—diffusion model is the parabolic equation
%—’; +vVu = DAu, x € D C R4, 1 > 0. The backward problem for this equation
has been studied extensively. Chen and Liu [3] used a new regularization method to
give the regularized solution. The new regularization method is considered with both
the number of truncation terms and the approximation accuracy for the final data as
multiple regularization parameters. Hao and Nguyen [11] gave a convergence estimate
in the sense of L”-norm by a mollification method for the BHCP, where p € (1, 00).
Cheng et al. [4] proved the uniqueness of the mild solution for the parabolic equations
and applied the discrete Tikhonov regularization method with the generalized cross
validation rule to obtain a stable numerical approximation to the initial value. Li et al.
[21] used the Carleman estimation to get the conditional stability for such a kind of
problem. More related works are available to references [2, 9, 12-14, 17, 22, 26-29,
36, 41].

On the other hand, the time-fractional diffusion equation has attracted the attention
of many scholars recently. Wang and Liu [38] considered a backward problem for a
time-fractional diffusion process with inhomogeneous media of which the regulariza-
tion method is same as [3]. Wei and Zhang [39] discussed the backward problem for a
time-fractional diffusion-wave equation in a bounded domain and gave the existence,
uniqueness and conditional stability. Then, Floridial and Yamamoto [7] improved the
theoretical achievements of [39]. Tuan et al. [30] studied a backward problem for
a nonlinear fractional diffusion equation and used a filter regularization method to
approximate the solution.

With the rapid development of science and technology, more and more scholars
realize that the mathematical physical system is inevitably accompanied by random
disturbances, which motivates us to add random terms to certain mathematical models.
For the direct problem, Foondun [6] considered a stochastic time-fractional diffu-
sion equation (STFDE) over a bounded domain. In [33], random Rayleigh—Stokes
equations with Riemann-Liouville fractional derivatives were studied, and the exis-
tence and uniqueness of solutions corresponding to two different source terms were
discussed. Thach et al. [34, 35] discussed random pseudo-parabolic equations with
fractional Caputo derivations for different Hurst parameters and gave the existence,
uniqueness and continuity of mild solutions. For the inverse problem, Lv [18] gave a
global Carleman estimation for stochastic parabolic equation and studied two kinds of
inverse problems. Li and Wang considered an inverse random source problem for the
Helmbholtz equation driven by a fractional Gaussian field [19] and the time-harmonic
Maxwell’s equations driven by a centered complex-valued Gaussian vector field with
correlated components [20]. Gong et al. [10] considered an inverse random source
problem for the STFDE and proved the uniqueness of inverse source problem by the
variance of the Fourier transform of the boundary data. About the backward problem,
Peng et al. [25] dealt with a nonlocal backward problem for a STFDE and obtained
some properties of backward problem with the nonlocally terminal value term. Feng
et al. [8] studied a STFDE with the source f(x)h(z) + g(x)B’H (t) driven by frac-
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tional Brownian motion (fBm) and reconstructed f(x) and |g(x)| from the statistics
of the final data u(x, T, w). Tuan et al. [32] studied two terminal value problems for
bi-parabolic equations driven by Wiener process and fBm (H € (%, 1)) and discussed
existence and instability of the mild solution. However, to the best of our knowledge,
there has not been such work about the stochastic convection—diffusion equation. This
is our motivation for this work. In detail, we study the following backward problem
for the stochastic convection—diffusion equation driven by fBm:

ur(x,t) +ux(x,t) —uxe(x,t) = F(x, 1), (x,t) e D x (0,T),
u(x,t) =0, (x,t) € 0D x [0, T], (1.1)
ulx,T) = gx), x €D,

where D = (0, 1) and the random source is assumed as
F(x,1) = f@)h() +a(x)B™ (1)

Here, f(x) and o(x) are deterministic functions with compact supports contained
in D, h(t) is also a deterministic function, B (¢) is the fBm with the Hurst index
H € (0,1) and BH (t) can be roughly understood as the derivative of BH (1) with
respect to the time . When H = %, the fBm reduces to the classical Brownian motion
and B (t) becomes the white noise. Since the source F (x, t) is a random field with
low regularity, it is a distribution instead of a function. Moreover, the direct problem
has been discussed in [42]. This paper will discuss the regularity and instability of the

mild solution of the backward problem (1.1).
3 92

It is known that the operator 5= — % with the homogeneous Dirichlet bound-
ary condition has an eigensystem {A,, en};’lozl, where A, = }1 + n?x2, e (x) =
ﬁe% sin(nmx). The eigenvalues satisfy 0 < A; < Ay < --- < X, < --- with

Ay — 00 as n — oo. And the eigenfunctions {e,};° ; are a complete orthonormal
basis weighted by e™* over L%(D). Here, the corresponding weighted space is called
L?(D). Specifically,

