
Bull. Malays. Math. Sci. Soc. (2022) 45:3177–3195
https://doi.org/10.1007/s40840-022-01371-4

The Boundary Schwarz Lemma for Harmonic
and Pluriharmonic Mappings and Some Generalizations
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Abstract
We use the improvement of the classical Schwarz lemmas for planar harmonic map-
pings into the sharp form, in order to provide some applications to sharp boundary
Schwarz type lemmas for holomorphic and in particular pluriharmonic mappings
between the unit balls in Hilbert and Banach spaces. In the second part of this article,
using Burget’s estimate we establish the sharp boundary Schwarz type lemmas for
harmonic mappings between finite dimensional balls. Since here we do not suppose in
general that maps fix the origin this is a generalization of the result, previously estab-
lished by David Kalaj, for harmonic functions. At the end of this section, we derived
some interesting conclusion considering hyperbolic-harmonic functions in the unit
ball, which shows that Hopf’s lemma is not applicable for those functions.

Keywords The boundary Schwarz lemma · Banach space · Harmonic functions in
higher dimensions · Pluriharmonic mappings

Mathematics Subject Classification 30C80 · 31C05 · 31C10 · 32A30

Communicated by Saminathan Ponnusamy.

B Miodrag Mateljević
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1 Introduction

The classical Schwarz lemma is a result in complex analysis about holomorphic func-
tions from the open unit disk to itself. The lemma is less celebrated than deeper
theorems, such as the Riemann mapping theorem, which it helps to prove. Although it
is one of the simplest results showing the rigidity of holomorphic functions Schwarz
lemma has been generalized in various directions and it has become a crucial theme
in many branches of research in Mathematics for more than a hundred years to the
present day. There is vast literature related to the subject, but herewe citemainly recent
papers; for a more complete list of references see [2–5] and the references therein for
more fundamental results.

We only briefly discuss recent results that have affected our work . We draw the
reader’s attention the result in subsection 1.2 was obtained before the result in the next
subsection.

1.1 Schwarz Lemma and Hilbert Spaces

In [6], the first author of this paper in a joint paper with Li considered pluriharmonic
and harmonic mappings f defined on the unit ball B

n , n ≥ 2, differentiable at a point
a on the boundary of B

n , and f (Bn) satisfies some convexity hypothesis at f (a). For
those mappings f , they obtained versions of boundary Schwarz lemma and the sharp
estimate of the eigenvalue related to its Jacobian at a.

After writing the final version of the manuscript [6] Hamada turned attention 1 to
the arxiv paper [3]. In [3], the authors generalize the classical Schwarz lemmas of
planar harmonic mappings into the sharp forms for Banach spaces, and present some
applications to sharp boundary Schwarz type lemmas for pluriharmonic mappings in
Banach spaces. Recently, Hamada and Kohr published paper [7], where authors dis-
cussed rigidity theorems on the boundary for holomorphic mappings. They explained
difference of the constants obtained for the unit ball and the unit polydisc and also
presented a generalization for other bounded symmetric regions in C

n and balanced
domains in complex Banach spaces.

In this paper we get further results using approaches from those papers.
The following result was obtained by I. Graham, H. Hamada and G. Kohr in [ [8],

Proposition 1.8] stated here as:

Theorem 1.1 ( [8]) Let B j be the unit ball of a complex Hilbert space Hj for j = 1, 2,
respectively. Let f : B1 → B2 be a pluriharmonic mapping. Assume that f is of class
C1 at some point z0 ∈ ∂B1 and f (z0) = w0 ∈ ∂B2. Then there exists a constant
λ ∈ R such that D f (z0)∗w0 = λz0. Moreover,

λ ≥ 1 − Re (〈 f (0), w0〉)
2

> 0.

1 in communication with M. Mateljevć
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In Sect. 2 we will improve this estimate. Next S. Chen, H. Hamada, S. Ponnusamy,
R. Vijayakumar in [3] observed that using [[8], Proposition 1.8] and the arguments
similar to those in the proof of their Theorem 3.3 [3] one can obtain a better estimate:

Proposition 1.2

λ ≥ max

{
2

π
− | f (0)|, 1 − Re (〈 f (0), w0〉)

2

}
.

Note that under condition f (0) = 0, in Theorem 1.1 (ii) and (iii) in [6], it is shown
that λ ≥ 2/π . (But it also follows from the above Proposition 1.2.)

Next in [3] a version of the boundary Schwarz lemma for the complex Banach
spaces was proved:

Theorem 1.3 (Theorem 3.3 [3]) Suppose that BX and BY are the unit balls of the
complex Banach spaces X and Y , respectively, and f : BX → BY is a pluriharmonic
mapping. In addition, let f be differentiable at b ∈ ∂BX with | f (b)|Y = 1. Then we
have

|Df (b)b|Y ≥ max

{
2

π
− | f (0)|, 1 − | f (0)|

2

}
. (1)

In Sect. 3 we proved Theorem 3.1 which yields better estimate. We leave to the
interesting reader to check this claim. In Theorem 2.12, we establish Schwarz lemma
on the boundary for harmonic functions, mapping the unit ball in R

n into unit ball in
some Hilbert space, which maps origin to origin. This is a generalization of the work
in paper [1].

1.2 Schwarz Lemma for Harmonic Functions in Several Variables

For a short discussion about Schwarz lemma for harmonic functions in the planar
case see Sect. 1. As far as we know the study related to Schwarz lemma for real
valued harmonic functions, defined on the unit ball in R

n with codomain (−1, 1) was
initiated by Khavinson, Burget, Axler at al., for more details see for example [5].
Generalizations of Schwarz lemma for functions of several variables were developed
in the work of Burgeth [9] (see also the papers by H.A. Schwarz and E.J.P.G. Schmidt
cited there), which were based on the integration of Poisson kernels over the so-
called polar caps, using the spherical coordinates2 and we used some formulas from
that paper, which are described in the first part of Sect. 4. Khavinson [10], using
also spherical caps, indicates an elementary argument that allows one to obtain sharp
estimates of derivatives of bounded harmonic functions in the unit ball inR

n (explicitly
stated for n = 3); this three-dimensional result has a physical interpretation. It is worth
mentioning that a similar idea occurs in the book [11] for maps which fix the origin
in which case the spherical cap is reduced to a hemisphere. Note that researches have
often overlooked Burget’s work (for more details see Sect. 1).

