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Abstract

In this paper, we investigate a notion of the generalized relative operator entropy, which
develops the theory of the relative operator entropy introduced by Fujii and Kamei,
and a notion of the Csiszar operator f-divergence mapping. We estimate some upper
and lower bounds of the generalized relative operator entropy and generalized operator
Shannon entropy. In particular, we reach some new bounds for the relative operator
entropy, the operator ¢-geometric mean, and the y2-divergence. Mainly, our results
extend some known operator inequalities.

Keywords Operator inequality - Operator Shannon-type inequality - Relative
operator entropy - Generalized relative operator entropy - g-geometric mean
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1 Introduction

The quantum relative entropy is a very important quantity in quantum information
theory [32]. It satisfies many significant relations such as monotonicity property under
quantum channels [20]. Relative entropies or generalized divergences are used to
derive the second-order asymptotic expansions and strong converse theorems.
Generalized entropic functions are in an active area of research. Hence, several
lower and upper bounds on these functions are of interest. These quantities are defined
on pairs of positive operators and usually required to be nonnegative on pairs of
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states. Relative entropies serve at least two purposes in both classical and quantum
information theory:

(1) anotion of distance on the set of probability distributions or quantum states,
(2) acting as parent quantities for entropic quantities such as the Shannon entropy or
the von Neumann entropy.

The relative operator entropy is one of the most important concepts in both the quan-
tum information theory and statistical physics. Operator entropic quantities are also
interesting mathematical subjects with many attractive properties. Operator entropy
inequalities have been investigated by some mathematicians [1-3, 13, 15, 22, 26, 30].

The relative operator entropy of strictly positive operators A and B on a Hilbert
space was introduced in the noncommutative information theory by Fujii and Kamei
[11] via the quantity

S(A|B) := A2(InA"2BA™7)A2.

The generalized relative operator entropy for strictly positive operators A, B and
q € R was defined in [14] by setting

S,;(A|B) = AZ(A"2BA 2)1(InA"IBA~2)A%.

In particular, when g = 0, it leads to the relative operator entropy S(A|B).

We introduced in [29] a generalized notion of the relative operator entropy and the
Tsallis relative operator entropy and called them the relative operator («, 8)-entropy
and the Tsallis relative operator (o, 8)-entropy. For the strictly positive operators A, B
and the real numbers o # 0, 8, we defined

Sup(AlB) = AZ(A"2BA~5)*n A 2BA"5)A",

Tup(AlB) i= A% Iny(A"2BA~)A%,

where Iny, X = XAA_I and proved the joint convexity or concavity of these concepts

under certain conditions concerning « and 8. We clarified in [26] the upper and lower

bounds for the relative operator («, §)-entropy and Tsallis relative operator (¢, B)-

entropy according to the operator («, 8)-geometric mean introduced in [24].
Drogomir found in [8] some bounds for the difference

mlnm (MA B)+M1nM
M —m M —m

(B —mA) — S1(A|B) ey

and he specified in [7] some bounds for the following difference

Inm InM
S(A|B) — M_m(MA—B)— Y —m

(B —mA), 2)

where A, B are two strictly positive operators such that mA < B < M A for some
m, M > 0withm < M.
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We generalized Dragomir’s results in [23] and identified some upper and lower
bounds for the difference

mnm ra gy MM Ay~ s, AlB) 3)
gy MM
M—m M—m a4 ’

where A and B are two strictly positive operators such thatmA < B < M A for some

2g—1
m, M e (0, eﬁl{—q)] withm < M and 0 < ¢ < 1. In particular, when ¢ — 17 in (3),
we get (1). We also identified several bounds for the difference

A M)‘

1 —1
TA(A|B)—h(MA—B)—m(B—mA), )

where A and B are as above and 0 < A < 1. When A — 07 in (4), we get (2).

