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Abstract
In this paper, using some properties about Toeplitz kernels, we present some results
about finite-rank properties of the commutator [A f , Ag]. Firstly, we show that
[ABn , A∗

v] must have a finite rank on the model space K 2
u , where Bn is a finite

Blaschke product and v is an inner function. Next, we present that when ker TuBn is
an invariant subspace of T ∗

φ , then [ABn , A∗
φ] has a finite rank on K 2

u for φ ∈ H∞.

Finally, we prove that [ABn , A∗
φ] must have a finite rank on K 2

u when u = Bnu1 for
an inner function u1.

Keywords Model spaces · Truncated Toeplitz operators · Commutators · Finite
Blaschke products · Finite-rank

Mathematics Subject Classification 47B35 · 47B47

1 Introduction

Let D denote the open unit disk in the complex plane C and T denote the unit circle.
Denote by L2 = L2(T, dm) the Hilbert space of square integrable functions with
respect to the Lebesgue measure dm on T, normalized so that the measure of the
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entire circle is 1. Let L∞ be the space of essentially bounded functions on the unit
circle. The Hardy space H2 denotes the Hilbert space of all holomorphic functions in
D having square-summable Taylor coefficients at the origin, and it will be identified
with the space of boundary functions, the subspace of L2 consisting of functions
whose Fourier coefficients with negative indices vanish. Let H∞ denote the space of
all bounded holomorphic functions in D and C(T) denote the space of all continuous
functions on T.

Every function in H2, other than the constant function 0, can be factorized into the
product of an inner function and an outer function. An inner function is a function
u ∈ H∞ such that |u(eiθ )| = 1 almost everywhere with respect to the Lebesgue
measure. Every inner function can be factorized into the product of a Blaschke product
and a singular inner function. A Blaschke product is an analytic function B ∈ H∞ of
the form

B(z) = zm
∞∏

k=1

zk
zk

zk − z

1 − zk z
,

where {zk} are zeros of B counting multiplicity which satisfy that
∑
k

(1− |zk |) < ∞.

A nonconstant inner function that has no zeros in D is called a singular inner function
Sμ, which has the following form

Sμ(z) = c exp

(
−

∫ 2π

0

eiθ + z

eiθ − z
dμ(θ)

)
,

where μ is a finite positive regular Borel measure on [0, 2π ], singular with respect to
the Lebesgue measure and c is a constant of modulus 1. The function F ∈ H2 is an
outer function if F is a cyclic vector of the unilateral shift S. That is,

∞∨

0

{Sk F} = H2.

For more properties about Hardy spaces, we can refer to [14].
By Beurling’s theorem [4], the invariant subspace of the unilateral shift operator

S f = z f on H2 has the form uH2, where u is an inner function. It is easy to check
that K 2

u = H2 � uH2 is the invariant subspace of the backward shift operator S∗ on
H2, which is called the model space. Let P denote the orthogonal projection from L2

onto H2 and Pu denote the orthogonal projection from L2 onto K 2
u . For f ∈ L∞, the

Toeplitz operator T f induced by the symbol f is defined on H2 by

T f g = P( f g), g ∈ H2.

Obviously, T ∗
f = T f . Toeplitz operators acting on H2 have very simple and natural

matrix representations via infinite Toeplitz matrices that have constant entries on diag-
onals parallel to the main one. The Hankel operator H f induced by the symbol f is
defined on H2 by

123



Toeplitz Kernels and Finite-Rank Commutators... 2177

H f g = (I − P)( f g), g ∈ H2.

Then H∗
f h = P( f h) for h ∈ (H2)⊥. Compressions of Toeplitz operators on K 2

u are
called truncated Toeplitz operators, for ψ ∈ L∞, which are defined by

Aψ f = Pu(ψ f ), f ∈ K 2
u .

The function ψ is called the symbol of Aψ . Clearly, A∗
ψ = Aψ .

Truncated Toeplitz operators represent a far reaching generalization of classical
Toeplitz matrices. Although a particular case had appeared before in the literature,
the general theory has been initiated in the seminal paper [21]. Since then, truncated
Toeplitz operators have constituted an active area of research. We mention only a few
relevant papers [5, 11, 17, 20] and so on. On the operator theory level, Nagy and
others showed that Az is a model for a certain class of contraction operators [24].
Every contraction operator T on the Hilbert space H having defect indices (1, 1) and
such that lim

n→∞ T ∗n = 0 (SOT) is unitarily equivalent to Az for an inner function u,

where SOT denotes the strong operator topology. In terms of function theory, Douglas
et al. [9] in 1970 showed that functions in the model space and inner functions have the
same analytic continuation neighborhood, that is, assuming that u could be analytically
extended on E ⊆ T, then all functions in the model space K 2

u could be analytically
extendedonE.Therefore, the rational functions approximate the functions in themodel
space, the boundary value of functions in the model space, the angular derivative of
inner functions and the relationship between them are deeply studied, refer to [2] and
[3]. Thus, the research on truncated Toeplitz operators is of representative significance.

