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Abstract

The parametric survival model with Weibull distribution can be used to model a wide
range of practical lifetime data. While there have been several studies comparing the
fit of various distributions to right-censored and interval censored data, there are no
recommendations in the literature on optimal distributions to use for left-censored
heavy-tailed data. Parametric Reverse Hazards (PRH) has gained considerable atten-
tion from time-to-event data researchers for its excellent properties and appropriateness
to analyzing left-censored survival data. To analyze left-censored with heavy-tailed
data, we derived the PRH model for a variety of distributions including the Expo-
nential, Log-normal, Inverse Gaussian, Log-logistic, Gompertz—Makeham, Gamma,
Generalized Gamma, Inverse Gamma, Generalized Inverse Gamma, Weibull, Inverse
Weibull, Generalized Inverse Weibull, Modified Weibull, Flexible Weibull, Power
Generalized Weibull, and Marshal-Olkin distributions. Extensive statistical simula-
tions were used to assess the performance of the derived PRH models and compare
these to establish a guideline for which distribution/s would “best” fit for left-censored
heavy-tailed data. We then applied the best performing model to the South Carolina
Enhanced HIV/AIDS Reporting Surveillance System data to explain the effects of
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different demographic, social, and treatment factors on patients’ viral load transition
from detectable-to-undetectable levels.
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1 Introduction

Human immunodeficiency virus (HIV) is a chronic disease which weakens the immune
system, leading to increased susceptibility to a wide range of infections and some types
of cancer [46]. An important biomarker to measure HIV disease progression is HIV
viral load (VL), the number of copies of actively replicating HIV virus in an individual
[42]. By the US Health and Human Services guideline, if the number of copies is less
than or equal to 200 per milliliter of blood, VL is classified as undetectable; otherwise,
itis classified as detectable [14]. To date, there is no cure for HIV but the suppression of
VL to undetectable levels improves physical functioning, reduces opportunistic infec-
tions, reduces HIV related mortality, and is associated with a substantial decrease in
the probability of transmitting HIV to others [6, 10, 15]. Not only is suppressing VL
important on an individual level, it also has the potential to decrease HIV incidence
rates in a community because of reduced infectivity [10, 13]. Consequently, the focus
of care has shifted from survival to improving health outcomes and the success of
highly active antiretroviral therapy (ART) to suppress VL to undetectable levels for
prolonged periods of time has transformed HIV into a manageable chronic disease [42].

To gain insight into the HIV endemic, survival models of patient VL may be an
effective way since traditional regression models are not able to handle censored data
directly. Additionally, these models can be used to assess the effect of various factors
and treatments on VL suppression. The commonly used form of survival model can
be written as

A1) = ro(r)e P

where Ag(?) is the baseline hazard function, x; is the set of covariates, and 8 are
parameters estimating covariate effects on hazard. In semi-parametric survival mod-
els, the regression coefficients are estimated leaving the baseline hazard unspecified.
For example, the Cox Proportional Hazards (PH) model [11] introduced the use of the
partial-likelihood function to estimate the coefficients without needing to characterize
the baseline Hazard Rate. To avoid making distributional assumptions about the base-
line hazard, several studies used nonparametric methods to correct for censoring [18,
31, 34, 35]. However, this can also be disadvantageous since assuming an underlying
distribution naturally smooths the data so that censoring has less impact on parameter
estimates.

While the parametric survival models can be advantageous in many respect, a
well-suited parametric distribution for baseline hazard generally ensures more precise
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estimation of hazard parameters when compared to the semi-parametric counterpart.
However, such benefits also come with a very commonly faced challenge for the
applied researchers of selecting the appropriate parametric distribution. This gets even
more challenging in cases where the data present characteristics, e.g., left censored
time-to-events, heavy-tailed event time density, not very frequently studied in related
literature. Given the importance of choosing right distribution in a parametric survival
model, any guidance on choosing well-fitting parametric distributions can be a useful
addition to the related literature helping applied researchers.

There have been several studies (e.g., [23, 24, 39]) that studied the comparative
fits of various distributions to the right-censored and interval-censored lifetime data.
However, there are no known recommendations or exploration in the literature on
guiding the optimal choice of distribution to use while modeling left-censored time-
to-event with heavy-tailed event times. These data features not rare in chronic disease
biomarker settings, e.g., HIV VL as discussed in above and characterized further in
below (see Fig. 1).

Among the very limited studies in literature analyzing time-to-event of HIV VL
suppression, it may be notable that [40] applied a lognormal survival model using
a fully parametric approach to take into account the left-censored HIV VL counts.
The choice of lognormal distribution was guided by a previous work of [17] based on
the estimated lognormal survival distribution function was contained within the 95%
confidence interval of nonparametric Kaplan—-Meier estimate. Despite [40] presented
sensitivity analysis by comparing the lognormal survival model to a univariate mixed
model and a Cox PH model, it was not known if any other survival distributions could
provide a better fit to the data.