We denote by B(H) the C*-algebra of all bounded linear operators on a Hilbert
space H with inner product (-, -). For self-adjoint operators A and B in B(H), we
write A > B (resp. A > B)if A — B is positive (resp. strictly positive). A self-adjoint
operator A in B(H) is positive if (Ah, h) > 0 for h € H and strictly positive if
(Ah,h) > 0forh € H.

In this paper, we investigate a notion of the generalized relative operator entropy
and call it the generalized f-relative operator entropy, which develops the theory of
the relative operator entropy introduced by Fujii and Kamei. We also investigate a
notion of the Csiszar operator f-divergence mapping. We estimate some new upper
and lower bounds of the generalized f-relative operator entropy, generalized operator
Shannon entropy, operator ¢-geometric mean, and x >-divergence. Our results recover
some known operator inequalities.

2 Bounds of the Generalized f-Relative Operator Entropy

The classical perspective function associated with f, defined on a convex set C C R”,
is a function of two variables on the subset

t
K :={(s,1):5>0, - eC}CR"!
s

considered by Py(s, 1) := sf(g) (ct. [17]).
Given a convex function f : [0, c0) — R, the f-divergence functional

I¢(P. Q) = Zqif(gx
i=1 !

was introduced by Csiszar [5] as a generalized measure of information, a distance
function between two probability distributions P = {py, ..., pn}, O = {q1, ..., qn}-
Note that the term g; f (%) in the definition of the f-divergence functional /¢(P, Q)
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is the classical perspective of f in (g;, p;) in the sense that g; f (%) = Pr(qi, pi) and
thus

I£(P, Q) =Y Ps(gi. pi)-
i=1

The relative entropy or Kullback—Leibler distance [19] between two probability
distributions P = {py, ..., pn}, O = {q1, ..., gn} was defined by

D(P||Q) = Zp, log—

The x2-divergence was proposed by Pearson [33] via the formula
X g prop y

n )
Cp. )=y P
i=1 !

and the Hellinger distance [4] was defined by
1 & )
H(P, Q)= 3> (Vpi =4
i=1

Note that we can state them as the f-divergence functional with a suitable representing
function as follows.

D(P||Q) = I-10g:(Q, P),
x2(P, Q) =1,,2(Q,P),
H(P, Q) = I%(W_I)Z(Qa P)

A fully noncommutative perspective of the one variable function f defined in [9]
by setting

Pf(A, B) = A1/Zf(Af1/23‘471/2)‘41/27

where A is a strictly positive operator and B is a self-adjoint operator on a Hilbert
space ‘H such that the spectrum of the operator A~!/2BA~!/2 lies in the domain of
the function f. Effros considered in [10] the case where each pair in the argument of
the perspective consists of commuting operators. The necessary and sufficient con-
ditions for joint convexity (resp. concavity) of the noncommutative perspective and
generalized perspective functions are established in [9]. For the other applications
concerning this concept, see [24, 28, 29, 31]. The axiomatic theory for connections
has been discussed by Kubo and Ando [18]. They proved the existence of an affine-
order isomorphism between the class of connections and the class of positive operator
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monotone functions. Albeit this affine order isomorphism has a perspective form, the
axiomatic theory for connections was only considered for the class of positive operator
monotone functions.

Taking ideas from these facts, we motivate to introduce the notion of the Csiszar
operator f-divergence mapping. Let A = {Ay,..., A,},B = {By, ..., B} be two
finite sequences of strictly positive operators such that the spectrum of the operators
Ai_l/ 2 B; Al._l/ ? Jies in the closed interval I and let f : T — Rbeacontinuous function.
We consider the Csiszar operator f-divergence mapping by setting

n
I;(B,A) =) Ps(A;, B).
i=1

The first part of the following lemma was proved in [26, Theorem 2.1] for the
noncommutative generalized perspective functions.