D. Kalaj [1] considered Heinz–Schwarz inequalities for harmonic mappings in the
unit ball, which is a version of Schwarz lemma on the boundary.

2 we refer to this method as Burget’s spherical cap method
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3180 M. Mateljević, N. Mutavdžić

Recently, these ideas were discussed at the Belgrade Analysis Seminar, and several
recent results in this subjectwere obtained by thefirst author and someof his associates:
M. Svetlik, A. Khalfallah, M. Mhamdi, B. Purtić, H.P. Li and the second author of
this paper, see ([12–14]). For more details see the introduction of paper [5] by the first
author of this paper.

In particular we will use here [Proposition 4.4 [6]] which is a corollary of the
estimate obtained in [13] (cf. also [14]), stated here as Proposition 2.4.

In Sect. 4 using Burget’s estimate we establish Theorem 4.4 for harmonic mappings
between finite dimensional unit balls. Since here we do not suppose that maps fix the
origin this is a generalization of Theorem 2.5 in the mentioned Kalaj’s paper.

At the end of this section, we derived some interesting conclusion considering
hyperbolic-harmonic functions in the unit ball, which shows that Hopf’s lemma is not
applicable for those functions.

Chinese mathematicians have made a great contribution to this field but here we
will mention only results that are related to the results presented here.3

2 Boundary Schwarz Lemma for Pluriharmonic Mappings in Hilbert
Spaces

Let H be a complex Hilbert space with inner product 〈·, ·〉. Then H can be regarded
as a real Hilbert space with inner product Re 〈·, ·〉. Let | · | be the induced norm in H .
Let B be the unit ball of H . For each z0 ∈ ∂B, the tangent space Tz0(∂B) is defined
by

Tz0(∂B) = {β ∈ H : Re 〈z0, β〉 = 0}.

Let H1 and H2 be complex Hilbert spaces and let � be a domain in H1.

Definition 2.1 A mapping f : � → H2 is said to be differentiable at z ∈ � if there
exists a bounded linear map Df (z) ∈ LR(H1, H2) such that

f (z + h) = f (z) + Df (z)h + o(|h|), as h → 0.

If f is differentiable at each point of �, then f is said to be differentiable on �. In
this case, the mapping

D f : � → LR(H1, H2), z �→ Df (z)

is called the derivative (or differential) of f on �. If D f is continuous in a neighbor-
hood of z, the mapping f is said to be of class C1 at z. If Df (z) is bounded complex
linear for each z ∈ �, then f is said to be holomorphic on �.

Definition 2.2 A C2−mapping f : B1 → H2 is said to be pluriharmonic if the
restriction of the complex valued function fw(z) = 〈 f (z), w〉 to every complex line
is harmonic for each w ∈ H2.

3 Z. Chen, Y. Liu and Y. Pan; S. Dai, H. Chen and Y. Pan;X. Tang, T. Liu and W. Zhang;J.F. Zhu, etc
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Let B j be the unit ball of a complex Hilbert space Hj for j = 1, 2, respectively.
Note that if f is differentiable at z0 ∈ ∂B1 with values in H2, then the adjoint operator
Df (z0)∗ is defined by

Re (〈Df (z0)
∗w, z〉H1) = Re (〈w, Df (z0)z〉H2) for z ∈ H1, w ∈ H2.

where 〈·, ·〉Hj is the inner product of Hj , j = 1, 2. Here, by Dr f (x) we denote

directional derivativewith respect to vector x
|x | , i. e. Dr f (x) = ∂

∂r f (x), where r = |x |.
For a ∈ H1 and v ∈ Ta(H1) (the tangent space at the point a), we define the half

space H(a, v) = {y ∈ H1 : Re 〈y − a, v〉 < 0}. In order to shorten the notation, we
will simply write Ha instead of H(a, v). Also, we will use notation na to stress out the
fact that this vector defines half-space Ha = H(a, na). In this setting, we will assume
that na is a unit vector. We also notice that in our approach the following simple result
is useful:

Claim 2.3 Assume that f is differentiable at a point a ∈ H1 and let b = f (a) ∈ H2.
Then by the definition of adjoint operator, we have

Re 〈Df (a)Z , nb〉 = Re 〈Z , Df (a)∗nb〉,

for any Z ∈ Ta(H1). The following statements hold:

(i) If Df (a) maps Ha into Hb, then Df (a)∗nb = λna , where λ > 0.
(ii) If further, f maps Ha into Hb, then Df (a)∗nb = λna , where λ ≥ 0. In particular

if Df (a)∗nb 	= 0, then λ > 0.
(iii) In both cases (i) and (ii), we have λ = |Df (a)∗nb| = Re 〈Df (a)na, nb〉, and

λ ≤ |Df (a)na |.
(iv) Let |a| = 1. Define u(x) = Re 〈 f (x), nb〉. Then λ = Dru(a).

Proof Here it is convenient to identify Ha and Hb with subsets of Ta(H1) and Tb(H2),
respectively. By hypothesis Df (a) maps Ha into Hb, and therefore we have

0 = Re 〈Df (a)X , nb〉 = Re 〈X , Df (a)∗nb〉

for all X ∈ Ta(Ha). This shows that X0 = Df (a)∗nb is orthogonal to Ta(Ha). In our
setting, it means that it equals to λnb. Then by definition of the adjoint operator, one
has

Re 〈Df (a)na, nb〉 = Re 〈na, Df (a)∗nb〉 = Re 〈na, λna〉 = λ.