While analyzing left-censored event time data, a further challenge can be the use
of the appropriate hazard function for estimation of event risk. The common and
widely used estimate of time-to-event risk, Hazard Rate (HR), is appropriate for using
with right-censored lifetime data and may be very unstable if used for analyzing left-
censored event time risk [43]. A more appropriate choice of estimating left-censored
time-to-event risk can be the Reversed Hazard Rate (RHR) [43].

Since its introduction in 1963 [2], the RHR has been used in various applications
and several articles [5, 12, 16, 20, 28, 29, 36, 37] studying the properties of the RHR
function and devising methodologies based on it to analyze left-censored lifetime data
are found in the literature. One recent development is the Parametric Reversed Hazards
(PRH) model based on the RHR to be applied to left-censored lifetime data [43]. In
this formulation [43], the lifetime random variable was assumed to be distributed as
inverted Weibull.

This current study derives the PRH model for a variety of distributions which
may be appropriate for left-censored heavy-tailed data including the Exponential,
Log-normal, Inverse Gaussian, Log-logistic, Gompertz—Makeham, Gamma, General-
ized Gamma, Inverse Gamma, Generalized Inverse Gamma, Weibull, Inverse Weibull,
Generalized Inverse Weibull, Modified Weibull, Flexible Weibull, Power Generalized
Weibull, and Marshal-Olkin distributions. Extensive statistical simulations are used
to assess the performance of the derived PRH models and compare these to estab-
lish a guideline for which distribution/s would “best” fit left-censored, heavy-tailed
HIV VL data. We applied the selected best performing model to the South Carolina
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Fig. 1 Density of observed and simulated data

Enhanced HIV/AIDS Reporting Surveillance System (SC eHARS) data to explain
effects of different demographic, social, and treatment factors on patients’ VL tran-
sition from detectable-to-undetectable levels. Recommendations from this study may
help researchers apply more accurate models for this type of censoring, specifically
in HIV VL-related studies where left censoring may be a common occurrence and the
data demonstrate considerably uncommon features, e.g., being heavy-tailed.

2 The Parametric Reverse Hazards model

The Parametric Reversed Hazard (PRH) model [43] is a fully parametric model based
on the Reversed Hazard Rate (RHR) for the analysis of left-censored data. The Haz-
ard Rate (HR) used for analyzing more common right-censored time-to-event data
is defined as the instantaneous rate of an event in an infinitesimal time width, Az,
following an event free time ¢ and expressed mathematically as

P(T <t+ At|]T <t
A(t) = lim T =t+all =0
At—0 At

Unlike the above, RHR of T is the instantaneous rate of the event occurring in an
infinitesimal time width, A¢, preceding ¢, given that the event occurred before time .
It is defined as
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P(t— At <TIT <1)
At

A () = Alzifo

In terms of the distribution function, F(¢), and probability density function, f (), the
RHR function can be written as

)\r(t) = %

By letting X be a p x 1 vector of covariates, we can now define the PRH model as

Ar(t1X) = Aro(0)g(B: X)

where Ag(?) is the baseline RHR, g(8; X) is anonnegative function of X and g (a p x 1
vector of regression parameters), and A(¢|X) is the RHR of T given the covariates X.
The PRH model can also be expressed in terms of the distribution function as

F(11X) = Fo(t)* %)

where F(¢|X) is the distribution function of 7' given X and Fy(¢) is the baseline
distribution function in the absence of covariates.

Suppose that the lifetime random variable 7' is randomly left-censored by Z. In
practice, we may observe the vectors (Y, 8, X), where ¥ = max(7,Z) and § =
I(T = Y) with I(.) being the indicator function. The likelihood function can then be
written as

n

LB.y) = [ f il F(yilx)'

i=1

Using this general notation, we show the derivation assuming Generalized Inverse
Weibull as the baseline hazard distribution. See supplementary materials for model
derivations for the other baseline hazard distributions.

When the lifetime random variable follows a Generalized Inverse Weibull distribu-
tion, the baseline distribution function is given by

Fo(t) = eiy(é)fx, t>0;a,y,A>0
The baseline RHR of T is then obtained as
ro(t) = ayr®r~ @D
In the presence of the covariates X, we have
A(t1X) = ayrdr— @ Db

a1exp(x; )
F(t|X) = [e‘y(?) }
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_ (A)a exp(x; B)
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From these, the likelihood and the log-likelihood functions are obtained as

n 1 5 B <£)Dt exp(x;B)
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Similar derivations for several other distributions including the Exponential, Log-
normal, Inverse Gaussian, Log-logistic, Gompertz—Makeham, Gamma, Generalized
Gamma, Inverse Gamma, Generalized Inverse Gamma, Weibull, Inverse Weibull,
Modified Weibull, Flexible Weibull, Power Generalized Weibull, and Marshal-Olkin
distributions are provided in supplementary materials.