L%(D) = {ve LZ(D)| / e v (x)dx < oo).
D
In this paper, (-, -) is defined as (f,g) = fD e ¥ f(x)g(x)dx and || - || denotes

the L*(D)-norm, ie., [|f()] = (p e_xfz(x)dx)% < oo, for any functions
f(x), g(x) € L*(D). Moreover,

fm=2ﬁmm.mﬂﬁm=ﬁf7mamm
n=1

The outline of this paper is as follows. In Sect. 2, we firstly provide the mild solu-
tion of this problem and some useful lemmas. The regularity of the mild solution and
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instability of the problem are proved in Sect. 3. In Sect. 4, we propose a truncated reg-
ularization method and give a convergence estimation under an a-priori regularization
parameter choice rule. At last, some numerical examples are presented in Sect. 5.

2 Preliminaries

In this section, we introduce some useful definitions and lemmas.

Definition 1 (2, F, IP) is called a complete probability space, if €2 is a sample space,
Fisao-algebraon Q,and P : F — [0, 1]is a probability measure on the measurable
space (2, F).

For arandom variable X defined on the probability space (€2, F, IP), the expectation
of X is defined by E(X) = fQ X (w)dP(w). Then, the variance of X is V(X) =
E(X — E(X))? = E(X?) — (E(X))?. Moreover, for two random variables X and Y,
the covariance of X and Y is Cov(X, ¥) = E[(X — E(X))(Y —E(Y))]. In the sequel,
the dependence of random variables on the sample @ € 2 will be omitted unless it is
necessary to avoid confusion.

Definition 2 [24] A Gaussian process BY = {BY(t),t > 0} is called fractional
Brownian motion of Hurst parameter H € (0, 1) if it has mean zero and the covariance
function

R(t,s) = E[B" (1)B" (s)] = % (r”’ 4521 —s|2H).

Particularly, if H = %, B becomes the standard Brownian motion and is usually

denoted by W which covariance function turns to be R(¢,s) =1 A s.
The fBm B with H € (0, 1) has a Wiener integral representation

t
BH (1) = /0 Ky (t,s)dW(s),

where K is a square integrable kernel and W is the standard Brownian motion.
For a fixed interval [0, T'], denote by £ the space of step functions on [0, T'] and by
‘H the closure of £ with respect to the product

(x10,11> X10,51)H = R(2,5),

where x[o,; and x[o,s) are the characteristic functions. For ¥ (t), ¢ (t) € 'H, it follows
from the It isometry that

() If H € (0, 3),

t t
E[ / ¥ (s)dB" (5) / ¢<s>dB”(s>}
0 0
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0Ky (u, 1)
=/0 |:KH(I r)tﬁ(f)+/ W) —y(r ))— ]

0Ky (u, 1)
ou

: [KH(I, f)¢(f)+/ () — ¢(1)) du} dr, (2.1

NS ! . ; \ 1
=Cu (?) (t_T)H_f_(H—E)TTH/ w2 — ) 2du |,

2
andCpy = ( 2H . ) with B(p, ) =f01 tP~1(1—1)9~1dz. Since

(1-2H)B(1-2H,H+5)

0Kp(u, 1)

1 /u\H-% 3
= Cy(H — - (—) =3,
o H( 2) . (u—1)

obviously, K (u, T) > 0 and it is decreasing monotonically with respect to u,
for H € (0, %),0<‘L’ < u.
) IfH = %,

t t t t
E[/ 1P(S)dBH(S)/ (b(S)dBH(S)} =E[/ w(S)dW(S)/ ¢(S)dW(S)}
0 0 0 0

13
= /0 Y (s)¢(s)ds. (2.2)

B)IfHel, D,

t t t t
E[ / Y (s)dB" (s) / ¢<s>dB”(s>}=aH / / Yo @) |r — ul*"2dudr,
0 0 0 JO
2.3)

where oy = HQ2H — 1).

Lemma2.1 Forl >0,0<zy <zp <t,and H € (%, 1), we have

t pt
/ / (t— Zl)l(t - Z2)1|Z1 — 22|2H_2dZ1dZ2 < P2H+2
0 JO

Hereinafter, a < b ora 2 b stands fora < Cb or a > Cb, where C > O is a
constant and its specific value is not required but should be clear from the context.
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Proof Using the binomial expansion, we can obtain that
t t
/ f (t =2t = 22)' |21 = 2" Pdzidz
0 Jo
t t
:2/ /(t—zl)l(t—zz)l(m—12)2H_2dzld12
0 Jzo
e 2H-2
=2f / 2 2h(z0 — 21?1 2dz1dzn
0 Jo
Lo > 2H -2 a2
=2/ / ¥ Z(—l)”( )zfz%ﬁ *Pdzidz,
0 Jo s p
p_
[ 2H -2 o
=ZZ/ / (—1)”( )le+pz§H 2P 4z1dzy
0’0 Jo p

o0
2H -2\ 1 '
-9 _1)P —/ L2H-1421 g,
pZ:(:)( )( >1+1+p 0 2 ?

p
o0
=2 Z(_l)p <2H - 2) ! (2H+2
poar p (+1+p)Q2H+2D)
< f2HA2

O
Lemma 2.2 By the method of separation of variables, the solution of problem (1.1)

can be written in the form u(x, t) = Y, 5+ (U(-, 1), ep)e, (x) =: Y, cq+ un(t)en (%),
where

T T
)= (80 = [ 106185 = [ 0BT @) g0 24
t t

Here, Y (s) := €™, dpy = 5 +1n%72, g = (g.en). fu= (f.en), on = (0, ).