Since na ∈ Ha , Df (a)na ∈ Hb, by the definition of Hb, we first conclude that
〈Df (a)na, nb〉 > 0, and hence, λ > 0. This completes the proof of (i). For the proof
of (ii), which is similar to (i), we leave it to the interested reader by considering two
cases: X0 = 0 and X0 	= 0.

(iii) is an immediate corollary of (i) and (ii). (iv) is consequence of the fact that
Dru(a) = Re〈Df (a)a, nb〉 = λ. ��

The proof of Proposition 2.5 and Theorem 3.1 is based on the following result.
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3182 M. Mateljević, N. Mutavdžić

Proposition 2.4 (Proposition 4.4 [6]) Let u : U → U be a harmonic function such
that u(0) = b. Assume that u has a continuously extension to the boundary point
z0 ∈ T, u(z0) = c ∈ T and a = tan |Re (c̄b)|π

4 . If u is differentiable at z0, then

|Dru(z0)| ≥ 2
π

1−|a|
1+|a| .

Let s−(x) = 2
π
cot

(
π
4 (1 + x)

)
, x ∈ (−1, 1).

Proposition 2.5 Let B j be the unit ball of a complex Hilbert space Hj for j = 1, 2,
respectively. Let f : B1 → B2 be a pluriharmonic mapping. Assume that f is differ-
entiable at some point z0 ∈ ∂B1 and f (z0) = w0 ∈ ∂B2. Then there exists a constant
λ ∈ R such that D f (z0)∗w0 = λz0. Moreover,

λ ≥ s−(b) > 0, where b = Re (〈 f (0), w0〉).

We note that s−(x) ≥ 1−x
2 , x ∈ (−1, 1).

Proof Let us consider function u : U → (−1, 1), defines with u(z) =
Re 〈 f (zz0), w0〉. Function u will be a harmonic function and we have u(0) = b.
Function u has continuous extension an point z0 ∈ T and we can check that
u(1) = 1. Applying Proposition 2.4, we get |Dru(1)| ≥ s−(b). Also, we have that
Dru(1) = Re〈Df (z0)z0, w0〉 = λ. ��

Suppose that � is a domain in H1 and f : � → H2 is a holomorphic map in �

and z0 ∈ � be any point. We define hermitian adjoint operator Df (z0)† in the next
manner

〈Df (z0)
†w, z〉H1 = 〈w, Df (z0)z〉H2 for z ∈ H1, w ∈ H2,

where 〈·, ·〉Hj is the inner product of Hj , j = 1, 2. Let B1 be the unit ball of a
complex Hilbert space H1.

Lemma 2.6 ([15])For ξ ∈ B1, let ϕξ (z) = A ξ−z
1−〈z,ξ〉 be the holomorphic automor-

phismofB1 where A : H1 → H1 in the sense that A(v) = sξ v+ ξ〈v,ξ 〉
1+sξ

, sξ = √
1 − |ξ |2

and v ∈ H1. Then ϕξ is biholomorphic in a neighborhood of B1, and

A2 = s2ξ I d + ξ 〈·, ξ 〉, Aξ = ξ, ϕ−1
ξ = ϕξ ,

Dϕξ (z) = A

[
− I d

1 − 〈z, ξ 〉 + (ξ − z)〈·, ξ 〉
(1 − 〈z, ξ 〉)2

]
.

If we denote P(v) = ξ 〈v, ξ 〉 it can be checked that P† = P . From this A† = A
follows. Also, if Q(v) = z〈v, ξ 〉 and R(v) = ξ 〈v, z〉 then Q† = R. Now, we have

Dϕξ (z)
† =

[
− I d

1 − 〈z, ξ 〉 + ξ 〈·, ξ − z〉
(1 − 〈z, ξ 〉)2

]
A.
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The Boundary Schwarz Lemma for Harmonic… 3183

Let us denote Lz =
[
− I d

1−〈z,ξ〉 + ξ〈·,ξ−z〉
(1−〈z,ξ〉)2

]
.

Lemma 2.7 ([15]) For every z0 ∈ B1 we have Dϕξ (z0)†ϕξ (z0) = 1−|ξ |2
|1−〈z0,ξ〉|2 z0.

Proof By direct computation Dϕξ (z0)†ϕξ (z0) = Lz0 A
2 ξ−z0
1−〈z0,ξ〉 . We can easily check

that A2 ξ−z0
1−〈z0,ξ〉 = ξ − s2z0

1−〈z0,ξ〉 . According to this, we have

Dϕξ (z0)
†ϕξ (z0) = Lz0

(
ξ − s2z0

1 − 〈z0, ξ 〉
)

= − ξ

1 − 〈z0, ξ 〉 + ξ 〈ξ, ξ − z0〉
(1 − 〈z0, ξ 〉)2 + s2z0

|1 − 〈z0, ξ 〉|2 − s2ξ 〈z0, ξ − z0〉
|1 − 〈z0, ξ 〉|2(1 − 〈z0, ξ 〉)

= −ξ(1 − 〈ξ, z0〉)
(1 − 〈z0, ξ 〉)2 + ξ 〈ξ, ξ − z0〉

(1 − 〈z0, ξ 〉)2 + s2z0
|1 − 〈z0, ξ 〉|2 − s2ξ(〈z0, ξ 〉 − 1)

|1 − 〈z0, ξ 〉|2(1 − 〈z0, ξ 〉)
= −ξ(1 − |ξ |2)

(1 − 〈z0, ξ 〉)2 + s2z0
|1 − 〈z0, ξ 〉|2 − s2ξ(〈z0, ξ 〉 − 1)

|1 − 〈z0, ξ 〉|2(1 − 〈z0, ξ 〉)
= −ξs2(1 − 〈z0, ξ 〉))

(1 − 〈z0, ξ 〉)2(1 − 〈z, ξ 〉) + s2z0
|1 − 〈z0, ξ 〉|2 − s2ξ(〈z0, ξ 〉 − 1)

|1 − 〈z0, ξ 〉|2(1 − 〈z0, ξ 〉)
= 1 − |ξ |2

|1 − 〈z0, ξ 〉|2 z0.