3 Simulation Study

We used the SC eHARS HIV VL data, further described in the next section, as a
real-life example of such data and simulate data with similar distribution for the time
to transit from detectable VL to undetectable VL state after HIV diagnosis. Figure 1
presents the density of time to transition from detectable-to-undetectable VL transition
for both observed data and a randomly selected set of simulated data showing sim-
ilarities in densities. The time to detectable-to-undetectable VL transition data were
simulated from a Skewed Normal distribution with location, scale, and shape param-
eters, respectively, as 5, 30, 50. Different parameters were tested under the Skewed
Normal distribution using a trial-and-error approach until the simulated data matched
as close as possible to the SC VL data.
To assess the model fits best, we used information criteria including

1. Akaike Information Criterion (AIC) rewards goodness of fit but penalizes the
model for increasing the number of estimated parameters:

AIC =2k —21In(L)
2. Bayesian Information Criterion (B C), which uses a larger penalty than AIC:
BIC =klIn(n) —21In(L)

3. Corrected Akaike Information Criterion (A7 CC), which corrects the AIC for over-
fitting of the data in cases where the sample size is relatively small compared to
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the number of parameters in the model:
AICC = AIC + Qk(k+1))/(n —k — 1)

4. Hannan—Quinn Information Criterion (H Q I C), which s often cited in the literature
but, unlike A7C, it is not asymptotically efficient:

HQIC = 2kIn(In(n)) — 2In(L)

5. Bozdogan’s Consistent Akaike Information Criterion (C A1 C), is another adjusted
form of AIC which is consistent:

CAIC = k(In(n) + 1) — 21In(L)

Where k is the number of parameters to be estimated, L is the maximum value of the
likelihood function, and » is the number of observations. The model with the smallest
average AIC, BIC, AICC, HQIC, and CAIC value was determined to be the
model with the best fit. The simulation studies were conducted using the Statistical
Computing Software, R version 3.2.5. The summaries of the simulation results are
presented in Tables 1, 2, 3.

Table 1 summarizes the results for the simulated data with a censoring rate of 20%),
Table 2 for data with censoring rate of 30%, and Table 3 for data with censoring rate
40%. From these tables, it is clear that the Generalized Inverse Weibull distribution con-
sistently performs the best, having the lowest average AIC,BIC,AICC,HQIC,and
CAIC. Following closely behind in performance are the Log-Logistic, Log-Normal,
Inverse Gaussian, and Gamma distributions, respectively. This is consistent across all
censoring rates and sample sizes. The consistently worst performing distributions are
the Modified Weibull, Inverse Weibull, Inverse Gamma, Power Generalized Weibull,
and Exponential distributions, respectively.

4 Application to SC eHARS Data

The HIV endemic disproportionately impacts the Southern states in the US in terms of
the overall number of people living with HIV/AIDS (PLWHA), and survival rates after
diagnosis [33]. SC, like many Southern states, ranks high for poverty, unemployment,
and low educational completion which are all characteristics that may promote disease
transmission. The number of PLWHA in SC has increased from 12,089 in 2004 to
16,311 in 2014 [38]. Studies on retention in HIV care found that a large proportion
of PLWHA in SC failed to remain in care on a regular basis [30, 41]. Given the HIV
burden in SC and the need to focus on retention in HIV care within the context of the
National HIV/AIDS Strategy goals, it is important to identify factors which suppress
VL. Identifying these factors will assist in developing targeted strategies to reduce the
HIV burden in SC.

Since January 2004, all health care providers, hospitals, and laboratories in SC are
legally mandated to report all CD4 count and VL measurements to the SC Depart-
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Table 1 Average summary measures across 5000 simulations from simulation study with censoring rate

