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Abstract
This paper is concerned with the following Kirchhoff-type problem:

⎧
⎨

⎩

−
(

a + b
∫

R3
|∇u|2 dx

)

�u + λV (x)u = g(x, u) + f (x, u) in R
3,

u ∈ H1(R3),

where a, b and λ are real positive parameters. The nonlinearity g(x, u)+ f (x, u) may
involve a combination of concave and convex terms. By assuming that V represents
a potential well with the bottom V −1(0), under some suitable assumptions on f , g ∈
C(R3 ×R,R), we obtain a positive energy solution u+

b,λ via combining the truncation

technique and get the asymptotic behavior of u+
b,λ as b → 0 and λ → +∞. Moreover,

we also give the existence of a negative energy solution u−
b,λ via Ekeland variational

principle.
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1 Introduction

In this paper, we are concerned about the existence and asymptotic behavior of non-
trivial solutions for the following Kirchhoff-type equations with concave–convex
nonlinearities:

⎧
⎨

⎩

−
(

a + b
∫

R3
|∇u|2 dx

)

�u + λV (x)u = g(x, u) + f (x, u), x ∈ R
3,

u ∈ H1(R3),

(Kb,λ)

where a, b and λ are real positive parameters, V ∈ C(R3,R) and f , g ∈ C(R3×R,R).
We assume that the potential V (x) satisfies the following conditions: (V1) V (x) ∈
C(R3,R) and V (x) ≥ 0 on R3;

(V2) there exists c > 0 such that Vc := {x ∈ R
3 : V (x) < c} is nonempty and has

finite measure;
(V3) � = int V −1(0) is a nonempty open set with a smooth boundary and � =

V −1(0).
It is well know that problem (Kb,λ) originates from the stationary analogue of the

Kirchhoff equation

utt −
(

a + b
∫

�

|∇u|2 dx

)

�u = f (x, u). (1.1)

Equation (1.1)was first presented byKirchhoff [23],which proposed a hyperbolic-type
equation

ρ
∂2u

∂2t
−

(
P0

h
+ E

2L

∫ L

0

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

dx

)
∂2u

∂2x
= 0

for free vibrations of elastic strings. This type of model extends the classical
D’Alembert’s wave equation and takes into account the chord length variation induced
by transverse oscillations. For this, more details on the Kirchhoff equation and further
mathematical and physical interpretation, we recommend the readers to read [3, 6,
13] and the references therein. It is worth mentioning that after Lions [25] introduced
an abstract functional analysis framework, problem (1.1) began to receive a lot of
attention.

In (Kb,λ), if we set V (x) = 0 and replace R3 and g(x, u) + f (x, u) by a bounded
domain � ⊂ R

N and f (x, u), respectively, then we get the following Kirchhoff-type
equation:
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⎧
⎨

⎩

−
(

a + b
∫

�

|∇u|2 dx

)

�u = f (x, u) in �,

u = 0 on ∂�.

(1.2)

Such problems are often referred to be nonlocal because of the presence of the term(∫

�
|∇u|2 dx

) �u which implies that (1.2) is no longer a pointwise identity. This
phenomenon provokes some mathematical difficulties, which lead to the study of
such a class of problems particularly interesting.

If λ = 1 and g(x, u) = 0 in (Kb,λ), then(Kb,λ) simplifies to the followingKirchhoff
problem:

−
(

a + b
∫

R3
|∇u|2 dx

)

�u + V (x)u = f (x, u), x ∈ R
3. (1.3)

Many researchers have focused on the effect of the nonlinear term f and potential V
of Eq. (1.3) on the solution. One usually assumes that V (x) ≡ 1, or V (x) is periodic,
or V (x) = V̄ (|x |), or V (x) is coercive, while f may be a general nonlinearity, or a
critical nonlinearity, or a subcritical nonlinearity. By using variational method, there
have been many results on the existence, nonexistence and multiplicity of nontrivial
solutions, for such problem depending on the assumptions of the potential V and f .
See, for example, [14, 17, 19–21, 24, 27, 29, 37] and references therein.

When λ 
= 1, we emphasize that hypotheses (V1)–(V3) was firstly introduced by
Bartsch and Wang [5] in the study of nonlinear Schrödinger equations. It is worth
mentioning that the condition (V3) plays an important role in proving the asymptotic
behavior of nontrivial solutions. We note that, the conditions (V1)–(V3) imply that
λV is referred as the steep potential well if λ is sufficiently large and one expects
to find solutions which localized near its bottom �; especially, Zhang and Du [36]
considered the problem (Kb,λ) with steep potential well while λ > 0, g(x, u) = 0
and f (x, u) := |u|p−2u as the case of 2 < p < 4. In fact, f (x, u) := |u|p−2u with
2 < p < 4 does not satisfy the Ambrosetti–Rabinowitz condition; the boundedness
of Palais–Smale sequence becomes a major difficulty in proving the existence of a
positive solution. By combining the truncation technique and the parameter-dependent
compactness lemma, they proved the existence of positive solutions for b small and λ

large. Various elliptic equations with steep potential well are studied in [4, 9, 11, 21,
22, 30, 32, 34] and the references therein.

In (Kb,λ), we note that the nonlinearity g(x, u)+ f (x, u)may involve a combination
of concave and convex terms. Equations like (Kb,λ) have been extensively studied due
to its strong physical background. Combined effects of concave–convex nonlinearities
were firstly investigated byAmbrosetti, Brézis and Cerami [2] on the following elliptic
equation:

− �u = λ|u|q−2u + μ|u|p−2u, u ∈ H1
0 (�), (1.4)

where � ⊂ R
N is a bounded domain, 1 < q < 2 < p < 2∗ and 2∗ = 2N

N−2 . They
obtained infinitely many solutions with negative energy for 0 < μ � λ = 1. Subse-
quently, Willem [33] extended the results of (1.4) in [2]; they proved the existence of
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infinitely many solutions with high energy by Fountain Theorem. Afterward, Liu and
Wang [26] obtained nodal solutions of Schrödinger equation involving a combination
of convex and concave terms.

In addition, for Kirchhoff equation with concave–convex nonlinearities, there are
many papers concerned with the existence of standing wave solutions. Chen et al. [8]
studied the following Kirchhoff-type problem of the form

−
(

a + b
∫

�

|∇u|2 dx

)

�u = k1a(x)|u|q−2u + k2b(x)|u|p−2u, x ∈ �, (1.5)

where � ⊂ R
3 is bounded domain, 1 < q < 2, 4 < p < 6, k1 = 1 and k2 > 0.

They obtained two solutions for (1.5) with k2 > 0 small enough. Afterward, Cheng
et al. [12] also proved that (1.5) has two positive solutions and two negative solutions
with a(x) = 1 and b(x) ∈ L∞(�). More recently, Shao and Mao [28] studied the
following nonlinear Kirchhoff-type problem with concave–convex nonlinearities:

⎧
⎨

⎩

−
(

a + b
∫

�

|∇u|2 dx

)

�u = μg(x, u) + f (x, u) in �,

u = 0, on ∂�,

(1.6)

where � ⊂ R
3 is a bounded domain with smooth boundary ∂�, μ ∈ R and f , g ∈

C(�,R). Under the conditions that f , g satisfy the following hypotheses:

(g̃1) there exist constants 1 < q1 < q2 < · · · < qm < 2 and functions hi (x) ∈
L

2
2−qi (�,R+)(i = 1, . . . , m) such that

|g(x, u)| ≤
∞∑

k=1

hi (x)|u|qi −1, ∀(x, u) ∈ � × R;

(g̃2) there exists θ ∈ (1, 2) such that 0 < 1
θ

ug(x, u) ≤ G(x, u) := ∫ u
0 g(x, t) dt ,

∀x ∈ �, u ∈ R \ {0};
( f̃1) there exist C > 0 and 2 < p < 6 such that | f (x, u)| ≤ C(1 + |u|p−1), ∀(x, u) ∈

