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Abstract

In this paper, using some properties about Toeplitz kernels, we present some results
about finite-rank properties of the commutator [As, A,]. Firstly, we show that
[Ap,, A}] must have a finite rank on the model space K,f, where B,, is a finite
Blaschke product and v is an inner function. Next, we present that when ker Ty p, is

an invariant subspace of Tq;‘, then [Ap,, A:;] has a finite rank on Klf for ¢ € H®.

Finally, we prove that [Ap
an inner function u;.

n’

;'];] must have a finite rank on KL% when u = B,u; for
Keywords Model spaces - Truncated Toeplitz operators - Commutators - Finite
Blaschke products - Finite-rank

Mathematics Subject Classification 47B35 - 47B47

1 Introduction

Let D denote the open unit disk in the complex plane C and T denote the unit circle.
Denote by L? = L*(T, dm) the Hilbert space of square integrable functions with
respect to the Lebesgue measure dm on T, normalized so that the measure of the
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entire circle is 1. Let L® be the space of essentially bounded functions on the unit
circle. The Hardy space H? denotes the Hilbert space of all holomorphic functions in
D having square-summable Taylor coefficients at the origin, and it will be identified
with the space of boundary functions, the subspace of L? consisting of functions
whose Fourier coefficients with negative indices vanish. Let H° denote the space of
all bounded holomorphic functions in D and C(T) denote the space of all continuous
functions on T.

Every function in H 2. other than the constant function 0, can be factorized into the
product of an inner function and an outer function. An inner function is a function
u € H™ such that |u(e?)| = 1 almost everywhere with respect to the Lebesgue
measure. Every inner function can be factorized into the product of a Blaschke product
and a singular inner function. A Blaschke product is an analytic function B € H* of
the form

Zk Ik —2
B(z)—zml_[ -

| 11—z —Zkz’

where {z;} are zeros of B counting multiplicity which satisfy that > (1 — |zx]) < o0.
k

A nonconstant inner function that has no zeros in D is called a singular inner function
S, which has the following form

2 19
S#(Z):cexp<—/0 = +Zd (9))

where w is a finite positive regular Borel measure on [0, 277 ], singular with respect to
the Lebesgue measure and c is a constant of modulus 1. The function F € H? is an
outer function if F is a cyclic vector of the unilateral shift S. That is,

\/(sF} = H?
0

For more properties about Hardy spaces, we can refer to [14].

By Beurling’s theorem [4], the invariant subspace of the unilateral shift operator
Sf = zf on H? has the form uH?, where u is an inner function. It is easy to check
that K 3 = H? © uH? is the invariant subspace of the backward shift operator $* on
H?, which is called the model space. Let P denote the orthogonal projection from L>
onto H? and P, denote the orthogonal projection from L? onto K 3 For f € L®, the
Toeplitz operator Ty induced by the symbol f is defined on H 2 by

Trg = P(fg), g€ H.

Obviously, T;Z =Ty Toeplitz operators acting on H> have very simple and natural
matrix representations via infinite Toeplitz matrices that have constant entries on diag-
onals parallel to the main one. The Hankel operator H; induced by the symbol f is
defined on H? by
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Hyg = (I — P)(fg), g € H”.

Then H;h = P(fh) forh € (H*>)*. Compressions of Toeplitz operators on K 3 are
called truncated Toeplitz operators, for ¥y € L°°, which are defined by

Ay f =P f), fekK?

The function v is called the symbol of A, . Clearly, A:Z = Ay

Truncated Toeplitz operators represent a far reaching generalization of classical
Toeplitz matrices. Although a particular case had appeared before in the literature,
the general theory has been initiated in the seminal paper [21]. Since then, truncated
Toeplitz operators have constituted an active area of research. We mention only a few
relevant papers [5, 11, 17, 20] and so on. On the operator theory level, Nagy and
others showed that A, is a model for a certain class of contraction operators [24].
Every contraction operator 7' on the Hilbert space H having defect indices (1, 1) and
such that nl;ngo T*" = 0 (SOT) is unitarily equivalent to A, for an inner function u,

where SOT denotes the strong operator topology. In terms of function theory, Douglas
etal. [9] in 1970 showed that functions in the model space and inner functions have the
same analytic continuation neighborhood, that is, assuming that # could be analytically
extended on E C T, then all functions in the model space K 3 could be analytically
extended on E. Therefore, the rational functions approximate the functions in the model
space, the boundary value of functions in the model space, the angular derivative of
inner functions and the relationship between them are deeply studied, refer to [2] and
[3]. Thus, the research on truncated Toeplitz operators is of representative significance.

