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Abstract
Two vertices u, v in a connected graph G are doubly resolved by vertices x, y of G if

d(v, x) − d(u, x) �= d(v, y) − d(u, y).

A setW of vertices of the graph G is a doubly resolving set for G if every two distinct
vertices ofG are doubly resolved by some two vertices ofW . Doubly resolving number
of a graph G, denoted by ψ(G), is the minimum cardinality of a doubly resolving set
for the graph G. The aim of this paper is to investigate doubly resolving sets in graphs.
An upper bound for ψ(G) is obtained in terms of order and diameter of G. ψ(G) is
computed for some graphs, and all graphsG of order nwith the propertyψ(G) = n−1
are determined. Also, doubly resolving sets for unicyclic graphs are studied and it is
proved that the difference between the number of leaves and doubly resolving number
of a unicyclic graph is at most 2.

Keywords Doubly resolving set · Doubly resolving number · Resolving set ·
Unicyclic graph
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1 Introduction

All graphs in this paper are finite, simple and connected. For a graph G, the vertex set
and edge set are denoted by V (G) and E(G), respectively. The length of a shortest path
between vertices u, v is their distance and denoted by d(u, v). For a vertex v ∈ V (G),
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N (v) is the set of all vertices in G that are adjacent to v. The maximum distance
between two vertices in G is the diameter of G and denoted by diam(G). A unicyclic
graph is a graph with exactly one cycle. A set S ⊆ V (G) is an independent set if
no two vertices in S are adjacent to each other. The notations (v1, v2, . . . , vn) and
(v1, v2, . . . , vn, v1) are used for a path of order n, Pn , and a cycle of order n, Cn ,
respectively.

Two vertices u, v in a graph G are resolved by a vertex x ∈ V (G) if d(v, x) �=
d(u, x).A setW of vertices of the graphG is a resolving set forG if every two distinct
vertices of G are resolved by some vertex of W . A resolving set for G with minimum
cardinality is called a basis of G, and its cardinality is called the metric dimension of
G and denoted by dim(G).

Slater [18] introduced the concepts of resolving sets andmetric dimension of graphs.
He found the application of these ideas in US Sonar and Coast Guard Loran stations.
Harary and Melter rediscovered these concepts in [9]. Resolving sets have several
applications in diverse areas such as coin weighing problems [17], network discovery
and verification [3], robot navigation [11], mastermind game [5], problems of pattern
recognition and image processing [16], and combinatorial search and optimization
[17]. For more results about resolving sets and metric dimension, see [2, 4, 5, 7, 10].

During the study of themetric dimension of theCartesian product of graphs,Caceres
et al. [5] defined the concept of doubly resolving sets in graphs. Two vertices u, v in
a graph G are doubly resolved by x, y ∈ V (G) if

d(v, x) − d(u, x) �= d(v, y) − d(u, y).

A setW of vertices of the graph G is a doubly resolving set for G if every two distinct
vertices of G are doubly resolved by some two vertices of W . Every graph with at
least two vertices has a doubly resolving set. The doubly basis of the graph G is a
doubly resolving set for G with minimum cardinality. The doubly resolving number
of graph G, ψ(G), is the cardinality of a basis in G.

Caceres et al. [5] obtained doubly resolving number of trees, cycles and complete
graphs. In [12], it was proved that the problem of finding doubly bases is NP-hard.
Doubly resolving number of Prism graphs and Hamming graphs is computed in [6]
and [13], respectively. For more results about doubly resolving sets in graphs, see [1,
5, 12, 14].

Caceres et al. [5] obtained an upper bound for the metric dimension of Cartesian
product of graphs G and H in terms of ψ(H) and dim(G). They also obtained a
lower bound for the metric dimension of the Cartesian product of a graph G with itself
in terms of ψ(G). Hence, computing doubly resolving number of graphs is useful
for computing metric dimension of Cartesian product of graphs. Moreover, studying
doubly resolving sets is interesting by itself. It is clear that for each graph of order at
least 2, we have ψ(G) ≥ 2. Cáseres et al. found the following upper bound for ψ(G).