��
Let V1 and V2 be two complex vector spaces. We define the sets or real linear,

complex linear and complex antilinear operators between V1 and V2 in the following
sense.

If L : V1 → V2 is an additive linear operator, then

L ∈ LR(V1, V2) ⇐⇒ ∀λ ∈ R, ζ ∈ V1 : L(λζ ) = λL(ζ ),

L ∈ LC(V1, V2) ⇐⇒ ∀z ∈ C, ζ ∈ V1 : L(zζ ) = zL(ζ ),

L ∈ LC(V1, V2) ⇐⇒ ∀z ∈ C, ζ ∈ V1 : L(zζ ) = z̄L(ζ ).

It can be shown that the next statement holds:LR(V1, V2) = LC(V1, V2)⊕LC(V1, V2).
First, we check that LC(V1, V2) ∩LC(V1, V2) = {0}. If we argue by contradiction,

we assume that there exists complex both linear and antilinear operator L between V1
and V2 and ζ ∈ V1, such that L(ζ ) 	= 0. Then L(iζ ) = i L(ζ ) = −i L(ζ ) so L(ζ ) = 0,
which is a contradiction.

Now, let us perceive arbitrary real linear operator L from V1 into V2. We can define
operators L1, L2 : V1 → V2 such that L1(ζ ) = 1

2 (L(ζ ) − i L(iζ )) and L2(ζ ) =
1
2 (L(ζ ) + i L(iζ )). We argue that L = L1 + L2 where L1 ∈ LC(V1, V2), L2 ∈
LC(V1, V2). If we regard z = x + iy as any complex number, and ζ ∈ V1 arbitrary,
then

L1(zζ )=1

2
(L((x + iy)ζ ) − i L(i(x + iy)ζ ))=1

2
(L(xζ + yiζ ) − i L(−yζ + xiζ ))
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=1

2
(xL(ζ ) + yL(iζ ) + iyL(ζ ) − i x L(iζ ))=1

2
((x + iy)L(ζ )

− (x + iy)i L(iζ )) = (x + iy)L1(ζ ) = zL1(ζ ).

Analogously to this, we can get

L2(zζ )=1

2
(L((x + iy)ζ ) + i L(i(x + iy)ζ ))=1

2
(L(xζ + yiζ ) + i L(−yζ + xiζ ))

=1

2
(xL(ζ ) + yL(iζ ) − iyL(ζ ) + i x L(iζ ))=1

2
((x − iy)L(ζ )

+ (x − iy)i L(iζ )) = (x − iy)L1(ζ ) = z̄L2(ζ ).

Claim 2.8 Let H1 and H2 be two complex Hilbert spaces and L : H1 → H2 be a
bounded complex linear operator. Then L∗ = L†.

Proof Now, assume that L is bounded real linear operator from H1 to H2. Then, there
are unique bounded operators L1 and L2, complex linear and complex antilinear,
respectively, which satisfies L = L1 + L2. For these operators, we can find bounded
complex linear operator L†

1 such that 〈L†
1(w), z〉 = 〈w, L1(z)〉, and bounded, complex

antilinear operator L‡
2 defined with expression 〈L‡

2(w), z〉 = 〈w, L2(z)〉, for all z ∈
H1, w ∈ H2. We argue that L∗

1 = L†
1 and L∗

2 = L‡
2. First, since both complex linear

and complex antilinear operators are real linear, we can define real adjonit for these
operators. Also, if 〈L†

1(w), z〉 = 〈w, L1(z)〉 we get Re 〈L†
1(w), z〉 = Re 〈w, L1(z)〉,

for all z ∈ H1, w ∈ H2. The same argument stands for the operator L‡
2. ��

Proposition 2.9 Let B j be the unit ball of a complex Hilbert space Hj for j = 1, 2,
respectively. Let f : B1 → B2 be a pluriharmonic mapping such that f (ξ) = 0, for
some ξ ∈ B1. Assume that f is differentiable at some point z0 ∈ ∂B1 and f (z0) =
w0 ∈ ∂B2. Then there exists a constant λ ∈ R such that

D f (z0)
∗w0 = λ

1 − |ξ |2
|1 − 〈z0, ξ 〉|2 z0,

where λ ≥ 2
π
.

Proof Let ϕξ (z) = A ξ−z
1−〈z,ξ〉 be the holomorphic automorphism of B1 where A =

sξ I d + ξ〈·,ξ〉
1+sξ

, sξ = √
1 − |ξ |2.

Assume that ϕξ (z0) = p ∈ ∂B2. Let g(z) = f ◦ ϕξ (z). Then g is a pluriharmonic
mapping of B1 into B2 satisfying

g(0) = f ◦ ϕξ (0) = f (ξ) = 0,

and

g(p) = f ◦ ϕξ (p) = f (z0) = w0 ∈ ∂B2.
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According to Proposition 2.5 we know that there exists a number λ ≥ 2
π
such that

D∗
g(p)w0 = λp.

From ϕ2
ξ = I d it follows that Dϕξ (p)Dϕξ (z0) = I d and therefore (1)

Dϕξ (z0)∗Dϕξ (p)∗ = I d. Since Dg(p) = Df (z0)Dϕξ (p), we have Dg(p)∗ =
(Df (z0)Dϕξ (p))∗ = Dϕξ (p)∗Df (z0)∗ and therefore (2) Dϕξ (p)∗D f (z0)∗w0 =
λp. By (1) and (2) we find Df (z0)∗w0 = λDϕξ (z0)∗ p.