D. Sarason once proposed in [22]: what f, g € H? can make T Tz to be a bounded
operator. From this, many scholars begin to study the boundedness of the product of

Toeplitz operators and Hankel operators. By Ty, — TyT, = H;Hg, properties of

commutators of Toeplitz operators also gradually begin to enter the research line of
sight. The map v : f — T is a contractive *-linear mapping from L*° to L(H 2,
where L(H?) is the algebra of all bounded linear operators on H?. But this mapping
is not multiplicative. When f is a continuous function, by Hartman’s theorem (see
Corollary 4.3.3in [18]) we getthat Ty — T Ty = H%Hg is compact for any g € L°°.
Thus, t(fg) = t(f)r(g) + K for f € C(T), where K is a compact operator. This
makes the multiplicability problem very interesting, and many scholars begin to study
the compactness of commutators of Toeplitz operators. In addition, the compactness
of commutators of Toeplitz operators also originated from the research on Fredholm
theory of Toeplitz operators in 1970s by Douglas, Sarason and others.

The results about compact or finite-rank (semi-)commutators of 7'y or Hy are quite
complete, corresponding results are summarized in [26]. But there are very few results
for compact or finite-rank (semi-)commutators of truncated Toeplitz operators. In [11],
Garcia concluded that Ay, — ArA, is compact for f, g € C(T). In [7], authors
described the kernels and ranks of commutators of truncated Toeplitz operators with
symbols induced by finite Blaschke products. By L? = K2 @(K2)*, for f € L™,
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2178 X.Yang, Y.Lu

the multiplication operator M  is expressed as an operator matrix

Ay BX
Mf = ’ f s
(Bf Df)

where Dy denotes the dual truncated Toeplitz operator on L’6K 3 defined by
Dsh = (I — P)(fh), he L>© K_.

It is easy to see that D* = D7 The truncated Hankel operator By is defined by

Bro=(I—P)(fe). ¢ € K.
Moreover, B;’Zh = Pu(?h) forh € L? © KL% By MyMy = My, we get that
Apg=ArAy, + B;Bg. (D)

In [19], authors introduced sufficient and necessary conditions for By to be of finite-
rank or compact. By (1), we know some sufficient conditions for A fA, — A 7, to be
of finite-rank or compact. From this, we can study the compact commutator [A ¢, Ag]
by truncated Hankel operators B y. In [26], authors of this article and others gave some
results that commutators of truncated Toeplitz operators are compact or of finite-rank
operators on model spaces. In our paper, using the structure of Toeplitz kernels, we
present some results about finite-rank properties of commutators [A y, Ag].

The paper is organized as follows. In Sect. 2, we recall some necessary definitions
and properties about model spaces and truncated Toeplitz operators. In Sect. 3, we
obtain that [Ap,, A}] must have a finite rank on K 3, where B,, is a finite Blaschke
product and v is an inner function. In Sect. 4, using some properties of Toeplitz kernels,
when ker Typ, is an invariant subspace of T, we show that [Ap,, A(’;] has a finite

rank on K 3 for ¢ € H. In particular, we present that [Ap, , A:;] has a finite rank on
K,f when u = B,,u; for an inner function u;.

2 Preliminaries

In this section we introduce some basic properties of truncated Toeplitz operators. The

reproducing kernel of H? at A € ID is the function k; (z) = 1+Xz’ and it is easy to

check that the reproducing kernel of K 3 at A € D is the function

1 —u(Mu(z)

kY = (Puky)(z) =
3 (2) = (Pyk;)(2) 1 5s
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It is well known that K 3 carries a natural conjugation C, antiunitary, involution oper-
ator, defined by Cf = zfu for f € K 3 We have that

u(z) —u)
Z—A

’

k(2 = (CK)() =
which is the conjugation reproducing kernel of K 3 at A € D. That is,

Foy = €Ho = (. £,
for f € K2. A bounded linear operator A on K?2 is called C-symmetric if
CAC = A™.

S. R. Garcia and M. Putinar introduced some properties of C-symmetric operators in
[12], and they showed that all truncated Toeplitz operators are C-symmetric. More
complex symmetric operators can be found in [13].