� × R;
( f̃2) lim|u|→0

f (x,u)
u = 0 uniformly in �;

( f̃3) there exists ν > 4 such that

0 < νF(x, u) ≤ u f (x, u), ∀x ∈ �, u ∈ R \ {0},

where F(x, u) = ∫ u
0 f (x, t) dt ;

( f̃4) there exists R > 0 such that infx∈�,|u|≥R F(x, u) > 0,

they proved the existence of infinitely many high-energy solutions by using Fountain
Theorem and got the existence of at least one sign-changing solution by the method
of invariant sets of descending flow.
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Very recently, Che and Wu [7] studied a class of Kirchhoff equation with steep
potential well and concave–convex nonlinearities as follows:

−
(

a + b
∫

RN
|∇u|2 dx

)

�u + λV (x)u = a(x)|u|q−2u + b(x)|u|p−2u in R
N ,

where N ≥ 3, 1 < q < 2 < p < min{4, 2∗}, a(x) ∈ L
p

p−q (RN ,R+) and
b(x) ∈ L∞(RN ,R). By combining the Ekeland variational principle and the filtration
of Nehari manifold, they proved the multiplicity of positive solutions for the above
problem when b is sufficiently small and λ is large enough. Considering the same
potential as (V1) − (V3), Chen et al. [9] also studied the following Kirchhoff-type
equations:

−
(

a + b
∫

R3
|∇u|2 dx

)

�u + λV (x)u

= a(x)|u|q−2u + b(x)|u|p−2u, x ∈ R
3, (1.7)

where λ > 0, 1 < q < 2 < p < 4, a(x) ∈ L
p

p−q (R3) and b(x) ∈ L∞(R3). They
proved that the above problem admits at least one positive energy solution and a neg-
ative energy solution via the truncation functional and Ekeland variational principle.

The existence and multiplicity of solutions to the Kirchhoff equations have been
extensively studied over the past few decades. However, there are relatively few papers
that consider the case that the nonlinearity contains the concave–convex terms at the
same time.Moreover, the nonlinear termarising in these problemswas always assumed
to be superlinear or sublinear; little has been done in the literature on problem (Kb,λ)
with a more general nonlinearity involving a combination of concave and convex
terms. Motivated by the above works, the following questions appear naturally:

(Q1) if the nonlinearity is a more general nonlinearity involving a combination of con-
cave and convex terms, will the problem (Kb,λ) with steep potential well admit
two nontrivial solutions?

(Q2) compare with Shao and Mao [28], if function f is super-quadratic at infinity, will
problem (Kb,λ) possess a solution?

The aim of this paper is to consider the existence and asymptotic behavior of nontrivial
solutions for Kirchhoff-type equation (Kb,λ) with steep potential well and more gen-
eral concave–convex nonlinearities. To state our main results, we make the following
assumptions:

( f1) f ∈ C(R3 × R,R) and there exist constants C0 > 0 and p ∈ (2, 6) such that

| f (x, u)| ≤ C0(1 + |u|p−1);

( f2) there exists constant ν > 2 such that

0 < νF(x, u) ≤ f (x, u)u, ∀x ∈ R
3, ∀u ∈ R \ {0},

where F(x, u) := ∫ u
0 f (x, t) dt ;

123



3474 T. Zhong et al.

( f3) f (x, u) = o(|u|) as |u| → 0 uniformly for x ∈ R
3;

(g1) g ∈ C(R3 × R,R) and there exist constant 1 < q < 2 and function h(x) ∈
L

2
2−q (R3,R+) such that

|g(x, u)| ≤ h(x)|u|q−1;

(g2) there exists θ ∈ (1, 2) such that

0 <
1

θ
ug(x, u) ≤ G(x, u) :=

∫ u

0
g(x, t) dt, ∀x ∈ R

3, u ∈ R \ {0}.

In this paper, comparing with problem (1.6), we are no longer dealing with Kirchhoff-
type problems on bounded domain. Furthermore, unlike the work described in [28],
we will investigate the existence of nontrivial solutions to problem (Kb,λ) when the
condition ( f2) is satisfied. Obviously, ( f2) is weaker than the condition ( f̃3). Recall
that ( f2) is the super-quadratic condition, if ν > 2, f may not be 4-superlinear
at infinity. Due to the effect of the nonlocal term, if we apply the Mountain Pass
Theorem directly to the energy functional, (P S)c condition or (C)c condition of the
corresponding functional is very difficult to be proved by a standard argument.

In addition, since the corresponding energy functional of (Kb,λ) is not bounded
below on both Nehari manifold and Nehari–Pohozǎev manifold, the method in [7,
24, 31] is no longer appropriate to deal with this problem. It leads us to seek for
new methods to deal with the kinds of problems. Inspired by Zhang and Du [36], to
surmount the difficulty, we use the truncation technique and the parameter-dependent
compactness lemma to prove that the boundedness of Cerami sequence and later the
existence of the positive energy solution of (Kb,λ) can be proved. After that, we study
the asymptotic behavior of the positive energy solution of (Kb,λ). Furthermore, since
the nonlinearity g(x, u) + f (x, u) may involve a combination of concave and convex
terms, we finally investigate the existence of the negative energy solution via the
Ekeland variational principle.

2 Variational Settings andMain Results

In this paper, we make use of the following notations:

• |M | is the Lebesgue measure of the set M .
• X

′
denotes the dual space of X .

• the weak convergence is denoted by ⇀, and the strong convergence is denoted
by →.

• S is the best Sobolev constant for the embedding of D1,2(R3) in L6(R3).
• C and Ci (i = 1, 2, . . .) denote various positive constants.

In this section, we establish the variational framework of the Equation (Kb,λ) as
elaborated by Ding and Szulkin [16] and give some useful preliminary results. Firstly,
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we give the definition of some spaces. As usual, for 1 ≤ s < +∞, we let

|u|s =
(∫

R3
|u|s dx

) 1
s

, ∀u ∈ Ls(R3).

Let

H1(R3) = {u ∈ L2(R3) : ∇u ∈ L2(R3)}

with the inner product and norm

(u, v)H1 =
∫

R3
(∇u∇v + uv) dx, ‖u‖H1 = (u, u)

1/2
H1 .

Throughout this paper, we work in the following Hilbert space

E =
{

u ∈ H1(R3) :
∫

R3
V (x)u2 dx < ∞

}

,

which is equipped with the inner product and norm

(u, v) =
∫

R3
(a∇u∇v + V (x)uv) dx, ‖u‖ = (u, u)1/2,

where a > 0 is from (Kb,λ). For λ > 0, we also need the following inner product and
norm

(u, v)λ =
∫

R3
(a∇u∇v + λV (x)uv) dx, ‖u‖λ = (u, u)

1/2
λ .

It is clear that ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Set Eλ = (E, ‖ ·‖λ), then we have the following
lemma.

Lemma 2.1 Under the conditions (V1) − (V2), the embedding Eλ ↪→ Ls(R3) is con-
tinuous for λ ≥ 1 and 2 ≤ s ≤ 6. Hence, there exists ds > 0 (independent of λ ≥ 1)
such that

|u|s ≤ ds‖u‖ ≤ ds‖u‖λ, ∀u ∈ E . (2.1)

Proof From (V1) and (V2), we get

∫

R3
|∇u|2 dx + |u|2 dx =

∫

R3
|∇u|2 dx +

∫

Vc

|u|2 dx +
∫

R3\Vc

|u|2 dx

≤
∫

R3
|∇u|2 + |Vc| 23

(∫

Vc

|u|6 dx

) 1
3 + c−1

∫

R3\Vc

V (x)u2 dx
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≤ max{a−1 + a−1|Vc| 23 S−1, c−1}
∫

R3
(a|∇u|2 + V (x)|u|2) dx .