D. Sarason once proposed in [22]: what f , g ∈ H2 canmake T f Tg to be a bounded
operator. From this, many scholars begin to study the boundedness of the product of
Toeplitz operators and Hankel operators. By T f g − T f Tg = H∗

f
Hg , properties of

commutators of Toeplitz operators also gradually begin to enter the research line of
sight. The map τ : f → T f is a contractive ∗-linear mapping from L∞ to L(H2),
where L(H2) is the algebra of all bounded linear operators on H2. But this mapping
is not multiplicative. When f is a continuous function, by Hartman’s theorem (see
Corollary 4.3.3 in [18]) we get that T f g −T f Tg = H∗

f
Hg is compact for any g ∈ L∞.

Thus, τ( f g) = τ( f )τ (g) + K for f ∈ C(T), where K is a compact operator. This
makes the multiplicability problem very interesting, and many scholars begin to study
the compactness of commutators of Toeplitz operators. In addition, the compactness
of commutators of Toeplitz operators also originated from the research on Fredholm
theory of Toeplitz operators in 1970s by Douglas, Sarason and others.

The results about compact or finite-rank (semi-)commutators of T f or H f are quite
complete, corresponding results are summarized in [26]. But there are very few results
for compact or finite-rank (semi-)commutators of truncated Toeplitz operators. In [11],
Garcia concluded that A f g − A f Ag is compact for f , g ∈ C(T). In [7], authors
described the kernels and ranks of commutators of truncated Toeplitz operators with
symbols induced by finite Blaschke products. By L2 = K 2

u
⊕

(K 2
u )⊥, for f ∈ L∞,
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2178 X. Yang, Y. Lu

the multiplication operator M f is expressed as an operator matrix

M f =
(
A f B∗

f
B f D f

)
,

where D f denotes the dual truncated Toeplitz operator on L2 � K 2
u defined by

D f h = (I − Pu)( f h), h ∈ L2 � K 2
u .

It is easy to see that D∗
f = D f . The truncated Hankel operator B f is defined by

B f ϕ = (I − Pu)( f ϕ), ϕ ∈ K 2
u .

Moreover, B∗
f h = Pu( f h) for h ∈ L2 � K 2

u . By M f Mg = M fg, we get that

A f g = A f Ag + B∗
f
Bg. (1)

In [19], authors introduced sufficient and necessary conditions for B f to be of finite-
rank or compact. By (1), we know some sufficient conditions for A f Ag − A f g to be
of finite-rank or compact. From this, we can study the compact commutator [A f , Ag]
by truncated Hankel operators B f . In [26], authors of this article and others gave some
results that commutators of truncated Toeplitz operators are compact or of finite-rank
operators on model spaces. In our paper, using the structure of Toeplitz kernels, we
present some results about finite-rank properties of commutators [A f , Ag].

The paper is organized as follows. In Sect. 2, we recall some necessary definitions
and properties about model spaces and truncated Toeplitz operators. In Sect. 3, we
obtain that [ABn , A∗

v] must have a finite rank on K 2
u , where Bn is a finite Blaschke

product and v is an inner function. In Sect. 4, using some properties of Toeplitz kernels,
when ker TuBn is an invariant subspace of T ∗

φ , we show that [ABn , A∗
φ] has a finite

rank on K 2
u for φ ∈ H∞. In particular, we present that [ABn , A∗

φ] has a finite rank on
K 2
u when u = Bnu1 for an inner function u1.

2 Preliminaries

In this section we introduce some basic properties of truncated Toeplitz operators. The
reproducing kernel of H2 at λ ∈ D is the function kλ(z) = 1

1−λz
, and it is easy to

check that the reproducing kernel of K 2
u at λ ∈ D is the function

kuλ(z) = (Pukλ)(z) = 1 − u(λ)u(z)

1 − λz
.
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It is well known that K 2
u carries a natural conjugation C , antiunitary, involution oper-

ator, defined by C f = z f u for f ∈ K 2
u . We have that

k̃uλ(z) = (Ckuλ)(z) = u(z) − u(λ)

z − λ
,

which is the conjugation reproducing kernel of K 2
u at λ ∈ D. That is,

f̃ (λ) = (C f )(λ) = 〈k̃uλ, f 〉,

for f ∈ K 2
u . A bounded linear operator A on K 2

u is called C-symmetric if

CAC = A∗.