The systematic study of truncated Toeplitz operators was initiated by Sarason [21],
and an intensive study revealed many interesting and different properties about these
operators. For example, unbounded symbols may give bounded truncated Toeplitz
operators, see Sarason’s example in [21]. For f € L2, Sarason in [21] proved that
Ay =0ifandonlyif f € uH 2 + uH?2. Therefore, the symbols of truncated Toeplitz
operators are not unique.

It is well known that the model space K 3 is the kernel space of T3. There are many
important connections between model spaces and Toeplitz kernels. In [6], authors
presented some classical results about the relationship between Toeplitz kernels and
model spaces. Using the relationship between Toeplitz kernels and model spaces,
authors showed maximal vectors for model spaces by maximal vectors for Toeplitz
kernels. Moreover, they also discussed the multiplier between Toeplitz kernels by the
multiplier between model spaces.

For Toeplitz kernels, one classical result is the Coburn theorem (see Proposition
7.24 in [8]). It is said that either ker T, = {0} or ker T;‘ = {0} for g € L. In
1986, Hayashi [15] showed that the kernel of T, can be written as ¢ K %, where ¢ is an
outer function and 7 is an inner function with 1(0) = 0, and the function ¢ multiplies
K ,2] isometrically onto ker T,. It is easy to check that the Toeplitz kernel is nearly
S*-invariant. In 1988, Hitt [16] showed that any nearly S*-invariant of subspace M
is of form h K 92, where i € M meeting some conditions and 6 is an inner function.
Sarason [23] gave a new proof of Hitt’s theorem and presented better description of &
and 6. More about the research process of Toeplitz kernels can be found in [6].

The following lemma is well known and we provide a proof for the sake of com-
pleteness.

Lemma 1 Ifu and v are inner functions, then
ker Tyy = {p € K2 : vp € K2). )
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2180 X.Yang, Y.Lu

Moreover, ker Ty, # {0} if and only if vH?* N K,f # {0}.

Proof Denote E = {p € K2 : vp € K2}. For ¢ € E C K2, since the model space
K2 has the conjugation, there exists n € K2 such that v¢ = uz7. Then

Tav$ = P(uvg) = P(uuzn) = P(zn) = 0.
It implies that
¢ € ker T, and E C ker Ty .

For ¢ € ker Ty, we have that Ty,¢ = P(@ve) = 0, and there exists x € H? such
that

wve = ZX. 3)
Then vy = uzx € H>. Since
K2 =uzH>N H, )
we get that vp € K,f. By (3), we have that ¢ = uzxv € H”. By (4), we conclude that
pekK 3 and ¢ € E. Thus ker Ty, € E and we have proved that ker T3, = E.

Suppose that vH? N K2 # {0}. There exists 0 # h € H? such that vh € K?2. Since
K,f has a conjugation, there is 0 # g € K,f such that vh = uzg. Then

Tyvh = P(uvh) = P(uuzg) = 0.
Itimplies that i € ker Ty,, and ker Ty, # {0}. By (2), itis easy to get that vH> N K,f #~
{0} when ker T3, # {0}. The proof is completed. O
3 The Finite-Rank Property of [Ag,, A ] for an Inner Function v
By [11] we know that Ay A, — A ¢, is compact for f, g € C(T). Thence [Ap,, A}]
must be compact for any finite Blaschke product B, and any inner function v. This
makes us want to discuss when [Ap,, A}] has a finite rank on K| 3 In the following

we show that [Ap, , A}] must have a finite rank for any inner function v.
In the following we will frequently use the following relationship:

T;K; € K, and A}, = Ty |2,
for any ¢ € H® and an inner function u.
We use Hol(D) to denote the set of all holomorphic functions in ID. For a pair of
inner functions v and n, we explore multipliers

M@, 1) = (¢ € Hol(D) : K} C K}2)
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between model spaces K2 and K ,21

Lemma 2 (Corollary 3.3 in [10]) If v, n are inner functions, then

M, n) N H® =ker T, N H® € M(v, n) C ker Ty

A finite Blaschke product is a function of the form B, (z) = ; € D.

The degree of a finite Blaschke product B,, is its number of zeros

Lemma 3 (Theorem 4.3 in [10]) If B is a finite Blaschke product and v is any inner
function with the infinite degree, then M(B, v) N H* £ {0}.

Lemma4 (Lemma 2.1 in[7]) Let a1, a>, ---, a, be points in D and put

then

where Py denotes the set of all analytic polynomials with the degree less than or equal
to k. In particular, dim Kén =n.