Definition 3 For any p > 0, we introduce the following space:

H? := {v € L*(D) such that ||v||%p = Z )\ﬁp(v,en)z < 00}.

nezZ*

Particularly, if p = 0, then HP turns to L2.
Definition 4 [31]Let X be a Sobolev space. We introduce the following space:

LP(Q, X) := {pis X —valued random variable onQ: ||p|l},q x) = Elolly <
oo}, p= 1.
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Definition 5 In order to prove some properties of the solutions, for two nonnegative
numbers b and p, let us attempt to introduce a space called the Gevrey-type space [1]:

VD= {f € L*(D). such that || f|I},, : Z P R L

%44
P
nez

We note that if b = 0, then VI? turns to ﬁ”; if b = p =0, then VII,’ turns to L2.
Moreover, we will analyze our problem under the following assumption.

Assumption1 Let H € (0,1) and f, 0 and g € ZZ(D). Moreover, assume that
h € L°°(0, T) is a nonnegative function and its support has a positive measure, i.e.,
h > Ch > 0.

3 The Properties of the Problem
3.1 The Regularity of the Solution
In this section, we attempt to find the spaces where we obtain the regularity of the

mild solution to the problem. Before obtaining the result, we need the following strong
assumptions for the data {g, f,o}.

Assumption 2 Let p > 0, we set g(x), f(x), o(x) € VPTJrl cv,).

Before giving the main theorem for the regularity of solution, let us give some
important lemmas. From (2.4), if we set I1(t,T) := Y, .7+ Yn(T — 1)(-, en)en,
12(t» S) = ZHEZ+ I//.l’l(s - t)(v en)ena then

T T
u(t) =Lt T)g — / h(s)Ix(t,s)fds — / D(t, s)adBH(s).
t t

Lemma 3.1 For the convenience of subsequent calculation, we first give an estimation

formula
T 2
E 2(s —)dBH }
[( [ Yuls = ndB" (5))

1
A T=0(r 1 2H L 2T2HE2) - for H € (0, 5),
<

1
ezx’l(T_t)TZH, for H € [5, 1).

Proof We discuss the cases H € (0, %), H = % and H € (%, 1) separately, since the
covariance operator of B has different forms in these three cases.

(1) For H € (0, %), according to (2.1), we have

E [([tT V(s — z)dBH(s))z}
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T 2
= [(/'1Ujﬁnwﬂs—odBHmﬁ}
0
T

=£ [Ku (T )1 1yl = 1)

K 2
4£%2W]m

T
+/(mnwww—o—mnmwo—m »
S

t a
:/ (/ Y (u — t)Mdu>2ds
0 ou

2
+f |:KH(T $)¥n S—l)+/ (Wn( u—l)—lﬁn(s—t))M u} ds
1

=: N1 + N. 3.

For Ny, using the Holder inequality, we have

¢ H-—1 2
N] / (/ A.n(u I)C (H _ _) < ) 2 (u — s)Hi%du) ds
2H 1
< C2 200 (T— t)(T t)/ / s)2H73dudS

geZAn(T z)(T_ 1. 3.2)

Before we talk about N, let us give the following estimation for Ky (7', s), 0 <

s<T.
T H 3 H 1
/ u’' "2 —s5)""2du
N
T o0 1
H—5 p
=/ J2H-2 Z( 2) (_i) du
s p:o p u
00 2H—1— 2H—1-
2: 2 g T 2
=0 2H—-1—p
o0 1
< (T2H-1 _ 2H-1y Z (H - E) =D
- s P 2H—-1—-p
< 2H-1 _ p2H-1
< g?H-1 (3.3)
This implies

2
H—f 1 1 _H r H-3 H—1L
(T —s) (E—H)s2 /u 2(u—s)""2du
5

H—3
K3 (T,s)=C% [(:)
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<@ -9 +sH*%]2. (3.4)

Therefore, for N,

T
M= [ [Ku st =
t
T _1
+f wn(u—t)—wn(s—r))cH(H—%) (4" z(u—s)H_%du]zds
s S
T
s/ K%/(T, s)y2(s — t)ds
t
T rr 1 ju\H-} g3 \2
+/, (/ Wl =0 = (s =0)C(H=3) (5) 7 w=9""2du) ds
=:N21 + N2o.