S. R. Garcia and M. Putinar introduced some properties of C-symmetric operators in
[12], and they showed that all truncated Toeplitz operators are C-symmetric. More
complex symmetric operators can be found in [13].

The systematic study of truncated Toeplitz operators was initiated by Sarason [21],
and an intensive study revealed many interesting and different properties about these
operators. For example, unbounded symbols may give bounded truncated Toeplitz
operators, see Sarason’s example in [21]. For f ∈ L2, Sarason in [21] proved that
A f = 0 if and only if f ∈ uH2 + uH2. Therefore, the symbols of truncated Toeplitz
operators are not unique.

It is well known that the model space K 2
u is the kernel space of Tu . There are many

important connections between model spaces and Toeplitz kernels. In [6], authors
presented some classical results about the relationship between Toeplitz kernels and
model spaces. Using the relationship between Toeplitz kernels and model spaces,
authors showed maximal vectors for model spaces by maximal vectors for Toeplitz
kernels. Moreover, they also discussed the multiplier between Toeplitz kernels by the
multiplier between model spaces.

For Toeplitz kernels, one classical result is the Coburn theorem (see Proposition
7.24 in [8]). It is said that either ker Tg = {0} or ker T ∗

g = {0} for g ∈ L∞. In
1986, Hayashi [15] showed that the kernel of Tg can be written as φK 2

η , where φ is an
outer function and η is an inner function with η(0) = 0, and the function φ multiplies
K 2

η isometrically onto ker Tg . It is easy to check that the Toeplitz kernel is nearly
S∗-invariant. In 1988, Hitt [16] showed that any nearly S∗-invariant of subspace M
is of form hK 2

θ , where h ∈ M meeting some conditions and θ is an inner function.
Sarason [23] gave a new proof of Hitt’s theorem and presented better description of h
and θ . More about the research process of Toeplitz kernels can be found in [6].

The following lemma is well known and we provide a proof for the sake of com-
pleteness.

Lemma 1 If u and v are inner functions, then

ker Tuv = {ϕ ∈ K 2
u : vϕ ∈ K 2

u }. (2)
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2180 X. Yang, Y. Lu

Moreover, ker Tuv �= {0} if and only if vH2 ∩ K 2
u �= {0}.

Proof Denote E = {ϕ ∈ K 2
u : vϕ ∈ K 2

u }. For φ ∈ E ⊂ K 2
u , since the model space

K 2
u has the conjugation, there exists η ∈ K 2

u such that vφ = uzη. Then

Tuvφ = P(uvφ) = P(uuzη) = P(zη) = 0.

It implies that

φ ∈ ker Tuv and E ⊆ ker Tuv.

For ϕ ∈ ker Tuv, we have that Tuvϕ = P(uvϕ) = 0, and there exists x ∈ H2 such
that

uvϕ = zx . (3)

Then vϕ = uzx ∈ H2. Since

K 2
u = uzH2 ∩ H2, (4)

we get that vϕ ∈ K 2
u . By (3), we have that ϕ = uzxv ∈ H2. By (4), we conclude that

ϕ ∈ K 2
u and ϕ ∈ E . Thus ker Tuv ⊆ E and we have proved that ker Tuv = E .

Suppose that vH2 ∩ K 2
u �= {0}. There exists 0 �= h ∈ H2 such that vh ∈ K 2

u . Since
K 2
u has a conjugation, there is 0 �= g ∈ K 2

u such that vh = uzg. Then

Tuvh = P(uvh) = P(uuzg) = 0.

It implies that h ∈ ker Tuv, and ker Tuv �= {0}. By (2), it is easy to get that vH2∩K 2
u �=

{0} when ker Tuv �= {0}. The proof is completed. ��

3 The Finite-Rank Property of [ABn, A∗
v] for an Inner Function v

By [11] we know that A f Ag − A f g is compact for f , g ∈ C(T). Thence [ABn , A∗
v]

must be compact for any finite Blaschke product Bn and any inner function v. This
makes us want to discuss when [ABn , A∗

v] has a finite rank on K 2
u . In the following

we show that [ABn , A∗
v] must have a finite rank for any inner function v.

In the following we will frequently use the following relationship:

T ∗
ψK 2

u ⊆ K 2
u and A∗

ψ = T ∗
ψ |K 2

u
,

for any ψ ∈ H∞ and an inner function u.
We use Hol(D) to denote the set of all holomorphic functions in D. For a pair of

inner functions v and η, we explore multipliers

M(v, η) = {φ ∈ Hol(D) : φK 2
v ⊆ K 2

η }
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between model spaces K 2
v and K 2

η .