Theorem 1 Let u be a nonconstant inner function and K 3 be the infinite dimensional
model space. If By is a finite Blaschke product with degree n, then [Ap,, A}] has
a finite rank on K,f for any inner function v and rank[Ap,, A}] < 2n. Moreover, if
ker Typ,v # {0}, then
vker Typ,, € ker [Ap,, A}] andran[Ap,, A}] C Ki O By ker Typ, .
Proof Since zB,, is a finite Blaschke product, by Lemma 3, we get that
M(zBy, u) N H™ # {0}.
Then by Lemma 2,
ker Tz; 5, = ker Ty g, # {0}.
By Lemma 1, we know that

ker Typ, = (f € K2 : B,f € K2}.
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2182 X.Yang, Y.Lu

Then B, g € K,f for g € ker Typ,. By H? = vH?@® K,%, there exist g; € H? and
& € Kg such that g = vg| + g»>. Then

[Ag,, AT)]g = (ABnA;‘ — A:jAB,l)g
= Ap,Ty8 — A}AB,8
= P,(B,P(vg)) — P,(vVP,(B,g))
= Py(By P(vg)) — Pu(vBng)
= Py(B, P(vvg1)) — Pu(vByvg1) + Pu(By P(vg2)) — Py(VBng2)
= P,(Bug1) — Pu(Bng1) + Pu(By P(Vg2)) — Py(vBng2)
= P,(B,P(vg2)) — P,(vB,g2).

Since g7 € Kf, we get that vgy € z? and P(vgy) = 0. Then
[AB,, A}lg = —Pu(VB,g2) = —Py,P(0B,82).
We claim that P (vB, Kg) C Kzzan- In fact, for any f € Kg and h € H?, we have that
(P(WB,f), Byh)={(f, vh) =0.
Thence
[Ap,. Ajlker Typ, Cran P, Pp,.
By Lemma 4, we obtain that dim K 123,, = n. Then dim (ran P, Pp,) < n, and
dim ([Ag,, Ajlker Tgp,) <n < oco. 5)
Since
K2 = ker Ty, ® (K2 © ker Typ,). (©6)
in the following we consider the dimension of [Ap,, A}S](K 3 © ker Tp,). By
H*=B,H*® K}
there exist 1, € H? and hy € K%;n such that 7 = B,h| + hy forany h € H?. Then
T5,h = P(ByuByhy) + P(Byuhy) = uhy + P(Buuhy).
By Lemma 4, we know that dim K 129,1 = n. It follows that
dim P(B,uK3 ) <n < oc. (7
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It is easy to check that P(B,u¢) € K 3 forany ¢ € K 123”. Thus
T5, H> CuH”>® P(B,uKj ).
Consequently,
cl (ran Ty-,) S uH> & P(BuKj ).
where the abbreviation “ ¢/ " denotes the closure of a set. Since
(ker Typ,) ™ = cl (ran Tg-,),
we get that
K; ©ker Typ, = cl (ran Tz, ) N K, € P(B,uKp )N K.
By P(Byu¢) € K2 forany ¢ € Kzn, we get that P(B_nuKlzgn) C K2. Tt follows that
P(ByuKg)NK; = P(BuKpg).
Then
K; ©ker Ty, C P(ByuKj ). )
By (7) and (8), we have that
dim (Klf ©ker Typ,) <n < o0.
Then
dim ([Ap,, A¥](K2 S ker Typ,)) <n < oo. 9)
By (5), (6) and (9), we get that
dim ([AB”, Aj]Kf) = dim ([AB,,, Aj)(ker Typ, & (K, © ker TﬁBn)))

= dim ([AB Allker Ty, + [AB,, AT)](K,f O ker ngn))

n’

<dim[Ap,, Alker Typ, +dim [Ap,, AX1(K2 © ker Tyg,)

<2n < oo.

n’ n’

Thus [Ap,, A}]has a finite rank on K,f and rank[Ap,, A}] < 2n.
Suppose that ker Tzp,, # {0}. By Lemma 1, we get that vB,¢ € K,f for any
¢ € ker Typ,,. Then there exists ¢ € K 3 such that
VB = uzr.
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2184 X.Yang, Y.Lu

That is, vp = uzy B,. By K2 = H?> NuzH?, we have that v$ € K2. Then

[Ap,, Aylvp = (Ap, Ay — AjAp,)ve
= A, Tv*vqb — AT)ABnU(ﬁ
= Py(Bn P(vv¢)) — Py (VP (Brvep))
= Py(Bn¢) — P, (VB ve)
= Py(Bn¢) — Pu(Bo)
=0.