Lemma 1 Letr, s, k be real-valued and continuous functions on the closed interval 1.
Ifr(t) <s(t) <k(t)fort €1, then

(i) for every strictly positive operator A and every self-adjoint operator B such that
1 1
the spectrum of the operator A2 BA™ 2 lies in I, we have

P-(A, B) = Ps(A, B) < Px(A, B),

(ii) for two finite sequences of strictly positive operators A = {A1,...,A,},B =
—1/2p 412
l

{B1, ..., By} such that the spectrum of the operators A, ; lies in 1, we

have
I,(B,A) = I;(B,A) < Ix(B,A).
Proof (i) In view of the assumption, we get
F(ATIBA™7) < s(A"2BA"?) < k(A"ZBA?)

for the strictly positive operator A and the self-adjoint operator B. By multiplying

A% from both sides, we obtain the desired inequalities.
(ii) Itis a simple consequence of part (i).

Definition 1 Let f : [0,00) — R be a twice differentiable function and ¢ € R.

For two strictly positive operators A and B, we consider the generalized f-relative
operator entropy by setting

I Lo _Lo 1o
S (A|B) := A2(A"2BA"2)4 f(A"2BAT2)A2.

We can recognize the significance of this definition when one considers the func-
tion f various known functions. For instance, when one considers f () = 1,q €
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[0, 1], f(t) = ]n(l‘),q e R, f(l) — M

operator g-geometric mean [14]

,h, g e R, A #0, k € Z, we reach the

At B = AI(AT1BAT1)IAT,
the generalized relative operator entropy [14]
S,(A|B) = AZ(A"2BA™ 7)Y log(A 2 BA™1)A?,
the generalized Tsallis relative operator entropy [25, 34]

~ Alg+in B — Alg+(k—1),B
T, ii(A, B) = =2 — DA

respectively.

In particular, when A = {Ay, ..., A,}, B = {Bjy, ..., B,} are two finite sequences of
strictly positive operators, we reach the generalized operator Shannon entropy intro-
duced in [21] for a positive operator monotone function f and ¢ € R by

S (AIB) = S] (Ai|By).

Under certain conditions, the upper and lower bounds for Sqf (A|B) were given in [21]
as an extension of an inequality due to Furuta [14].

Define w(¢t) := t7 f(¢t) for ¢ € R, where f : [0, o0) — R is a twice differentiable
function and consider

J,={t=0:0"(t) > 0}.

Hence, the function w(?) is convex on J,; for ¢ € R. In particular, when we consider
f@ = lnt the natural logarithm function, a simple calculation indicates that J, :=

O, eq<1 q)] for 0 < g < 1. Consequently, J;- = (0, c0) and Jo+ = (J. Moreover,
—1

for ¢ > 1 or g < 0, a routine verification shows that J, := [eq(1 9, 00) and so
Ji+ = (0, 00), Jo- = ¥. Note that the function #9 In¢ is convex on J, for 0 < ¢ < 1
andon J, forg > 1l org < 0.

Throughout the paper and for the sake of simplified writing, we consider

Ccu—m M—u 1 ”_W
r(u)::mm{ , }:———’
M—-—m M—m 2 M —m

_ M — 1 u — Mtm
R(u)::max{u m u}:- ‘—2 ,
M—-—m'M—m 2 M—m

g Mif(M) M M
K{(m,M)::mf(m)—; A ;rm)’ff( ;rm),
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w(t) = (t —m)(M —1),
. m?f(m) Mf( )

Ly(t) == M =) == m),
L(r) =19~ ‘(tf () + qf(t)).

where 0 < m < M and g € R. The function L is the line joining the points
(m, m? f(m)) and (M, M4 f(M)). Note that convexity of the function w (¢) = t7 f (¢)
on J, shows that

KJ(m, M) >0 ®)

form, M € [a, B] € J; withO <m < M and g € R.

In what follows, we provide the upper and lower bounds for SJ (A|B) and Sqf (A|B).
In particular, we reach [23, Theorems 2, 3, 4] by considering f () = Intand0 < g < 1
in Theorems 1, 2, and 3, respectively. Moreover, by letting ¢ — 17 in Corollary 3 we
obtain [8, Theorem 3], and by putting ¢ — 17 in Theorem 2 we reach [8, Theorem
2]. We generalize [23, Theorems 2, 3, 4] for the case where ¢ ¢ (0, 1).