Lemma 2 (Corollary 3.3 in [10]) If v, η are inner functions, then

M(v, η) ∩ H∞ = ker Tzηv ∩ H∞ ⊆ M(v, η) ⊆ ker Tzηv.

A finite Blaschke product is a function of the form Bn(z) = c
n∏

i=1

z−zi
1−zi z

for zi ∈ D.

The degree of a finite Blaschke product Bn is its number of zeros.

Lemma 3 (Theorem 4.3 in [10]) If B is a finite Blaschke product and v is any inner
function with the infinite degree, then M(B, v) ∩ H∞ �= {0}.
Lemma 4 (Lemma 2.1 in [7]) Let a1, a2, · ··, an be points in D and put

Bn(z) =
n∏

i=1

z − ai
1 − ai z

,

then

K 2
Bn = Pn−1

n∏
i=1

(1 − ai z)
,

wherePk denotes the set of all analytic polynomials with the degree less than or equal
to k. In particular, dim K 2

Bn
= n.

Theorem 1 Let u be a nonconstant inner function and K 2
u be the infinite dimensional

model space. If Bn is a finite Blaschke product with degree n, then [ABn , A∗
v] has

a finite rank on K 2
u for any inner function v and rank[ABn , A∗

v] ≤ 2n. Moreover, if
ker TuBnv �= {0}, then

vker TuBnv ⊆ ker [ABn , A∗
v] and ran [ABn , A∗

v] ⊆ K 2
u � Bnker TuBnv.

Proof Since zBn is a finite Blaschke product, by Lemma 3, we get that

M(zBn, u) ∩ H∞ �= {0}.

Then by Lemma 2,

ker TzuzBn = ker TuBn �= {0}.

By Lemma 1, we know that

ker TuBn = { f ∈ K 2
u : Bn f ∈ K 2

u }.
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Then Bng ∈ K 2
u for g ∈ ker TuBn . By H2 = vH2 ⊕ K 2

v , there exist g1 ∈ H2 and
g2 ∈ K 2

v such that g = vg1 + g2. Then

[ABn , A∗
v]g = (ABn A

∗
v − A∗

vABn )g

= ABn T
∗
v g − A∗

vABn g

= Pu(Bn P(vg)) − Pu(vPu(Bng))

= Pu(Bn P(vg)) − Pu(vBng)

= Pu(Bn P(vvg1)) − Pu(vBnvg1) + Pu(Bn P(vg2)) − Pu(vBng2)

= Pu(Bng1) − Pu(Bng1) + Pu(Bn P(vg2)) − Pu(vBng2)

= Pu(Bn P(vg2)) − Pu(vBng2).

Since g2 ∈ K 2
v , we get that vg2 ∈ zH2 and P(vg2) = 0. Then

[ABn , A∗
v]g = −Pu(vBng2) = −Pu P(vBng2).

We claim that P(vBnK 2
v ) ⊆ K 2

Bn
. In fact, for any f ∈ K 2

v and h ∈ H2, we have that

〈P(vBn f ), Bnh〉 = 〈 f , vh〉 = 0.

Thence

[ABn , A∗
v]ker TuBn ⊆ ran Pu PBn .

By Lemma 4, we obtain that dim K 2
Bn

= n. Then dim (ran Pu PBn ) ≤ n, and

dim
([ABn , A∗

v]ker TuBn
) ≤ n < ∞. (5)

Since

K 2
u = ker TuBn ⊕ (K 2

u � ker TuBn ), (6)

in the following we consider the dimension of [ABn , A∗
v](K 2

u � ker TuBn ). By

H2 = BnH
2 ⊕ K 2

Bn ,

there exist h1 ∈ H2 and h2 ∈ K 2
Bn

such that h = Bnh1 + h2 for any h ∈ H2. Then

TBnuh = P(BnuBnh1) + P(Bnuh2) = uh1 + P(Bnuh2).

By Lemma 4, we know that dim K 2
Bn

= n. It follows that

dim P(BnuK
2
Bn ) ≤ n < ∞. (7)
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It is easy to check that P(Bnuφ) ∈ K 2
u for any φ ∈ K 2

Bn
. Thus

TBnuH
2 ⊆ uH2 ⊕ P(BnuK

2
Bn ).

Consequently,

cl (ran TBnu) ⊆ uH2 ⊕ P(BnuK
2
Bn ),

where the abbreviation “ cl " denotes the closure of a set. Since

(ker TuBn )
⊥ = cl (ran TBnu),

we get that

K 2
u � ker TuBn = cl (ran TBnu) ∩ K 2

u ⊆ P(BnuK
2
Bn ) ∩ K 2

u .