20%
Distribution Sample Size = 1000

AIC BIC AICC HQIC CAIC
Exponential 8753.05 8757.96 8753.06 8754.92 8758.96
Log-Normal 6162.11 6167.02 6162.12 6165.84 6173.92
Inverse Gaussian 6163.50 6168.41 6163.51 6167.23 6175.31
Gamma 6199.30 6204.21 6199.31 6203.03 6211.12
Generalized Gamma 6206.54 6209.45 6206.57 6212.14 6224.27
Inverse Gamma 10622.02 10626.93 10622.03 10625.75 10633.83
Log-Logistic 6115.87 6120.78 6115.88 6119.60 6127.68
Weibull 6502.31 6507.22 6502.32 6506.04 6514.13
Inverse Weibull 13992.74 13997.65 13992.75 13996.47 14004.55
Generalized Inverse Weibull 5959.85 5964.76 5959.87 5965.44 5971.57
Flexible Weibull 7768.04 7772.95 7768.05 777177 7779.86
Marshal-Olkin 753291 7537.82 7532.94 7538.51 7550.63
Power Generalized Weibull 10492.37 10497.28 10492.38 10496.10 10504.19
Modified Weibull 2.97e63 2.97e¢63 2.97¢63 2.97e63 2.97e63
Gompertz 8177.79 8182.70 8177.80 8181.52 8189.60
Distribution Sample Size = 2000

AIC BIC AICC HQIC CAIC
Exponential 17504.19 17508.97 17504.20 17506.25 17510.79
Log-Normal 12323.86 12329.46 12323.87 12327.97 12337.06
Inverse Gaussian 12326.67 12332.27 12326.68 12330.79 12339.88
Gamma 12398.14 12403.74 12398.14 12402.25 12411.34
Generalized Gamma 12410.79 12416.39 12410.80 12416.96 12430.60
Inverse Gamma 21240.12 21245.72 21240.13 21244.24 21253.32
Log-Logistic 12230.91 12236.51 12230.92 12235.03 12244.12
Weibull 13007.93 13013.53 13007.94 13012.05 13021.14
Inverse Weibull 27981.55 27987.15 27981.56 27985.66 27994.75
Generalized Inverse Weibull 11916.55 11922.15 11916.56 11922.72 11936.35
Flexible Weibull 15488.38 15493.98 15488.39 15492.50 15501.59
Marshal-Olkin 15059.88 15065.48 15059.90 15066.05 15079.69
Power Generalized Weibull 20980.81 20986.41 20980.82 20984.92 20994.01
Modified Weibull 1.27e68 1.27e68 1.27e68 1.27e68 1.27e68
Gompertz 16177.93 16183.53 16177.94 16182.05 16191.13
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Table 1 continued

Distribution Sample Size = 3000
AlIC BIC AlICC HQIC CAIC

Exponential 26255.36 26261.37 26255.36 26257.52 26262.37
Log-Normal 18485.63 18491.64 18485.64 18489.96 18499.65
Inverse Gaussian 18489.88 18495.89 18489.89 18494.20 18503.90
Gamma 18597.16 18603.17 18597.16 18601.48 18611.17
Generalized Gamma 18615.33 18621.34 18615.34 18621.82 18636.35
Inverse Gamma 31858.19 31864.20 31858.19 31862.51 31872.20
Log-Logistic 18346.09 18352.10 18346.09 18350.41 18360.10
Weibull 19515.02 19521.03 19515.03 19519.34 19529.04
Inverse Weibull 41970.35 41976.36 41970.35 41974.67 41984.36
Generalized Inverse Weibull 17873.49 17879.50 17873.50 17879.97 17894.51
Flexible Weibull 23311.80 23317.87 23311.80 23316.12 23325.81
Marshal-Olkin 22586.86 22592.87 22586.87 22593.34 22607.88
Power Generalized Weibull 31469.28 31475.29 31469.28 31473.60 31483.29
Modified Weibull 1.00e68 1.00e68 1.00e68 1.00e68 1.00e68
Gompertz 24099.00 24105.01 24099.01 24103.32 24113.01

Table 2 Average summary measures across 5000 simulations from simulation study with censoring rate
30%

Distribution Sample Size = 1000
AIC BIC AlICC HQIC CAIC

Exponential 7752.73 7757.64 7752.74 7754.60 7758.64
Log-Normal 5571.09 5576.00 5571.10 5574.82 558291
Inverse Gaussian 5572.56 5577.47 5572.57 5576.29 5584.38
Gamma 5603.77 5608.68 5603.78 5607.50 5615.58
Generalized Gamma 5611.47 5616.38 5611.50 5617.07 5629.20
Inverse Gamma 9731.22 9736.13 9731.23 9734.95 9743.04
Log-Logistic 5521.91 5526.82 5521.92 5525.64 5533.73
Weibull 5848.74 5853.65 5848.75 5852.47 5860.55
Inverse Weibull 12430.99 12435.90 12431.01 12434.72 1244281
Generalized Inverse Weibull 5401.80 5406.71 5401.83 5407.40 5419.53
Flexible Weibull 6843.80 6848.71 6843.81 6847.53 6855.61
Marshal-Olkin 7118.74 7123.65 7118.77 7124.34 7136.47
Power Generalized Weibull 9251.89 9256.80 9251.90 9255.62 9263.70
Modified Weibull 6.15e63 6.15e63 6.15e63 6.15e63 6.15e63
Gompertz 7117.94 7122.85 7117.95 7121.67 7129.76
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Table 2 continued