Here, about Nj1, using (3.4), it follows that
T 1 1
Not S / (T — )72 4 gH72)22M 0D
t
T
< f ((T _ S)ZH—I +S2H—l)e2)\n(s—l)ds
t

T
S 62An(T—t)/ ((T _S)ZH—I +S2H—1)ds
t
S e2kn(T—t)((T _ t)ZH + T2H _ tZH)
5 ean(Tft)TZH. (35)
Similarly,

2H—-1

Ny = Ch(H - l)2/T /T<T — W& — 2w =97 (%)
2=4Ly 2 p © n s
(u — s)ZH_3duds, where & € (s, u)
T T
< CI(T — r),\ﬁe”"@*—')f / (u — $)*"'duds, where £* € (1, T)
t s

T2HQH+ 1)
S, )\.%(T _ t)2H+262)Ln(T—t). (36)

C%)\% 2 (E"=1)

Therefore, combining (3.2), (3.5) and (3.6),

T
E [(f Yinls - r)dBH<s))2} <N+ Ns
t

SJ (T _ t)eZ)tn(T_f) + TZHeZAn(T—t)
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+ )\’ﬁ(T _ t)2H+262)"n(T7t)

S ez)n,l(T—l)(T + T2H +)\.3T2H+2)

(2) For H = % according to Itd isometry (2.2), we have

T
E (/ 1/fn(s—t)dB"’(s))2 < P T-DT
t

(3) For H € (%, 1), by (2.3) and Lemma 2.1, we have

T 2
E W (s —)dBY ]
[(/ V(s = 0dBY (s))
T 2
=E[( / L7160 (s = DABH (s)) ]
0
T T
= OlH/O /o Ly ) (W (r = 1) - L @)W — 1) | 7 — u 2272 dudr
T T
=aHf / Un(r — DU —1) | r —u |*" 72 dudr
< 62)»,,(;"—[);«2H'

Making an arrangement for the above estimations, we obtain

1
Hr =0+ T2H 0722, for H € (0, ),

E [( ft " s —r)dBH<s>)2} <

1
ez}ln(T_t)TZI-I7 for H € [Es 1)
3.7)

]

Remark 3.2 Similar to the above calculation methods, for § > 0, we easily get

T ) P T=D( 4 720 L 272042y for H € (0, l),
H 2
E [( Yuls = 0dB" () } <

+8 ZnT=072H  gopr [%7 0.
(3.8)
1
s b2 28 (5 4+ 820 43262142y for H € (0, 3
E|([ wnts-ndBf©) | s I
4 e2)‘"882H, for H € [5, 1).
3.9)

Lemma3.3 Let p > 0, t € (0, T) and assume that g satisfies Assumption 2. Then, if
6 > 0 is small enough, there hold
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W) 1@ Tglge < Ighyy:
@) (11 +86.T) = L. D)l < 81l

Proof Using Definitions 3 and 5, we can obtain that

ey

(. Tl = Y Al (. T)g. en)?

nezZ*

2 _
= Z )‘npez}w(T 2 (g, en)2
nezZ*

< Y e (g, en)?

neZ+t

_ 2
= lgliy-
(2) Similarly,

1Nt +8.T) = Ii(t. T)glF,
= > WP +8.T) — 1, T))g. en)’

nez*

= 3 g e T - T

nezZ*

By mean value theorem of differentiation, we have

2 1
I(1G+8.7) = 1@ T))gl, <82 37 "™V ene™ T = 5glr
p

dr =
nez+t
O

Lemma3.4 Lett,s € (0,T), § > 0 and assume that f satisfies Assumption 2, we get

) @) fllge < 1l
@) (2@t +8.5) = L@ N flige =8l fllyr, -

Proof The proof is similar to Lemma 3.3. O

Remark 3.5 The mild solution and inverse problem may not be stable because ¢2*» (7 —")

goes to infinity rapidly as n — 0o, so we restrict f and g in Assumption 2.

Lemma3.6 Let § > 0 is small enough, and assuming that f and h satisfy Assump-
tions 1 and 2, we have

HP

T T
/ h(s)Iz(t+8,s)fds—/ h(s)Ir(t,s) fds
t 13

+4

ST + 1)||h||L°°(0,T)||f||VpT+1-
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Proof Using the triangle inequality and Lemma 3.4, we have

T T
||/ ah(s)lz(t—i-&s)fds—/ h(s)(t,5) fds| 7,

1+ t
T

-y / KD+ 8. 5) — Dt 5)) fds
468
T T

+/ Sh(s)lz(t,s)fds—/ h(s)I2(t,5) fds| 7,
t+ t
T t+48

< ||/ Sh(s)(lz(t+8,s)—Iz(t,s))fdsHﬁ,,—I— ||/ h(s)D(t, $) fds| 7,
1+ t

T
< ||h||Loo<o,T>/ N+ 8.5) = (e, f | s
i+

1+
+ ||h||L°°(0,T)/ |26 ) f ] 70ds
t
=8TIhl=o.nlfllyr  +8lAl=o.n) /vy
=8(T + Dlhllz=onl flyr, -