(2.2)

It implies that E ↪→ H1(R3) is continuous. By (2.2), Hölder and Sobolev inequalities,
as λ ≥ 1, there exists CS (independent of λ) such that

∫

R3
|u|s dx ≤

(∫

R3
|u|2 dx

) 6−s
4

(∫

R3
|u|6 dx

) s−2
4 ≤ CS S

3(2−s)
4 ‖u‖s

λ

for any s ∈ [2, 6]. Thus, for each s ∈ [2, 6], there exists ds > 0 (independent of
λ ≥ 1) such that

|u|s ≤ ds‖u‖ ≤ ds‖u‖λ for u ∈ E .

Therefore, the embedding Eλ ↪→ Ls(R3) is continuous. ��
Lemma 2.2 Assume that (V1)–(V2) and (g1) hold. Define ψ(u) := ∫

R3 G(x, u) dx.
Then,

(i) 〈ψ ′
(u), v〉 = ∫

R3 g(x, u)v dx, ∀u, v ∈ Eλ;

(ii) ψ
′ : Eλ → E

′
λ is weakly continuous.

Proof The proof is similar to Xu and Chen [35]. For the reader’s convenience, we give
the completed proof here. We will use the following inequalities:

{
|a + b|n ≤ 2n−1(|a|n + |b|n), 1 ≤ n < ∞,

|a + b|n ≤ 2n(|a|n + |b|n), 0 < n < 1.
(2.3)

(i) By (g1), Lemma 2.1 and Hölder’s inequality, we have

∫

R3
|G(x, u)| dx ≤ 1

q

∫

R3
|h(x)||u|q dx ≤ dq

2

q
|h| 2

2−q
‖u‖q

λ. (2.4)

Next, we prove 〈ψ ′
(u), v〉 = ∫

R3 g(x, u)v dx by definition. By (g1), (2.3), Lemma 2.1
and Hölder’s inequality, for all u, v ∈ Eλ and t ∈ [0, 1], we get

∣
∣
∣
∣

∫

R3
g(x, u + tv)v dx

∣
∣
∣
∣ ≤

∫

R3
(h(x)|u + tv|q−1)|v| dx

≤
∫

R3
2q−1h(x)(|u|q−1 + |v|q−1)|v| dx

≤ 2q−1|h| 2
2−q

(|u|q−1
2 + |v|q−1

2 )|v|2
< +∞.
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Therefore, by Lebesgue’s Dominated Theorem, for all u, v ∈ Eλ and ξ ∈ (0, 1), we
obtain

〈ψ ′
(u), v〉 = lim

t→0

ψ(u + tv) − ψ(u)

t

= lim
t→0

∫

R3

G(x, u + tv) − G(x, u)

t
dx

= lim
t→0

∫

R3
g(x, u + ξ tv)v dx

=
∫

R3
g(x, u)v dx .

(ii) Applying (g1), Lemma 2.1 and Hölder’s inequality, for all u, v ∈ Eλ, we have

|〈ψ ′
(u), v〉| ≤

∫

R3
|g(x, u)v| dx

≤
∫

R3
h(x)|u|q−1|v| dx

≤ dq+1
2 |h| 2

2−q
‖u‖q−1

λ ‖v‖λ,

which implies that ψ
′ ∈ E

′
λ. We now prove that ψ

′ : Eλ → E
′
λ is weakly continuous.

Let un⇀u in Eλ, then there exists M0 > 0 such that

‖un‖λ ≤ M0 and ‖u‖λ ≤ M0. (2.5)

We claim that

∫

R3
|g(x, un) − g(x, u)|2 dx → 0 as n → ∞. (2.6)

On the one hand, since h(x) ∈ L
2

2−q (R3,R+), for every ε > 0, there exists τε > 0
such that

(∫

|x |≥τε

|h(x)| 2
2−q dx

) 2−q
2 ≤ √

ε.

Combining this with (g1), (2.3), (2.5) and Hölder’s inequality, we have

∫

|x |≥τε

|g(x, un) − g(x, u)|2 dx ≤ 4
∫

|x |≥τε

h2(x)(|un |2(q−1) + |u|2(q−1)) dx

≤ 4

(∫

|x |≥τε

|h(x)| 2
2−q dx

)2−q
(|un |2(q−1)

2 + |u|2(q−1)
2 )

≤ 4ε(|un |2(q−1)
2 + |u|2(q−1)

2 )

123



3478 T. Zhong et al.

≤ 4εd2(q−1)
2 (‖un‖2(q−1)

λ + ‖u‖2(q−1)
λ )

≤ 8εd2(q−1)
2 M2(q−1)

0 . (2.7)

On the other hand, we only need to prove

∫

|x |≤τε

(g(x, un) − g(x, u))2 dx → 0, as n → ∞. (2.8)

In fact, since un⇀u in Eλ, up to subsequence, there exists a subsequence {unk }k∈N
such that

unk → u in L2
loc(R

3) and unk (x) → u(x) a.e. x ∈ R
3 as k → ∞. (2.9)

Arguing by contradiction, we assume that there exists constant ε0 > 0 such that

∫

|x |≤τε

(g(x, unk ) − g(x, u))2 dx ≥ ε0, ∀k ∈ N. (2.10)

By (2.9) and Theorem A.1 in [33], passing to a subsequence if necessary, we can
assume that

∞∑

k=1

∫

|x |≤τε

|unk − u|2 dx < +∞.

Set ω(x) = (∑∞
k=1 |unk (x) − u(x)|2) 1

2 for |x | ≤ τε, then
∫

|x |≤τε
ω2 dx < +∞.

Applying (g1) and (2.3), ∀k ∈ N and |x | ≤ τε, we have

|g(x, unk ) − g(x, u)|2 ≤ 4h2(x)(|unk |2q−2 + |u|2q−2)

≤ 22q+1|h(x)|2(|unk − u|2q−2 + |u|2q−2)

≤ 22q+1|h(x)|2(|ω|2q−2 + |u|2q−2),

and using Hölder’s inequality, one has

∫

|x |≤τε

22q+1|h(x)|2(|ω|2q−2 + |u|2q−2) dx

≤ 22q+1|h|2 2
2−q

[(∫

|x |≤τε

|ω|2 dx

)q−1

+
(∫

|x |≤τε

|u|2 dx

)q−1
]

< +∞.

Thus, by Lebesgue’s Dominated Convergence Theorem, we obtain

∫

|x |≤τε

|g(x, unk ) − g(x, u)|2 dx → 0 as k → ∞.
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This contradicts (2.10) and so (2.8) holds. Equation (2.7) and (2.8) shows that claim
(2.6) is true. Hence, it follows from (2.6) and Hölder’s inequality that

〈ψ ′
(un) − ψ

′
(u), v〉 =

∫

R3
(g(x, un) − g(x, u))v dx

≤
(∫

R3
|g(x, un) − g(x, u)|2 dx

) 1
2 |v|2

→ 0 as n → ∞.

Thus, ψ
′
is weakly continuous, and then, ψ

′
is continuous, i.e., ψ ∈ C1(Eλ,R). The

proof is completed. ��
As a consequence, the Euler–Lagrange energy functional Ib,λ : Eλ → R associated

with Eq. (Kb,λ) given by

Ib,λ(u) = 1

2

∫

R3
(a|∇u|2 + λV (x)u2) dx + b

4

(∫

R3
|∇u|2 dx

)2

−
∫

R3
G(x, u) dx −

∫

R3
F(x, u) dx

is well defined and Ib,λ ∈ C1(Eλ,R). Furthermore, for any u, v ∈ Eλ, there holds

〈I
′
b,λ(u), v〉 =

(

a + b
∫

R3
|∇u|2 dx

) ∫

R3
∇u∇v dx

+
∫

R3
λV (x)uv dx −

∫

R3
g(x, u)v dx −

∫

R3
f (x, u)v dx .