Theorem 1 Let A and B be two strictly positive operators such thatmA < B < M A
for somem, M € [a, B] € J, withO <m < M and q € R. Then,

; (M) — T(m)
0=<Pr (A B)—S;(AIB) = WPW(A’ B)

1(M (M) —T(@m))A
=1 m)< n )
Proof We apply [8, Lemma 1] for the function w(¢) = 9 f (1), t € [o, B] € J4. Then,

0=<(-0dwl)+co®y) —o(l—c)x+cy)
< c(l =)y —0)(@_(y) — o (x)), (6)

u—m

where ¢ € [0, 1] and x, y € [«, B]. Substitute x =m,y = M,and ¢ = Yy in (6) to
get

- MM M) + af (M) = mT™ anf'0m) + af ) |,
< ()
M —m
) ™
The function ¥ (u) attains its maximum value at u = M ;m, and the maximum value
is 1(M — m)2. So,
HED =y < L —my ()~ Tom). ®)
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Combining inequalities (7), (8) and regarding Lemma 1 and taking the perspective,
we conclude the result.

The following corollaries are straightforward consequences of Theorem 1 and pro-
vide the upper and lower bounds for S,{ (A|B) and S{ (A|B), the generalized operator
Shannon entropy, introduced in [21].

Corollary 1 Let A and B be two strictly positive operators such thatmA < B < M A
for somem, M € [a, B] € Jy withO <m < M and q € R. Then,

1
PL (A B) = ;(M — m)(r(M) - F(m))A

. (M) — T'(m)
= Pr,(A B) - WPW(A, B)
< 5/ (AIB)

=< PL,(A, B).

Corollary2 LetA = {Ay, ..., Ay}, B ={Bj, ..., By} be two finite sequences of strictly
positive operators such that mA; < B; < M A; for some m, M € [a, B] C J, with
0<m < M andq € R. Then,

(M) — T(m)

I, (B.A) — ——

Iy(B.A) < 5] (AIB) < I, (B, A).

In part1cular considering f(t) = Inf and 0 < ¢ < 1 in Theorem 1 we get
Js = (O, eqU q)] where we reach [23, Theorem 2]. Moreover, we generalize [23,
Theorem 2] for the cases ¢ > 1 or g < 0 as follows.

Remark 1 We note that there is no result for the case where ¢ — 0, since in this case
the convex domain of the function In ¢ is empty. In the last section, we will solve this
problem.

Corollary 3 Let A and B be two strictly positive operators such thatmA < B < M A
for somem, M € J,; = [eq(1 ‘H ,00)withO <m < M and g > 1 orq < 0. Then,

0<mnm ya gy MMM Ay S (AIB)
_ MilM o
“ M-—-—m M —m 4
M1 +gInM) —m?~ "1 +4¢1
< (I'+gInM) —m (+qnm)PW(A’B)
M—m
1
< ;M —m)(M‘H(l YqlnM)—mi~'(1 +qlnm))A. )

By lettingg — 17 in Corollary 3, we get J1+ = (0, oo) and we deduce [8, Theorem
3] via the fact that S| (A|B) = —S(B|A).

We obtain the lower and upper bounds for the operator g-geometric mean in the
caseqg <Qorg > 1.
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Corollary 4 Let A and B be two strictly positive operators such thatmA < B < M A
forsome O <m < M.Ifq <0orq > 1, then

a1A+ BB < AfyB < axA+ BB,

where

miM — mM9

q -1 -1
0p=— —~M-—mMI™" —mi™),
V= (= m)( )

miM — mM9

Q=——"",
M —m
Mq_mq
p= M—m

Proof Consider f(¢) = 1 in Corollary 1 and note that in this situation J, = (0, c0)
and

mq

M —m
sJ(A|B) = A4,B,
T(M)—T(m) =qM?" —ma™1.