O

Lemma 3.7 Let § > 0 is small enough, and assuming that o satisfies Assumption 2,
there holds

T T
||/ Iz(t—i—(S,s)adBH(s)—/ Ig(t,s)odBH(s)HLz(Q iin) S8y .
148 t ’ p+2

Proof According to the triangle inequality of the norm, we have

T T
/ Iz(t—i-S,s)adBH(s)—/ L(t, s)odB (s)
t

+5 ‘ LA @.HP)
T

=| | e+s.5 - nenods )
144
T T

+/ Iz(t,s)crdBH(s)—/ L, s)odB" (5) -
148 t L2(Q,HP)
T

=| [ re+s.9) - e eds o],
148 L2(Q,HP)

1436
¥ ” f Lt s)odB" (s)
t

=51+ 5.

L2(Q,HP)
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For S1, by Definition 4, it follows that

T 2
st=| [ e+58.9) - Be.soast )
t+4

L2(Q,HP)

2
HP

T
(M G170 rnS=Dy (5 ey )end B (5)
t+46

T
=E H (L(t +8,5) — Iy(t,5))odB (s)
t+8

=ZEU

2
Hp
neZt

T 2
_ Z E |:< (eMnG—1=8) _ ekn(S—t))dBH(s)> :| (o, e,,)en||%p.

neZ+ t+6

Using mean value theorem of differentiation and (3.8), we have the following estimate

T 2
si=Y E —52n 0B (5) ) | AP (0, €)%, (€ € (s — 6. 5))
! t+6

neZ+*
T 2
= > ONE [(/ e*'r@’)dB”(s)) ]Aﬁ”(a, en)?
nel+ t46

1
82 3w AT (7 4 T 152722 (5, e)%, for H € (0, 3

< neZ*
s272H Z 220D 20T (5 0 V2 for H € [5, 1)
neZt
SSlold, (10
p+2

Similarly, for S>, there holds

t+6 2
2 = H/ Lt s)odB ()|
¢ L*(Q2,HP)
t+48 2
— Z H / e)nn(s—f)(o_’ en)endBH(S)‘ LZ(Q ﬁp)
neZt ! '
+8 2 )
=Y E ( / eM“)dB”(s)) (@, en)enllZy,
neZ+t !
2
_ e dn(s—1) 1 pH 2p 2
= Z E e dBH(s) ) | 2.7 (o, en)”.
neZ* !
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By (3.9), we have

1
Z 62)\”8(8 + 82H +)\.'21'82H+2))\-£p(05 en)z, fOrH S (0, E)
S% S neZt

1
Z eZA”BSZH)sz(G, en)z, for H € [E, 1)

neZ*

2p+2
5 821‘1 Z eZAnT)LnP-F (G, en)z
nezZ*

<&Mo} . (3.11)
p+l

Therefore, combining (3.10) and (3.11), we have

<d|o s o
<slollyr, +8"lollyr

< s .
S8y,

T T
/ 12(t+8,s)odBH(s)—/ Iz(t,s)adBH(s)‘
t+45

t

L2(Q,HP)

Theorem 3.8 Let § > 0. Assuming f, g and o satisfy Assumption 2, then

et +8) —uC Dl 2@ iny < Calllgllyr, + 1 Fllyr +lollyr, ).
where Cs = max{8, §(T + )| Lo(0.1, 67 }.
Proof Using the triangle inequality, it follows that

lul,t+8) —uC, Oll2q. fdr

T T
- ”11(t+5, T)g—/ h(s)lz(t+8,s)fds—/ Lt +8, 5)odBY (5)
t+46 t+38

T T
- (11(t, T)g—/ h(s)lz(t,s)fds—/ Ig(t,s)adBH(s)>‘
t t
SN +6,T)— L, T))gll gp

; T
+ H /I+a h(s)(t +6,5) fds _f h($)12(, s)fdsHﬁP

t

T T
+ H / Lt + 8, s)odBY (s) — / L. s)odBH(s)‘
t+38 t

L2(Q,HP)

L2(Q,Hr)

Combining Lemmas 3.3(2), 3.6 and 3.7, it is easy to draw the conclusion
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3.2 The Instability of the Problem

In this section, we will analyze the instability of u (x, #) by the expectation and variance
of u,(t). From (2.4), we have

T
Eun (1)) = gnn(T —1) — fn/ h(s)Yn (s — 1)ds.
t

T 2
Var (u, (1)) = 6E [(/ Un(s — t)dBH(s)) } )
t

3.2.1 The Expectation E(u,(t))

Here, we consider two special cases. On the one hand, if f = 0, , then f, = 0. It
follows that

Yo (T —t) — o0, as n — o0, then E(u,(t)) — oo.