Lemma 1.1 [5] For every graph G with n ≥ 3 vertices, we have ψ(G) ≤ n − 1.

Also, through the following three lemmas, they found the doubly resolving number
of complete graphs, paths and cycles.
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Lemma 1.2 [5] For all n ≥ 2, we have ψ(Kn) = max{n − 1, 2}.
Lemma 1.3 [5] For each n ≥ 2, ψ(Pn) = 2.

Lemma 1.4 [5] Let Cn be a cycle of order n. Then,

ψ(Cn) =
{
2 if n is odd,
3 if n is even.

Chartrand et al. in [7] proved that if G is a complete bipartite graph of order n, then
dim(G) = n − 2. They also obtained the following results for metric dimension of
graphs.

Theorem 1.5 [7] Let f (n, d) be the least positive integer k, for which k + dk ≥ n. If
G is a graph of order n ≥ 2 and diameter d, then f (n, d) ≤ dim(G) ≤ n − d.

Theorem 1.6 [7] A graph G of order n ≥ 2 has metric dimension n − 1 if and only if
G is the complete graph Kn .

Motivated by these results, in this paper we investigate doubly resolving sets for
graphs. In Sect. 2, some properties of doubly resolving bases of graphs are presented,
an upper bound for ψ(G) in terms of diameter and order of G is obtained and the
doubly resolving number of complete bipartite graphs is computed. In Sect. 3, all
n-vertex graphs G with ψ(G) = n − 1 are determined. In Sect. 4, doubly resolving
sets of unicyclic graphs are investigated and it is proved that the difference between
the number of leaves and doubly resolving number of a unicyclic graph is at most 2.

2 Some results on doubly resolving sets

In this section, we present some results about doubly resolving sets of graphs. We
obtain the doubly resolving number of some famous families of graphs. An important
upper bound for doubly resolving number of graphs is obtained in terms of order and
diameter of the graph.

By the following lemma, to check whether a given set W ⊆ V (G) is a doubly
resolving set, it does not need to consider the pair of vertices that both of them are in
W .

Lemma 2.1 Let S be a subset of size at least 2 of V (G). If x, y ∈ S, then x, y are
doubly resolved by x, y ∈ S. Also, if a ∈ S and b /∈ S are two vertices in G that are
not doubly resolved by any pair of vertices in S, then for each s ∈ S there exists a
shortest path between b and s that contains a.

Proof Let x, y ∈ S. Then, d(x, x) − d(y, x) = −d(x, y) �= d(x, y) = d(x, y) −
d(y, y). That is x, y are doubly resolved by x, y. Now, let a ∈ S, b ∈ V (G) \ S and
a, b are not doubly resolved by any pair of vertices in S. For each s ∈ S, we have
d(a, s) − d(b, s) = d(a, a) − d(b, a), which implies d(b, s) = d(b, a) + d(a, s). If
P and Q are shortest paths between b, a and a, s, respectively, then P ∪ Q is a path
between b, s with length d(b, s). Therefore, P ∪ Q is a shortest path between b, s that
contains a. �	
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Two distinct vertices u, v are said to be twins if N (v)\{u} = N (u)\{v}. It is
clear that if u, v are twin vertices in G, then for every vertex x ∈ V (G) \ {u, v},
d(u, x) = d(v, x).

Proposition 2.2 Suppose that u, v are twins in a graph G and W is a doubly resolving
set for G. Then, at least one of the vertices u and v is in W. Moreover, if u ∈ W and
v /∈ W, then (W \ {u}) ∪ {v} is also a doubly resolving set for G.

Proof Let u, v be twins, W be a doubly resolving set and u, v /∈ W . Then, for each
a, b ∈ W ,

d(u, a) − d(v, a) = 0 = d(u, b) − d(v, b).