Distribution Sample Size = 2000
AlIC BIC AlICC HQIC CAIC
Exponential 15503.37 15508.97 15503.37 15505.43 15509.97
Log-Normal 11141.41 11147.01 11141.41 11145.52 11154.61
Inverse Gaussian 11144.38 11149.98 11144.39 11148.49 11157.58
Gamma 11206.68 11212.28 11206.68 11210.79 11219.88
Generalized Gamma 11219.82 11225.42 11219.84 11225.99 11239.63
Inverse Gamma 19458.34 19463.94 19458.34 19462.45 19471.54
Log-Logistic 11042.28 11047.88 11042.28 11046.39 11055.48
Weibull 11700.72 11706.32 11700.73 11704.83 11713.92
Inverse Weibull 24857.86 24863.46 24857.87 24861.98 24871.07
Generalized Inverse Weibull 10799.21 10804.81 10799.22 10805.38 10819.01
Flexible Weibull 13628.37 13633.97 13628.37 13632.48 13641.57
Marshal-Olkin 14231.37 14236.97 14231.38 14237.54 14251.17
Power Generalized Weibull 18499.64 18505.24 18499.64 18503.75 18512.84
Modified Weibull 1.95e¢63 1.95¢63 1.95¢63 1.95e63 1.95e63
Gompertz 14424.68 14430.28 14424.68 14428.79 14437.88
Distribution Sample Size = 3000
AlIC BIC AICC HQIC CAIC

Exponential 23254.14 23260.15 23254.14 23256.30 23261.15
Log-Normal 16711.43 16717.44 16711.43 16715.75 16725.44
Inverse Gaussian 16715.90 16721.91 16715.90 16720.22 16729.91
Gamma 16809.04 16815.05 16809.04 16813.36 16823.05
Generalized Gamma 16828.00 16834.01 16828.01 16834.48 16849.02
Inverse Gamma 29185.65 29191.66 29185.66 29189.97 29199.67
Log-Logistic 16562.88 16568.89 16562.88 16567.20 16576.89
Weibull 17551.99 17557.99 17552.00 17556.31 17566.01
Inverse Weibull 37284.93 37290.94 37284.94 37289.25 37298.95
Generalized Inverse Weibull 16197.20 16203.21 16197.20 16203.68 16218.22
Flexible Weibull 20402.93 20408.94 20402.93 20407.25 20416.94
Marshal-Olkin 21344.14 21350.15 21344.15 21350.62 21365.16
Power Generalized Weibull 27747.57 27753.58 27747.58 27751.89 27761.59
Modified Weibull 5.20e64 5.20e64 5.20e64 5.20e64 5.20e64
Gompertz 21422.25 21428.26 21422.25 21426.57 21436.26

ment of Health and Environmental Control (DHEC) [7]. These data are stored in the
SC eHARS database along with the patient’s socio-demographic characteristics. The
quality rating of the SC eHARS database exceeds the CDC minimum standards of
reporting timeliness with 95% of new cases being reported within 6 months of HIV
diagnosis and 98% of all HIV cases reported [44]. Our sample consisted of 6,221
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Table 3 Average summary measures across 5000 simulations from simulation study with censoring rate

40%
Distribution Sample Size = 1000

AIC BIC AICC HQIC CAIC
Exponential 6741.30 6746.21 6741.31 6743.17 6747.21
Log-Normal 4953.90 4958.81 4953.91 4957.63 4965.71
Inverse Gaussian 4955.39 4960.30 4955.40 4959.12 4967.20
Gamma 4982.80 4987.71 4982.82 4986.53 4994.62
Generalized Gamma 4986.95 4991.86 4986.98 4992.55 5004.68
Inverse Gamma 8650.96 8655.97 8650.97 8654.69 8662.77
Log-Logistic 4905.78 4910.69 4905.79 4909.51 4917.59
Weibull 5174.16 5179.07 5174.17 5177.89 5185.97
Inverse Weibull 10840.67 10845.58 10840.68 10844.40 10852.48
Generalized Inverse Weibull 4815.45 4820.36 4815.48 4821.05 4833.18
Flexible Weibull 5926.41 5931.32 5926.42 5930.14 5938.23
Marshal-Olkin 6704.64 6709.55 6704.66 6710.23 6722.36
Power Generalized Weibull 8003.90 8008.81 8003.91 8007.63 8015.72
Modified Weibull 4.60e63 4.60e63 4.60e63 4.60e63 4.60e63
Gompertz 6218.98 6223.89 6218.99 6222.71 6230.79
Distribution Sample Size = 2000