A simplification gets the desired result.

Remark 2 Dragomir in [6] proved that if ¢ : D — R is a convex function defined on
a convex subset D C R, then

- 2R[¢(x)-2k¢>(y) _¢(x42ry)]

for any x, y € D and ¢ € [0, 1], where r = min{c, | — ¢} and R = max{c, 1 — c}.
By the notations as in Remark 2, we have the following results.

Theorem 2 Let A and B be two strictly positive operators such thatmA < B < M A
for somem, M € |a, B] € J; withO < m < M and g € R. Then,

2K (m, M)P,(A. B) < P (A, B) — S] (A|B) < 2K] (m, M)Pr(A, B).

Proof Apply Remark 2 for the convex function ¢(¢) = t9f (1), t € [a, B] S J, to
obtain
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2r[xqf(X)eryqf(y) x +y)qf(

< (I =ox? f(x) +quf(y) — (I =ox+en)? f((1 —o)x +cy)

X&) +y1f Q) x+y x+y
: S )]

x+y]

< ZR[ (10)

forany x, y € [o, f] and ¢ € [0, 1], where r = min{c, 1 — ¢} and R = max{c, 1 —c}.
Substitute x =m, y = M, and ¢ = 3=~ withu € [m, M] in (10) to get

2K (m, MYr(o) < m flm) 37—+ M9 POt

<2K] (m, M)R(u). (11)

By using Lemma 1 and taking the perspective, we get the desired inequalities.

As a consequence of Theorem 2, we give the upper and lower bounds for the
generalized f-relative operator entropy and generalized operator Shannon entropy.

Corollary 5 Let A and B be two strictly positive operators such that mA < B < M A
for somem, M € |a, B] € J4 withO <m < M and g € R. Then,

Py, (A, B) — 2K/ (m, M)Pg(A, B) < S (A|B)

< Pr,(A, B) — 2K (m. M)P,(A, B). (12)
Corollary6 LetA = {Ay, ..., Ay}, B ={Bj, ..., By} be two finite sequences of strictly
positive operators such that mA; < B; < M A; for some m, M € [a, B] C J, with
0<m < Mandq € R. Then,
I, (B,A) — 2K (m, M)Ir(B,A) < S] (AIB)
< 11, (B,A) = 2K (m, M)1,(B, A).

In light of our results and by considering f () = Int and 0 < ¢ < 1 in Theorem

2, we obtain [23, Theorem 3], and by putting ¢ — 1~ we reach [8, Theorem 2].

Furthermore, we generalize [23, Theorem 3] for the cases ¢ > 1 or g < 0 as follows,
since in this case the convex domain of the function #7 In ¢ is J,:

Corollary 7 Let A and B be two strictly positive operators such thatmA < B < M A

for somem, M € J,; = [eq(‘—‘ﬁ o) with) <m < M and g > 1 orq < 0. Then,

In m?Inm MiIn M
2K} (m, M)P,(A, B) < (MA = B) + ———(B — mA) — S,(A|B)
M —m M —m
< 2K,"(m, M)PR(A, B). (13)

We obtain the lower and upper bounds for the operator g-geometric mean in the
caseq <0Oorg > 1.
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Corollary 8 Let A and B be two strictly positive operators such thatmA < B < M A
forsome O <m < M.Ifq <0orq > 1, then

A+ BB —kPr(A, B) < AflyB < a2A+ BB -k P-(A, B),

where
M
e =mt+m— 2" My
and a3, B are the same as Corollary 4.
Proof Consider f(t) = 1 in Corollary 5 and note that
mq
PL.(A,B)=——(MA—-B B —mA),
L (A B) = ) (B —mA)

SJ(AIB) = A, B,
m+ M

K =2KJ (m, M) = m + M7 —2( ).

A simple verification shows the result.