This contradiction implies that W must contain at least one of u or v. Now, let W be
a doubly resolving set for G such that u ∈ W and v /∈ W . If (W \ {u}) ∪ {v} is not a
doubly resolving set for G, then there are vertices x, y ∈ V (G) and w ∈ W such that
x, y are doubly resolved by u, w and are not doubly resolved by v,w. But

d(x, v) − d(y, v) = d(x, u) − d(y, u) �= d(x, w) − d(y, w).

This means (W \ {u}) ∪ {v} is a doubly resolving set for G. �	
One of the well-known families of graphs is the family of complete bipartite graphs.
By the next lemma, we compute the doubly resolving number of complete bipartite
graphs.

Lemma 2.3 Let Kr ,s be a complete bipartite graph of order n ≥ 3 and r ≤ s. Then,

ψ(Kr ,s) =
{
n − 1 if r ≤ 2,
n − 2 if r > 2.

Proof Suppose that Kr ,s be a complete bipartite graph with partite sets X ,Y such that
|X | = r and |Y | = s. Since n ≥ 3 and r ≤ s, we have s ≥ 2. Let W be a doubly
resolving set for Kr ,s . One of the following three cases can be arisen.

Case 1. r = 1. If s = 2, then by Lemma 1.3, ψ(K1,2) = 2 = n − 1. Let s ≥ 3.
Then, all vertices in Y are twins and by Proposition 2.2, |W ∩ Y | ≥ s − 1. Hence,
|W | ≥ n − 2. If |W | = n − 2, then there exists a vertex y0 ∈ Y \ W . Now, for each
w ∈ W , d(y0, w) − d(x0, w) = 1, where X = {x0}. That means W is not a doubly
resolving set. This contradiction yields ψ(K1,s) = s = n − 1.

Case 2. r = 2. In this case, all vertices in X are twins, also all vertices in Y are twins.
Hence, by Proposition 2.2, |W ∩Y | ≥ s−1 and |W ∩X | ≥ 1. Therefore, |W | ≥ n−2.
If |W | = n−2, then X ∩W = {x1} and there exists a vertex y0 ∈ Y \W . Note that for
each y ∈ W ∩Y , we have d(y0, y)−d(x1, y) = 2−1 = 1 and d(y0, x1)−d(x1, x1) =
1 − 0 = 1, which is impossible. Therefore, ψ(K2,s) = s + 1 = n − 1.

Case 3. r ≥ 3. In this case, all vertices in X are twins, also all vertices in Y are
twins. Hence, by Proposition 2.2, |W ∩ Y | ≥ s − 1 and |W ∩ X | ≥ r − 1. Therefore,
|W | ≥ n − 2. Let W be a set of vertices of size n − 2 such that |W ∩ Y | = s − 1 and
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|W ∩ X | = r − 1. Consider a, b ∈ V (Kr ,s). If a, b ∈ Y , then by Lemma 2.1 we can
assume that a ∈ W and b /∈ W . Since s ≥ 3, there exists a vertex a �= w ∈ W ∩Y and
we have d(a, a) − d(b, a) = −2 and d(a, w) − d(b, w) = 0. Hence, a, b are doubly
resolved by a, w. If a, b ∈ X , by a same argument we deduce that a, b are doubly
resolved by a pair of vertices in W . Now, let a ∈ X and b ∈ Y . Since r , s are at least
3, there exist vertices x ∈ W ∩ X \ {a} and y ∈ W ∩ Y \ {b}. Note that

d(a, x) − d(b, x) = 2 − 1 �= 1 − 2 = d(a, y) − d(b, y).

Therefore, W is a doubly resolving set for Kr ,s and ψ(Kr ,s) = n − 2. �	
Through the following theorem, we obtain an upper bound for ψ(G) in terms of order
and diameter of the graph G.

Theorem 2.4 If G is a graph with diameter d and order n ≥ 2, thenψ(G) ≤ n−d+1.