Thus vker Typ,» € ker [Ap,, Aj]. By the same way, we get that

By ker Ty, C ker [A,, AEH]. (10)
Since
2 * _ k7% *
K, ©ker[A,, Bn] =cl (ran [A,, ABn] ) =cl (ran [Ap,, ALD,

and [Ap,, A}]has a finite rank, we obtain that

K; ©ker[Ay, A} 1=ran[Ap, A}l
Then by (10),
ran [Ap,, A}] C Klf © Byker Typ,y.

m}

In the following we give an example illustrating Theorem 1 and use span{k} to
denote the space generated by the function /.
Example 1 Let Bi(z) = {= fora € D and v(z) = exp i“_L—{ be a singular inner
MZ is the corresponding model space, then

function. If u = Bjv and K

[Ap,, AZ1K2 C span{k,} @ span {P, (Bika)},

and rank[Ap,, A}] <2, where k,(z) = 1—laz’
Proof By Lemma 4, we know that
K =span{k,} anddim K3 = 1. an

Since u = Bjv, we have that K1231 - Kf. Using the proof of Theorem 1 and (11), we
get that

[Ap,, Ai]ker Tip, € ran P, Pp, = span{P, (k,)} = span{k,} = Klzgl. (12)
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By (8) and (11), we have that

_ 1
Ki © ker Typ, < P(BluKl%l) = span {ku - exp ot 1 } .
7 —

It implies that

z+1
[Ap,, A¥1(K2 ©ker Typ,) C [Ap,, A¥lspan {ku Lexp = } .

In fact,

Z+
7 —

1
[Ap,, AYl(kq - exp ) =4 AT (vky)

= (Ap Ay — AyAp, ) (vka)

= Ap, P(Vvkq) — Ay Py (Bivky)
= A ky — Av Py (uky)

= Py (Bikq).

Hence
[Ag,, AZI(K2©ker Tyg,) C span{P, (Bika)}. (13)
By (12) and (13), we conclude that

[Ap,, AXIK2 =[Ap,, Al(ker Typ, ® (K2 O ker Typ,))
C Kj, @ span {P, (B -ka)}.

Then by (11),
dim ([Ap,, A¥]K?) <2.

O

Remark 1 From the proof of Theorem 1, we know that P, Pg, has a finite rank because
B,, is the finite Blaschke product. In fact, we have the following claim.

Claim: The projection P, Py has a finite rank if and only if u or 0 is a finite Blaschke
product.

Using the following lemma, we give a further proof of the claim.

Lemma5 (Section 6 in [1]) Hankel operators Hy have a finite rank if and only if
f € bH™, where b is the finite Blaschke product.
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Proof If u or 6 is a finite Blaschke product, it is obvious that P, Py has a finite rank.
Suppose that P, Py has a finite rank. It is easy to get that

Py Pyly> = HY HgHei‘ Hj. (14)
By (14), we have that
HyH HgHeik H H HgHgi‘ = (HzH})(HzH)* (Hz HY) (H7 H;)*

has a finite rank. Then HzH. has a finite rank. Lemma 1 in [1] says that the operator
HzH* is compact if and only if H} Hz is compact. By the same way as in Lemma 1
in [1], we can get that Hz H} has a finite rank if and only if H*Hy has a finite rank.
Using the fact that Hz H* has a finite rank if and only if Hz or H7 has a finite rank (see
Theorem 4 in [1]), by Lemma 5, we get that 0 = bh oru = bih;, where b and b; are
finite Blaschke products and /4, h1 € H™. It implies that 6 or u is a finite Blaschke
product. O

For u and v inner functions, the compactness of P, P, reflects the asymptotically
orthogonal relationship of K2 and K2. We say that model spaces K> and K2 are
asymptotically orthogonal if P, P, is a compact operator. Moreover, the following

statements are equivalent.

(a) Model spaces K 3 and K 5 are asymptotically orthogonal;

(b) T, T — T,y is compact;

(¢) H*®[u]NH*[v] = H*°+C, where H*[u] denotes the Douglas algebra generated
by u and H*;

(d) For each support set S, either u|s or v|s is a constant;

(e) Izl\igll max(|u(z)], [v(@)]) = 1;

(f) Hylg2 is compact;

() Tyl Kgu is a compact perturbation of an isometry.

