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Abstract
Themain purpose of this paper is to look for solutions of the following critical nonlinear
Dirac equation

−iεα · ∇u + aβu + V (x)u = K (x)|u|p−2u + Q(x)|u|u x ∈ R
3,

where ε > 0 is a small parameter, a > 0 is a constant, p ∈ (5/2, 3),α = (α1, α2, α3) is
triplets ofmatrices,α1, α2, α3 and β are 4×4 Pauli-Diracmatrices. The potential V (x)

may attain ±a at somewhere or at infinity, K , Q ∈ C1(R3, R
+) are two functions.

When ε > 0 small, we will prove the existence and concentration of the solutions by
using variational methods under some mild assumptions on the potentials V , K and
Q.
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1 Introduction andMain Results

In this paper, we concerned with the following nonlinear Dirac equation with critical
nonlinearities

−iεα · ∇u + aβu + V (x)u = K (x)|u|p−2u + Q(x)|u|u, (1.1)

where u : R
3 → C

4 is a spinor field, ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), a > 0 is a constant. α1,
α2, α3 and β are 4 × 4 Pauli-Dirac matrices:

αk =
(

0 σ ∗
k

σk 0

)
1 ≤ k ≤ 3, β =

(
I2 0
0 −I2

)

with

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

where σ ∗
k is the conjugate transpose of σk . It is well known that the most general form

of Eq. (1.1) is

−i�∂tψ = ic��3
k=1αk∂kψ − mc2βψ − M(x)ψ + Fψ(x, ψ), (1.2)

where � stands for Planck constant, m > 0 denotes the mass of particle, c is speed
of light. Equation (1.2) plays an important role in quantum electrodynamics [21].
In mathematics, under the assumptions F(x, eiθψ) = F(x, ψ) for any θ ∈ [0, 2π ]
and ψ(t, x) = e

iμ
�
tw(x), then the Eq. (1.2) is equivalent to the following stationary

equation

i��3
k=1αk∂kw + aβw + V (x)w = Fw(x, w), (1.3)

where a = mc, V (x) = (
M(x)
c + μ)I4 and Fw(x, w) = 1

c Fψ(x, ψ). Especially,
Eq. (1.1) can be regarded as a generalized stationary equation of (1.2) in the case that
F = 1

p K (x)|ψ |p + 1
3Q(x)|ψ |3 and ε = �. The external fields in (1.3) arise in models

ofmathematical models of particle physics for many years [22, 24]. Themost common
examples of nonlinear Dirac equation are themassive Thirringmodel [29] (vector self-
interaction) and the Soler model [27] (scalar self-interaction). Various nonlinearities
appear in models for unified field theories. For more physical background one can
refer to [28].

For the Soler model F(w) = 1
2H(ww), H ∈ C2(R, R), by using variational

methods, Esteban and Séré [19] obtained infinitelymany solutions under the following
assumptions:

V (x) ≡ ω, H ′(s) · s ≥ θH(s), F(−w) = F(w) and ω ∈ (−a, 0)
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for all s ∈ R and some θ > 1. This may be the first literature to study the nonlinear
Dirac equationbyusingvariational theory.After that,Bartsch andDing [2] obtained the
standardingwave solution of Eq. (1.3) underV (x) and F(x, w) are period depend on x .
This is a change in the study of nonlinear Dirac equations from autonomous systems
to non-autonomous systems. Their work benefits from the critical point theory of
strongly indefinite functional developed in [1]. Further, Ding and Ruf [16] considered
the Coulomb-type potential and obtained the existence and multiplicity of solutions
for asymptotically quadratic nonlinearities. For more results on the existence and
multiplicity of solutions of (1.3), we refer to the literature [12, 20] and their references.

According to [13], when the Plank constant � > 0 is small enough and tends
to zero, the solution of (1.3) is called semiclassical states. From physical point of
view, this is related to the correspondence principle proposed by Niels. Bohr in the
early development of quantum mechanics. This principle describes a corresponding
relationship between quantum mechanics and classical mechanics, it provides a new
viewof physics. To the best of our knowledge, there have beenmany literatures seeking
the existence and concentration phenomenon of the semiclassical states for nonlinear
Dirac equations. Under the condition V (x) = 0 and Fw(x, w) = P(x)|w|p−2w,
2 < p < 3, Ding [13] obtained ground state solutions of (1.3) which concentrate the
maximum points of P(x) as � → 0, it is the first result about semiclassical state of
the nonlinear Dirac equation. This results was later generalized to the case

V (x) 
≡ 0, min
x∈R3

V (x) < lim inf|x |→∞ V (x) (1.4)

and the nonlinearity with the form Fw(x, w) = f (|w|)w in [15], where nonlinearity
is subcritical. When the potential V satisfies (1.4), Ding and Ruf [17] also considered
Eq. (1.3) with the nonlinearity Fw(x, w) = P(x)(g(|w|) + |w|)w. In [18], Ding and
Xu proposed the following local condition of the potential V (x): there is a bounded
domain � ⊂ R

3 such that

min
x∈�

V (x) < min
x∈∂�

V (x) (1.5)

and they established the same conclusion as [15]. It is worth mentioning that this local
condition (1.5) weakens (1.4). In fact, (1.5) is similar to the classical global condition
proposedbyRabinowitz [26] in nonlinear Schödinger equation. Formore semiclassical
results, we refer the reader to the surveys [5–7, 14, 31, 32, 34] for reference to the
literature.

In this paper, we first construct the semiclassical states of the critical Dirac equation
with degenerate potential(the potential V may attain ±a or approach ±a at ∞), and
then discuss the concentration phenomenon of the semiclassical state as � = ε → 0.
To state our main results, we need the following assumptions.

(V) V ∈ C1(R3, R) satisfies supR3 |V (x)| ≤ a, there exist the constants τ ∈ (0, 2)
and ν ∈ (0, +∞), such that

a − |V (x)| ≥ ν

1 + |x |τ .
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(K) K ∈ C1(R3, R) and 0 < k1 ≤ K (x) ≤ k2(1 + |x |)τ ′
for any x ∈ R

3 with
constants k1 > 0, k2 > 0 and τ ′ > 0.

(Q) Q ∈ C1(R3, R) and 0 < q1 ≤ Q(x) ≤ q2 < ∞ for any x ∈ R
3 with constants

q1 > 0 and q2 > 0.
(S) There is a bounded domain � ⊂ R

3 with smooth boundary ∂� such that


n(x) ∗ ∇V (x) > 0, ∇K (x) ∗ ∇V (x) < 0 for any x ∈ ∂�,

∇Q(x) ∗ ∇V (x) < 0, ∇Q(x) ∗ ∇K (x) > 0 for any x ∈ ∂�,

where 
n(x) denotes the unit outward normal vector to ∂� at x .

Without loss of generality, we assume 0 ∈ �. For any set � ⊂ R
3, δ > 0, ε > 0,

we define

�δ =
{
x ∈ R

3 : dist(x, �) := inf
y∈�

|x − y| < δ

}
,

�ε =
{
x ∈ R

3 : εx ∈ �
}

.

Denote for δ > 0 small O(δ) = {x ∈ � : dist(x, ∂�) > δ}. Then there is δ0 > 0
such that sup�δ0\O(δ0)

∇K (x) ∗ ∇V (x) < 0 and sup�δ0\O(δ0)
∇Q(x) ∗ ∇V (x) < 0.

The main results of this paper are as follows.

Theorem 1.1 Suppose that assumptions (V ),(K ),(Q) and (S) hold. Then, for p ∈
(5/2, 3), there exists ε0 > 0 such that if 0 < ε < ε0, Eq. (1.1) has a nontrivial solution
uε, satisfying that for any δ > 0, there exist C1 = C1(δ) > 0 and C2 = C2(δ) > 0
such that

|uε| ≤ C2 exp

(
−C1

(
dist(x,O(δ))

ε

) 2−τ
2
)

.

Our problem concerns the Sobolev critical situations, so it is difficult to deal with
compactness in order to get semiclassical state. As we will see, the energy functional
associated to Eq. (1.1) is strongly indefinite. Thus, we cannot use the standard critical
point theory [33] to solve it.On the other hand,we allow the potentialV (x) can be reach
a or tends to a at infinite. This potential V destroys the linking structure of the energy
functional. In order to overcome these difficulties, we follow themethods in references
[6] and [32]. We first introduce a truncation function and adjust the nonlinear term
appropriately. Secondly, wemake use of an idea of the penalization approach similar to
that used in [4, 8, 9] in the energy functional by subtracting a penalized functional term
Pε, which ensures the linking structure of the energy functional. Combining truncation
techniques and the penalization functional Pε, it makes the Palais-Smale sequences
bounded and relatively compact, so we can deal with the modified problem. Finally,
by some regularity and L∞ estimate of solutions which solves modified problem, we
can get the semiclassical state of Eq. (1.1).