On the other hand, if g = 0, then g, = 0. Using mean value theorem of integrals and
Assumption 1, we have

T T
/ 7S (s — D)ds = Y (&) / h(s)ds = Cayrn(E)(T — 1)
t t

—00, asn —> oo (§ € (0, T —1)),
then E(u,(t)) — oo.
3.2.2 The Variance Var(up(t))

We would separately talk about Var (u,(t)) for different H.
(1) For the case H € (0, 5), by (3.1),

E [(/tT Yn (s — t)dBH(s))2i|

t T
=/ (/ Y (u — t)Mdu>2ds
0 t ou

2
T T
+/ [KH(T,swn(s—zH/ (W(u—z)—wn(s—r))w”aif’”du} ds
t K

=:N1 + N,.

For Ny,
! T 1 ou g1 3 2
N1=f (/ Yl = 0C(H — (b — 9" Fdu) as
0 p 278
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T
= C%](H _ 1)2 /t (/ e(%Jrnznz)(uft)(z)Hf%(u _ S)Hi%du)zds
2 0 t N
2 1,1 2o ! ! U H-1 H-3 2
> it - 3G i) [ ([ - hw- ot ) as
2 4 0 t N
2
where fot (ftT (u —t)(%)H_%(u—s)H_%du) ds is a normal integral; therefore,

N| — o0, as n — oQ.
Since N> > 0,

T 2
E|:<f 1ﬂn(S—f)dBH(S)) ] =N+ N, > 00, as n — oo.
'

(2) For the case H = % by (2.2) and mean value theorem, we have

E [( / " s — r)dBH(s))Z]

=Y, E)T —1) — 00, asn — oo (& € (0,2T — 21)).

(3) For the case H € (%, 1), similarly, by (2.3)

E [( / s — t)dBH<s>)2]

T T
— Y (ED Y (E) / / r—u PH2 drdu (&1, £ € (0,27 — 20)
t t

(T —1)*H

l)wn(f;'l)lﬁn(sz) — 00, as n — 00.

fr— 2 ——
My HOH —

Above all, we can conclude that this problem is instability.

4 The Regularized Solution of the Problem

The instability means the small error in the high-frequency components for g, f?
and o® will be amplified by the factor v/, (1), so we need some regularization methods
to compute u(x,t),t € (0, 1) from measured data g‘s, f % and o®. Here, we adopt
the truncated regularization method to establish the regularized solution for u(x, ¢) in
(1.1). If the noisy data g%, £° and o satisfy

lg® —gll <8, If°—fl<é lo°—oll=<s, (4.1)
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where the constant § > 0 is a noise level, then the regularized solution uM8 is defined
as

M

a3 ) = 3 [ghvn(D)

n=1

T T
- f Fah(s)Yn(s)ds - / oan (5B (5) [yrn (—1)en ().
t

t
In addition, we set

M

w0 = 3 [ava (1)

n=1

T T
—/ fnh(S)l/fn(S)ds—/ Gnlﬁn(S)dBH(S)]llfn(—t)en(x).
t t

To obtain the error estimation between u and u™-%, the a-priori bound L on the mild
solution is needed. In detail, we set

- 0172 g 72,

E[i (8vm(T) — fo h) (o) — /0 o148 (5))’]

n=1

o0 o0 T
<Y @tn @7+ 3 ( /0 HS) Fun(5)ds )

=1 n=1

+ iE [(/OT Untpn(s)dBH(s)>2]

n=1
<12 (4.2)

=

Theorem 4.1 For H € [%, 1), let M be a positive integer number. Assume that the
a-priori bound (4.2) and the noise level (4.1) hold. Then,

[0 ¢ 0) = a0 220y S UM QT — 2008

+ Ym(=20)L?, for 0<1t<T.

Proof According to the triangle inequality, we get

2
|2ty —uc,0) ”LZ(Q,ZZ(D))
S uP e —uMcn Hi2(sz,22(o)) + a0 = a0 Hi2(sz,Z2(D))

=11+ b. 4.3)
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For I,
M T
1= 5 326 = v = [ (12 = e
= t
T 1 2
- [ @ = o187 ) Jp-en )
t

M M T 2
S D@ = T =07+ Y ( / (2 = S )h(s)n(s = 1)ds )
n=1 n=1

M T 2
+ZE[(/ (03 — o) (s = DAB™ (5)) }
n=1 !
=0, T)+ L@, T)+ J3(,T).

Here,

Ji@,T) < Y (T = 1)) (gn — gn)” < 8*Ym (2T —21).

n=1
If Assumption 1 and the noise level (4.1) hold, then
o0
D, T) < Y (T = Okl Feo.ry (T = 17D (g = fu)?
n=l1
< 8% Yy (2T —2 2 —1)?
= 1pM( t)”h”LOO(o’T)(T t) .