In fact, by 7, T, — Ty» = —H; Hy, using the same meaning as in the proof that P, P,

has a finite rank, we get that (a) < (b). The equivalence of (b) and (c) comes from

Theorem 1 in [1] and [25]. By Lemma 3 in [1], we get that (¢c) < (d) < (e). The

proof of (b) < (f) < (g) can be found in Theorem 2 in [1].

4 The Finite-Rank Property of [Ag,, AZ,] for p € H*®

Itis well known that [Ap,, A;;] is compact when B, is a finite Blaschke product and
¢ € H®.In this section assuming that ker T3, is an invariant subspace of T, we

present that [Ap,, A;;] has a finite rank on K 3

Theorem 2 Let u be a nonconstant inner function and K 3 be the infinite dimensional
model space. If T; (ker Typ,) C ker Typ,, then [Ap,, A:;] has a finite rank on K,f
and rank[Ap,, AZ] < 2n, where ¢ € H* and By, is a finite Blaschke product with
degree n.
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Proof By Lemmas 2 and 3, we get that ker T35, # {0}. For f € ker Ty;p
1, we have that B, f € K2. Then

by Lemma

n>

[AB,, Aplf = (A, Ay — AyAp,)f
=Ap, T f —TjAp, f
= Pu(B,T; f) — P(§Pu(By [))
= Pu(B,T; f) — P($Bnf)
= Pu(B T} f) = Ty 51

Since Tq;“ (ker Typ,) < ker Typ,, by Lemma 1, we get that B, T(;‘ fekK 3 Then
[AB,, Aglf = BuTsf —Tp5f =T, 15 —Tpg)f = —HyHgf.
It is easy to check that ker Hp- = B, H 2 Then
cl(ran Hy-) = (ker Hg)" = H*>© B,H*> = K} .

By Lemma 4, we obtain that dim (K %n) = n. It implies that

dim [Ap,, A;k,](ker Tup,) <n < oo. (15)
Since

K2 = ker Ty, ® (K2 © ker Typ,). (16)
in the following we consider the dimension of [Ap,, A;](K 3 © ker Typ,). By

H*=B,H*®Kj
there exist i, € H? and hy € K%ﬂ such that 4 = B, hy + hy forany h € H?. Then
Tg,h = P(ByuByhy) + P(Byuhy) = uhy + P(Buuhy).
We claim that
P(B_nmp) € K,f for any ¢ € KI%”. (17

In fact, for any ¥ € H 2. we have that

(P(Byug), uyr) = (¢, B,y) = 0.
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Thus
Bou Cu GBP(BnuKBn).
This implies that
cl (ran Tg,) © uH?> @ P(B_nuK%gn).
Since (ker Tan)J- = cl (ran TEu)’ we get that
Ky ©ker Typ, = cl (ran Tg-) N K, € (uH?> & P(B,uKg )N K7 (18)
We claim that

uH* ® P(ByuKg ) N K5 S P(ByuKj ). (19)

For ¢ € (uH?* ® P(B,uKg )) N K, there are g € H* and gy € P(B,uKj ) such
that

g=ug +g €K2
we have that
0= (ugi,ugi + g2) = g1l + (ug1, g2).

By (17), we obtain that (g1, go) = 0. Then ||g1[> = 0 and g1 = 0. This implies that
g = g2 and (19) holds. By (17), (18) and (19), we obtain that

K; ©ker Typ, € P(ByuKp ).

By Lemma 4, we get that dim Kzn =n and dim (K2 © ker Typ,) < n < 0o. Then
dim ([Ap,, Aj_;d)](Kf ©ker Tp,)) <n < 0. (20)

By (15), (16) and (20), we get that

dim ([Ag,, A51K2) = dim ([Agn, A% (ker Tp, @ (K2 © ker Tan)))

— dim ([AB,,, A% Tker Tup, + [Ap,, A5I(K2 O ker TEBH))
<dim[Ap,. Ajlker Typ, + dim [Ap,, A}1(K; © ker Typ,)

<2n < 0.