AIC BIC AICC HQIC CAIC
Exponential 13480.48 13486.08 13480.48 13482.54 13487.08
Log-Normal 9905.84 9911.44 9905.85 9909.95 9919.04
Inverse Gaussian 9908.88 9914.48 9908.88 9912.99 9922.08
Gamma 9964.45 9970.05 9964.46 9968.56 9977.65
Generalized Gamma 9972.46 9978.06 9972.47 9978.63 9992.26
Inverse Gamma 17297.85 17303.45 17297.85 17301.96 17311.05
Log-Logistic 9809.98 9815.58 9809.99 9814.09 9823.18
Weibull 10349.18 10354.78 10349.19 10353.29 10362.38
Inverse Weibull 21677.25 21682.85 21677.26 21681.37 21690.46
Generalized Inverse Weibull 9626.12 9631.72 9626.13 9632.29 9645.92
Flexible Weibull 11890.95 11896.55 11890.96 11895.07 11904.15
Marshal-Olkin 13403.17 13408.77 13403.18 13409.34 13422.97
Power Generalized Weibull 16003.69 16009.29 16003.69 16007.80 16016.89
Modified Weibull 2.09e62 2.09e62 2.09e62 2.09e62 2.09e62
Gompertz 12435.16 12440.76 12435.17 12439.27 12448.36
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Table 3 continued

Distribution Sample Size = 3000

AlIC BIC AlICC HQIC CAIC
Exponential 20220.29 20226.30 20220.29 20222.45 20227.30
Log-Normal 14861.39 14867.40 14861.39 14865.71 14875.40
Inverse Gaussian 14865.96 14871.97 14865.97 14870.29 14879.98
Gamma 14948.26 14954.27 14948.26 14952.58 14962.27
Generalized Gamma 14961.84 14967.85 14961.85 14968.33 14982.86
Inverse Gamma 25945.08 25951.09 25945.09 25949.41 25959.10
Log-Logistic 14716.61 14722.62 14716.62 14720.93 14730.62
Weibull 15527.55 15533.56 15527.55 15531.87 15541.56
Inverse Weibull 32514.24 32520.25 32514.24 32518.56 32528.25
Generalized Inverse Weibull 14440.87 14446.88 14440.88 14447.35 14461.89
Flexible Weibull 17877.73 17883.74 17877.73 17882.05 17891.74
Marshal-Olkin 20102.14 20108.15 20102.15 20108.62 20123.16
Power Generalized Weibull 24003.98 24009.99 24003.98 24008.31 24018.00
Modified Weibull 9.34e65 9.34e65 9.34e65 9.34e65 9.34e65
Gompertz 18726.64 18732.65 18726.65 18730.97 18740.66

residents in SC who were aged > 13 years or older; diagnosed or living with HIV
infection between January 1, 2005, and December 31, 2013; had detectable VL at the
start of the study period; had at least two reported VL values during the study period.

This study applies the best model as determined from the simulation study to left-
censored heavy-tailed HIV VL data from South Carolina. The aim of applying the PRH
model to this dataset is to explain the risk behavior of transitioning from detectable VL
to undetectable VL. Patients with undetectable VL at the beginning of the study were
defined as being left-censored. Covariates that were assessed include gender (male
or female), race (White, Black, or other), HIV risk exposure group (heterosexual,
men who have sex with men, or other), place of residence (rural or urban), age at
baseline, initial treatment regimen (single tablet regimen, multiple tablet regimen),
and baseline CD4 count (200 or less, 201 to 350, 351 to 500, or more than 500). Note
that HIV risk exposure group refers to how the patient was first exposed to HIV with
options including heterosexual HIV infected partner, men who have sex with other
men, injecting drug user, no identifiable risk, and no risk reported. Results from the
PRH model are presented and discussed in the next section.

Of the individuals in our sample, 1703 (27%) had an undetectable VL at the begin-
ning of the observation period, so they were considered as being left-censored (Table
4). Mean age of the sample at baseline was 40.0 years (range = 14.8-81.6). The major-
ity of subjects were male (n = 3657, 58.8%), Black (n = 4966, 79.8%), and lived in
an urban county when diagnosed with HIV (n = 4208, 67.6%). The CD4 count at
the beginning of the study was less than 200 cells/mm? for just over one third of the
individuals (34.03%). Almost half of the sample had missing treatment regimen (n =
2928, 47.1%).
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Table 4 Characteristics of persons living with HIV in South Carolina, 2005-2013

Characteristics Frequency (%)/Summary statistics
n=06221

Gender

Female 2564 (41.22%)

Male 3657 (58.78%)
Race

Black 4966 (79.83%)

White 1086 (17.46%)

Others 169 (2.72%)
Risk of Exposure

Heterosexual 2295 (36.89%)