Since

M T 2
B, T) =Y (00 —0u)’E [( / Yn(s — t)dB”(s)) } :
n=1 !

from (3.7), we have
1
J3(t, T) < 82PmT=072H < §2y0 (2T — 21), for H € (5. D

Therefore,
I <82y QT —20)2+ (T — t)2||h||ic>O(o,r>)'

For I, in (4.3), there exists

n=M+1 !

4.4)

0 T T 2
L=E| Y (envn(® - f h(s) fan(s)ds — / onn (4)dB (9)) Y (=20
t

@ Springer



The Backward Problem of Stochastic. .. 3553

00 00 T 5
S Y @@ -0t Y ([ hesnes) v
n=M-+1 n=M+1 "'

00 T 5
+ ) E[( /t on ()4 (5)) ]wn(—zz)

n=M+1
=K1 + K7 + K3. 4.5)
For K1,
K1 = ¥ (=20) Y (@un(T))™ (46)
n=1
For K>,
00 T 2
K2 = (=20 ) ( fo h) futn(s)ds) )
n=1
For K3,
> E[( | 5" ) ]w—zn
n=M+1 !
= ) odn(-20E [( | a5 o) ] :
n=M+1 4

2
We need to compute E |:(ftT o,,wn(s)dBH(s)) i| for H = % and H € (%, 1), respec-
tively.

(1) For H = 1,

T 2 T T
E[( / wn<s>dBH<s>)}= [ wm@sas < [ paeoas
t t 0

T 2
=]ET[([ w,,(s)dBH(s)> ] (4.8)
0

(2) For H € (3, 1),

T
E [( / Yn (s)dBH(s))z}
t

T T
_ / / Un (W) | — u P22 drdu
t t
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T T
= / / Yn()Yn) | r —u |2Hf2 drdu
0 0

T >
=E[(/ wn(s)dBH(s)) } 4.9)
0

From (4.8)—(4.9), it concludes that
) T Y ’ 1
K; < IﬂM(—Zt)nX:;E[</(; 0 (s)dB (s)) ] for Hel5. 1. (410)

Plunging (4.6), (4.7) and (4.10) into (4.5), we have
b < Yy (=21)L2. 4.11)

Summing up (4.4) and (4.11), we can conclude that

2
[0y —u. 0 L2(,12(D))
< 82y QT = 20){1 + (T — 0)||h|)? + T?Hy + Yy (—20) L7
~ M L(0,T) M
< 8Ym QT — 20) + Yy (—20) L.

4In(%)-T

1
17,7 )2, then

Remark 4.2 Particularly, if we choose M = [(
|20 = D] g p2 gy S L2782 = 0, as 5 — 0.

(D)) ~

Remark 4.3 For H € (0, %), since the covariance is negatively correlated, the inequal-
ity

E [(/tT w,l(s)dBH(S))2:| <E |:(/OT 1sﬁn(s)dBH(s)>2]

may not be true anymore. In detail,

B[( [ wsno)]

~5[( /0 Un()dBH () + /, n ©a8" )]

_ E[(fot m(s)dBH(s)f] +E[(/[T Wn(s)dBH(s))z]

t T
+ 28] [ B 6) [ 08" o)
t
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Because E[f(; W, (s)dBH (5) ftT wn(s)dBH(s)] < 0 for H € (0, %), there is no
guarantee that

E[(/Ot Wn(s)dBH(s)>2] +2]E[/Ot llfn(s)dB”(s)/tT wn(s)dBH(s)] > 0.

To obtain the error estimation of regularized solution and exact solution for H € (0, 1),
we give another a-prior bound at any time as:

”u("t)”U(Q,ﬁp) <L 4.12)

Then, using Definition 4, we have

2
[0y = uC. D) 20 220

2p, —2
= Z )\np)‘«n pEKu('v 1), en)lz

n>M
-2
<oy "G 02 )
=P L2, (4.13)

Theorem 4.4 For H € (0,1), M > 0 is a integer number. Assume that the a-priori
bound (4.12) and the noise level (4.1) hold. We have

2 -2
[P0 —uC D 22 py S YMQT =208 + 25, "LY, for 0 <1 <T.