By P(Bnuφ) ∈ K 2
u for any φ ∈ K 2

Bn
, we get that P(BnuK 2

Bn
) ⊂ K 2

u . It follows that

P(BnuK
2
Bn ) ∩ K 2

u = P(BnuK
2
Bn ).

Then

K 2
u � ker TuBn ⊆ P(BnuK

2
Bn ). (8)

By (7) and (8), we have that

dim (K 2
u � ker TuBn ) ≤ n < ∞.

Then

dim ([ABn , A∗
v](K 2

u � ker TuBn )) ≤ n < ∞. (9)

By (5), (6) and (9), we get that

dim
(
[ABn , A∗

v]K 2
u

)
= dim

(
[ABn , A∗

v](ker TuBn ⊕ (K 2
u � ker TuBn ))

)

= dim
(
[ABn , A∗

v]ker TuBn + [ABn , A∗
v](K 2

u � ker TuBn )
)

≤ dim [ABn , A∗
v]ker TuBn + dim [ABn , A∗

v](K 2
u � ker TuBn )

≤ 2n < ∞.

Thus [ABn , A∗
v] has a finite rank on K 2

u and rank[ABn , A∗
v] ≤ 2n.

Suppose that ker TuBnv �= {0}. By Lemma 1, we get that vBnφ ∈ K 2
u for any

φ ∈ ker TuBnv . Then there exists ψ ∈ K 2
u such that

vBnφ = uzψ.
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That is, vφ = uzψBn . By K 2
u = H2 ∩ uzH2, we have that vφ ∈ K 2

u . Then

[ABn , A∗
v]vφ = (ABn A

∗
v − A∗

vABn )vφ

= ABn T
∗
v vφ − A∗

vABnvφ

= Pu(Bn P(vvφ)) − Pu(vPu(Bnvφ))

= Pu(Bnφ) − Pu(vBnvφ)

= Pu(Bnφ) − Pu(Bnφ)

= 0.

Thus vker TuBnv ⊆ ker [ABn , A∗
v]. By the same way, we get that

Bnker TuBnv ⊆ ker [Av, A∗
Bn ]. (10)

Since

K 2
u � ker [Av, A∗

Bn ] = cl (ran [Av, A∗
Bn ]∗) = cl (ran [ABn , A∗

v]),

and [ABn , A∗
v] has a finite rank, we obtain that

K 2
u � ker [Av, A∗

Bn ] = ran [ABn , A∗
v].

Then by (10),

ran [ABn , A∗
v] ⊆ K 2

u � Bnker TuBnv.

��
In the following we give an example illustrating Theorem 1 and use span{h} to

denote the space generated by the function h.

Example 1 Let B1(z) = z−a
1−az for a ∈ D and v(z) = exp z+1

z−1 be a singular inner
function. If u = B1v and K 2

u is the corresponding model space, then

[AB1 , A∗
v]K 2

u ⊆ span {ka} ⊕ span {Pu (B1ka)} ,

and rank[AB1 , A∗
v] ≤ 2, where ka(z) = 1

1−az .

Proof By Lemma 4, we know that

K 2
B1 = span {ka} and dim K 2

B1 = 1. (11)

Since u = B1v, we have that K 2
B1

� K 2
u . Using the proof of Theorem 1 and (11), we

get that

[AB1, A∗
v]ker TuB1 ⊆ ran Pu PB1 = span {Pu (ka)} = span {ka} = K 2

B1 . (12)
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By (8) and (11), we have that

K 2
u � ker TuB1 ⊆ P(B1uK

2
B1) = span

{
ka · exp z + 1

z − 1

}
.

It implies that

[AB1 , A∗
v](K 2

u � ker TuB1) ⊆ [AB1, A∗
v]span

{
ka · exp z + 1

z − 1

}
.

In fact,

[AB1 , A∗
v](ka · exp z + 1

z − 1
) = [AB1 , A∗

v](vka)
= (AB1 Av − AvAB1)(vka)

= AB1 P(vvka) − AvPu(B1vka)

= AB1ka − AvPu(uka)

= Pu(B1ka).

Hence

[AB1 , A∗
v](K 2

u � ker TuB1) ⊆ span {Pu (B1ka)} . (13)

By (12) and (13), we conclude that

[AB1 , A∗
v]K 2

u = [AB1, A∗
v](ker TuB1 ⊕ (K 2

u � ker TuB1))

⊆ K 2
B1 ⊕ span {Pu (B1 · ka)} .