It is standard to verify that the weak solutions of Equation (Kb,λ) correspond to the
critical points of the functional Ib,λ.

For our convenience, without loss of generality, we need to assume that a = 1 in
Theorem 2.1–2.5. At first, we establish the existence of the positive energy solutions
of Equation (Kb,λ) in this paper.

Theorem 2.1 Suppose that (V1)−(V3), ( f1)−( f3) and (g1)−(g2) are satisfied. Then,
there exist T > 0, b0 > 0, bT > 0 and λ∗ > 0 such that for each b ∈ (0, min{b0, bT })
and λ ∈ (λ∗,∞), problem (Kb,λ) has at least a nontrivial solution u+

b,λ in Eλ when

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2

.

Moreover, u+
b,λ satisfies

0 < ‖u+
b,λ‖λ ≤ T and Ib,λ(u

+
b,λ) > 0.
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Next, we give the asymptotic behavior of the positive energy solution u+
b,λ obtained

by Theorem 2.1 as b → 0 and λ → +∞.

Theorem 2.2 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied.
If u+

b,λ is a nontrivial solution of problem (Kb,λ) obtained by Theorem 2.1, for each

b ∈ (0, min{b0, bT }) and any sequence {λn} ⊂ (λ∗,∞), then u+
b,λn

→ u+
b in E as

λn → +∞, where u+
b ∈ H1

0 (�) is a nontrivial solution of

{
− (

1 + b
∫

�
|∇u|2 dx

) �u = g(x, u) + f (x, u) in �,

u = 0 on ∂�.
(Kb,∞)

Theorem 2.3 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied.
If u+

b,λ is a nontrivial solution of problem (Kb,λ) obtained by Theorem 2.1, for each

λ ∈ (λ∗,∞) and any sequence {bn} ⊂ (0, min{b0, bT }), then u+
bn ,λ → u+

λ in Eλ as

bn → 0, where u+
λ ∈ Eλ is a nontrivial solution of

{
−�u + λV (x)u = g(x, u) + f (x, u) in R

3,

u ∈ H1(R3).
(K0,λ)

Theorem 2.4 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied. If
u+

b,λ is a nontrivial solution of (Kb,λ) obtained by Theorem 2.1. Then, u+
b,λ → u+

0

in H1(R3) as b → 0 and λ → +∞ up to subsequence, where u+
0 ∈ H1

0 (�) is a
nontrivial solution of

{
−�u = g(x, u) + f (x, u) in �.

u = 0 on ∂�.
(K0,∞)

Finally, we give the existence of the negative energy solutions of Equation Kb,λ.

Theorem 2.5 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied.
Then, there exist ρ′ > 0 and λ∗ > 0 such that for all λ > λ∗ and

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2

,

problem (Kb,λ) has at least a nontrivial solution u−
b,λ ∈ Eλ satisfying

0 < ‖u−
b,λ‖λ ≤ ρ′ and Ib,λ(u

−
b,λ) < 0.

This paper is organized as follows. In Sect. 3, we present some preliminary results
on a truncated functional. In Sect. 4, we give the existence of the positive energy
solution. Furthermore, we complete the proofs of Theorem 2.2–2.4 in Sect. 5. Finally,
the existence of the negative energy solution is studied in Sect. 6.
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3 Some Results on Truncated Functional

In this section, we will establish some properties of a truncated functional. It is to over-
come the difficulty of finding bounded Palais–Smale sequences or Cerami sequences
for the associated function Ib,λ. Based on this, we need to give the following defini-
tions. As Zhang and Du [36], let η ∈ C1([0,∞),R) be a cutoff function and it satisfies
0 ≤ η ≤ 1 and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η(t) = 1, 0 ≤ t ≤ 1,
η(t) = 0, t ≥ 2,

max
t>0

|η′
(t)| ≤ 2, t > 0,

η
′
(t) ≤ 0, t > 0.

Using η, for any T > 0, we move to study the truncated functional I T
b,λ : Eλ → R

defined by

I T
b,λ(u) = 1

2

∫

R3
(|∇u|2 + λV (x)u2) dx + b

4
η

(
‖u‖2λ
T 2

) (∫

R3
|∇u|2 dx

)2

−
∫

R3
G(x, u) dx −

∫

R3
F(x, u) dx, (3.1)

where η is a smooth cutoff function such that

η

(
‖u‖2λ
T 2

)

=
{
1, ‖u‖λ ≤ T ,

0, ‖u‖λ ≥ √
2T .

According to η ∈ C1([0,∞),R) and Ib,λ ∈ C1(Eλ,R), it is easy to infer that I T
b,λ is

of class C1 by a standard argument. Moreover, for any u, v ∈ Eλ, we have

〈(I T
b,λ)

′
(u), v〉 = (u, v)λ + bη

(
‖u‖2λ
T 2

)

|∇u|22
∫

R3
∇u∇v dx

+ b

2T 2 η
′
(

‖u‖2λ
T 2

)

(u, v)λ|∇u|42

−
∫

R3
g(x, u)v dx −

∫

R3
f (x, u)v dx . (3.2)

With this penalization, by choosing an appropriate T > 0 and constraining b > 0
sufficiently small, we may obtain a Cerami sequence {un} of I T

b,λ satisfying ‖un‖λ ≤
T . According to the definition of η, {un} is also a Cerami sequence of Ib,λ when
‖un‖λ ≤ T .

Toobtain theCerami sequence,wefirst show that the truncated function I T
b,λ satisfies

the mountain pass geometry.
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Lemma 3.1 Suppose that (V1)− (V3), ( f1)− ( f3) and (g1)− (g2) are satisfied. Then,
for each T , b > 0 and λ ≥ 1, there exist α, ρ > 0 (independent of T , b and λ) such
that for all

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2

,

and ‖u‖λ = ρ,

I T
b,λ(u) ≥ α.

Proof By ( f1) and ( f3), for every ε > 0, there exists Cε > 0 such that

| f (x, u)| ≤ ε|u| + Cε|u|p−1, ∀(x, u) ∈ R
3 × R. (3.3)

Let ε = 1
2d2

2
, where d2 > 0 is from (2.1). Then, for each u ∈ Eλ, by (2.4) and (3.3),

we have

I T
b,λ(u) = 1

2
‖u‖2λ + b

4
η

(
‖u‖2λ
T 2

)

|∇u|42 −
∫

R3
G(x, u) dx −

∫

R3
F(x, u) dx

≥ 1

2
‖u‖2λ − dq

2

q
|h| 2

2−q
‖u‖q

λ − ε

2
|u|22 − Cε

p
|u|p

p

≥ 1

4
‖u‖2λ − dq

2

q
|h| 2

2−q
‖u‖q

λ −
C1/2d2

2
d p

p

p
‖u‖p

λ

= ‖u‖2λ
(
1

4
− dq

2

q
|h| 2

2−q
‖u‖q−2

λ −
C1/2d2

2
d p

p

p
‖u‖p−2

λ

)

where the constants dp > 0 and C1/2d2
2

> 0 are independent of T , b and λ.
Define

Q(t) :=
C1/2d2

2
d p

p

p
t p−2 + dq

2

q
|h| 2

2−q
tq−2, t ≥ 0,

and then we get

lim
t→+∞ Q(t) = lim

t→0+ Q(t) = +∞,

which implies that Q(t) is bounded below. Thus, Q(t) admits a unique minimizer t0:

t0 =
⎛

⎝
dq
2 |h| 2

2−q
p(2 − q)

C1/2d2
2
d p

p q(p − 2)

⎞

⎠

1
p−q

.
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By the definition of Q(t), one has

inf
t∈[0,+∞)

Q(t)

= Q(t0)

= dq
2

q
|h| 2

2−q

⎛

⎝
dq
2 |h| 2

2−q
p(2 − q)

C1/2d2
2
d p

p q(p − 2)

⎞

⎠

q−2
p−q

+
d p

p C1/2d2
2

p

⎛

⎝
dq
2 |h| 2

2−q
p(2 − q)

C1/2d2
2
d p

p q(p − 2)

⎞

⎠

p−2
p−q

= (|h| 2
2−q

)
p−2
p−q

⎛

⎝
dq
2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

> 0.