Theorem 3 Let A and B be two strictly positive operators such thatmA < B < M A
forsomem, M € [a, B] € J, withO <m < M and q € R. Ifthere exist the constants
y1, v2 such that yy < " (t) < y» for everyt € [m, M), then

1 1
371Pu(A. B) < PL (A|B) — 5] (AIB) < Z12Pu (A, B).
Proof By applying [8, Lemma 2] for the function w(¢) = t9 f(¢), t € [m, M], we get

1
e =—ony - 0)* < (1 =)o) +coy) — (1 —)x +cy)

1
= el —onlb - x)?%, (14)

where ¢ € [0, 1] and x, y € [m, M]. Substitute x = m, y = M, and ¢ = gyt in
(14), to find

o =myM =y = X 0 pmy + L M9 F M) = f )
N =M —m M—m
1
< 52l —m)(M = w). (15)

By applying Lemma 1, we reach the desired inequalities.

In view of Theorem 3, we find the other bounds for the generalized f-relative
operator entropy and generalized operator Shannon entropy.
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Corollary 9 Let A and B be two strictly positive operators such thatmA < B < MA
forsomem, M € [a, B] € J, withO <m < M and q € R. Ifthere exist the constants
y1, v2 such that yy < " (t) < y» for everyt € [m, M), then

Pr,(A, B) — ?P{I/(A B) < Sf(A|B) < Pr,(A|B) — ?PW(A B).

Corollary 10 LetA = {Ay, ..., A}, B = {By, ..., B} betwo finite sequences of strictly
positive operators such that mA; < B; < M A; for some m, M € [a, B] C J, with
0 <m < M and q € R. If there exist the constants y1, y» such that y; < &"(t) < y»
foreveryt € [m, M), then

IL,(B,A) — —Iq/(B A) < S} (AIB) < 1L, (A|B) — —Iq/(B A).

According to Theorem 3, if we consider f () =1Int and0 < g < I, then we obtain
[23, Theorem 4] with
y1=MI"2Q2q —1+q(q—1)InM) >0,
y2=m?Q2q — 14+q(qg —1)Inm) > 0.

Hence, 0 < %)/1 Py (A, B).

Corollary 11 [23, Theorem 4] Let A and B be two strictly positive operators such that

2g—1
mA < B < MA forsomem, M € J, = (O,eq(cli—q)]withO <m<Mand0 <q < 1.
Then,

1
0< n Py (A, B)

cmiinm g a gy MM g Ay s, (AlB)
_py MM
T M-—-m M —m ?

IA

1

5V2Pu (A, B). (16)
Since the convex domain of the function 7 Int is J, forg < 0 or g > 1, we may

generalize Corollary 11 for the case where g € (—o00, 0) U (1, 00).

Corollary 12 Let A and B be two strictly positive operators suchthatmA < B < M A

2g—1
for somem, M € J, = [eq(c'[—‘l) ,00)with) <m < M and g < 0 or q > 1. Then, the
inequalities (16) hold.

The following corollary is a consequence of Theorem 3 when we consider f(¢) =
Intfandg — 17.

Corollary 13 [8, Theorem 4] Let A and B be two strictly positive operators such that
mA < B < MA for somem, M € (0, 00) with) <m < M. Then,
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0< - pya. By < ™0™ ra gy MM 5 A+ sB1A)
Y VR M—m "

1
< —Py (A, B).

2m

3 The Lower and Upper Bounds for S(A|B)

Having in mind to establish the bounds for the difference (2), one can let g — 0 in the
inequalities (9), (13), and (16). But, in this situation, we know that the convex domain
Jo is empty. So, when ¢ tends to 0, the established results in the previous section for
the difference (2) do not mean. Hence, to achieve the goal, we change our attention
to the concave domain of the function . Let us consider C, := {r > 0 : & (r) < 0}
for ¢ € R. Then, clearly, C, = J_; and the function w is concave on C,. Note that in
this case Cp = (0, 00) and the domain C is not empty and as a result the problem
mentioned in Remark 1 is solved. So, one can discuss on the lower and upper bounds
for the relative operator entropy S(A|B). Indeed, we recognize the bounds of S(A|B).