The paper is organised as follows. In the next section we present some preliminary
notions on the Dirac operator, introduce the modified functional and give some basic
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lemmas. In Sect. 3, by using an abstract linking theorem, we prove the existence of
nontrivial solutions of the modified problems when ε is small. In Sect. 4, we give
a profile decomposition with respect to a family of solution {uε} which obtained in
Sect. 3 and get some regularity estimates on the {uε}. Finally, in Sect. 5, we finish
the proof of the main theorem.

2 Preliminaries

Firstly, using the scaling w(x) = u(εx), we can rewrite the Eq. (1.1) as the following
equivalent equation

− iα · ∇w + aβw + V (εx)w = K (εx)|w|p−2w + Q(εx)|w|w x ∈ R
3. (2.1)

If w is a solution of Eq. (2.1), then u(x) := w(x/ε) is a solution of the Eq. (1.1).
Therefore, we will mainly focus on this equivalent equation in the remaining part of
the paper.

For convenience, let H0 := −iα · ∇ + aβ denotes the Dirac operator, it is a self-
adjoint operator on L2(R3, C

4) with domain D(H0) = H1(R3, C
4). According to

[19], we know that

σ(H0) = σc(H0) = R\(−a, a),

where σ(H0) and σc(H0) denote the spectrum and the continuous spectrum of H0,
respectively. Consequently, the space L2(R3, C

4) possesses the orthogonal decompo-
sition:

L2(R3, C
4) = L+ ⊕ L−, u = u+ + u−

such that H0 is positive definite in L+ and negative in L−. Let |H0| denote the absolute
value of H0 and |H0| 12 denote its square root. We define E := D(|H0| 12 ), then by [19],
we know that E is a Hilbert space if endowed with the inner product

(u, v) = Re
(
|H0| 12 u, |H0| 12 v

)
L2

,

and the induced norm ‖u‖2 = (u, u), where Re stands for the real part of a complex

number. By [19], this norm is equivalent to the usual H
1
2 (R3, C

4)-norm, there-
fore, E embeds continuously into Lq(R3, C

4) for all q ∈ [2, 3] and compactly into
Lq
loc(R

3, C
4) for all q ∈ [1, 3). Moreover, since σ(H0) = R\(−a, a), we have

a|u|22 ≤ ‖u‖2, for all u ∈ E . (2.2)

Furthermore, E can be decomposed as follows

E = E+ ⊕ E−,
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where E+ = E ∩ L+ and E− = E ∩ L− and the sum is orthogonal with respect to
inner product (·, ·) and (·, ·)L2 . In addition, it follows from [18, Proposition 2.1] that

cq‖u±‖qq ≤ ‖u‖qq for all u ∈ E,

where cq > 0 is a constant.
The energy functional of (2.1) is

Jε(w) =1

2

∫
R3

(−iα · ∇w, w) + (aβw, w)dx + 1

2

∫
R3

(V (εx)w, w)dx

− 1

p

∫
R3

K (εx)|w|pdx − 1

3

∫
R3

Q(εx)|w|3dx .

By the decomposition E = E+ ⊕ E−, we can rewrite Jε as follows

Jε(w) =1

2
(‖w+‖2 − ‖w−‖2) + 1

2

∫
R3

(V (εx)w, w)dx

− 1

p

∫
R3

K (εx)|w|pdx − 1

3

∫
R3

Q(εx)|w|3dx .

According to standard arguments, we know that Jε : E → R is of class C1. For
w, v ∈ E , there holds

J ′
ε(w)v = Re

∫
R3

(H0w + V (εx)w − K (εx)|w|p−2w − Q(εx)|w|w) · vdx,

where w · v express the usual inner product in C
4. Moreover, in [15, Lemma 2.1] it is

proved that critical points of Jε are weak solutions of nonlinear Dirac Eq. (2.1).
From now on, we will construct a penalized functional Pε as that used in [4, 10,

11] and a truncation function as that used in [6] and so that our modified functional
have nontrivial critical points.

Let ϕ ∈ C∞(R+, [0, 1]) be a cut-off function such that ϕ(t) = 1 if 0 ≤ t ≤ 1,
ϕ(t) = 0 if t ≥ 2 and for any t ≥ 0. Set bε(t) = ϕ(εt) and mε(t) = ∫ t

0 bε(s)ds for
any t ≥ 0.

Let ζ ∈ C∞(R+, [0, 1]) be a cut-off function such that ζ(t) = 0 if t ≥ δ0, and
ζ(t) = 1 if 0 ≤ t ≤ δ0/2, and ζ ′(t) ≤ 0 for any t ≥ 0. Define χ(x) = ζ(dist(x, �))

and

gε(x, t) = min{hε(x, t), φ(x)} for any t ≥ 0, x ∈ R
3,

where φ(x) = κ

1+|x |4+τ ′ and
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hε(x, t) = K (εx)t p−2 + p

3
Q(εx)t p−2

(
mε(t

2)
) 3−p

2

+ 3 − p

3
Q(εx)t p

(
mε(t

2)
) 3−p

2 −1
bε(t

2).

Let us define

fε(x, t) = χ(εx)hε(x, t) + (1 − χ(εx))gε(x, t),

then for (x, t) ∈ R
3 × R

+ and Gε(x, t) = ∫ t
0 gε(x, s)sds

Fε(x, t) =
∫ t

0
fε(x, s)sds

= χ(εx)

(
1

p
K (εx)t p + 1

3
Q(εx)

(
mε(t

2)
) 3−p

2

)
+ (1 − χ(εx))Gε(x, t).

We denote the sets V± := {x ∈ R
3 : V (x) = ±a} and V := V+ ∪ V−. By (V ), we

can choose l0 large enough, such that (V)2δ ⊂ B(0, l0/2). Setting χ+ and χ− be the
characteristic function of the sets

B+ :=(V+)δ ∪
{
|x | ≥ l0 : V (x)≥ 3a

4

}
, B− := (V−)δ ∪

{
|x | ≥ l0 : V (x)≤−3a

4

}
.

Without loss of generality, assume that δ is small enough, there exists a θ ∈ (0, 1)
satisfying

±V (x) ≥ 3a

4
for x ∈ B± and V (x) ∈ [−θa, θa] for x /∈ B = B+ ∪ B−.

For φ(x) = κ

1+|x |4+τ ′ , we define ξ, ξ̂ : R
3 × R → R by

ξ(x, t) =
⎧⎨
⎩
0, t ≤ φ(x);
1

φ(x)
(t − φ(x))2, φ(x) < t < 2φ(x);

2t − 3φ(x), t ≥ 2φ(x),

ξ̂ (x, t) =
∫ t

−∞
ξ(x, s)ds,

and define the penalized functional Pε : E → R by

Pε(w) = a

8

∫
R3

χ̃ (εx )̂ξ (x, |w|)dx,

where χ̃(x) = χ+(x) − χ−(x). It is clear that Pε : E → R is of class C1 and

P ′
ε(w)v = a

8
Re

∫
R3

χ̃ (εx )̃ξ (x, |w|)w · vdx for any v ∈ C∞
0 (R3, C

4), (2.3)
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where ξ̃ (x, t) ∈ C1(R3 × R, [0, 2]),

ξ̃ (x, t) := 1

t
ξ(x, t)

⎧⎪⎨
⎪⎩
0, t ≤ φ(x);
(t−φ(x))2

tφ(x)
, φ(x) < t < 2φ(x);

2t−3φ(x)
t , t ≥ 2φ(x).

Moreover, for wn⇀w weakly in E , there holds

P ′
ε(wn)v → P ′

ε(w)v for any v ∈ C∞
0 (R3, C

4).

Now we define the modified functional �ε : E → R

�ε(w) = 1

2

∫
R3

(−iα · ∇ + aβ) w · wdx + 1

2

∫
R3

(V (εx)w, w) dx

− Pε(w) −
∫

R3
Fε(x, |w|)dx

= 1

2

(
‖w+‖2 − ‖w−‖2

)
+ 1

2

∫
R3

(V (εx)w, w) dx − Pε(w) −
∫

R3
Fε(x, |w|)dx .

By (V ), (K ), (Q) and (2.3), we know that �ε is of class C1, and for w, v ∈ E , there
holds

�′
ε(w)v = Re

∫
R3

(H0w + V (εx)w − a

8
χ̃(εx )̃ξ (x, |w|)w − fε(x, |w|)w) · vdx,

and the critical points correspond to weak solutions of

−iα · ∇w + aβw + V (εx)w − a

8
χ̃ (εx )̃ξ (x, |w|)w = fε(x, |w|)w.

Lemma 2.1 For small ε0 > 0 and ε ∈ (0, ε0), the energy functional �ε satisfies the
Palais-Smale condition.