From Lemma 2.7 we conclude that 〈z0, Dϕξ (z0)† p〉 = μ, where μ = 1−|ξ |2
|1−〈z0,ξ〉|2 .

Now, we can conclude that 〈Dϕξ (z0)z0, p〉 = μ, fromwhich Re 〈Dϕξ (z0)z0, p〉 = μ.
From Theorem 1.1 we conclude that Dϕξ (z0)∗ p = μ1z0, for some μ1 > 0. From the
proof of Theorem 1.1 we have μ1 = Re 〈Dϕξ (z0)z0, p〉 = 〈Dϕξ (z0)z0, p〉 = μ. ��

Suppose that � ⊂ R
n is a domain and H is a Hilbert space. Let f : � → H be a

function such that f ∈ C2(�).We define partial derivativeswith respect to coordinates
xi , i = 1, . . . n of the base {e1, ..., en} in R

n at the point a ∈ � with formula:

∂ f

∂xi
(a) = Df (a)ei .

Definition 2.10 Function f is harmonic in a domain � if
n∑

i=1

∂2 f
∂x2i

(a) = 0 for every

a ∈ �.

Let us denote with Bn and Sn−1 the unit ball and the unit sphere of R
n .

It is well-known that a harmonic function u ∈ L∞(Bn) has the following integral
representation

u(x) = P[ f ](x) =
∫
Sn−1

P(x, ζ ) f (ζ )dσ(ζ ),

where f is the boundary function of Sn−1, and

P[x, ζ ] = 1 − |x |2
|x − ζ |n , ζ ∈ Sn−1

is the Poisson kernel and σ is the unique normalized rotation invariant Borel measure
on Sn−1. According to [1], we know that if u is a harmonic self-mapping of Bn such
that u(0) = 0, then

|u(x)| ≤ U (r N ), (2)

where r = |x |, N = {0, · · · , 0, 1} and U is a harmonic function of Bn into [−1, 1]
defined by

U (x) = P[χS+ − χS−](x) (3)

where χ is the indicator function and S+ = {x ∈ Sn−1 : xn ≥ 0}, S− = {x ∈ Sn−1 :
xn ≤ 0}. We refer to [11, Chapter 6] for more details.
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Recall that the hypergeometric function pFq is defined for |x | < 1 by the power
series ( [16, (2.1.2)])

pFq [a1, a2, . . . , ap; b1, b2, . . . , bq ; x] =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k! .

Here (a)k is the Pochhammer symbol and given as follows (a)k = �(k+a)
�(a)

.
The following result is the so-called Heinz-Schwarz inequality.

Lemma 2.11 [1, Lemma 2.3] The function V (r) = ∂U (r N )
∂r , 0 ≤ r ≤ 1 is decreasing

on the interval [0, 1], and we have

V (r) ≥ V (1) = Cn =: n! (1 + n − (n − 2)2F1
[ 1
2 , 1; 3+n

2 ;−1
])

23n/2�
[ 1+n

2

]
�

[ 3+n
2

] . (4)

We refer the readers to [1, Remark 2.7] for more details on the constant Cn and
related functions, when n = 2, 3, 4.

A version of Theorem 1.2 [6] holds for harmonic functions, where codomain is the
a ball B in a Hilbert space.

Theorem 2.12 Suppose that f : Bn → B is a harmonic function, such that f (0) = 0,
and f has a continuous extension to the point a ∈ ∂Bn such that f (a) = b ∈ ∂B.
Then (1) lim sup

r→1−
|Dr f (ra)| ≥ Cn.

Suppose in addition that f has a differentiable extension to a.

(i) Then there exists a positive number λ ∈ R such that D f (a)∗b = λa and
(ii) λ ≥ Cn, where Cn is given by (4).
(iii) In particularly if n = 2, we have λ ≥ 2

π
. This is sharp.

Proof (i) follows from Claim 2.3. Set u = Re 〈 f , b〉. Since u is harmonic and it maps
Bn into (−1, 1), u(0) = 0 and u(a) = 1,

using Theorem 6.24 [11] we have u(x) ≤ U (r N ) and therefore

1 − u(x) ≥ 1 −U (r N ), for r = |x | < 1.

Hence

1 − u(x)

1 − |x | ≥ 1 −U (r N )

1 − r
.

Next if we define u0(t) = u(ta) andU0(t) = U (t N ), 0 < t < 1, for every 0 < t <

1 there are ct , dt ∈ (t, 1) such that 1−u0(t) = u′
0(ct )(1−t), 1−U0(t) = U ′

0(dt )(1−t)
and u′

0(ct ) ≥ U ′
0(dt ). Hence by Lemma 2.11, u′

0(ct ) ≥ Cn and therefore we get (1).
If in addition f has differentiable extension to a, then

Dru(a) = lim
|x |→1−

1 − u(x)

1 − |x | ≥ lim
r→1−

1 −U (r N )

1 − r
= ∂U (r N )

∂r

∣∣∣∣
r=1

= Cn .
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Since by Claim 2.3 (iv), λ = Re 〈Dr f (a), b〉 = Dru(a), (ii) follows. An application
of Proposition 2.4 yields (iii). For additional details, see [13]. ��

3 Boundary Schwarz lemma and Banach Spaces

We will use notation from [3]. Let X and Y be real or complex Banach spaces with
norm | · |X and | · |Y respectively. We denote with L(X ,Y ) the space of all continuous
linear operators from X into Y with the standard operator norm

|A| = sup
x∈X\{0}

|Ax |
|x | ,

where A ∈ L(X ,Y ). Then L(X ,Y ) is a Banach space with respect to this norm.
Denote by X∗ the dual space of the real or complex Banach space X . For x ∈ X \ {0},
let

T (x) = {lx ∈ X∗ : lx (x) = |x | and |lx | = 1}.