We now conclude the following result for the concave function  on C,. The proof
of the previous section can be repeated for the concave function w on C,, and we omit
the proof, since the function —w is convex on J, = (C_g. Note that concavity of the
function w(t) = 4 f(t) on C, shows that

K] (m, M) <0 (17)

form, M € [a, ] € C, withO <m < M and g € R.

Theorem 4 Let A and B be two strictly positive operators such that mA < B < M A
for somem, M € [a, B] C (Cq withQ <m < M and q € R. Then,

(i) 0 < S] (AIB) — P, (A, B) < "0TUD p, (4 p),
(ii) —2K] (m, M)P,(A, B) < S] (A|B) — P, (A, B) < —2K] (m, M) Pg(A, B).
By considering f(¢) = Int and ¢ — 0 in parts (i) and (ii) of Theorem 4, we get

the bounds for the difference (2) as follows.

Corollary 14 Let A and B be two strictly positive operators such thatmA < B < M A
for some m, M > 0 withm < M. Then,

Inm In M
OES(A|B)—M—(MA—B)—M (B—mA)
—m

—m

1

Corollary 15 Let A and B be two strictly positive operators such thatmA < B < M A
for some m, M > 0 withm < M. Then,
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In Inm M
—2Kq'(m, M)P-(A, B) < S(A|B) = -—— (MA = B) — - — (B —mA)
< —2KM(m, M)Pg(A, B). (19)

Note that —K{"(m, M) = In %

By applying Theorem 4, one can get the bounds for the generalized operator Shan-
non entropy based on the notion of the Csiszar operator f-divergence mapping.

Corollary 16 LetA = {Ay, ..., A}, B = {By, ..., B,} betwo finite sequences of strictly
positive operators such that mA; < B; < M A; for some m, M € |a, B] € C, with
0<m < M and q € R. Then,

(i) 0 < S (AIB) — I,,(B,A) < "=L00 1, (p o),
(ii) —2K] (m, M)1,(B,A) < S (A|B) — Ir,(B,A) < —2K] (m, M) Ir(B, A).

As a numerical consequence, one can realize the bounds of the x>-divergence as
follows.

Example1 Let P = {p1, ..., pn}and Q = {q1, ..., g»} be two probability distributions
with )7, pi => 7 1 ¢i = 1and 0 < mp; < g; < Mp;. Then,

(M —m)(M —1) < _2P.O)+ (M -1 —m) < (M —m)(M + 1)
mM(m + M) mM mM(m + M)

Proof Consider A; = p;I, B = g;I in Corollary 16 (ii), where I is the identity

operator. So, the bounds of the Csiszar operator f-divergence mapping for the concave
(=1

function f (1) = ——— with ¢ = 0 can be obtained as follows:
(M —m)? 5 (M = 1)(1 —m)
mh(ﬂ 0)<—x (RQ)-FT
M —m? b 20
= m R( ’ Q)7 ( )

where
1 1 "
L(P.Q)=>— ) [2q — M)pil,
(P, Q) ) 2(M —m) i:1| qi — (m + M) p;|
n

1
IR(P.Q) =5+ S 2 1240 = (m =+ M)pil.

1
2(M — m) 4
i=1

A simple verification and using the fact that the absolute value for the real numbers
satisfies the triangle inequality, we reach
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n

1 1 24m+M
I Pa == PO 2— M i< = _—,
r(P, Q) 2+2(M—m);|ql (m + )p,|_2+2(M_m)
1 2—-m-M 1 1 n
3T 30—y =3 300 = 2 % = m+ M)pil = (P, Q).

i=1

Therefore, by replacing the lower and upper bounds of 7, and I in (20), respectively,
we conclude the result.
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