Then by (11),

dim ([AB1, A∗
v]K 2

u ) ≤ 2.

��
Remark 1 From the proof of Theorem 1, we know that Pu PBn has a finite rank because
Bn is the finite Blaschke product. In fact, we have the following claim.

Claim:The projection Pu Pθ has a finite rank if and only if u or θ is a finite Blaschke
product.

Using the following lemma, we give a further proof of the claim.

Lemma 5 (Section 6 in [1]) Hankel operators H f have a finite rank if and only if
f ∈ bH∞, where b is the finite Blaschke product.
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2186 X. Yang, Y. Lu

Proof If u or θ is a finite Blaschke product, it is obvious that Pu Pθ has a finite rank.
Suppose that Pu Pθ has a finite rank. It is easy to get that

Pu Pθ |H2 = H∗
u HuH

∗
θ
Hθ . (14)

By (14), we have that

Hθ H
∗
u HuH

∗
θ
Hθ H

∗
u HuH

∗
θ

= (Hθ H
∗
u )(Hθ H

∗
u )∗(Hθ H

∗
u )(Hθ H

∗
u )∗

has a finite rank. Then Hθ H
∗
u has a finite rank. Lemma 1 in [1] says that the operator

Hθ H
∗
u is compact if and only if H∗

u Hθ is compact. By the same way as in Lemma 1
in [1], we can get that Hθ H

∗
u has a finite rank if and only if H∗

u Hθ has a finite rank.
Using the fact that Hθ H

∗
u has a finite rank if and only if Hθ or Hu has a finite rank (see

Theorem 4 in [1]), by Lemma 5, we get that θ = bh or u = b1h1, where b and b1 are
finite Blaschke products and h, h1 ∈ H∞. It implies that θ or u is a finite Blaschke
product. ��
For u and v inner functions, the compactness of Pu Pv reflects the asymptotically
orthogonal relationship of K 2

u and K 2
v . We say that model spaces K 2

u and K 2
v are

asymptotically orthogonal if Pu Pv is a compact operator. Moreover, the following
statements are equivalent.

(a) Model spaces K 2
u and K 2

v are asymptotically orthogonal;
(b) TuT ∗

v − Tuv is compact;
(c) H∞[u]∩H∞[v] = H∞+C , where H∞[u] denotes theDouglas algebra generated

by u and H∞;
(d) For each support set S, either u|s or v|s is a constant;
(e) lim|z|→1

max(|u(z)|, |v(z)|) = 1;

(f) Hv|K 2
u
is compact;

(g) Tv|K 2
u
is a compact perturbation of an isometry.

In fact, by TuT ∗
v − Tuv = −H∗

u Hv , using the same meaning as in the proof that Pu Pv

has a finite rank, we get that (a) ⇔ (b). The equivalence of (b) and (c) comes from
Theorem 1 in [1] and [25]. By Lemma 3 in [1], we get that (c) ⇔ (d) ⇔ (e). The
proof of (b) ⇔ ( f ) ⇔ (g) can be found in Theorem 2 in [1].

4 The Finite-Rank Property of [ABn, A∗
�] for � ∈ H∞

It is well known that [ABn , A∗
φ] is compact when Bn is a finite Blaschke product and

φ ∈ H∞. In this section assuming that ker TuBn is an invariant subspace of T ∗
φ , we

present that [ABn , A∗
φ] has a finite rank on K 2

u .

Theorem 2 Let u be a nonconstant inner function and K 2
u be the infinite dimensional

model space. If T ∗
φ (ker TuBn ) ⊆ ker TuBn , then [ABn , A∗

φ] has a finite rank on K 2
u

and rank[ABn , A∗
φ] ≤ 2n, where φ ∈ H∞ and Bn is a finite Blaschke product with

degree n.
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Proof By Lemmas 2 and 3, we get that ker TuBn �= {0}. For f ∈ ker TuBn , by Lemma
1, we have that Bn f ∈ K 2

u . Then

[ABn , A∗
φ] f = (ABn A

∗
φ − A∗

φ ABn ) f

= ABn T
∗
φ f − T ∗

φ ABn f

= Pu(BnT
∗
φ f ) − P(φPu(Bn f ))

= Pu(BnT
∗
φ f ) − P(φBn f )

= Pu(BnT
∗
φ f ) − TBnφ f .