Then the well-known Hahn–Banach theorem implies that T (x) 	= ∅.

Let f be a mapping of a domain � ⊂ X into a real or complex Banach space Y ,
where X is a complex Banach space. We say that f is differentiable at z ∈ � if there
exists a bounded real linear operator Df (z) : X → Y such that

lim
|h|→0+

| f (z + h) − f (z) − Df (z)h|
|h| = 0.

Here Df (z) is called the Fréchet derivative of f at z. If Y is a complex Banach space
and Df (z) is bounded complex linear for each z ∈ �, then f is said to be holomorphic
on �. Let � be a domain in a complex Banach space X . A mapping f of � into a real
or complex Banach space Y is said to be pluriharmonic if the restriction of l ◦ f to
every holomorphic curve is harmonic for any l ∈ Y ∗.

Theorem 3.1 Suppose that B1 and B2 are the unit balls of the complex Banach spaces
X and Y , respectively, and f : B1 → B2 is a pluriharmonic mapping. Assume that
the function f is differentiable at b ∈ ∂BX with | f (b)| = 1. Then we have

|Df (b)b| ≥ s−(| f (0)|).

Proof We consider the function p(z) = Re (l f (b)( f (zb))), for z ∈ U. where l f (b) ∈
T ( f (b)). Since f is pluriharmonic we have that the function p is harmonic function on
U. Also, from |l f (b)| = 1 we get |Re (l f (b)( f (zb)))| ≤ |l f (b)( f (zb))| ≤ | f (zb)| < 1,
so we get that the function p maps the unit disc into interval (−1, 1). From the
definition of l f (b) we can conclude that p(1) = 1. Also, we have that |p(0)| =
|Re l f (b)( f (0))| ≤ |l f (b)( f (0))| ≤ | f (0)|. Now we can conclude that

|Dr p(1)| ≥ s−(|p(0)|) ≥ s−(| f (0)|),
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since the function s− is decreasing on (−1, 1). On the other hand, we have that
|Dr p(1)| ≤ |Df (b)b|. Indeed, we have that

|Dr p(1)| = lim
r→1−

|p(1) − p(r)|
1 − r

= lim
r→1−

∣∣∣∣Re l f (b)
f (b) − f (rb)

1 − r

∣∣∣∣
= |Re l f (b)Df (b)b| ≤ |Df (b)b|,

which concludes our proof. ��

4 Hyperbolic Harmonic Functions in Higher Dimensions

We use notation from [9]. Let Bn be the unit ball in R
n and Sn−1 be the boundary of

the unit ball and 
 is Laplacian partial differential operator. Consider next Laplace-
Beltrami operator


0 = 1 − |x |2
4

(

 + 2(n − 2)

1 − |x |2 〈x,∇〉
)

.

Any twice continuously differentiable function h which is defined on Bn and fulfills

0h = 0 is said to be hyperbolic harmonic on Bn .

In the sequel we will use some specific properties of both harmonic and hyperbolic-
harmonic kernel, which are listed below:

a) There exists a Poisson formula for hyperbolic harmonic as well as for harmonic
functions on Bn . Let σ denote the usual surface measure on Sn−1 and f be a
σ -integrable function on Sn−1. Set x ∈ Bn and η ∈ Sn−1. Depending on whether
we define P(x, η) as

1

σ(Sn−1)

1 − |x |2
|x − η|n or as

1

σ(Sn−1)

(1 − |x |2)n−1

|x − η|2(n−1)
,

we get a harmonic or a hyperbolic harmonic function on Bn by

h(x) = P[ f ](x) =
∫
Sn−1

P(x, η) f (η)dσ(η).

In the sequel we use the same notation P for both Poisson kernels.
b)

1 = P[1](x) =
∫
Sn−1

P(x, η)dσ(η), (5)

where 1(η) = 1 for all η ∈ Sn−1 is a constant function.
This is an immediate consequence of the fact that constant functions belongs to
classes of hyperbolic and hyperbolic functions, both respectively.

c) Harmonic (resp. hyperbolic-harmonic) functions possess the mean value property
with respect to (hyperbolic) spheres.
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d) The theorem of Fatou, concerning the σ−a.e, existence of non-tangential limits,
is valid in both cases.

For convenience we set

Mn
c (|x |) = 2P[χS(c,x̃)](x) − 1 (6)

mn
c (|x |) = 2P[χS(c,−x̃)](x) − 1, (7)

where x ∈ Bn, x̃ = x
|x | for x 	= 0; x̃ = e1 for x = 0 and S(c, x̃) denotes the polar cap

with center x̃ and σ−measure c. Also, χA is an indicator function of the set A. It is
easy to verify that the expressions on the right-hand side of (6) inherit the rotational
invariance of the measure σ .

For derivation on the explicit formula (8), we refer to the paper [17], specifically,
to Proposition 5.10. In this proposition we use the following notation: σn−1 is surface
area of the sphere Sn−1 and ϕ is an angle between radius vector of point η ∈ Sn−1 and
radius vector of the point x̃ .

Proposition 4.1 ( [17], Proposition 5.10) If f is a function on Sn−1 depending only
on ϕ, then

∫
Sn−1

f (η)dσ(η) = σn−2

∫ π

0
f (ϕ) sinn−2 ϕdϕ.

Since |x−η|2 = 1−2r cosϕ+r2 wehave that both our kernels dependonlyonϕ. Let
us define σ∗(n) = σn−2

σn−1
. Using formula σn−1 = 2πn/2

�( n2 )
we get σ∗(n) = 1√

π

�(n/2)
�((n−1)/2) .