Proof Assuming {wn} ⊂ E is a Palais-Smale sequence for �ε, i.e., {�ε(wn)} ⊂
R is bounded and �′

ε(wn) → 0 in E∗, we shall show that {wn} has a convergent
subsequence in E . We first verify the bounded-ness of {wn} in E . Observing that

on(1)‖wn‖ = �′
ε(wn)(w

+
n − w−

n )

= ‖wn‖2 + Re
∫

R3
V (εx)wn · (w+

n − w−
n )dx

− Re
∫

R3
fε(x, |wn|)wn · (w+

n − w−
n )dx

− a

8
Re

∫
R3

χ̃ (εx )̃ξ (x, |wn|)wn · (w+
n − w−

n )dx
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= ‖wn‖2 +
∫

R3
(V (ε) − a

8
χ̃(εx )̃ξ (x, |wn|))(|w+

n |2 − |w−
n |2)dx

− Re
∫

R3
fε(x, |wn|)wn · (w+

n − w−
n )dx . (2.4)

By the similar argument as [32, Lemma 2.2], we get

∫
R3

(
V (εx) − a

8
χ̃(εx )̃ξ (x, |wn|)

) (
|w+

n |2 − |w−
n |2

)
dx

≥ −max{θ,
7

8
}‖wn‖2 − Cε2τ

′+5. (2.5)

On the other hand, it may be assumed that �ε(wn) → c, then

c + ‖wn‖ ≥ �ε(wn) − 1

2
�′

ε(wn)wn

=
∫

R3

(
1

2
fε(x, |wn|)|wn|2 − Fε(x, |wn|)

)
dx + 1

2
P ′

ε(wn)wn − Pε(wn).

(2.6)

By the definition of Pε, (2.2) and the fact ‖χ−(εx)φ‖2 ≤ Cετ ′+5/2, we deduce

1

2
P ′

ε(wn)wn − Pε(wn) ≥ −3a

2

∫
R3

χ−(εx)|wn|φdx
≥ −C‖χ−(εx)φ‖2‖wn‖2 ≥ −Cετ ′+5/2‖wn‖. (2.7)

If hε(x, t) ≥ φ(x), then by the definition of gε(x, t) and Gε(x, t), we have

Gε(x, t) = 1

2
φ(x)t2 − 1

2
φ(x)t20 + Hε(x, t0), hε(x, t0) = φ(x),

where Hε(x, t0) = ∫ t0
0 hε(x, s)sds = 1

p K (εx)t p0 + 1
3Q(εx)t p0 (mε(t20 ))

3−p
2 . So there

holds

∣∣∣∣12gε(x, t0)t
2
0 − Gε(x, t0)

∣∣∣∣ ≤
∣∣∣∣12φ(x)t20 − Hε(x, t0)

∣∣∣∣ (2.8)

Since hε(x, t0) = φ(x), i.e.,

K (εx)t p−2
0 + p

3
Q(εx)t p−2

0

(
mε(t

2
0 )
) 3−p

2

+ 3 − p

3
Q(εx)t p0

(
mε(t

2
0 )
) 3−p

2 −1
bε(t

2
0 ) = φ(x).
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If t0 � 1, then we have

K (εx)t p−2
0 ≤ K (εx)t p−2

0 + p

3
Q(εx)t p−2

0

(
mε(t

2
0 )
) 3−p

2 = φ(x).

From above, we know that t0 has an upper bound, i.e., there exists a constant M > 0,
such that t0 ≤ M . Similarly, if t0 � 1, then there holds K (εx)t p−2

0 +Q(εx)t p0 = φ(x).
It follows that

∣∣∣∣12gε(x, t0)t
2
0 − Gε(x, t0)

∣∣∣∣ ≤ 1

2
|K (εx)|− 2

p−2 |φ(x)| p
p−2 .

Then

∣∣∣∣
∫

R3
(1 − χ(εx))

(
1

2
gε(x, |wn|)|wn|2 − Gε(x, |wn|)dx

)∣∣∣∣
≤ C

∫
R3\(�δ)ε

|K (εx)|− 2
p−2 |φ(x)| p

p−2 ≤ Cε
p(τ ′+4)
p−2 −3

. (2.9)

Injecting (2.7), (2.8) and (2.9) into (2.6), we have

C(1 + ‖wn‖) ≥
∫

R3

(
1

2
fε(x, |wn |)|wn |2 − Fε(x, |wn |)

)
dx + 1

2
P ′

ε(wn)wn − Pε(wn)dx

≥
∫

R3

(
1

2
χ(εx)hε(x, |wn |)|wn |2 − χ(εx)Hε(x, |wn |)

)
dx − Cετ ′+5/2‖wn‖

=
∫

R3
χ(εx)

(
1

2
hε(x, |wn |)|wn |2 − Hε(x, |wn |)

)
dx − Cετ ′+5/2‖wn‖,

(2.10)

where Hε(x, |wn|) = ∫ |wn |
0 hε(x, s)sds. By Hölder inequality and (2.10), we have

∣∣∣∣
∫

R3
χ(εx)hε(x, |wn|)wn · (w+

n − w−
n )dx

∣∣∣∣
≤

∣∣∣∣
∫

R3
K (εx)χ(εx)|wn|p−2wn · (w+

n − w−
n )dx

∣∣∣∣
+

∣∣∣∣
∫

R3
χ(εx )̃hε(x, |wn|)wn · (w+

n − w−
n )dx

∣∣∣∣
≤ ‖K 1/p|wn|‖p−1

L p((�δ)ε)
‖K 1/p|w+

n − w−
n |‖L p((�δ)ε)

+
∣∣∣∣
∫

R3
χ(εx )̃hε(x, |wn|)wn · (w+

n − w−
n )dx

∣∣∣∣
≤ C (1 + ‖wn‖)

p−1
p ε

p−3
p ‖K‖

1
p

L
3−p
3 (�δ)

‖w+
n − w−

n ‖
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+
∣∣∣∣
∫

R3
χ(εx )̃hε(x, |wn|)wn · (w+

n − w−
n )dx

∣∣∣∣
≤ Cε

p−3
p

(
‖wn‖ + ‖wn‖

2p−1
p

)
+

(∫
R3

χ(εx)(̃hε(x, |wn|)|wn|) 3
2 dx

) 2
3

×
(∫

R3
|(w+

n − w−
n )|3dx

) 1
3

,

where h̃ε(x, t) = p
3 Q(εx)t p−2

(
mε(t2)

) 3−p
2 + 3−p

3 Q(εx)t p
(
mε(t2)

) 3−p
2 −1

bε(t2).
Then (2.10) can be rewrite

C(1 + ‖wn‖) ≥ −Cετ ′+5/2‖wn‖ +
∫

R3
χ(εx)

(
1

2
h̃ε(x, |wn |)|wn |2 − H̃ε(x, |wn |)

)
dx

≥ −Cετ ′+5/2‖wn‖ + c
∫

R3
χ(εx)

(̃
hε(x, |wn |)|wn |

) 3
2 dx . (2.11)

By the definition of gε(x, t), we have

∣∣∣∣
∫

R3
(1 − χ(εx)) gε(x, |wn|)wn · (w+

n − w−
n )dx

∣∣∣∣ ≤ Cετ ′+3‖wn‖2. (2.12)

Combining (2.4), (2.5), (2.11) and (2.12), we have

min

{
1 − θ,

1

8

}
‖wn‖2 − Cετ ′+3‖wn‖2 ≤ Cε

p−3
p

(
‖wn‖ + ‖wn‖

2p−1
p

)

+ C(1 + ‖wn‖)
2
3 ‖wn‖.

This implies the bounded-ness of {wn} in E for small ε0 and ε ∈ (0, ε0).
Next we prove wn → w in E as n → ∞, denoting zn = wn − w, we have

�′
ε(wn)(z

+
n − z−n ) = on(1), �′

ε(w)(z+n − z−n ) = on(1).

It follows that

on(1) =Re(w+
n , z+n ) + Re(w−

n , z−n ) + Re
∫

R3
V (εx)wn · (z+n − z−n )dx

− Re
∫

R3

a

8
χ̃ (εx )̃ξ (x, |wn|)wn · (z+n − z−n ) + fε(x, |wn|)wn · (z+n − z−n )dx;

and

0 =Re(w+, z+n ) + Re(w−, z−n ) + Re
∫

R3
V (εx)w · (z+n − z−n )dx

− Re
∫

R3

a

8
χ̃ (εx )̃ξ (x, |w|)w · (z+n − z−n ) + fε(x, |w|)w · (z+n − z−n )dx .
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Then there holds

on(1) = �′
ε(wn)(z

+
n − z−n ) − �′

ε(w)(z+n − z−n ) = ‖zn‖2

+ Re
∫

R3
V (εx)zn · (z+n − z−n )dx

− Re
∫

R3

a

8
χ̃ (εx )̃ξ (x, |wn|)wn · (z+n − z−n )dx

+ Re
∫

R3

a

8
χ̃ (εx )̃ξ (x, |w|)w · (z+n − z−n )dx

− Re
∫

R3
χ(εx)(hε(x, |wn|)wn − hε(x, |w|)w) · (z+n − z−n )dx

− Re
∫

R3
(1 − χ(εx))(gε(x, |wn|)wn − gε(x, |w|)w) · (z+n − z−n )dx .

(2.13)

By the definition of χ̃ and ξ̃ (x, t), it follows that

lim
n→∞Re

∫
R3

χ̃(εx )̃ξ (x, |wn|)w · (z+n − z−n )dx

= lim
n→∞Re

∫
R3

χ̃(εx )̃ξ (x, |w|)w · (z+n − z−n )dx = 0.