Proof If d = 1 , then G = Kn and by Lemma 1.2, ψ(Kn) ≤ n − d + 1. Now, let
d ≥ 2, d(v0, vd) = d and P = (v0, v1, . . . , vd) be a shortest path between v0 and vd
in G. We claim that S = V (G) \ {v1, v2, . . . , vd−1} is a doubly resolving set for G.
Otherwise, there exist different vertices x, y ∈ V (G) that are not doubly resolved by
vertices in S. By Lemma 2.1 one of the following cases can happen.
Case 1. x, y /∈ S. Since V (G) \ S = {v1, v2, . . . , vd−1}, there exist different i, j ∈
{1, 2, . . . , d − 1} such that x = vi and y = v j . Hence, we have

d(x, v0) − d(y, v0) = d(vi , v0) − d(v j , v0) = i − j �=
j − i = d(vi , vd) − d(v j , vd) = d(x, vd) − d(y, vd).

Therefore, v0 and vd doubly resolve x and y, a contradiction.
Case 2. x = vi ∈ V (G) \ S and y ∈ S. Since vi , y are not doubly resolved by y, v0,
we have

d(y, y) − d(vi , y) = d(y, v0) − d(vi , v0) ⇒ d(v0, y) = d(vi , v0) − d(vi , y).

Also y, vi are not doubly resolved by y, vd and so

d(y, y) − d(vi , y) = d(y, vd) − d(vi , vd) ⇒ d(y, vd) = d(vi , vd) − d(vi , y).

Hence,

d(v0, vd) ≤ d(v0, y) + d(y, vd) = d(vi , v0)

−d(vi , y) + d(vi , vd) − d(vi , y) = d(v0, vd) − 2d(vi , y).

It concludes that d(v0, vd) ≤ d(v0, vd) − 2d(x, y), which is a contradiction.
These contradictions imply that S is a doubly resolving set for G and ψ(G) ≤

|S| = n − d + 1. �	
By Lemma 1.3 for every n ≥ 2, ψ(Pn) = 2 = n − diam(Pn) + 1. Therefore, the
bound in Theorem 2.4 is sharp.

123



2046 M. Jannesari

3 Graphs of order n and doubly resolving number n− 1

The aim of this section is to determine all n-vertex graphs G with ψ(G) = n − 1. To
do this we need to compute doubly resolving number of some graphs.

LetG and H be twographswith disjoint vertex sets. The joinofG and H , denoted by
G∨H , is the graphwith vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{uv| u ∈
V (G), v ∈ V (H)}. To find all graphs G of order n with the property ψ(G) = n − 1,
we need to compute ψ(K2 ∨ Kn).

Lemma 3.1 If Kn is the complement graph of Kn, then ψ(K2 ∨ Kn) = n + 1.

Proof Let K2 ∨ Kn = G, X = V (K2) and Y = V (Kn). If n = 1, then G = C3 and
ψ(G) = 2 = n + 1. Now consider n ≥ 2. Clearly all vertices in X are twins, also all
vertices in Y are twins. Let W be a doubly resolving set for G. By Proposition 2.2,
|W ∩ X | ≥ 1 and |W ∩ Y | ≥ n − 1. Thus |W | ≥ n. If |W | = n, then X ∩ W = {x1}
and there exists a vertex y0 ∈ Y \ W . Note that for each y ∈ W ∩ Y , we have
d(y0, y) − d(x1, y) = 2 − 1 = 1 and d(y0, x1) − d(x1, x1) = 1 − 0 = 1. That is
y0, x1 are not doubly resolved by any pair of vertices inW , a contradiction. Therefore,
ψ(G) = |W | = n + 1. �	

First, we find all graphs G of order n, maximum degree n − 1 and ψ(G) = n − 1.

Proposition 3.2 Let G be a graph of order n ≥ 3 and maximum degree �. If ψ(G) =
� = n − 1, then G is Kn, K1,n−1, or K2 ∨ Kn−2.