Thus, we can choose

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2

and ‖u‖λ = ρ = t0 > 0 such that

I T
b,λ(u) ≥ ρ2(

1

4
− Q(ρ)) ≥ ρ2

8
:= α > 0.

��
Lemma 3.2 Suppose that (V1)− (V3), ( f1)− ( f3) and (g1)− (g2) are satisfied. Then,
there exists b0 > 0 such that for each T , λ > 0 and b ∈ (0, b0), we have I T

b,λ(e) < 0
for some e ∈ C∞

0 (�) with |∇e|2 > ρ.

Proof We first define the functional Jλ : Eλ → R by

Jλ(u) = 1

2

∫

R3
(|∇u|2 + λV (x)u2) dx −

∫

R3
G(x, u) dx −

∫

R3
F(x, u) dx .

From ( f1)-( f3), there exist C1, C2 > 0 such that

F(x, u) ≥ C1|u|ν − C2|u|2, ∀(x, u) ∈ R
3 × R. (3.4)

By virtue of (g2) and (3.4), if we choose a positive smooth function ϕ ∈ C∞
0 (�), we

have

Jλ(tϕ) = t2

2

∫

�

|∇ϕ|2 dx −
∫

�

G(x, tϕ) dx −
∫

�

F(x, tϕ) dx

≤ t2

2

∫

�

|∇ϕ|2 dx + C1t2
∫

�

|e|2 dx − C2tν
∫

�

|ϕ|ν dx
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→ −∞

as t → +∞ for ν > 2. Thus, there exist t̃ > 0 large enough and e := t̃ϕ such that
Jλ(e) ≤ −1 with |∇e|2 > ρ . Since

I T
b,λ(e) = Jλ(e) + b

4
η

(
‖e‖2λ
T 2

)

|∇e|42 ≤ −1 + b

4
|∇e|42,

then there exists b0 := 4
|∇e|42

> 0 (independent of λ and T ) such that I T
b,λ(e) < 0 for

each T , λ > 0 and b ∈ (0, b0). The proof is finished. ��
Next, in order to prove Theorem 2.1, we shall a stronger version of the Mountain

Pass Theorem in [18], which allows us to find Cerami sequences instead of Palais–
Smale sequences.

Theorem 3.1 (See [18]) Let X be a real Banach space with its dual space X
′
, and

suppose that J ∈ C1(X ,R) satisfies

max{J (0), J (e)} ≤ μ < η ≤ inf‖u‖X =ρ
J (u)

for some μ < η, ρ > 0 and e ∈ X with ‖e‖X > ρ. Let c ≥ η be characterized by

c = inf
γ∈�

max
t∈[0,1] J (γ (t)),

where � = {γ ∈ C([0, 1], X) : γ (0) = 0, γ (1) = e} is the set of continuous paths
joining 0 and e. Then there exists a sequence {un ⊂ X} such that

J (un) → c ≥ η and (1 + ‖un‖X )‖J
′
(un)‖X ′ → 0 as n → ∞.

By Lemmas 3.1 and 3.2, we now define the mountain pass value cT
b,λ of I T

b,λ by

cT
b,λ = inf

γ∈�
max

t∈[0,1] I T
b,λ(γ (t)),

where

� := {γ ∈ C([0, 1], Eλ) : γ (0) = 0, γ (1) = e}.

Note from Lemma 3.2 that � is nonempty.
Applying Lemmas 3.1, 3.2 and Theorem 3.1, we thus deduce that for any T > 0,

λ ≥ 1,

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2
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and b ∈ (0, b0), there exists a Cerami sequence {un} ⊂ Eλ such that

I T
b,λ(un) → cT

b,λ and (1 + ‖un‖λ) ‖ (I T
b,λ)

′
(un) ‖E

′
λ
→ 0 as n → ∞. (3.5)

Obviously, according to Lemma 3.1, cT
b,λ ≥ α > 0. Next, we also give an estimate on

the upper bound of the mountain pass value cT
b,λ, which is the important part of the

truncation technique.

Lemma 3.3 Suppose that (V1)− (V3), ( f1)− ( f3) and (g1)− (g2) are satisfied. Then,
for every T > 0, λ ≥ 1 and b ∈ (0, b0), there exists M > 0 (independent of T , b and
λ) such that cT

b,λ ≤ M.

Proof By (g2), (3.4) and e ∈ C∞
0 (�), we have

I T
b,λ(te) = t2

2

∫

�

|∇e|2 dx + b

4
t4η

(
t2‖e‖2λ

T 2

)

(∫

�

|∇e|2 dx

)2

−
∫

�

G(x, te) dx −
∫

�

F(x, te) dx

≤ t2

2

∫

�

|∇e|2 dx + b0
4

t4
(∫

�

|∇e|2 dx

)2

+ C1t2
∫

�

|e|2 dx − C2tν
∫

�

|e|ν dx .

Thus, there exists a constant M > 0 (independent of T , λ and b) such that

cT
b,λ ≤ max

t∈[0,1] I T
b,λ(te0) ≤ M .

This competes the proof. ��
The following lemma shows that the Cerami sequence {un} satisfies ‖un‖λ ≤ T ,
which is the key ingredient of this paper.

Lemma 3.4 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied. If
{un} ⊂ Eλ is a sequence satisfying (3.5), then up to a subsequence, there exist T > 0
and bT > 0 such that for each λ ≥ 1 and b ∈ (0, min{b0, bT }), there holds

lim sup
n∈N

‖un‖λ ≤ T .

Proof Suppose by contradiction, for any T > 0, there exists a subsequence of {un},
still denoted by {un}, such that ‖un‖λ > T . Next, we divide the proof into two case:

(i) ‖un‖λ >
√
2T ;

(i i) T < ‖un‖λ ≤ √
2T .

If the case (i) holds, then by Lemma 3.3, (3.5) and ( f2) , for n large enough, we
have that

M + 1 ≥ cT
b,λ + 1
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≥ I T
b,λ(un) − 1

ν
〈(I T

b,λ)
′
(un), un〉

=
(
1

2
− 1

ν

)

‖un‖2λ −
(

b

ν
− b

4

)

η

(
‖un‖2λ

T 2

)

|∇un |42 − b

2νT 2 η
′
(

‖un‖2λ
T 2

)

|∇un |42‖un‖2λ

+
∫

R3

(
1

ν
f (x, un)un − F(x, un)

)

dx −
∫

R3

(

G(x, un) − 1

ν
g(x, un)un

)

dx

≥
(
1

2
− 1

ν

)

‖un‖2λ −
∫

R3

(

G(x, un) − 1

ν
g(x, un)un

)

dx .