Men who have Sex with Men (MSM) 1911 (30.72%)

Others 2015 (32.39%)
Place of Residence

Urban 4208 (67.64%)

Rural 2013 (32.36%)
Starting Treatment Regimen

Single Tablet Regimen (STR) 1056 (16.97%)

Multiple Tablet Regimen (MTR) 2237 (35.96%)

Missing 2928 (47.07%)
Baseline Age (in years) Range = 14.84-81.58; Mean = 39.99; SD = 11.46
CD4 Count (cell/mm?3)

200 or less 2136 (34.34%)

201 to 350 1253 (20.14%)

351 to 500 1117 (17.96%)

More than 500 1715 (27.57%)
Outcome

Event (Det VL to Undet VL) 4518 (72.62%)

Left-censored 1703 (27.38%)

SD standard deviation, Det detectable, VL viral load, Undet undetectable

The Generalized Inverse Weibull distribution, which was found to be the best per-
forming distribution from the simulation study, is applied to analyze the left-censored
SC eHARS data time-to-event data for detectable-to-undetectable VL transition. Table
5 shows the results of the estimated PRH model using a Generalized Inverse Weibull
distribution. Information on treatment regimen is a very important variable to use in
our model to assess which type of treatment has the most, if any, impact on the tran-
sition from detectable-to-undetectable VL. However, this information is missing in
almost 50% of the subjects in our sample. Thus, we fit the model without this starting
treatment regimen information (Model 1) and then we fit a second model with reduced
sample size after including the treatment variable in the model (Model 2). It should be
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Table 5 Estimated Reverse Hazard Rates (HR) using Generalized Inverse Weibull Reverse Hazard model
(without interactions) of SC adult HIV patients

Characteristics Model 1 Model 2
n=6,221 n=3,293
Reverse HR (95% CI) Reverse HR (95% CI)
Treatment Regimen
Single Tablet Regimen (STR) - Ref
Multiple Tablet Regimen (MTR) - 1.32(1.22,1.42)
Gender
Female Ref Ref
Male 1.27 (1.19, 1.37) 5.23 (4.78,5.72)
Race
Black Ref Ref
White 1.21 (1.14, 1.29) 1.18 (1.10, 1.26)
Others 2.05(1.83,2.30) 1.02 (0.85, 1.24)
Risk of Exposure
Heterosexual Ref Ref

Men who have Sex with Men (MSM)
Others
Place of Residence
Rural
Urban
Baseline Age (in years)
CD4 Count (cell/mm?3)
200 or less
201 to 350
351 to 500
More than 500

1.42 (1.30, 1.55)
1.46 (1.36, 1.57)

Ref
2.67 (2.48,2.87)
0.98 (0.98, 0.99)

Ref

0.97 (0.90, 1.06)
1.22 (1.13, 1.32)
0.93 (0.87, 0.99)

0.73 (0.67, 0.79)
0.57 (0.53, 0.62)

Ref
2.01 (1.88,2.15)
0.95 (0.95, 0.96)

Ref

0.75 (0.70, 0.82)
0.87 (0.81, 0.94)
0.38 (0.35,0.41)

noted that if there was not such a large proportion of missing values in the treatment
variable, we would fit only one model, Model 2.

While several covariates have been shown to have an effect on the time-to-event
of transitioning from detectable-to-undetectable VL level, the significant change in
behavior of some of these covariates comparing the model incorporating the treatment
variable compared to the model without this important factor suggests that an inter-
action may be present between treatment regimen and each of the other covariates.
Additional models were run testing for these interactions. The only statistically signif-
icant interaction found was between treatment regimen and age, the results of which
are shown in Table 6.

The final model is shown in Table 6. Males are 1.11 times more likely to reach
undetectable levels faster than their female counterparts (95% CI 1.00, 1.24). White
individuals are 1.53 times more likely to reach undetectable levels faster than Black
individuals (95% CI 1.40, 1.67). Other races are 0.86 times less likely to reach unde-
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Table 6 Estimated Reverse Hazard Rates using Generalized Inverse Weibull Reverse Hazard model (with
interactions) of SC adult HIV patients

Characteristics Reverse HR (95% CI)

Treatment Regimen
Single Tablet Regimen (STR)
Multiple Tablet Regimen (MTR)
Gender
Female
Male
Race
Black
White
Others
Risk of Exposure
Heterosexual
Men who have Sex with Men (MSM)
Others
Place of Residence
Rural
Urban
Baseline Age (in years)
CD4 Count (cell/mm?3)
200 or less
201 to 350
351 to 500
More than 500

Interaction of treatment by age

Ref
0.86 (0.59, 1.24)

Ref
1.11 (1.00, 1.24)