Since T ∗
φ (ker TuBn ) ⊆ ker TuBn , by Lemma 1, we get that BnT ∗

φ f ∈ K 2
u . Then

[ABn , A∗
φ] f = BnT

∗
φ f − TBnφ f = (TBn T

∗
φ − TBnφ) f = −H∗

Bn
Hφ f .

It is easy to check that ker HBn
= BnH2. Then

cl(ran H∗
Bn

) = (ker HBn
)⊥ = H2 � BnH

2 = K 2
Bn .

By Lemma 4, we obtain that dim (K 2
Bn

) = n. It implies that

dim [ABn , A∗
φ](ker TuBn ) ≤ n < ∞. (15)

Since

K 2
u = ker TuBn ⊕ (K 2

u � ker TuBn ), (16)

in the following we consider the dimension of [ABn , A∗
φ](K 2

u � ker TuBn ). By

H2 = BnH
2 ⊕ K 2

Bn ,

there exist h1 ∈ H2 and h2 ∈ K 2
Bn

such that h = Bnh1 + h2 for any h ∈ H2. Then

TBnuh = P(BnuBnh1) + P(Bnuh2) = uh1 + P(Bnuh2).

We claim that

P(Bnuϕ) ∈ K 2
u for any ϕ ∈ K 2

Bn . (17)

In fact, for any ψ ∈ H2, we have that

〈P(Bnuϕ), uψ〉 = 〈ϕ, Bnψ〉 = 0.
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Thus

TBnuH
2 ⊆ uH2 ⊕ P(BnuK

2
Bn ).

This implies that

cl (ran TBnu) ⊆ uH2 ⊕ P(BnuK
2
Bn ).

Since (ker TuBn )
⊥ = cl (ran TBnu), we get that

K 2
u � ker TuBn = cl (ran TBnu) ∩ K 2

u ⊆ (uH2 ⊕ P(BnuK
2
Bn )) ∩ K 2

u . (18)

We claim that

(uH2 ⊕ P(BnuK
2
Bn )) ∩ K 2

u ⊆ P(BnuK
2
Bn ). (19)

For g ∈ (uH2 ⊕ P(BnuK 2
Bn

)) ∩ K 2
u , there are g1 ∈ H2 and g2 ∈ P(BnuK 2

Bn
) such

that

g = ug1 + g2 ∈ K 2
u ,

we have that

0 = 〈ug1, ug1 + g2〉 = ‖g1‖2 + 〈ug1, g2〉.

By (17), we obtain that 〈ug1, g2〉 = 0. Then ‖g1‖2 = 0 and g1 = 0. This implies that
g = g2 and (19) holds. By (17), (18) and (19), we obtain that

K 2
u � ker TuBn ⊆ P(BnuK

2
Bn ).

By Lemma 4, we get that dim K 2
Bn

= n and dim (K 2
u � ker TuBn ) ≤ n < ∞. Then

dim ([ABn , A∗
Bφ

](K 2
u � ker TuBn )) ≤ n < ∞. (20)

By (15), (16) and (20), we get that

dim ([ABn , A∗
φ]K 2

u ) = dim
(
[ABn , A∗

φ](ker TuBn ⊕ (K 2
u � ker TuBn ))

)

= dim
(
[ABn , A∗

φ]ker TuBn + [ABn , A∗
φ](K 2

u � ker TuBn )
)

≤ dim [ABn , A∗
φ]ker TuBn + dim [ABn , A∗

φ](K 2
u � ker TuBn )

≤ 2n < ∞.

Thus [ABn , A∗
φ] has a finite rank on K 2

u and rank[ABn , A∗
φ] ≤ 2n.

��
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Remark 2 For the condition of Theorem 2, we give the following explanation. For any
f ∈ ker TuBn , we have that T

∗
φ (ker TuBn ) ⊆ ker TuBn if and only if BnT ∗

φ f ∈ K 2
u if

and only if Pu(φ f̃ ) ∈ Bnker TuBn , where f̃ = C( f ).

Proof By ker TuBn = { f ∈ K 2
u : Bn f ∈ K 2

u }, it is easy to get that ker TuBn is invariant
under T ∗

φ if and only if BnT ∗
φ f ∈ K 2

u .

Suppose that BnT ∗
φ f ∈ K 2

u for f ∈ ker TuBn . There exists g ∈ K 2
u such that

BnT
∗
φ f = uzg.

By K 2
u = H2 ∩ uzH2, we get that

T ∗
φ f = P(φ f ) = uzgBn ∈ K 2

u . (21)

There is g1 ∈ H2 such that

φ f = uzgBn + zg1.