By (g1), (2.1) and Hölder’s inequality, we get

∫

R3

(

G(x, un) − 1

ν
g(x, un)un

)

dx ≤
∫

R3
|G(x, un)| dx + 1

ν

∫

R3
|g(x, un)un| dx

≤
∫

R3

(
1

q
+ 1

ν

)

|h(x)||un|q dx

≤ (q + ν)dq
2

qν
|h| 2

2−q
‖un‖q

λ. (3.6)

Thus,

M + 1 ≥
(
1

2
− 1

ν

)

‖un‖2λ − (q + ν)dq
2

qν
|h| 2

2−q
‖un‖q

λ,

which is a contradiction, when T > 0 sufficiently large.
If the case (ii) holds, then

η

(
‖un‖2λ

T 2

)

≤ 1 and η
′
(

‖un‖2λ
T 2

)

≤
∣
∣
∣
∣
∣
η

′
(

‖un‖2λ
T 2

)∣
∣
∣
∣
∣
≤ 2. (3.7)

It follows from ( f2), (3.6) and (3.7) that

(
1

2
− 1

ν

)

‖un‖2λ − 1

ν
‖(I T

b,λ)
′
(un)‖E

′
λ
‖un‖λ

≤
(
1

2
− 1

ν

)

‖un‖2λ + 1

ν
〈(I T

b,λ)
′
(un), un〉

= I T
b,λ(un) +

(
b

ν
− b

4

)

η

(
‖un‖2λ

T 2

)

|∇un|42 + b

2νT 2 η
′
(

‖un‖2λ
T 2

)

|∇un|42‖un‖2λ

−
∫

R3

(
1

ν
f (x, un)un − F(x, un)

)

dx +
∫

R3

(

G(x, un) − 1

ν
g(x, un)un

)

dx

≤ I T
b,λ(un) +

(
b

ν
− b

4

)

‖un‖4λ + (q + ν)dq
2

qν
|h| 2

2−q
‖un‖q

λ

≤ I T
b,λ(un) + CbT 4 + CT q . (3.8)
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By virtue of I T
b,λ(un) → cT

b,λ and Lemma 3.3, for n large enough, one has

I T
b,λ(un) ≤ 2cT

b,λ ≤ 2 max
t∈[0,1] I T

b,λ(te) ≤ 2M . (3.9)

On the other hand, for n large enough, we have that

(
1

2
− 1

ν

)

‖un‖2λ − 1

ν
‖(I T

b,λ)
′
(un)‖E

′
λ
‖un‖λ ≥ CT 2 − T . (3.10)

Combining with (3.8)–(3.10), we have

CT 2 − T − CT q ≤ 2M + CbT 4,

which is a contradiction for T large enough if bT := 1
T 4 > 0 and b ∈ (0, min{b0, bT }).

So the claim follows. ��
Remark 3.1 From the above lemma, the sequence {un} obtained in Lemma 3.4 is also
a Cerami sequence at level cT

b,λ > 0 for Ib,λ, that is,

Ib,λ(un) → cT
b,λ and (1 + ‖un‖λ) ‖ (Ib,λ)

′
(un) ‖E

′
λ
→ 0.

Lemma 3.5 Assume that ( f1) and ( f3) hold. If un⇀u in H1(R3), then along a subse-
quence of {un},

lim
n→∞ sup

ϕ∈H1(R3),‖ϕ‖H1≤1

∣
∣
∣
∣

∫

R3
[ f (x, un) − f (x, un − u) − f (x, u)]ϕ dx

∣
∣
∣
∣ = 0.

Proof This lemma has been proved on pages 77–80 of [15] and the appendix of Ack-
ermann and Weth [1]. ��

We are now ready to give the compactness condition for Ib,λ. For this, we need
to establish the following lemma to prove that Ib,λ satisfies the Cerami condition by
relying on the relevant parameters.

Lemma 3.6 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied. If
{un} ⊂ Eλ is a sequence satisfying (3.5), then up to a subsequence, there exists
λ∗ > 1 such that for each b ∈ (0, min{b0, bT }) and λ ∈ (λ∗,∞), {un} ⊂ Eλ contains
a convergent subsequence.

Proof By Lemma 3.4, up to a subsequence, we have that ‖un‖λ ≤ T . Thus, there exist
u ∈ Eλ and A ∈ R such that

⎧
⎪⎨

⎪⎩

un⇀u in Eλ,

un → u in Ls
loc(R

3), ∀s ∈ [2, 6),
un → u a.e. on R

3,
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and

∫

R3
|∇un|2 dx → A2,

∫

R3
|∇u|2 dx ≤ A2.

It follows from Lemma 2.2 and Hölder’s inequality that

∫

R3
g(x, un)v dx →

∫

R3
g(x, u)v dx, ∀v ∈ Eλ.

Then, I
′
b,λ(un) → 0 implies that

(1 + bA2)

∫

R3
∇u∇v dx +

∫

R3
λV (x)uv dx

−
∫

R3
f (x, u)v dx −

∫

R3
g(x, u)v dx = 0, ∀v ∈ Eλ. (3.11)

Taking v = u in (3.11), we obtain

(1 + bA2)

∫

R3
|∇u|2 dx +

∫

R3
λV (x)u2 dx

−
∫

R3
f (x, u)u dx −

∫

R3
g(x, u)u dx = 0. (3.12)

Next, it is sufficient to prove that un → u in Eλ. Let vn := un − u, then vn⇀0 in Eλ.
Since un⇀u in Eλ, we obtain

‖un‖2λ = (vn, vn)λ + (u, un)λ + (vn, u)λ

= ‖vn‖2λ + ‖u‖2λ + o(1). (3.13)

By the weak lower semi-continuity of norm, we have

‖vn‖λ ≤ ‖un‖λ + ‖u‖λ ≤ ‖un‖λ + lim inf
n→∞ ‖un‖λ ≤ 2T . (3.14)

It follows from (V2) that

|vn|22 =
∫

R3\Vc

v2n dx +
∫

Vc

v2n dx ≤ 1

λc
‖vn‖2λ + o(1).

Then, by the Hölder and Sobolev inequalities, we have

|vn|p ≤ |vn|σ2 |vn|1−σ
6 ≤ S

σ−1
2 |vn|σ2 |∇vn|1−σ

2 ≤ S
σ−1
2 (λc)−

σ
2 ‖vn‖λ + o(1),(3.15)
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where σ = 6−p
2p > 0. On the one hand, by the definition of the operator norm and

Lemma 3.5, we get

∣
∣
∣
∣

∫

R3
[ f (x, un) − f (x, vn) − f (x, u)]un dx

∣
∣
∣
∣

≤ ‖un‖H1(R3) sup
ϕ∈H1(R3),‖ϕ‖H1≤1

∣
∣
∣
∣

∫

R3
[ f (x, un) − f (x, vn) − f (x, u)]ϕ dx

∣
∣
∣
∣ = o(1). (3.16)

Since vn⇀0 in H1(R3) and vn → 0 in Ls
loc(R

3) for s ∈ [2, 6), then it follows from
(3.16) that

∫

R3
f (x, un)un dx =

∫

R3
f (x, u)u dx +

∫

R3
f (x, vn)vn dx

+
∫

R3
f (x, vn)u dx +

∫

R3
f (x, u)vn dx

+
∫

R3
[ f (x, un) − f (x, vn) − f (x, u)]un dx

=
∫

R3
f (x, u)u dx +

∫

R3
f (x, vn)vn dx + o(1). (3.17)

From (3.3), (3.14), (3.15) and let ε = 1
2d2

2
, we get

∫

R3
f (x, vn)vn dx ≤ ε|vn|22 + Cε|vn|p−2

p |vn|2p

≤ 1

2
‖vn‖2λ + C1/2d2

2
(2T dp)

p−2Sσ−1(λc)−σ ‖vn‖2λ + o(1).