Proof By Theorem 2.4, it follows that diam(G) ≤ 2. Suppose that x is a vertex of
degree n − 1 and I is a maximum independent subset of N (x). If I = N (x), then
G = K1,n−1 and if |I | = 1, then G = Kn . Hence, assume that 2 ≤ |I | ≤ n − 2.
This implies that there exists a vertex y ∈ N (x) \ I . We claim that y is adjacent to all
vertices in I . By definition of I , y has a neighbour in I , say a. Since ψ(G) = n − 1,
the set S = V (G) \ {x, y} is not a doubly resolving set for G. If there exists a vertex
b ∈ I that is not adjacent to y, then

d(x, a) − d(y, a) = 1 − 1 �= 1 − 2 = d(x, b) − d(y, b).

This means x, y are doubly resolved by a, b ∈ S. Note that 2 ≤ |I | ≤ |S|, thus for
each v ∈ S, there exists v �= u ∈ S and we have

d(x, u) − d(v, u) = 1 − d(v, u) �= 1 = d(x, v) = d(x, v) − d(v, v).

Therefore, for every v ∈ S, x, v are doubly resolved by some pair of vertices in S.
Since S is not a doubly resolving set, Lemma 2.1 implies that there exists a vertex
s ∈ S such that y, s are not doubly resolved by any pair of vertices in S. Hence,

d(y, s) = d(y, s) − d(s, s) = d(y, a) − d(s, a) = 1 − d(s, a).

But d(y, s) ≥ 1 and d(s, a) ≥ 0 imply d(s, a) = 0 and s = a. Note that diam(G) ≤ 2,
yields

d(a, b) − d(y, b) = 2 − 2 �= 0 − 1 = d(a, a) − d(y, a).
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This contradiction means that y is adjacent to b. Therefore, y is adjacent to all vertices
in I . Since y is an arbitrary vertex in N (x) \ I , the above argument implies that all
vertices in I are adjacent to all vertices in N (x) \ I . We claim that N (x) \ I = {y}.
Suppose on the contrary that |N (x) \ I | ≥ 2. Let S = V (G) \ {a, x}, where a ∈ I is
neighbour of y as before, and c ∈ I ∩ S. We have

d(a, c) − d(x, c) = 2 − 1 �= 1 − 1 = d(a, y) − d(x, y),

and so a, x are doubly resolved by c, y ∈ S. Also

d(x, y) − d(y, y) = 1 �= 0 = d(x, c) − d(y, c)

and for each y �= p ∈ S we have

d(x, y) − d(p, y) �= 1 = d(x, p) − d(p, p).

Therefore, for every p ∈ S, vertices x, p are doubly resolved by some vertices in S.
Since S is not a doubly resolving set, there exists a vertex s ∈ S such that s, a are not
doubly resolved by any pair of vertices in S. If s ∈ I ∩ S, then

d(s, y) − d(a, y) = 1 − 1 �= −2 = d(s, s) − d(a, s),

which is impossible. Thus, s ∈ N (x) \ I . Let s �= y′ ∈ N (x) \ I , this implies
d(a, y′) − d(s, y′) = 1 − d(s, y′) ≤ 0 and d(a, s) − d(s, s) = 1. That means a, s
are doubly resolved by s, y′ ∈ S. This contradiction leads us to N (x) \ I = {y}.
Therefore, |I | = n − 2 and G = K2 ∨ Kn−2. �	
The next theorem determines all graphs G of order n and ψ(G) = n − 1.

Theorem 3.3 Let G be a graph of order n ≥ 3. Then ψ(G) = n − 1 if and only if G
is Kn, K1,n−1, K2,n−2, or K2 ∨ Kn−2.

Proof By Lemmas 1.2, 2.3 and 3.1 the doubly resolving number of each of the graphs
mentioned in the statement of the theorem is n − 1.

For the converse, assume that G is a graph of order n ≥ 3 such that ψ(G) = n− 1.
By Theorem 2.4, it follows that diam(G) ≤ 2. Let � be the maximum degree in G.
Since G is connected and has at least 3 vertices, we have � ≥ 2.