Using Proposition 4.1 we can rewrite (6) as

Mn
c (|x |) = 2σ∗(n)(1 − |x |2)ν

∫ α(c)

0

sinn−2 t

(1 − 2|x | cos t + |x |2)μ dt − 1, (8)

mn
c (|x |) = 2σ∗(n)(1 − |x |2)ν

∫ π

π−α(c)

sinn−2 t

(1 − 2|x | cos t + |x |2)μ dt − 1, (9)

where (ν, μ) = (1, n/2) in harmonic case and (ν, μ) = (n−1, n−1) in the hyperbolic-
harmonic case and α(c) is the spherical angle of S(c, x̃).

Theorem 4.2 [9] Let h be a harmonic or hyperbolic-harmonic function taking values
in (−1, 1) and h(0) = a,−1 < a < 1. Then for c = a+1

2 and all x ∈ Bn

mn
c (|x |) ≤ h(x) ≤ Mn

c (|x |).

Equality on the right (resp., left) hand side for some z ∈ Bn \ {0} implies

h(x) = 2P[χS(c,z̃)](x) − 1 (respectively, h(x) = 2P[χS(c,−z̃)](x) − 1),

for all x ∈ Bn
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Lemma 4.3 Let (ν, μ) = (1, n/2) (harmonic case). Then

dMn
c

dr
(r)

∣∣∣
r=1

= 22−n

√
π

�(n/2)

�((n − 1)/2)

∫ π

α(c)

sinn−2 t

sinn(t/2)
dt .

Proof We will use the following notation T (r) = 1−Mn
c (r)

1−r . Then:

dMn
c

dr
(r)

∣∣∣
r=1

= lim
r→1− T (r).

By using formula (6) we have

T (r) = 1 − (2P[χS(c,z̃)](x) − 1)

1 − r
= 2(1 − P[χS(c,z̃)](x))

1 − r
.

If we use formula (5) we get

T (r) = 2P[1 − χS(c,z̃)](x)
1 − r

= 2P[χSn−1\S(c,z̃)](x)
1 − r

.

Now, by using version of Proposition 4.1 we get the following important result:

T (r) = 2σ∗(n)(1 + r)
∫ π

α(c)

sinn−2 t

(1 − 2r cos t + r2)n/2 dt .

We can reformulate this equation, in the following manner

T (r) = 2σ∗(n)(1 + r)
∫ π

α(c)
Q(r , t)dt,

where Q(r , t) = sinn−2 t
(1−2r cos t+r2)n/2 . Since we have limit of proper integral in the last

expression, we can derive next formula

dMn
c

dr
(r)

∣∣∣
r=1

= 4σ∗(n)

∫ π

α(c)

sinn−2 t

2n sinn(t/2)
dt .

��
Let us define

Dn(c) = 22−n

√
π

�(n/2)

�((n − 1)/2)

∫ π

α(c)

sinn−2 t

sinn(t/2)
dt .

Then the next theorem holds:

Theorem 4.4 Suppose that f : Bn → Bm is a harmonic function, such that f (0) = a0,
and f has a continuous extension to the point x0 ∈ ∂Bn such that f (x0) = y0 ∈ ∂Bm.

Then lim sup
r→1−

|Dr f (r x0)| ≥ Dn(c), where c = 1+a
2 and a = 〈a0, y0〉.
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If, in addition, f has a differentiable continuation at point x0, then there exists a
positive number λ ∈ R such that D f (x0)∗y0 = λx0 and

λ ≥ Dn(c).

This is sharp.

Proof Let us define the function h(x) = 〈 f (x), y0〉. This function is harmonic in Bn ,
with h(0) = a, and h(x0) = 1. Since, by the Theorem of Fotou Mn

c (1) = 1, using
Theorem 4.2 we have an implication

h(x0) − h(r x0)

1 − r
≥ 1 − Mn

c (r)

1 − r
.

If u(r) = h(r x0), r ∈ [0, 1) then u′(r) = Dh(r x0)x0 = Drh(r x0). From
Lagrange’s theorem we have that for every r ∈ [0, 1) there exists r0 ∈ (r , 1) such that

1 − u(r)

1 − r
= u′(r0) = Drh(r0x0) ≥ 1 − Mn

c (r)

1 − r
.

This means that lim sup
r→1−

Drh(r x0) ≥ lim inf
r→1−

1−u(r)
1−r ≥ Dn(c). Cauchy–Schwarz

inequality provides us that |Dr f (x)| ≥ Drh(x), which gives us

lim sup
r→1−

|Dr f (r x0)| ≥ Dn(c).

��
At the end of this section we will investigate whether or not we can formulate the

similar version of Schwarz lemma on the boundary, for hyperbolic harmonic functions.

Lemma 4.5 Let (ν, μ) = (n − 1, n − 1), where n > 2 (hyperbolic-harmonic case).
Then

dMn
c

dr
(r)

∣∣∣
r=1

= 0.

Proof Like in previous lemma, we have

dMn
c

dr
(r)

∣∣∣
r=1

= lim
r→1− T (r),

Let us define Qhyp(r , t) = sinn−2 t
(1−2r cos t+r2)n−1 . Then

T (r) = 2σ∗(n)(1 − r)n−2(1 + r)n−1
∫ π

α(c)
Qhyp(r , t)dt .
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Also, define Jhyp(r) = ∫ π

α(c) Qhyp(r , t)dt . We can pass with the limit, under proper
integral sign, to get

lim
r→1− Jhyp(r) = Jhyp =

∫ π

α(c)
qhyp(t)dt,

where qhyp(t) = 4−n+1 sinn−2 t sin−2(n−1) t/2.
From this we can draw a conclusion T (r) ∼ dn(1−r)n−2, r → 1−. This immediately
gives our assertion. ��
By this Lemma we conclude that we have different situation concerning hyperbolic-
harmonic function, mappings of unit ball in R

n into unit ball in R
m , in comparison

with the harmonic function in same settings. Namely, we found explicit hyperbolic-
harmonic function, that maps unit ball into interval (−1, 1) such that u(x0) = 1,
for some x0 on the boundary of the unit ball, but radial derivative in the point x0 is
vanishing.