(3.18)

On the other hand, according to Lemma 2.2, we have

∫

R3
g(x, un)un dx −

∫

R3
g(x, u)u dx

=
∫

R3
[g(x, un) − g(x, u)]un dx +

∫

R3
g(x, u)(un − u) dx

≤
(∫

R3
|g(x, un) − g(x, u)|2 dx

) 1
2 |un|2 +

∫

R3
g(x, u)vn dx

→ 0 as n → ∞. (3.19)

Combining (3.13) and (3.17)–(3.19), we infer that

o(1) = 〈I
′
b,λ(un), un〉
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= ‖un‖2λ + b|∇un|42 −
∫

R3
f (x, un)un dx −

∫

R3
g(x, un)un dx

− ‖u‖2λ − bA2|∇u|22 +
∫

R3
f (x, u)u dx +

∫

R3
g(x, u)u dx

= ‖vn‖2λ −
∫

R3
f (x, vn)vn dx −

∫

R3
[g(x, un)un − g(x, u)u] dx + bA4

− bA2|∇u|22 + o(1) ≥ ‖vn‖2λ −
∫

R3
f (x, vn)vn dx + o(1)

≥ (1

2
− C1/2d2

2
(2T dp)

p−2Sσ−1(λc)−σ
)‖vn‖2λ + o(1).

Therefore, we can choose

λ∗ = max

⎧
⎪⎨

⎪⎩

(
2C1/2d2

2
(2T dp)

p−2Sσ−1
)1/σ

c
, 1

⎫
⎪⎬

⎪⎭

such that vn → 0 in Eλ for all λ > λ∗. This completes the proof. ��

4 Proof of Theorem 2.1

Proof of Theorem 2.1 Let T be defined as in Lemma 3.4. By Lemmas 3.1 and 3.2,
there exists b0 > 0 such that for every λ ≥ 1 and b ∈ (0, b0), I T

b,λ possesses a Cerami

sequence {un} at the mountain pass level cT
b,λ. From Lemmas 3.3, 3.4 and Remark 3.1,

we know that there exists bT > 0 such that for every λ ≥ 1 and b ∈ (0, min{b0, bT }),
after passing to a subsequence, {un} is aCerami sequence of Ib,λ satisfying ‖un‖λ ≤ T ,
that is,

sup
n∈N

‖un‖λ ≤ T , Ib,λ(un) → cT
b,λ

and

(1 + ‖un‖λ)‖I
′
b,λ(un)‖E

′
λ

→ 0

as n → +∞. It follows from Lemma 3.6 that there exists λ∗ > 0 such that for each
b ∈ (0, min{b0, bT }) and λ ∈ (λ∗,∞), the sequence {un} ⊂ Eλ contains a convergent
subsequence. Without loss of generality, we can assume that there exists u+

b,λ ∈ Eλ

such that un → u+
b,λ in Eλ as n → ∞. Furthermore, we have

0 < ‖u+
b,λ‖λ ≤ T , Ib,λ(u

+
b,λ) = cT

b,λ > 0 and I
′
b,λ(u

+
b,λ) = 0.

Consequently, we infer that u+
b,λ is a nontrivial solution of (Kb,λ) for all b ∈

(0, min{b0, bT } and λ ∈ (λ∗,∞). This ends the proof. ��
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5 Asymptotic Behavior of Nontrivial Solutions

Proof of Theorem 2.2 We follow the argument in [36] (or see [4, 10]). Let b ∈
(0, min{b0, bT }) be fixed. For any sequence {λn} ⊂ (λ∗,+∞) with λn → +∞,
where

λ∗ = max

⎧
⎪⎨

⎪⎩

(
2C1/2d2

2
(2T dp)

p−2Sσ−1
)1/σ

c
, 1

⎫
⎪⎬

⎪⎭
,

let un := u+
b,λn

be the critical point of Ib,λn obtained by Theorem 2.1. By Lemma 3.4,
we have

0 < ‖un‖λn ≤ T for all n. (5.1)

Thus, up to a subsequence, we may assume that

⎧
⎪⎨

⎪⎩

un⇀u+
b in E,

un → u+
b in Ls

loc(R
3) for s ∈ [2, 6),

un → u+
b a.e. on R

3.

It follows from (5.1), Fatou’s lemma and (V1) that

0 ≤
∫

R3
V (x)|u+

b |2 dx ≤ lim inf
n→∞

∫

R3
V (x)u2

n dx ≤ lim inf
n→∞

‖un‖2λn

λn
= 0.

Hence, u+
b = 0 a.e. in R3 \ V −1(0), and so u+

b ∈ H1
0 (�) by the condition (V3).

Next, we claim that un → u+
b in Ls(R3) for all s ∈ (2, 6). Contrary to the con-

clusion, by Lions’ vanishing lemma in [33], there exist ε, r > 0 and xn ∈ R
3 such

that

∫

Br (xn)

(un − u+
b )2 dx ≥ ε,

which shows that |xn| → ∞ as n → ∞. Thus |Br (xn) ∩ Vc| → 0 as n → ∞.
Moreover, by Hölder inequality, we get

∫

Br (xn)∩Vc

(un − u+
b )2 dx ≤ |Br (xn) ∩ Vc| 23 |un − u+

b |26 → 0

as n → ∞. Consequently, we get

‖un‖2λn
≥ λnc

∫

Br (xn)∩{V ≥c}
u2

n dx
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≥ λnc
∫

Br (xn)∩{V ≥c}
(un − u+

b )2 dx

= λnc

(∫

Br (xn)

(un − u+
b )2 dx −

∫

Br (xn)∩Vc

(un − u+
b )2 dx

)

→ +∞ as n → ∞,

which contradicts (5.1). Thus, we have that un → u+
b in Ls(R3) for all s ∈ [2, 6).

Therefore, from (3.17) and (3.19), we obtain

∫

R3
f (x, un)un dx =

∫

R3
f (x, u+

b )u+
b dx + o(1) (5.2)

and
∫

R3
g(x, un)un dx =

∫

R3
g(x, u+

b )u+
b dx + o(1). (5.3)

Now, we prove that un → u+
b in E . Indeed, by the fact that

〈I
′
b,λn

(un), un〉 = 〈I
′
b,λn

(un), u+
b 〉 = 0,

we have

‖un‖2λn
+ b|∇un|42 =

∫

R3
g(x, un)un dx +

∫

R3
f (x, un)un dx (5.4)

and
(

1 + b
∫

R3
|∇un|2 dx

) ∫

R3
∇un∇u+

b dx +
∫

R3
λn V (x)unu+

b dx

=
∫

R3
g(x, un)u+

b dx +
∫

R3
f (x, un)u+

b dx .

It follows from u+
b = 0 almost everywhere in R

3 \ V −1(0) that

‖u+
b ‖2 + b|∇un|22|∇u+

b |22 =
∫

R3
g(x, u+

b )u+
b dx +

∫

R3
f (x, u+

b )u+
b dx + o(1).(5.5)

Passing to subsequence if necessary, we assume that ‖un‖2λn
→ β1 and |∇un|22 → β2.

By Fatou’s Lemma, we get

|∇u+
b |22 ≤ lim inf

n→∞ |∇un|22 = β2. (5.6)

From (5.4) to (5.6), we thus deduce that

β1 + bβ2
2 = ‖ub‖2 + bβ2|∇u+

b |22 ≤ ‖u+
b ‖2 + bβ2

2 .
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Therefore, β1 ≤ ‖u+
b ‖2. By the weak lower semi-continuity of norm, we have

‖ub‖2 ≤ lim inf
n→∞ ‖un‖2 ≤ lim sup

n→∞
‖un‖2 ≤ lim sup

n→∞
‖un‖2λn

= β1 ≤ ‖u+
b ‖2, (5.7)

which shows that ‖un‖2 → ‖u+
b ‖2 as n → ∞. Since E is a uniformly convex Hilbert

space, it yields that un → u+
b in E .