If � = 2, then G is a path Pn or a cycle Cn . If G = Pn , then by Lemma 1.3, n = 3
and G = P3 = K1,2. In the case G = Cn , Lemma 1.4 implies that n ∈ {3, 4} and
G = C3 = K3 or G = C4 = K2,2.

Now, let � ≥ 3. If � = n − 1, then by Proposition 3.2, G is Kn, K1,n−1, or
K2 ∨ Kn−2. If 3 ≤ � ≤ n − 2, then let x be a vertex of degree � and y be a non-
adjacent vertex to x . Since diam(G) ≤ 2, vertices x, y have a common neighbour,
say a. � ≥ 3 implies x has at least two more neighbours, say b and c. Clearly,
S = V (G) \ {a, x} is not a doubly resolving set for G. But a, x are doubly resolved
by y, b because

d(a, y) − d(x, y) = 1 − 2 = −1 < 0 ≤ d(a, b) − 1 = d(a, b) − d(x, b).
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Also for each s ∈ S, vertices x, s are doubly resolved by some pair of vertices in S.
To see this, we must consider two cases s = c or s �= c. If s = c, then d(c, c) −
d(x, c) = −d(x, c) = −1 and d(c, b) − d(x, b) = d(c, b) − 1 ≥ 0. If s �= c, then
d(s, s) − d(x, s) = −d(x, s) < 0 and d(s, c) − d(x, c) = d(s, c) − 1 ≥ 0. Since S
is not a doubly resolving set for G, there exists a vertex s ∈ S such that a, s are not
doubly resolved by any pair of vertices in S. Let us suppose that s �= y. Then

1 ≤ d(a, s) = d(a, s) − d(s, s) = d(a, y) − d(s, y) = 1 − d(s, y).

This contradiction means s = y. Note that 1 = d(a, y)−d(y, y) = d(a, c)−d(y, c).
Hence, d(a, c) = 2 and d(y, c) = 1. Since c is an arbitrary neighbour of x , we deduce
that N (y) = N (x) and N (x) is an independent set. We claim that V (G) = N (x) ∪
{x, y}. Suppose on the contrary that there exists a vertex y′ ∈ V (G)\ (N (x)∪{x, y}).
By argument similar to the above, we have N (y′) = N (x). Since ψ(G) = n − 1, the
set S = V (G) \ {y′, c} can not be a doubly resolving set for G. But y′, c are doubly
resolved by y, b. If s ∈ S ∩ N (x), then

d(c, s) − d(s, s) = 2 �= 0 = d(c, x) − d(s, x).

For s ∈ S \ N (x), let s �= s′ ∈ S \ N (x). Hence,

d(c, s′) − d(s, s′) = 1 − 2 �= 1 = d(c, s) − d(s, s).

Therefore, for every s ∈ S, vertices c, s are doubly resolved by some pair of vertices
in S. In the same way for every s ∈ S, vertices y′, s are doubly resolved by some pair
of vertices in S. This means S is a doubly resolving set for G, which is a contradiction.
Thus, V (G) = N (x) ∪ {x, y}, N (x) = N (y) is an independent set, and x is not
adjacent to y. Therefore, G = K2,n−2. �	

4 Doubly resolving number of unicyclic graphs

In this section, we investigate doubly resolving sets in unicyclic graph. A unicyclic
graph is a graph that has exactly one cycle. Chen andWang [8] designed a polynomial
time algorithms for the problemof finding doubly bases in unicyclic graphs.Also, Lu et
al. [15] proved that unicyclic graphs with minimum degree 2 admit a doubly resolving
set of size at most 3. Both of these papers deal with the problem algorithmically. In this
paper, we prove that the number of leaves of unicyclic graphs is a lower bound for the
doubly resolving number. Also, the doubly resolving number in these graphs is at most
the number of leaves plus 2. In addition, both of these bounds are attainable. If G is a
unicyclic graph, C(G) indicates the unique cycle of G. For each vertex x ∈ V (C(G))