Moreover, we have

(gε(x, |wn|) − gε(x, |w|)) · (z+n − z−n )⇀0 in L2(R3, C
4),

which leads to

lim
n→∞

∣∣∣∣
∫

R3

(
1 − χ(εx) (gε(x, |wn|) − gε(x, |w|)) w · (z+n − z−n )

)
dx

∣∣∣∣ = 0.

Hence, (2.13) can be rewritten as follows

on(1) =‖zn‖2 + Re
∫

R3

[
V (εx) − a

8
χ̃ (εx )̃ξ (x, |wn|)

]
zn · (z+n − z−n )dx

− Re
∫

R3
χ(εx) (hε(x, |wn|)wn − hε(x, |w|)w) · (z+n − z−n )dx . (2.14)

By [34], we know that

∫
R3

V (εx)|z+n |2 − a

8
χ̃ (εx )̃ξ (x, |wn|)|z+n |2dx

≥
∫

R3
−θa(1 − χ(εx))|z+n |2dx − 7a

8

∫
|wn |≥3φ(x)

χ−(εx)|z+n |2dx
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+ a

2

∫
R3

χ+(εx)|z+n |2dx − a
∫

R3\(|wn |≥3φ(x))

χ−(εx)|z+n |2dx + on(1)

and

∫
R3

−V (εx)|z−n |2 + a

8
χ̃(εx )̃ξ (x, |wn|)|z−n |2dx

≥
∫

R3
−θa(1 − χ(εx))|z−n |2dx − 7a

8

∫
|wn |≥3φ(x)

χ+(εx)|z−n |2dx

+ a

2

∫
R3

χ−(εx)|z−n |2dx .

Combining the above two inequalities and (2.14), we obtain

min

{
1−θ,

1

8

}
‖zn‖2−Re

∫
R3

χ(εx)(hε(x, |wn |)wn−hε(x, |w|)w)·(z+n −z−n )dx≤0.

(2.15)

By mean value theorem, there exists a function θn such that

∣∣∣∣
∫

R3
χ(εx)

(
K (εx)|wn|p−2wn − K (εx)|w|p−2w

)
· (z+n − z−n )dx

∣∣∣∣
≤ (p − 1)

∣∣∣∣
∫

R3
χ(εx)(K (εx)|θn|p−2zn · (z+n − z−n )dx

∣∣∣∣
≤ (p − 1)

∫
R3

χ(εx)(K (εx)|θn|p−2|zn| · |z+n − z−n |dx

≤ (p − 1)

(∫
R3

χ(εx)(K (εx)|θn|p−2)
p

p−2 dx

) p−2
p

×
(∫

R3
|zn|pdx

) 1
p
(∫

R3
|z+n − z−n |pdx

) 1
p

≤ (p − 1)

⎧⎨
⎩
(∫

R3
(χ(εx)|K (εx)| p

p−2 )
3

3−p dx

) 3−p
3 · |θn|p3

⎫⎬
⎭

p−2
p

· |zn|p · |z+n − z−n |p

= on(1). (2.16)

Similarly, we have

∣∣∣∣∣
∫

R3
χ(εx)Q(εx)

(
|wn|p−2

(
mε(|wn|2)

) 3−p
2

wn − |w|p−2
(
mε(|w|2)

) 3−p
2

w

)

· (z+n − z−n
)
dx

∣∣∣∣ = on(1), (2.17)
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and

∣∣∣
∫

R3
χ(εx)Q(εx)|wn|p−2

(
mε(|wn|2)

) 3−p
2 −1

bε(|wn|2)wn · (z+n − z−n )dx

−
∫

R3
χ(εx)Q(εx)|w|p−2

(
mε(|w|2)

) 3−p
2 −1

bε(|w|2)w · (z+n − z−n )dx
∣∣∣ = on(1).

(2.18)

Taking (2.16), (2.17) and (2.18) into (2.15), and we can obtain

min{1 − θ,
1

8
}‖zn‖2 ≤ on(1).

Therefore, {wn} has a convergent subsequence in E , and the proof is completed. ��

3 The Solutions of Modified Equation

In this section, we will use an abstract linking theorem [12] to obtain nontrivial critical
points for the modified variational functional. Let’s write the modified equation as
follows

−iα · ∇w + aβw + V (εx)w − a

8
χ̃ (εx )̃ξ (x, |w|)w = fε(x, |w|)w. (3.1)

For the convenience, we give the following notations.

Br = {w ∈ E : ‖w‖ ≤ r}, Sr = {w ∈ E : ‖w‖ = r};
E(e) = {w ∈ E : w = se + v, s ≥ 0 and v ∈ E−}.

In order to obtain the linking structure of the modified functional, we first give the
following lemma.

Lemma 3.1 ([34, Lemma 3.1.]) Assume that (V ) holds. Then there exists a constant
C > 0 which independent of ε, such that for any w ∈ E,

∣∣∣∣
∫

R3
V (εx)|w|2 − a

4
χ̃ (εx )̂ξ (x, |w|)dx

∣∣∣∣ ≤ max

{
θ,

7

8

}
‖w‖2 + Cε2τ

′+5.

Lemma 3.2 Assume that (V ), (K ) and (Q) hold, then there exist constants r0 > 0
and ρ > 0, such that

inf
w∈E+,‖w‖=r0

�ε(w) ≥ ρ, f or any ε ∈ (0, ε0).
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Proof Taking w ∈ E+, by Lemma 3.1, there holds

�ε(w) = 1

2
‖w‖2 + 1

2

∫
R3

V (εx)|w|2dx − Pε(w) −
∫

R3
Fε(x, |w|)dx

= 1

2
‖w‖2 + 1

2

∫
R3

V (εx)|w|2 − a

4
χ̃ (εx )̂ξ (x, |w|)dx −

∫
R3

Fε(x, |w|)dx

≥ 1

2
min

{
1 − θ,

1

8

}
‖w‖2 − Cε2τ

′+5 −
∫

R3
Fε(x, |w|)dx .

By the definition of Fε(x, t), we have

∫
R3

Fε(x, |w|)dx ≤
∫

(�δ)ε

1

p
|K (εx)||w|p + 1

3
Q(εx)|w|p

(
mε(|w|2)

) 3−p
2

dx

+
∫

R3\(�δ)ε

Gε(x, |w|)dx

≤ 1

p

(∫
(�δ)ε

|K (εx)| 3
3−p dx

) 3−p
3 ·

(∫
(�δ)ε

|w|3dx
) p

3

+
∫

(�δ)ε

|w|3dx + 1

2

∫
R3\(�δ)ε

φ|w|2dx

≤ Cε p−3‖w‖p + ‖w‖3 + Cετ ′+4‖w‖2.

Therefore, by the above two estimates, we have

�ε(w) ≥ 1

2
min

{
1 − θ,

1

8

}
‖w‖2 − Cε2τ

′+5 − Cε p−3‖w‖p − ‖w‖3 − Cετ ′+4‖w‖2

≥ 1

4
min

{
1 − θ,

1

8

}
‖w‖2 − Cε2τ

′+5 − Cε p−3‖w‖p − ‖w‖3.

Let ‖w‖ = ε < 1, in the light of p ∈ (5/2, 3), then

�ε(w) ≥ 1

4
min

{
1 − θ,

1

8

}
ε2 − Cε2τ

′+5 − Cε2p−3 − ε3

≥ 1

4
min

{
1 − θ,

1

8

}
ε2 − C ′ε2p−3.

We complete the proof of this lemma. ��
Lemma 3.3 Assume that (V ), (K ) and (Q) hold. Fix e0 ∈ E+, then there exist ε0 > 0
and R0 > 0, such that for any ε ∈ (0, ε0), there holds

sup
w∈E(e0),‖w‖≥R0

�ε(w) ≤ 0.

Moreover, supw∈E(e0) �ε(w) ≤ 2R2
0 .
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Proof Taking w ∈ E(e0), denote w = se0 + v with s ≥ 0, v ∈ E− , we deduce

�ε(w) = s2

2
‖e0‖2 − 1

2
‖v‖2 + 1

2

∫
R3

V (εx)|se0 + v|2dx

−
∫

R3

a

8
χ̃(εx )̂ξ (x, |se0 + v|)dx −

∫
R3

Fε(x, |se0 + v|)dx . (3.2)

Now we will discuss three cases:
Case 1: If s = 0 and v 
= 0, then by (3.2) and Lemma 3.1, we have

�ε(w) = −1

2
‖v‖2 + 1

2

∫
R3

[
V (εx)|v|2dx − a

4
χ̃(εx )̂ξ (x, |v|)

]
dx −

∫
R3

Fε(x, |v|)dx

≤ −1

2
‖v‖2 + 1

2

(
max

{
θ,

7

8

}
‖v‖2 + Cε2τ

′+5
)

−
∫

R3
Fε(x, |v|)dx

≤ −1

2
min

{
1 − θ,

1

8

}
‖v‖2 + Cε2τ

′+5.