At the first glance, this may look as surprise, having in mind famous Hopf lemma.
Function u is satisfying L(u) = 0, where L is uniformly elliptical partial differential
operator of second order, it has global maximum at point x0 on the boundary of unit
ball, so we expected that normal derivative in the point x0 must be greater than zero.

Let � be a domain in R
n, n ≥ 2, x ∈ � be a point and u belongs to C2(�). We

define

Lu = ai j (x)Di ju + bi (x)Diu + c(x)u, ai j = a ji .

The summation convention that repeated indices indicate summation from 1 to n
is followed here. We adopt the following definitions: operator L is elliptic in point
x ∈ � if the coefficient matrix A(x) = [ai j (x)] is positive definite. If �(x), λ(x) are
the greatest and the smallest eigenvalue of matrix A(x) and �/λ is bounded in � we
say that L is uniformly elliptic in �. Also we will need next condition. Let k > 0 is a
constant and x ∈ � be an arbitrary

|bi (x)|
λ(x)

≤ k, i = 1, . . . , n. (10)

Now, we can formulate Hopf Lemma.

Lemma 4.6 (Hopf lemma, [18], Lemma 3.4) Suppose that L is uniformly elliptic oper-
ator, that satisfies condition (10), c = 0 and Lu ≥ 0 in �. Let x0 ∈ ∂� be such
that

(i) u is continuous at x0;
(ii) u(x0) > u(x) for all x ∈ �;
(iii) ∂� satisfies an interior sphere condition at x0.

Then the outer normal derivative of u at x0, if it exists, satisfies the strict inequality

∂

∂ν
u(x0) > 0.
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What turns out to be is thatHopf lemmademands someconditions on the coefficients
standing by the first-order derivatives of the elliptic partial differential operator L, that
hyperbolic-harmonic functions does not satisfies. We have that hyperbolic-harmonic
functions satisfies Lu = 
0u = 0, where A(x) = I d and bi (x) = 2(n−2)

1−|x |2 , i =
1, . . . , n. Since �(x) = λ(x) = 1, x ∈ Bn , we conclude that operator 
0 does not
satisfies condition (10) in Bn , so we can not apply Hopf lemma in this situation.

A part of our result can be interpreted as a confirmation that condition (10) cannot
be excluded from the statement of Hopf lemma.

Acknowledgements The authors are indebted to M. Arsenović for an interesting discussions on this paper.

5. Appendix

Motivated by the role of the Schwarz lemma in Complex Analysis and numerous
fundamental results, see for instance [4, 19] and references therein, in 2016, the first
author [2] has posted on ResearchGate the project “Schwarz lemma, the Carathéodory
and Kobayashi Metrics and Applications in Complex Analysis”.4

In this project and in [4], cf. also [21], we developed the method related to holo-
morphic mappings with strip codomain (we refer to this method as the approach
via the Schwarz–Pick lemma for holomorphic maps from the unit disc into a strip;
shortly “planar strip method”). It is worth mentioning that the Schwarz lemma has
been generalized in various directions; see [2, 3] and the references therein.

Even in planar case researches had some difficulties in handling Schwarz lemma
for harmonic maps of the unit disc into self which does not fix the origin. It seems that
the researchers have overlooked Burgeth and H. W. Hethcote results and they have
had some difficulties to handle the case f (0) 	= 0 in this context; see for more details
[5, 13, 14].

In joint paper of the first author with M. Svetlik [13] using “planar strip method”
which is a completely different approach than B. Burgeth [9], we get a simple proof of
an optimal version of the Schwarz lemma for real valued harmonic functions (without
the assumption that 0 is mapped to 0 by the corresponding map), which improves
H. W. Hethcote result5.

In joint paper of the first author withA. Khalfallah andM.Mhamdi [12], some prop-
erties of mappings admitting a Poisson-type integral representations and the boundary
Schwarz lemma were considered.

Presently on this project the first author works with some of his associates: A.
Khalfallah, M. Arsenović, M. Svetlik, M. Mhamdi, B. Purtić, H.P. Li, J. Gajić and the
second author of this paper.

Chinese mathematicians have made a great contribution to this field but here we
will mention only some whose results are related to our results. For some interesting
complex n-dimensional generalisations of classical Schwarz lemma type results see
Jian-FengZhu’s articles [22] and [23]. In paper [24] the authors provedSchwarz lemma

4 Various discussions regarding the subject can also be found in the Q&A section on ResearchGate under
the question “What are the most recent versions of the Schwarz lemma?” [20]; see also [30].
5 Note here that Burget’s spherical cap method yield optimal estimate in both planar and spatial case
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on the boundary for holomorphicmappings between unit balls inC
n , and someof theirs

rigidity properties.Generalization of this theorem, for separable complexHilbert space
was given by Z. Chen, Y. Liu and Y. Pan in [15]. While proving Proposition 2.9,
we independently proved Lemma 2.7, but later found that result proven in [15], as
it can be seen in corresponding reference. In [25] the authors proved a higher order
Schwarz-Pick lemma for holomorphicmappings between unit balls in complexHilbert
spaces.

For generalizations of Schwarz lemmas for planar harmonic mappings into the
sharp forms of Banach spaces we refer the interested reader to Chen, Hamada et al.
[3, 26] and literature cited there for the background. Recall the main purpose of the
paper [3] is to develop some methods to investigate the Schwarz type lemmas for
holomorphic mappings and pluriharmonic mappings in Banach spaces. Initially, they
extend the classical Schwarz lemmas for holomorphic mappings to Banach spaces.
Furthermore, they improve and generalize the classical Schwarz lemmas for planar
harmonic mappings and obtain sharp versions for Banach spaces, and present some
applications to sharp boundary Schwarz type lemmas for pluriharmonic mappings in
Banach spaces. The obtained results provide improvements and generalizations of the
corresponding results in [26] (cf. also [6]).
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