of degree at least 3, we define

V (x) = {v ∈ V (G) \ V (C(G))|∀y ∈ V (C(G)) \ {x}, d(v, x) < d(v, y)},
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and T (x) as the induced subgraph 〈{x} ∪ V (x)〉 of G. Clearly T (x) is a tree. A leaf
in a graph is a vertex of degree 1. We use the notations L(G) and l(G) for the set of
all leaves in the graph G and its cardinality, respectively. Caceres et al. [5] proved the
following lemma for doubly bases of trees.

Lemma 4.1 [5] The set of leaves is the unique doubly resolving basis for a tree.

By the same proof, we can see that each resolving set of a graph contains all leaves.
The following lemma prepares a lower bound for doubly resolving number in terms
of the number of leaves in a graph.

Lemma 4.2 Let v be a vertex of degree 1 in a graph G. Then, v belongs to all doubly
basis of G, and

ψ(G) ≥ l(G).

Proof Let B be a doubly basis of G and u be the neighbour of v. If v /∈ B, then for
every x, y ∈ B, we have d(v, x)−d(u, x) = 1 = d(v, y)−d(u, y). This contradiction
implies that v ∈ B. Therefore, ψ(G) ≥ l(G). �	
Proposition 4.3 Let G be a unicyclic graph and W be a doubly resolving set for C(G).
If every vertex of W is of degree at least 3, then L(G) is a doubly basis of G.

Proof Let r , s ∈ V (G), we need to consider the following three cases.
Case 1. r , s ∈ V (C(G)). Since W is a doubly resolving set for C(G), there are

vertices x, y ∈ W that r , s are doubly resolved by x, y. Let x1 ∈ V (x) and y1 ∈ V (y)
be leaves. Then

d(r , x1) − d(s, x1) = d(r , x) + d(x, x1) − (d(s, x) + d(x, x1)) =
= d(r , x) − d(s, x) �= d(r , y) − d(s, y) =
= d(r , y) + d(y, y1) − (d(s, y) + d(y, y1)) =
= d(r , y1) − d(s, y1).

Therefore, r , s are doubly resolved by leaves x1, y1.
Case 2. r ∈ V (C(G)) and s /∈ V (C(G)). Let s ∈ V (t) for some t ∈ V (C(G)).

Hence, there are vertices x, y ∈ W such that r , t are doubly resolved by x, y. There
are two possibilities, t ∈ {x, y} or t /∈ {x, y}. If t ∈ {x, y}, say t = x , then let y1
be a leaf in V (y) and x1 be a leaf in V (x) such that s is a vertex in the shortest path
between x and x1. Hence, d(x, x1) = d(x, s) + d(s, x1). If r , s are not resolved by
x1, y1, then

d(r , x) + d(x, s)

= (d(r , x) + d(x, s) + d(s, x1)) − d(s, x1) = d(r , x1) − d(s, x1) =
= d(r , y1) − d(s, y1) = d(r , y) + d(y, y1) − (d(s, y) + d(y, y1)) =
= d(r , y) − d(s, y) = d(r , y) − (d(s, x) + d(x, y)).
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Hence, d(r , x)+d(x, y) = d(r , y)−2d(x, s). But we know that d(r , y) ≤ d(r , x)+
d(x, y) satisfies for all three vertices x, y, r ∈ V (G). Therefore,

d(r , y) ≤ d(r , x) + d(x, y) = d(r , y) − 2d(s, x) ≤ d(r , y) − 2,

which is impossible. Thus r , s are doubly resolved by x1, y1. If t /∈ {x, y}, let x1 be a
leaf in V (x) and y1 be a leaf in V (y). Then

d(r , x1) − d(s, x1) = d(r , x) + d(x, x1) − (d(s, t) + d(t, x) + d(x, x1)) =
= d(r , x)−(d(s, t)+d(t, x)) �=d(r , y)−(d(s, t)+d(t, y)) =
= d(r , y) + d(y, y1) − (d(s, t) + d(t, y) + d(y, y1)) =
= d(r , y1) − d(s, y1).