It follows that �ε(w) → −∞ as ‖w‖ = ‖v‖ → ∞.
Case 2: If w = se0 
= 0, then by (3.2) and Lemma 3.1, there holds

�ε(w) = s2

2
‖e0‖2 + s2

2

∫
R3

[
V (εx)|e0|2dx − a

4
χ̃(εx )̂ξ (x, |se0|)

]
dx −

∫
R3

Fε(x, |se0|)dx

≤ s2

2
‖e0‖2 + s2

2

(
max

{
θ,

7

8

}
‖e0‖2 + Cε2τ

′+5
)

−
∫

R3
Fε(x, |se0|)dx

≤ 1

2
max

{
1 + θ,

15

8

}
‖se0‖2 + Cε2τ

′+5 − 1

p

∫
R3

χ(εx)K (εx)|se0|pdx

≤ C1‖e0‖2s2 − C2‖e0‖ps p + Cε2τ
′+5.

Therefore, �ε(w) → −∞ as s → ∞. Define �1 := 1
2 max{1 + θ, 15

8 }, �2 :=
1
2 min{1 − θ, 1

8 }.
Case 3: If se0 
= 0 and v 
= 0, then (3.2) and Lemma 3.1 leads to

�ε(w) = �ε(se0 + v) ≤ 1

2
‖se0‖2 − 1

2
‖v‖ + 1

2
max

{
θ,

7

8

}
‖se0 + v‖2

−
∫

R3
Fε(x, |se0 + v|)dx + Cε2τ

′+5

≤ 1

2
max

{
1 + θ,

15

8

}
‖se0‖2 − 1

2
min

{
1 − θ,

1

8

}
‖v‖2

−
∫

R3
Fε(x, |se0 + v|)dx + Cε2τ

′+5

≤ �1‖se0‖2 − �2‖v‖2

−
∫

R3
χ(εx)

(
1

p
K (εx)|se0 + v|p + 1

3
Q(εx)

(
mε(|se0 + v|2)

) 3−p
2

)
dx
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−
∫

R3
(1 − χ(εx))Gε(x, |se0 + v|)dx + Cε2τ

′+5

≤ ‖w‖2
(

�1‖ se0
‖w‖‖2 − �2‖ v

‖w‖‖2 − ‖w‖p−2

p

∫
R3

χ(εx)K (εx)
|w|p
‖w‖p

dx

)

+ Cε2τ
′+5. (3.3)

If �ε(w) → −∞ as ‖w‖ → ∞, we can get the conclusion. Otherwise there exist
M > 0 and a sequence {wn} ⊂ E(e0), such that �ε(wn) > −M as ‖wn‖ → ∞.
Hence, by (3.3) we can get

− M

‖wn‖2 ≤ �1 · ‖ sne0
‖wn‖‖2 − �2 · ‖ vn

‖wn‖‖2 − ‖wn‖p−2

p

∫
R3

χ(εx)K (εx)

× |wn|p
‖wn‖p

dx + on(1). (3.4)

Denote wn‖wn‖ = sne0‖wn‖ + vn‖wn‖ , ‖ wn‖wn‖‖ = 1, by (3.4) and (K ), we know that sne0‖wn‖ →
w0 
= 0 since p ∈ (5/2, 3). Otherwise we can get 1 = ‖ wn‖wn‖‖ → 0. Therefore, by
(3.3), we have

0 ≤ �ε(wn)

‖wn‖2 ≤ �1 · ‖ sne0
‖wn‖‖2 + C1 − ‖wn‖p−2

p

∫
R3

χ(εx)K (εx)
|wn|p
‖wn‖p

dx → −∞.

This is a contradiction, so we have �ε(w) → −∞ as ‖w‖ → ∞. Combining the
above three cases, we can get supw∈E(e0),‖w‖≥R0

�ε(w) ≤ 0. Furthermore, for any
w ∈ BR0 , there holds

�ε(w) ≤ 1

2
‖w+‖2 − 1

2
‖w‖2 + 3a

4

∫
R3

|w|2dx ≤ 2R0.

Now the proof is complete. ��
Let X be a reflexive Banach space, and X can be decompose to X = X+⊕X−. Take

S ⊂ (X−)∗ be a dense subset and P be the family of semi-norms on X , it consisting
of all semi-norm as follow

ps : X = X+ ⊕ X− → R, ps(x
+ + x−) := |s(x−)| + ‖x+‖, s ∈ S.

Thus P induces the product topology on X , it is contained in the product topology
(X−, Tw) × (X+, ‖ · ‖) on X . The associated topology is denote TP . We denote the
weak∗ topology on X∗ by (X∗, Tw∗). For more detail about the TP topology, one can
see [12, Chapter4]. From now on, we take X = E and denote �ε,c = {w ∈ E : �ε ≥
c}.
Lemma 3.4 Assume that (V ), (K ) and (Q) hold , then the functional �ε : E → R is
sequence P-upper semicontinuous and �′

ε
: (�ε,c, TP ) → (E∗, Tw∗) is continuous

for every c ∈ R.
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Proof The argument is similar to [32, Lemma 3.4], so we omit it. ��
Combining above lemmas and Lemma 2.1, we have the following theorem.

Theorem 3.5 ([12, Theorem 4.4]) Suppose that assumptions (V ),(K ),(Q) hold. Then
for every (0, ε0), the modified Eq. (3.1) has a nontrivial solution wε which satisfy
�ε(wn) ∈ [ρ, supw∈E(e0) �ε]. Moreover, there holds ρ0 ≤ ‖wε‖ ≤ CR0 , where
ρ0 > 0 and CR0 > 0.

4 Profile Decomposition of Solutions and Regularity

By Theorem 3.5, we know that for any ε ∈ (0, ε0), the modified Eq. (3.1) has a
nontrivial solution wε. In order to show these solutions are actually solutions of the
original problem (1.1), we need following several lemmas. Firstly, since ρ0 ≤ ‖wε‖ ≤
CR0 , then we have the following profile decomposition with respect to {wε}.
Lemma 4.1 Assume {εn} ⊂ R

+ is a sequence of real numbers, and εn → 0 as n → ∞.
Then there exist a sequence {σ j,n} ⊂ R

+ and sequence {xi,n} ⊂ R
3, {x j,n} ⊂ R

3,
such that limn→∞ σ j,n = ∞ and {wεn } has following properties.

wεn =
∑
i∈�1

Wi (· − xi,n) +
∑
j∈�∞

σ j,nW j (σ j,n(· − x j,n)) + rn,

where �1 and �∞ are finite index sets. In addition,

lim
n→∞ |xi,n − xi ′ ,n| = ∞ f or i, i

′ ∈ �1 and i 
= i
′
.

Moreover,
(i) For any i ∈ �1, wεn (· + xi,n)⇀Wi 
= 0 in H1/2(R3, C

4) as n → ∞, and for
any j ∈ �∞, σ−1

j,nwεn (σ
−1
j,n · +x j,n)⇀Wj 
= 0 in Ḣ1/2(R3, C

4) as n → ∞, where

Ḣ1/2(R3, C
4) is defined by

Ḣ1/2(R3, C
4) := {w ∈ L3(R3, C

4) : (−�)1/4w ∈ L2(R3, C
4)}

with the inner product (w, v) = ((−�)1/4w, (−�)1/4v)2 and the norm ‖w‖2
Ḣ1/2 =

(w, w) for any w, v ∈ Ḣ1/2(R3, C
4).

(ii) There holds

∑
i∈�1

∫
R3

|Wi |3dx +
∑
j∈�∞

∫
R3

|Wj |3dx ≤ lim inf
n→∞

∫
R3

|wεn |3dx .

(iii) rn → 0 in L3(R3, C
4) as n → ∞.

(iv) W j satisfies the equation

−iα · ∇Wj = χ(x j )E j (x, |Wj |)Wj ,
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where E j (x, t) is defined below (4.1). x j = limn→∞ εnx j,n, x j ∈ �δ0 . Moreover,
there holds

|Wj (x)| ≤ C

1 + |x |2 f or any x ∈ R
3.

(iv) Wi satisfies the equation

−iα · ∇Wi + aβWi + V (xi )Wi − a

4
χ̃(xi )Wi = Ẽ(xi , |Wi |)Wi ,

where Ẽ(x, t) is given by (4.17), xi = limn→∞ εnxi,n, xi ∈ �δ . Moreover, there holds

|Wi (x)| ≤ C exp(−c|x |) f or any x ∈ R
3,

where C and c are positive constants.

Remark 4.2 Formore information about the homogeneousSobolev space Ḣ1/2(R3, C
4)

and the relationship between Ḣ1/2(R3, C
4) and L p(R3, C

4), one can refer to [30].
For details of operator (−�)1/4, we refer to [23].