Next, we shall prove that u+
b is a weak solution of (Kb,∞). For any v ∈ C∞

0 (�),

since 〈I
′
b,λn

(un), v〉 = 0, it is easy to check that

(

1 + b
∫

�

|∇u+
b |2 dx

) ∫

�

∇u+
b ∇v dx =

∫

�

g(x, u+
b )v dx +

∫

�

f (x, u+
b )v dx

i.e., u+
b is a weak solution of (Kb,∞) by the density of C∞

0 (�) in H1
0 (�). Finally, we

show that u+
b 
≡ 0. If not, we have un → 0 in E which implies that

0 ≤ |Ib,λn (un)|
≤ 1

2
‖un‖2λn

+ b

4
|∇un|42 +

∫

R3
F(x, un) dx +

∫

R3
G(x, un) dx

≤ 1

2
‖un‖2λn

+ b

4
|∇un|42 + ε

2
|un|22 + Cε

p
|un|p

p + 1

q
|h| 2

2−q
|un|q2

≤ 1

2
‖un‖2λn

+ b

4
‖un‖4 + εd2

2

2
‖un‖2 + Cεd p

p

p
‖un‖p + dq

2

q
|h| 2

2−q
‖un‖q

→ 0

as n → ∞. Thus, we have that

Ib,λn (un) → 0 as n → ∞.

Moreover, by virtue of un being the critical point of Ib,λn obtained by Theorem 2.1,
we get Ib,λn (un) = cT

b,λ, which is a contradiction. Therefore, u+
b is a nontrivial weak

solution of equation (Kb,∞). The proof is thus finished. ��

Proof of Theorem 2.3 Let λ ∈ (λ∗,∞) be fixed. For any subsequence {bn} ⊂
(0, min{b0, bT }) with bn → 0, let un := u+

bn ,λ be the critical point of Ib,λn obtained
by Theorem 2.1. It follows from Theorem 2.1 that

0 < ‖un‖λ ≤ T for all n.

Passing to a subsequence if necessary, we may assume that un⇀u+
λ in Eλ. Note that

I
′
bn ,λ(un) = 0, we may deduce that un → u+

λ in Eλ as the proof of Lemma (3.6).
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To complete the proof, it suffices to show that u+
λ is a weak solution of Eq. (K0,λ).

Now for any v ∈ Eλ, since 〈Ibn ,λ(un), v〉 = 0, it is easy to check that

∫

R3
(∇u+

λ ∇v + λV (x)u+
λ v) dx =

∫

R3
g(x, u+

λ )v dx +
∫

R3
f (x, u+

λ )v dx .

Therefore, u+
λ is a weak solution of (K0,λ). Furthermore, u+

λ is a nontrivial solution
of Equation (K0,λ). The proof is same to the last of part of the proof of Theorem 2.2
and so we omit it. This completes the proof. ��
Proof of Theorem 2.4 Similar to the proof of Theorem 2.2, we can easily complete this
theorem. ��

6 The Second Solution

In this section, we want to prove the existence of a positive solution and a negative
solution. To this end, we establish the following Ekeland variational principle, which
plays an important role in proving Theorem

Theorem 6.1 (Ekeland variational principle [18]) Let X be a Banach space, � ∈ C1
bounded below, v ∈ X and ε, δ > 0. If

�(v) ≤ inf
X

� + ε,

then there exists u ∈ X such that

�(u) ≤ inf
X

� + 2ε, ‖� ′
(u)‖ <

8ε

δ
, ‖u − v‖ ≤ 2δ.

Lemma 6.1 Suppose that (V1)− (V3), ( f1)− ( f3) and (g1)− (g2) are satisfied. Then,
for any b > 0 and λ ≥ 1, there exist α′, ρ′ > 0 (independent of b) such that for all

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2

,

and ‖u‖λ = ρ′,

Ib,λ(u) ≥ α′.

Proof The proof of this lemma has been completed in Lemma 3.1. So we omit it. ��
Lemma 6.2 Suppose that (V1)− (V3), ( f1)− ( f3) and (g1)− (g2) are satisfied. Then,
for any b > 0 and λ ≥ 1, there exists φ ∈ Eλ with ‖φ‖λ < ρ′ such that Ib,λ(φ) < 0,
where ρ′ > 0 is given in Lemma 6.1.
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Proof By (g2), there exist C3, C4 > 0 such that

G(x, u) ≥ C3|u|θ − C4, ∀(x, u) ∈ R
3 × R.

For any t > 0 and u ∈ C∞
0 (�), it follows from (3.4) and (g2) that

Ib,λ(tu) = t2

2

∫

�

|∇u|2 dx + bt4

4
(

∫

�

|∇u|2dx)2 −
∫

�

G(x, tu)dx −
∫

�

F(x, tu)dx

≤ t2

2

∫

�

|∇u|2 dx + bt4

4
(

∫

�

|∇u|2dx)2

+ C4|�| − C3tθ
∫

�

|u|θ dx + Ct2
∫

�

|u|2 dx − Ctν
∫

�

|u|ν dx

< 0

for t > 0 enough small. Thus, there exists t̄ > 0 and φ := t̄u such that Ib,λ(φ) < 0
when ‖φ‖λ ≤ ρ′. ��
Remark 6.1 By Lemmas 6.1 and 6.2, we can infer that Ib,λ is bounded below in B̄ρ′(0)
and

c∗ := inf
u∈B̄ρ′ (0)

Ib,λ(u) < 0,

where Bρ′(0) = {u ∈ Eλ : ‖u‖λ < ρ′}.
Next, we show that Ib,λ satisfies (P S)c condition in B̄ρ′(0) with c < 0.

Lemma 6.3 Suppose that (V1)− (V3), ( f1)− ( f3) and (g1)− (g2) are satisfied. Then,
there exists λ∗ > 1 such that Ib,λ satisfies (P S)c condition in B̄ρ′(0) with c < 0 for
all λ > λ∗.

Proof If {un} ⊂ Eλ is a (P S)c sequence for Ib,λ in B̄ρ′(0) with c < 0. Thus, we have
‖un‖λ < ρ′. Therefore, there exist u− ∈ Eλ and constant B > 0 such that

un⇀u− in Eλ, |∇un|22 → B2, |∇u−|22 ≤ B2.

The rest of the proof in this lemma is similar to Lemma 3.6. So we omit it. ��
Proposition 6.1 Suppose that (V1) − (V3), ( f1) − ( f3) and (g1) − (g2) are satisfied.
Then, there exists λ∗ > 0 such that for each

|h| 2
2−q

≤
⎛

⎝
8dq

2

q

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) q−2
p−q

+
8C1/2d2

2
d p

p

p

(
dq
2 p(2 − q)

C1/2d2
2
d p

p q(p − 2)

) p−2
p−q

⎞

⎠

− p−q
p−2

,

and λ > λ∗, the functional Ib,λ has a local minimizer u−
b,λ ∈ Eλ. Furthermore, u−

b,λ

is a nontrivial solution of Eq. (Kb,λ)and Ib,λ(u
−
b,λ) < 0 with ‖u−

b,λ‖λ < ρ′.
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Proof On the one hand, by Theorem 6.1 and Remark 6.1, there exists a sequence
{un} ⊂ B̄ρ′(0) such that

Ib,λ(un) → c∗ and (Ib,λ)
′
(un) → 0 as n → ∞.

On the other hand, by Lemma 6.3, there exists λ∗ > 0 such that Ib,λ satisfies (P S)c∗
condition in B̄ρ′(0) with c∗ < 0 for λ > λ∗. Thus, up to a subsequence, there exists
a subsequence {un} and u−

b,λ ∈ B̄ρ′(0) such that un → u−
b,λ in Eλ for λ > λ∗. Thus,

u−
b,λ is a local minimizer on B̄ρ′(0) satisfying

Ib,λ(u
−
b,λ) = c∗ < 0, (Ib,λ)

′
(u−

b,λ) = 0 and ‖u−
b,λ‖λ < ρ′.

Obviously, u−
b,λ is a nontrivial solution of Equation (Kb,λ) with Ib,λ(u

−
b,λ) < 0 and

‖u−
b,λ‖λ < ρ′. The proof is completed. ��

Proof of Theorem 2.5 By Proposition 6.1, we can complete the proof of Theorem 2.5.
��
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