Therefore, r , s are doubly resolved by leaves x1, y1.
Case 3. r , s /∈ V (C(G)). Let r ∈ V (y) and s ∈ V (x) for some x, y ∈ V (C(G)).

If x �= y, let x1 ∈ V (x) be a leaf such that s is in the shortest path between x and x1
and y1 ∈ V (y) be a leaf such that r is in the shortest path between y and y1. Thus,

d(r , x1) − d(s, x1) = d(r , y) + d(y, x) + d(x, s) + d(s, x1) − d(s, x1) > 0,

and

d(r , y1) − d(s, y1) = d(r , y1) − (d(s, x) + d(x, y) + d(y, r) + d(r , y1)) < 0.

Therefore, r , s are doubly resolved by x1, y1. If x = y, then by Lemma 4.1 leaves
of T (x) is a basis for T (x). Let u, t be two leaves of T (x) that doubly resolve r , s.
If x /∈ {u, t}, then u, t are leaves of G. If x ∈ {u, t}, say x = t , then let t �= y1 ∈
V (G) \ V (x) be a leaf of G. Thus

d(r , y1) − d(s, y1) = d(r , x) + d(x, y1) − (d(s, x) + d(x, y1))

= d(r , x) − d(s, x) �= d(r , t) − d(s, t).

Therefore, r , s are doubly resolved by x, t and the result follows. �	
Corollary 4.4 Let G be a unicyclic graph and W be a doubly resolving set for C(G).
If U is the set of all vertices of degree 2 in W, then L(G) ∪ U is a doubly resolving
set for G.

Proof Let U = {u1, u2, . . . , ut }. We construct the graph G ′ by adding leaves vi ; 1 ≤
i ≤ t , to the graph G such that for each i; 1 ≤ i ≤ t , vi is adjacent to ui . By Proposi-
tion 4.3, L(G ′) is a doubly basis of G ′. Note that L(G ′) = L(G)∪{v1, v2 . . . , vt }. Let
x, y be two vertices in G. Then, for every i , d(x, vi )−d(y, vi ) = d(x, ui )−d(y, ui ).
Therefore, L(G) ∪U is a doubly resolving set for G. �	

The next theorem obtains an upper bound for the doubly resolving number of
unicyclic graphs.
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Theorem 4.5 Let G be a unicyclic graph that is not a cycle. If C(G) is of order m,
then

l(G) ≤ ψ(G) ≤
{
l(G) + 1 if m is odd,
l(G) + 2 if m is even.

Proof Let C(G) = (v1, v2, . . . , vm, v1). If m is odd by lemma 1.4, ψ(C(G)) = 2.
Let {vi , v j } be a doubly basis of C(G). Since G is not a cycle, at least one of the
vertices in C(G) is of degree 3. By relabeling vertices of C(G), we can assume that
vi is of degree at least 3. Hence, by Corollary 4.4, W = L(G) ∪ {v j } is a doubly
resolving set for G if v j is of order 2, and W = L(G) if v j is of order 3. Therefore,
l(G) ≤ ψ(G) ≤ l(G) + 1. If m is even by lemma 1.4, l(G) ≤ ψ(C(G)) = 3. The
same argument implies that ψ(G) ≤ l(G) + 2. �	
The following corollary explains some conditions that imply ψ(G) = l(G).

Corollary 4.6 Let G be a unicyclic graph that is not a cycle and B be a doubly basis
of C(G). If all vertices of B are of degree at least 3, then ψ(G) = l(G).

Proof Let U be as in Corollary 4.4. Then, by Corollary 4.4, L(G) ∪ U is a doubly
resolving set for G. Note that U = ∅. Hence, ψ(G) ≤ l(G). Therefore, Theorem 4.5
implies that ψ(G) = l(G). �	
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