Proof According to [6, Lemma 4.2], it is not difficult to know that (i), (i i) and (i i i)
are hold. Hence we only need to prove (iv) and (v). We first introduce the following
piecewise function, which will be used to construct the equation satisfied by Wj .
Denote ρ j = limn→∞ εnσ

2
j,n . We define

E j (x, t) :=

⎧⎪⎨
⎪⎩
0, ρ j = +∞;
Q(0)t, ρ j = 0;
p
3 Q(0)ρ

− 3−p
2

j t p−2A
3−p
2 + 3−p

3 Q(0)ρ
p−1
2

j t p A
3−p
2 −1ϕ(ρ j t2), 0 < ρ j < +∞,

(4.1)

where A = �(ρ j t2) and �(t) = ∫ t
0 ϕ(s)ds. By (Q), we know that

sup
x∈R3

sup
t>0

t−1E j (x, t) < +∞.

Let u j,n = σ−1
j,nwεn (σ

−1
j,n ·+x j,n). Since wεn satisfies Eq. (3.1) with ε = εn , then u j,n

satisfies the equation

− iα · ∇u j,n + σ−1
j,naβu j,n + σ−1

j,nV
(
εn(σ

−1
j,n · +x j,n)

)
u j,n

− σ−1
j,n

a

8
χ̃
(
εn(σ

−1
j,n · +x j,n)

)
· ξ̃

(
σ−1
j,n · +x j,n, σ j,n|u j,n|

)
u j,n

= σ−1
j,n fεn

(
σ−1
j,n · +x j,n, σ j,n|u j,n|

)
u j,n . (4.2)

123



3354 Y. Wen et al.

Since σ j,n → ∞ as n → ∞, hence, for any ϕ ∈ C∞
0 (R3, C

4),

∣∣∣∣σ−1
j,n

∫
R3

aβu j,n · ϕdx

∣∣∣∣ ≤ σ−1
j,n

(
a
∫

R3
|u j,n|2dx

)1/2

·
(∫

R3
|ϕ|2dx

)1/2

≤ a1/2σ−1
j,nC

1/2
R0

(∫
R3

|ϕ|2dx
)1/2

→ 0 as n → ∞. (4.3)

By the definition of ξ̃ , we know that ξ̃ (x, t) ∈ C1(R3 × R, [0, 2]), then
∣∣∣∣σ−1

j,n

∫
R3

[
V
(
εn(σ

−1
j,n x + x j,n)

)

−a

8
χ̃
(
εn(σ

−1
j,n x + x j,n)

)
ξ̃
(
σ−1
j,n x + x j,n, σ j,n|u j,n|

)]
u j,n · ϕdx

∣∣∣∣
≤ σ−1

j,n

(
3

2
a
∫

R3
|u j,n|2dx

)1/2

·
(∫

R3
|ϕ|2dx

)1/2

≤
(
3a

2

)1/2

σ−1
j,nC

1/2
R0

(∫
R3

|ϕ|2dx
)1/2

→ 0as n → ∞. (4.4)

Similarly,

∣∣∣∣σ−1
j,n

∫
R3

(
1 − χ

(
εn

(
σ−1
j,n x + x j,n

)))
gεn

(
σ−1
j,n x + x j,n, σ j,n|u j,n|

)
u j,n · ϕdx

∣∣∣∣
≤ σ−1

j,n

∣∣∣∣∣
∫

R3

(
1 − χ

(
εn

(
σ−1
j,n x + x j,n

))) 1

1 + |σ−1
j,n x + x j,n|τ ′+4

u j,n · ϕdx

∣∣∣∣∣
≤ σ−1

j,n

∣∣∣∣
∫

R3
u j,n · ϕdx

∣∣∣∣ ≤ σ−1
j,nC

1/2
R0

(∫
R3

|ϕ|2dx
)1/2

→ 0as n → ∞. (4.5)

Now we prove x j = limn→∞ εnx j,n ∈ �δ0 . We assume that |εnx j,n| → ∞ or
εnx j,n → x0 /∈ �δ0 as n → ∞, then

∣∣∣∣σ−1
j,n

∫
R3

χ
(
εn

(
σ−1
j,n x + x j,n

))
hεn

(
σ−1
j,n x + x j,n, σ j,n|u j,n|

)
u j,n · ϕdx

∣∣∣∣
≤

∣∣∣∣σ−1
j,n

∫
R3

χ
(
εn

(
σ−1
j,n x + x j,n

))
K

(
εn

(
σ−1
j,n x + x j,n

))

× (
σ j,n|u j,n|

)p−2
u j,n · ϕdx

∣∣∣∣ + on(1)

+
∣∣∣∣σ−1

j,n

∫
R3

χ
(
εn

(
σ−1
j,n x + x j,n

))
Q
(
εn

(
σ−1
j,n x + x j,n

))

× (
σ j,n|u j,n|

)p−2
(
mε

((
σ j,n|u j,n|

)2)) 3−p
2

u j,n · ϕdx

∣∣∣∣∣
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≤
∣∣∣∣σ−1

j,n

∫
R3

χ
(
εn

(
σ−1
j,n x + x j,n

))

× K
(
εn

(
σ−1
j,n x + x j,n

)) (
σ j,n|u j,n|

)p−2
u j,n · ϕdx

∣∣∣∣
+

∣∣∣∣σ−1
j,n

∫
R3

χ
(
εn

(
σ−1
j,n x + x j,n

))

× Q
(
εn

(
σ−1
j,n x + x j,n

)) (
σ j,n|u j,n|

)
u j,n · ϕdx

∣∣∣∣ + on(1)

≤ σ
p−3
j,n

∫
R3

χ
(
εn

(
σ−1
j,n x + x j,n

))
K

(
εn

(
σ−1
j,n x + x j,n

))
|u j,n|p−1 · |ϕ|dx

+
∫

R3
χ
(
εn

(
σ−1
j,n x + x j,n

))
Q
(
εn

(
σ−1
j,n x + x j,n

))
|u j,n|2 · |ϕ|dx + on(1)

≤
∫

R3
χ(x j )

[
K (x j )σ

p−3
j,n |u j,n|p−1|ϕ| + Q(x j )|u j,n|2|ϕ|

]
dx

+ on(1) → 0 as n → ∞. (4.6)

Thus, combining (4.2), (4.3), (4.4), (4.5) and (4.6), we can get

∫
R3

−iα · ∇u j,n · ϕdx → 0 for any ϕ ∈ C∞
0 (R3, C

4).

By (i), there holds u j,n⇀Wj , consequently,

−iα · Wj = 0.

It follows thatWj = 0, which contradicts (i). Therefore, x j = limn→∞ εnx j,n ∈ �δ0 .
By the definition of hεn (x, t) and E j (x, t), we claim that

σ−1
j,nhεn (x, σ j,nt) → E j (x, t) for any x ∈ R

3, t ∈ [0, ∞) as n → ∞. (4.7)

If ρ j := limn→∞ εnσ
2
j,n ∈ (0, ∞), then for any x ∈ R

3 and t ∈ [0, ∞), there holds

σ−1
j,nhεn (x, σ j,nt)

= σ−1
j,n

{
K (εnx)(σ j,nt)

p−2 + p

3
Q(εnx)(σ j,nt)

p−2(mεn (σ j,nt)
2)

3−p
2

}

+ σ−1
j,n

3 − p

3
Q(εnx)(σ j,nt)

p(mεn (σ j,nt)
2)

3−p
2 −1bεn ((σ j,nt)

2). (4.8)

Observed that

mεn ((σ j,nt)
2) =

∫ (σ j,n t)2

0
bεn (s)ds = 1

εn

∫ εnσ
2
j,n t

2

0
ϕ(s)ds
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Hence, we have

σ−1
j,n

{
K (εnx)(σ j,nt)

p−2 + p

3
Q(εnx)(σ j,nt)

p−2
(
mεn (σ j,nt)

2
) 3−p

2

}

= σ
p−3
j,n t p−2

⎧⎨
⎩K (εnx) + p

3
Q(εnx)(εn)

p−3
2

(∫ εnσ
2
j,n t

2

0
ϕ(s)ds

) 3−p
2

⎫⎬
⎭

→ p

3
Q(0)ρ

− 3−p
2

j

(
�(ρ j t

2)
) 3−p

2
as n → ∞. (4.9)

and

σ−1
j,n

3 − p

3
Q(εnx)(σ j,nt)

p
(
mεn

(
σ j,nt

)2) 3−p
2 −1

bεn

(
(σ j,nt)

2
)

= 3 − p

3
Q(εnx)(σ j,n)

p−1t p(εn)
1−p
2

(∫ εnσ
2
j,n t

2

0
ϕ(s)ds

) 3−p
2 −1

ϕ(εnσ
2
j,nt

2)

→ 3 − p

3
Q(0)ρ

p−1
2

j t p
(
�(ρ j t

2)
) 3−p

2 −1
ϕ(ρ j t

2) as n → ∞. (4.10)

Taking (4.9) and (4.10) into (4.8), we obtain that for any x ∈ R
3, t ∈ [0, ∞),

lim
n→∞ σ−1

j,nhεn (x, σ j,nt) = E j (x, t) for 0 < ρ j < +∞.