Since f ∈ K 2
u , there exists f1 ∈ K 2

u such that f = uz f1. Then φuz f1 = uzgBn + zg1.
This implies that

φ f1 = gBn + ug1 and Pu(φ f1) = Pu(gBn).

By (21), we have that

Bng ∈ K 2
u and g ∈ ker TuBn .

Then Pu(φ f1) = gBn . By f = uz f1, we get that f1 = uz f = C( f ) = f̃ . Thus, the
function Pu(φ f̃ ) belongs to Bnker TuBn .

Suppose that Pu(φ f̃ ) ∈ Bnker TuBn for f ∈ ker TuBn . There exist functions
g1 ∈ ker TuBn and g2 ∈ H2 such that

φ f̃ = φC( f ) = Bng1 + ug2.

Then

φuzC( f ) = uzBng1 + zg2.

By C( f ) = uz f , we have that

φuzuz f = uzBng1 + zg2.

That is,

φ f = uzBng1 + zg2.
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This implies that

P(φ f ) = P(uzBng1).

Since g1 ∈ ker TuBn , we get that Bng1 ∈ K 2
u and uzBng1 ∈ K 2

u . Then

P(φ f ) = uzBng1 and BnT
∗
φ f = uzg1.

By K 2
u = H2 ∩ uzH2, we have that BnT ∗

φ f = uzg1 ∈ K 2
u . The proof is completed. ��

Corollary 1 Let u be a nonconstant inner function and K 2
u be the infinite dimensional

model space. If u = Bnu1 for a finite Blaschke Bn and an inner function u1, then
[ABn , A∗

φ] has a finite rank on K 2
u for φ ∈ H∞.

Proof Since u = Bnu1, we get that

T ∗
φ (ker TuBn ) = T ∗

φ (ker Tu1) = T ∗
φ K 2

u1 ⊆ K 2
u1 = ker Tu1 = ker TuBn .

By Theorem 2, we obtain that [ABn , A∗
φ] has a finite rank on K 2

u . ��
Example 2 Let B1(z) = z−a

1−az for a ∈ D and v(z) = exp z+1
z−1 be a singular inner

function. If u = B1v and K 2
u is the corresponding model space, then the following

statements hold.

(a) If φ = 1 + B1 is an outer function, then

[AB1, A∗
φ]K 2

u ⊆ span {ka} ⊕ span
{
Pu

(
B1P(B1vka)

)}
,

and rank[AB1 , A∗
φ] ≤ 2, where ka(z) = 1

1−az .

(b) If φ = 1 + v is an outer function, then

[AB1 , A∗
φ]K 2

u ⊆ span {ka} ⊕ span {Pu (B1ka)} ,

and rank[AB1 , A∗
φ] ≤ 2, where ka(z) = 1

1−az .

Proof By Lemma 4, we know that

K 2
B1 = span {ka} and dim K 2

B1 = 1, (22)

Since u = B1v, we have that K 2
B1

� K 2
u . Using the proof of Theorem 2, we get that

[AB1 , A∗
φ]ker TuB1 ⊆ cl(ran H∗

B1
) = K 2

B1 , (23)

and

[AB1 , A∗
φ](K 2

u � ker TuB1) ⊆ [AB1, A∗
φ]P(B1uK

2
B1)=[AB1 , A∗

φ]span {vka} . (24)
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(a) If φ = 1 + B1, then

[AB1 , A∗
φ](vka) = (AB1 A1+B1

− A1+B1
AB1)(vka)

= AB1 P(1 + B1vka) − A1+B1
Pu(B1vka)

= AB1(vka) + AB1 P(B1vka)

= Pu
(
B1P(B1vka)

)
.

By (23) and (24), we conclude that

[AB1 , A∗
φ]K 2

u = [AB1 , A∗
φ](ker TuB1 ⊕ (K 2

u � ker TuB1))

⊆ K 2
B1 ⊕ span

{
Pu

(
B1P(B1vka)

)}
.

Then by (22),

dim ([AB1, A∗
φ]K 2

u ) ≤ 2.

(b) If φ = 1 + v, then

[AB1 , A∗
φ](vka) = (AB1 A1+v − A1+vAB1)(vka)

= AB1 P(1 + vvka) − A1+vPu(B1vka)

= AB1(vka) + AB1 P(vvka)

= Pu (B1ka) .

By (23) and (24), we conclude that

[AB1 , A∗
φ]K 2

u = [AB1 , A∗
φ](ker TuB1 ⊕ (K 2

u � ker TuB1))

⊆ K 2
B1 ⊕ span {Pu (B1ka)} .

Then by (22),

dim ([AB1, A∗
φ]K 2

u ) ≤ 2.
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