Thus [Ap,, A;] has a finite rank on KL% and rank[Ap, , AZ] <2n.
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Remark 2 For the condition of Theorem 2, we give the following explanation. For any
[ € ker Typ,, we have that 7,f (ker Typ,) < ker Typ, if and only if B, T f € Ky if

and only if P, (¢f) € By ker T;p,, where f: C(f).

Proof Byker Ty, = {f € KL% B, f € K,f}, itis easy to get that ker T3 g, is invariant
under qu if and only if B, Tq’;‘ fekK2
Suppose that B, T, f € K 2 for f € ker Typ,. There exists g € K2 such that

B, T} f = uzg.
By K,f =H’N uz?, we get that
Tyf = P@f) = uzgBy € Kj. 1)
There is g1 € H? such that
of =uzgBy +7g1.

Since f € K,f, there exists f] € K,f such that f = uzf). Then puzfi = uzgB, +7g1.
This implies that

¢ f1 =gBy +ug and Py(¢ f1) = Pu(gBy).
By (21), we have that
B,g € K,f and g € ker Ty, .
Then Py (¢ f1) = gBn. By f = uzfi, we get that fi = uzf = C(f) = f. Thus, the
function P, (¢ f) belongs to B,ker Typ, .

Suppose that P,(¢ f) € Byker Typ, for f € ker Typ,. There exist functions
g1 €ker Typ, and g0 € H 2 such that

o f = ¢C(f) = Bugi + ugn.
Then
ouzC(f) = uzB,g1 +78.

By C(f) = uzf, we have that

uzuzf = uzB,g + 282
That is,

éf =uzB,g1 +28.
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This implies that
P(¢f) = P(uzBug).
Since g € ker Typ,, we get that B, g| € K,% and um S KL% Then
P(@f) = uzBygr and B, Tj f = uzgr.

By K2 = H?> NuzH?, we have that B, Ty f =uzgi € K 2. The proof is completed. O

Corollary 1 Let u be a nonconstant inner function and K Mz be the infinite dimensional
model space. If u = Bj,u for a finite Blaschke B, and an inner function ui, then
[AB,. A(’;] has a finite rank on K,fforqb € H*™.

Proof Since u = B,u, we get that
T (ker Typ,) = T (ker Ty) = Ty Ky, € K,y = ker Ty = ker Typ, .

By Theorem 2, we obtain that [Ap,, A(’;] has a finite rank on K 3 O

Example2 Let Bi(z) = {= fora € D and v(z) = exp ;J_“—i be a singular inner
function. If # = Bjv and K 3 is the corresponding model space, then the following

statements hold.

(a) If @ = 1 + By is an outer function, then

[Ag,. A}1K; C span {k,} @ span { P, (Bi P(Bivk,))} .

and rank[Ap, , Af;] < 2, where k,(z) = l—laz'
(b) If = 1 4 v is an outer function, then

[Ap,. A}1K; < span{k} @ span {P, (Bika)}.

and rank[Ap,, A’d")] < 2, where k4 (z) = —

l—az*

Proof By Lemma 4, we know that
K%I = span {k,} and dim K%h =1, (22)
Since u = Bjv, we have that K 1231 K 3 Using the proof of Theorem 2, we get that
[As,. Ajlker Typ, C cl(ran Hy) = K3, (23)
and

[Ap,. A3NK2 ©ker Tup,) € [Ap,. AjIP(BluK3)=[Ap,. Ajlspan{vke}. (24)
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(a) If ¢ = 1+ By, then

[Ap,. Ajl(vks) = (A At — Arrg As) (vka)
= Ap, P(1 + Bivky) — A5 Pu(Bivky)
= Ap, (vky) + Ap, P(Bivky)
= P, (B P(Bvks)).

By (23) and (24), we conclude that

[Ag,, AjIK; =[Ap,, Ajl(ker Typ, & (K, © ker Typ,))
C Klzg1 @ span { P, (B1 P(Bivka))} .

Then by (22),
dim ([Ap,. Aj1K;) <2.
(b) If ¢ =1+ v, then

[Ag,. A5l(vkq) = (A, Ay — AprsAs,) (vka)

= A, P(1 +vvk,) — AmPM(B]Uka)

= Ap, (vky) + Ap, P(Vvk,)
=P (Blka) .

By (23) and (24), we conclude that

[Ap,. A5IK; =[Ap,. Ajl(ker Typ, ® (K, © ker Typ,))
C Kj, & span {P, (Bik,)} .

Then by (22),
dim ([Ap,, AJIK]) <2.

O
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