Similarly, we can derive that

lim
n→∞ σ−1

j,nhεn (x, σ j,nt) = 0 with ρ j = +∞.

and

lim
n→∞ σ−1

j,nhεn (x, σ j,nt) = Q(0)t with ρ j = 0.

Then the claim is true. From (i), we know that

u j,n = σ−1
j,nwεn (σ

−1
j,n · +x j,n) → Wj (x) a.e. x ∈ R

3 as n → ∞. (4.11)

Combining the (4.7) and (4.11), there holds

lim
n→∞ σ−1

j,nhεn (x, σ j,n|u j,n|)u j,n = E j (x, |Wj |)Wj a.e. x ∈ R
3 as n → ∞.

Then from Lebesgue dominated convergence theorem, it follows that
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σ−1
j,n

∫
R3

χ(εn(σ
−1
j,n x + x j,n)hεn (σ

−1
j,n x + x j,n, σ j,n|u j,n|)u j,n · ϕdx

→
∫

R3
χ(x j )E j (x, |Wj |)Wj · ϕdx as n → ∞. (4.12)

By (4.2), (4.3), (4.4), (4.5) and (4.12), we have

−iα · ∇Wj = χ(x j )E j (x, |Wj |)Wj .

Thus, from [3, Theorem 1.1], we can obtain

|Wj (x)| ≤ C

1 + |x |2 for any x ∈ R
3.

We finish the proof of (iv).
To prove (v). Since wεn satisfies Eq. (3.1) with ε = εn , i.e.,

−iα · ∇wεn + aβwεn + V (εnx)wεn − a

8
χ̃ (εnx )̃ξ (x, |wεn |)wεn = fεn (x, |wεn |)wεn .

From (i), we know that wεn (· + xi,n)⇀Wi 
= 0 in H1/2(R3, C
4) as n → ∞. Denote

ui,n := wεn (· + xi,n), then

− iα · ∇ui,n+aβui,n+V (εn(x+xi,n))ui,n− a

8
χ̃ (εn(x+xi,n))̃ξ (x+xi,n, |ui,n |)ui,n

= fεn ((x + xi,n), |ui,n |)ui,n . (4.13)

If xi := limn→∞ εnxi,n ∈ �δ0 , then for any ϕ ∈ C∞
0 (R3, C

4), we have

∫
R3

−iα · ∇ui,n · ϕdx →
∫

R3
−iα · ∇Wi · ϕdx,

∫
R3

aβui,n · ϕdx →
∫

R3
aβWi · ϕdx,

∫
R3

V (εn(x + xi,n))ui,n · ϕdx →
∫

R3
V (xi )Wi · ϕdx,

∫
R3

a

8
χ̃(εn(x + xi,n))̃ξ (x + xi,n, |ui,n|)ui,n · ϕdx

→
∫

R3

a

8
χ̃(xi )2 · Wi · ϕdx = a

4

∫
R3

χ̃ (xi )Wi · ϕdx . (4.14)

In additional, there holds

∫
R3

fεn
(
(x + xi,n), |ui,n|

)
ui,n · ϕdx

=
∫

R3
χ
(
εn(x + xi,n)hεn ((x + xi,n), |ui,n|

)
ui,n · ϕdx
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+
∫

R3

(
1 − χ(εn(x + xi,n)

)
gεn ((x + xi,n), |ui,n |)ui,n · ϕdx . (4.15)

Since

hεn ((x + xi,n), |ui,n|)

= K (εn(x + xi,n))|ui,n|p−2 + p

3
Q(εn(x + xi,n))|ui,n|p−2

(
mεn (|ui,n|2)

) 3−p
2

+ 3 − p

3
Q(εn(x + xi,n))|ui,n|p

(
mεn (|ui,n|2)

) 3−p
2 −1

bεn (|ui,n|2)
→ K (xi )|Wi |p−2 + Q(xi )|Wi |2 a.e. x ∈ R

3 as n → ∞,

and

gεn ((x + xi,n), |ui,n|) = min
{
hεn ((x + xi,n), |ui,n|), φ(x + xi,n)

}
→ min

{
K (xi )|Wi |p−2 + Q(xi )|Wi |2, 0

}
a.e. x ∈ R

3 as n → ∞,

Consequently, by (4.15), there holds

∫
R3

fεn
(
(x + xi,n), |ui,n|

)
ui,n · ϕdx

→
∫

R3
χ(xi )

(
K (xi )|Wi |p−2 + Q(xi )|Wi |2

)
Wi · ϕdx

+
∫

R3
(1 − χ(xi ))min

{
K (xi )|Wi |p−2 + Q(xi )|Wi |2, 0

}
Wi · ϕdx as n → ∞.

By (K ) and (Q), it follows that

∫
R3

fεn
(
(x + xi,n), |ui,n|

)
ui,n · ϕdx

→
∫

R3
χ(xi )

(
K (xi )|Wi |p−2 + Q(xi )|Wi |2

)
Wi · ϕdx as n → ∞. (4.16)

We define

Ẽ(x, t) = χ(x)K (x)|t |p−2 + χ(x)Q(x)|t |2. (4.17)

Combining (4.13), (4.14), (4.15), (4.16) and (4.17), there holds

∫
R3

(−iα · ∇ui,n + aβui,n + V (εn(x + xi,n))ui,n
) · ϕdx

−
∫

R3

(a
8

χ̃
(
εn(x + xi,n)

)
ξ̃ (x + xi,n, |ui,n |) + fεn

(
(x + xi,n), |ui,n |

)
ui,n

)
· ϕdx
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→
∫

R3

[
−iα · ∇Wi + aβWi + V (xi )Wi − a

4
χ̃(xi )Wi − Ẽ(xi , |Wi |)Wi

]
· ϕdx .

Then, we have

−iα · ∇Wi + aβWi + V (xi )Wi − a

4
χ̃ (xi )Wi = Ẽ(xi , |Wi |)Wi . (4.18)

Now we will show that xi := limn→∞ εnxi,n ∈ �δ0 . We assume that xi /∈ �δ0 , by the
definition of fεn and ξ̃ , then Wi satisfies the equation

−iα · ∇Wi + aβWi + V (xi )Wi − a

4
χ̃(xi )Wi = 0.

Take the scalar product with
(
W+

i − W−
i

)
and integrate in R

3, we have

0 = ‖Wi‖2 + Re
∫

R3
V (xi )Wi · (W+

i − W−
i

)
dx

− Re
a

4

∫
R3

χ̃ (xi )Wi · (W+
i − W−

i

)
dx

≥ a‖Wi‖22 − 3a

4
‖Wi‖22 = a

4
‖Wi‖22.

Therefore, we obtain Wi = 0, which contradicts (i). Consequently, xi ∈ �δ0 . Since
Wi satisfies (4.18), then according to [31, Lemma 4.6], there holds

|Wi (x)| ≤ C exp(−c|x |) for any x ∈ R
3.

The proof is now completed. ��
Lemma 4.3 Assume that (P), (Q) and (K ) hold, 5/2 < p < 3, then the index set
�∞ = ∅.
Proof The proof of this lemma is similar to the one of [6, Lemma 4.21] with the help
of Lemma 4.1 in this paper, therefore, we omit its proof. ��
Now we give the L∞ estimate for the solutions which solves modified Eq. (3.1).

Lemma 4.4 Assume that (P), (Q) and (K ) hold, 5/2 < p < 3, let {wε} be a family
of critical points of (3.1) which obtained in Theorem 3.5. Then there exist M > 0 and
ε0 > 0, such that for any 0 < ε < ε0,

sup
x∈R3

|wε(x)| ≤ M .

Before prove the Lemma 4.4, we need the following two lemmas.
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Lemma 4.5 [25, Lemma 4.2] For any p ∈ (1, ∞), there exists a constant C > 0 such
that

‖∇ψ‖L p(R3) ≤ C‖iα · ∇ψ‖L p(R3) for any ψ ∈ C∞
0 (R3, C

4).

Lemma 4.6 Let ζ be a cut-off function such that ζ(x) = 1 for x ∈ BR/2(0), ζ(x) = 0
for x /∈ BR(0) and |∇ζ(x)| ≤ R/4, wεn is solution of (3.1), then there holds

‖ζwεn‖W 1,p(R3) ≤ Cp,R‖wεn‖L p(BR(0)) + Cp‖ζ |wεn |2‖L p(BR(0)).

Proof Since {wεn } solves Eq. (3.1), i.e.,

−iα · ∇wεn + aβwεn + V (εnx)wεn − a

8
χ̃ (εnx )̃ξ (x, |wεn |)wεn = fεn (x, |wεn |)wεn .

Bymultiplyingwεn with ζ and substituting the product into above formula, there holds

aβ(ζwεn ) + V (εnx)(ζwεn ) − a

8
χ̃(εnx )̃ξ (x, |ζwεn |)(ζwεn ) − fεn (x, |ζwεn |)(ζwεn )

= iα · ∇(ζwεn ) = ζ(iα · ∇wεn ) + i
3∑

k=1

(∂kζ )αk · wεn . (4.19)

It is clear that
∫

R3
|aβ(ζwεn )|pdx ≤ a p

∫
BR(0)

|wεn |pdx .