(D)) ~
Proof Combining (4.4) and (4.13), we can easily get the conclusion. O
Particularly, if we choose M = [(~2G2 )41
articularly, if we choose M = |'(2(T_t)n2) 1, then

2T —1)

P
I L% — O, as 6 — 0.
(L)

||MM’8('7 t) - u('a [)“iz(Q,ZZ(D)) ,S L18 + (

5 Numerical Experiments

In this section, we make some numerical implementations on our inversion scheme.
Since the backward problem is ill-posed, we use the truncated regularization method to
obtain the regularization solution by the finial value u(x, T, ), where the u(x, T, )
is given in the direct problem, and we truncate the above series by the first M terms
as a regularization. Let N, and N, be the number of discrete points in the spatial
and temporal directions, respectively, and x; = (i — Dhy,i = 1,2,..., Ny, t; =
(j— Dhyyj =1,2,---, Ny, where hy and h; are the steps in the spatial direction
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H=0.1, M=1,T=0.5 H=0.3, M=1,T=0.5

1.4 1.4
Exact Exact
solution solution

rep N 5=0.01 12

rrrrr 4=0.05

@ 9=0.1 @
s 1r 1 8§11
3 El
8 8
o 08f 1 o 08f
£ £
5 k]
06 1 ® 0.6
= =
© ©
> >
2o4r 1 2os4
= =

0.2 1 0.2

0 . . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
(a) (b)

14 H='0.5, M=1 ,T=9.5 14 H='0.9, M=1 ,T=9.5
Exact Exact
solution solution

ter N | =001 12

""" 4=0.05 .
8 6=0.1 8 6=0.1
s r 1 8 '
3 3
3 3
o 08 1 © 0.8
£ £
k] k]
06 1 ® 0.6
2 2
© ©
> >
Qoar 1 2o4
= =
0.2r 1 02t
0 0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
X X
(©) (d)

Fig. 1 The reconstruction results for # = 0 from noisy measurement data at T=0.5 for the problem with
M =1

and time direction, respectively. We solve the direct problem using the following finite
difference scheme:

J+l1 J i il J
“i T Wiy — Wiy Wiy — 20 gy
h, 2h, h2

= F(x;, j),

BH(tj )—BH (1) s
Here, F(x;, t;) = f(x)h(t;) + U(xi)h—,; the initial boundary value con-
dition is discretized as u{ = 0, ”{vx = 0, ul] = g(x;). In this paper, we choose
N, = 101, N; = 2541, 7T =1 and sample paths P = 1000, and some known
functions in (2.4) are chosen as

f(x) =sin(x)cos(wrx/2), o(x)=x(l—x), h@)=1.

Moreover, the data f, o and g are assumed to be polluted by a uniformly distributed
noise with level §. The parameters M, H and T may vary in different experiments.
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14 H=0.1, M=1 ,T=0.8 14 H=0.1, P=1000, M=1,T=0.8
— Exact g Exact
solution solution
1.2 1.2
g @ 4 D.\
£ & —
2 3
o
S 3
0.8 0.8
£ 2
5 5
g 0.6 g 0.6
g E
204 204
s =
0.2 0.2
0 ]
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
X X
(a) (b)
14 H=0.3, M=1,T=0.8 14 H=0.3, P=1000, M=1,T=0.8
Exact - Exact
solution solution
12 520.01 12
05
2 1 2
s ! s 1
5 =1
3 3
o 08 o 08 \
s s
k] k]
o 06 o 06
3 3
T ©
g g
2 o4 2 04
[ A\ =
0.2 0.2
0 ]
0 0.2 0.4 06 0.8 0 0.2 0.4 06 0.8 1
X X
(©) (d)
14 H=0.5, M=1,T=0.8 14 H=0.5, P=1000, M=1,T=0.8
Exact Exact
solution solution
12 / B 12
" "
5 1 5 1
5 5
2 2
o 08 o 08
£ £
k] k]
o 06 o 06
3 3
© ©
S S
204 2 04
F F
0.2 0.2
0 . . . . o . . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
X X
(e) (®
14 H=0.9, M=1 ,T=0.8 14 H=0.9, P=1000, M=1,T=0.8
= =5 Exact = Exact
solution solution
12 12
@ @ — :u‘w
& 1 & 1
= =
3 3
o 08 © 0.8
£ £
k] k-]
o 06 o 06
8 8
© ©
S S
2 04 2 04
- -
0.2 0.2
0 . . . . o . . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

X

(g

(h)

Fig.2 The exact and approximated solutions for the problem with 7 = 0.8, M = 1, (left): one path, (right):

the expectation
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Figure 1 shows the results of the backward problem with different 7', M, Hand,
which tells us that the recovery would be more accurate if 6 > 0 is smaller. Based
on the results, it can be observed that the regularized results are also acceptable for
only one path when T = 0.5. Of course, this conclusion can be drawn intuitively from
Fig. 2.

6 Conclusion

In this paper, we have studied a backward problem for convection—diffusion equation
driven by fBm with Hurst index H € (0, 1). We obtain the regularity of mild solution
and discuss the ill-posedness for the backward problem. The truncated regularization
method is introduced to approximate the solution of the problem. Under the a-priori
assumption, we obtain the convergence estimate in L2 norm. Finally, numerical imple-
mentations are presented to show the validity of our theorem analysis. However, for
this stochastic backward problem, we are not sure if the uniqueness is true. Hope we
can do something about it in future.
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