By the definition of χ̃ and ξ̃ , we know that

∫
R3

∣∣∣V (εnx)(ζwεn ) − a

8
χ̃ (εnx )̃ξ (x, |ζwεn |)(ζwεn )

∣∣∣p dx
≤

∫
BR(0)

∣∣V (εnx)wεn

∣∣p dx +
∫
BR(0)

∣∣∣a
8

χ̃ (εnx )̃ξ (x, |wεn |)wεn

∣∣∣p dx
≤ a p

∫
BR(0)

|wεn |pdx +
(a
4

)p
∫
BR(0)

|wεn |pdx

=
(
1 + 1

4p

)
a p

∫
BR(0)

|wεn |pdx .

Combining this and (4.19), there holds

‖iα · ∇(ζwεn )‖L p(R3) ≤ C‖wεn‖L p(BR(0)) + ‖ fεn (x, |ζwεn |)|ζwεn |‖L p(R3). (4.20)

By the definition of fεn , we have

‖ fεn (x, |ζwεn |)|ζwεn |‖p
L p(R3)

=
∫

R3
fεn (x, |ζwεn |)|ζwεn |pdx
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≤
∫
BR(0)

fεn (x, |ζwεn |)|wεn |pdx ≤ C
∫
BR(0)

|(K (εnx) + Q(εnx)|ζwεn |)|ζwεn ||pdx

≤ C1

∫
BR(0)

|K (εnx)wεn |pdx + C2

∫
BR(0)

|Q(εnx)ζ |wεn |2|pdx

≤ C3

∫
BR(0)

|wεn |p + |ζ |wεn |2|pdx . (4.21)

Using Lemma 4.5, there holds

‖ζwεn‖W 1,p(R3) = ‖ζwεn‖L p(R3) + ‖∇(ζwεn )‖L p(R3)

≤ ‖wεn‖L p(BR(0)) + Cp‖α · ∇(ζwεn )‖L p(R3). (4.22)

Combining (4.20), (4.21) and (4.22), there holds

‖ζwεn‖W 1,p(R3) ≤ Cp,R‖wεn‖L p(BR(0)) + Cp‖ζ |wεn |2‖L p(BR(0)).

The proof of Lemma 4.6 is now complete. ��
Proof of Lemma 4.4 We assume that there exist a sequence of {εn} such that εn → 0
as n → ∞ and a sequence of critical points {wεn } ⊂ E of (3.1) such that

sup
x∈R3

|wεn (x)| → ∞ as n → ∞.

By Lemma 4.3 and (i) of Lemma 4.1, we have

wεn =
∑
i∈�1

Wi (· − xi,n) + rn .

Moreover, by (i i i) of Lemma 4.1, there holds

rn → 0 in L3(R3, R) as n → ∞.

Since {wεn } solves Eq. (3.1), i.e.,

−iα · ∇wεn + aβwεn + V (εnx)wεn − a

8
χ̃ (εnx )̃ξ (x, |wεn |)wεn = fεn (x, |wεn |)wεn .

(4.23)

By (v) of Lemma 4.1, we know that |Wi | ∈ L∞(R3, R) for any i ∈ �1. Using this
and (4.20), we can deduce there exist Nγ > 0 and � > 0, such that

sup
y∈R3

∫
B�(y)

|wεn |3dx ≤ γ for any n > Nγ . (4.24)
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Define η ∈ C∞
0 (R3, [0, 1]) such that η(x) = 1 for x ∈ B�/2(y), η(x) = 0 for

x /∈ B�(y) and |∇η(x)| ≤ 4/� for x ∈ R
3. Bymultiplyingwεn with η and substituting

the product into (4.23), there holds

aβ(ηwεn ) + V (εnx)(ηwεn ) − a

8
χ̃(εnx )̃ξ (x, |ηwεn |)(ηwεn ) − fεn (x, |ηwεn |)(ηwεn )

= iα · ∇wεn = η(iα · ∇wεn ) + i
3∑

k=1

(∂kη)αk · wεn .

By Lemma 4.6, we have

‖ηwεn‖W 1,p(R3) ≤ Cp,�‖wεn‖L p(B�(y)) + Cp‖η|wεn |2‖L p(B�(y)).

Then Hölder inequality and (4.24) implies

‖η|wεn |2‖L p(B�(y)) ≤ ‖wεn‖L3(B�(y)) · ‖η|wεn |‖L p∗ (B�(y)) ≤ γ 1/3‖η|wεn |‖L p∗ (B�(y)),

where p∗ = 3p
3−p . Hence, when γ > 0 small enough,

‖wεn‖L p∗ (B�/2(y))
≤ ‖η|wεn |‖L p∗ (B�(y)) ≤ 1

Sp
‖ηwεn‖W 1,p(R3)

≤ 1

Sp

[
Cp,�‖wεn‖L p(B�(y)) + Cpγ

1/3‖ηwεn‖L p∗ (B�(y))

]
,

where Sp is Sobolev constant, which deduce that

‖wεn‖3L p∗ (B�/2(y))
≤ C

Sp
‖wεn‖L p(B�(y)) ≤ C ′‖wεn‖3L3(B�(y)) ≤ C ′γ. (4.25)

Since p ∈
(
5
2 , 3

)
, it follows that p∗ = 3p

3−p ∈ (15, +∞). Therefore, by (4.25), there

holds

‖wεn‖3L15(B�/2(y))
≤ C ′γ. (4.26)

Denote η̃(x) = η(2x), then using Lemma 4.6 again, we can get

‖η̃wεn‖W 1,p(R3) ≤ C‖wεn‖L p(B�/2(y)) + Cp‖η̃|wεn |2‖L p(B�/2(y)). (4.27)

If we take 3 < p′ < 15/2, then by (4.26), (4.27) and Hölder inequality, there holds

‖η̃wεn‖W 1,p′ (R3)
≤ C‖wεn‖L15(B�/2(y)) + Cp′ ‖wεn‖2L15(B�/2(y))

≤ C�,γ .
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By Sobolev embedding theorem,W 1,p′
(R3) ↪→ C0(R3) is continuous. Therefore, we

have ‖η̃wεn‖L∞(R3) ≤ C�,γ , i.e., ‖wεn‖L∞(B�/4(y)) ≤ C�,γ . By the arbitrariness of y,
there holds

‖wεn‖L∞(R3,C4) ≤ C�,γ .

This contradicts supx∈R3 |wεn (x)| → ∞ as n → ∞. Consequently, there exists a
constant M > 0 such that supx∈R3 |wεn (x)| ≤ M . The proof is completed. ��

5 Proof of Theorem 1.1

Proof of Theorem 1.1 By Lemma 4.4, we know that there exists a ε0 > 0, such that for
any 0 < ε < ε0, |wε(x)| ≤ M . Recalling the definition of the bε(t) and mε(t), it is
clear that

mε(|wε|2) =
∫ |wε |2

0
bε(s)ds = |wε|2, bε(|wε|2) = ϕ(ε|wε|2) = 1,

then we deduce that

hε(x, |wε|) = K (εx)|wε|p−2 + p

3
Q(εx)|wε|p−2

(
|wε|2

) 3−p
2

+ 3 − p

3
Q(εx)|wε|p(|wε|2) 3−p

2 −1

= K (εx)|wε|p−2 + Q(εx)|wε|.

Using this and the definition of fε, we obtain

fε(x, |wε|) = χ(εx)(K (εx)|wε|p−2 + Q(εx)|wε|) + (1 − χ(εx))gε(x, |wε|).

By Lemma 4.3 and Lemma 4.1 (i), we know that for any sequence of solutions {wεn }
will not concentrate at a single point, then we can treat the situation as the subcritical
equations like [32]. By the similar argument as [32, Lemma 4.6, Proposition 5.2], we
can get

|wε| ≤ C1 exp

(
−C2

(
dist(x,O(δ))

ε

) 2−τ
2
)

, (5.1)

where C1, C2 are positive constants. Then, by choose κ large enough, we have

gε(x, |wε|) = min

{
K (εx)|wε|p−2 + Q(εx)|wε|, κ

1 + |x |τ ′+4

}

= K (εx)|wε|p−2 + Q(εx)|wε|.
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Therefore, fε(x, |wε|) = K (εx)|wε|p−2 + Q(εx)|wε|. Then (3.1) can be rewritten as
follows

− iα · ∇wε + aβwε + V (εx)wε − a

8
χ̃ (εx )̃ξ (x, |wε|)wε

= K (εx)|wε|p−2wε + Q(εx)|wε|wε.

By the definition of χ̃ , ξ̃ and (5.1), it is not difficult to know that

χ̃ (εx )̃ξ (x, |wε|) = 0.

Then

−iα · ∇wε + aβwε + V (εx)wε = K (εx)|wε|p−2wε + Q(εx)|wε|wε.

This means that we can obtain the desire result and the proof of Theorem 1.1 is
completed. ��
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