Ref
1.53 (1.40, 1.67)
0.86 (0.63, 1.16)

Ref
0.99 (0.87, 1.12)
1.00 (0.90, 1.11)

Ref
0.94 (0.86, 1.02)
0.94 (0.93, 0.95)

Ref

0.92 (0.79, 1.06)
0.98 (0.85, 1.12)
0.98 (0.86, 1.11)
1.01 (1.00, 1.02)

tectable levels faster than Black individuals, though this finding is not significant (95%
CI 0.63, 1.16). Risk of exposure, place of residence (rural vs urban), and CD4 count
do not seem to have any statistically significant impact on the time taken to transition
from detectable-to-undetectable VL levels. The significant interaction between treat-
ment regimen and age highlights that older people living with HIV/AIDS are 0.97
times less likely to reach undetectable levels faster than their younger counterparts
(95% C10.97, 0.98).

5 Discussion

The current study derived several extensions of the PRH model and conducted exten-
sive simulation studies to evaluate the usefulness of parametric regression models
based on the Reversed Hazard Rate for analyzing left-censored heavy-tailed HI'V viral
load time-to-event data. Simulation studies suggested the best distribution to use under
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the PRH model is the Generalized Inverse Weibull distribution followed in order of
performance by Log-Logistic, Log-Normal, Inverse Gaussian, and Gamma distribu-
tions.

Application of this best performing model on the SC eHARS data revealed impor-
tant factors on the time to transition from detectable-to-undetectable viral load levels.
Males were found to be more likely to reach undetectable levels faster than females.
This trend is also evident in several recent studies [4, 7, 25]. A possible reason for this
disparity may be attributed to the higher rates of treatment adherence among males
compared to females. Though some studies did not find an association between gen-
der and treatment adherence, a meta-analysis [22] of 207 studies concluded that males
adhere more to ART than females.

White individuals are more likely to reach undetectable levels faster than Black
individuals. This is supported by several studies which show that Black individuals
are disproportionately affected by HIV/AIDS as they tend to have poorer access to
health care, are less likely to receive treatment, less likely to adhere to treatment, and
less likely to survive HIV/AIDS [4, 7-9, 19, 27, 32].

This study did not find any statistically significant association between place of
residence and time to transition from detectable-to-undetectable VL levels. This may
seem in contrary to the expectation that individuals who live in urban areas would be
more likely to reach undetectable levels faster than those who live in rural areas due to
the typically increased access to health care and higher range of specialists available to
people living with HIV/AIDS in urban areas [44, 45]. Howeyver, other studies (e.g.,[9])
have also reported analyses supporting the current study reporting no significant effect
of place of residence on detectable-to-undetectable VL transition.

Finally, the interaction between drug regimen and age highlights that older people
who are on a multiple treatment regimen are likely to reach undetectable levels slower
than their younger counterparts. There are mixed findings on this in the existing lit-
erature. Young people with HIV tend to have delayed diagnosis and thus higher VL
at baseline. One study [7] suggests that this along with underutilization of health care
due to HIV-related stigma explains their finding that younger people with HIV reach
undetectable levels slower than their older counterparts. A possible explanation of our
result may be that older people are not as adherent to treatment [22] or perhaps they
have a co-existing morbidity which effects the rate at which they reach undetectable
levels.

There are several limitations of the SC eHARS database. Data on VL and CD4
count measurements were not available for those who dropped out of medical care
after initial diagnosis—this includes those who passed away, moved to a different
state, etc. Additionally, persons living with HIV/AIDS who have not been diagnosed
were not captured in this database. The database also does not include information on
morbidities which may be co-existing with HIV/AIDS which can impact the effect
of drug regimens, especially in older people. Since the interaction between age and
drug regimen is found to be statistically significant to have an impact on the VL
transition, co-existing conditions warrant further exploration. These limitations may
have resulted in not finding an association with factors we would expect based on prior
research.
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Regardless of these limitations, the application to the SC eHARS database provides
important information on the trajectories of VL in SC over time. The results obtained
in this study can be used to direct researchers in applying more accurate models when
studying similar databases. We recommend that the Generalized Inverse Weibull PRH
model be used for analyses involving skewed, left-censored heavy-tailed HIV VL data.
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org/10.1007/540840-022-01360-7.
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Appendix
Exponential Distribution

When the lifetime random variable follows an Exponential distribution, the baseline
distribution function is given by

Fo)=1—e7, t>0;y >0

The baseline Reversed Hazard Rate of 7 is then obtained as

e_t/y

Ao(r) = TR

In the presence of the covariates X, we have the following

eft/y
)u(t'X) = m eXp(x,'ﬂ)
F(t1X) = (1 — e 1/7yoptih)
gft/y 1
AUP O exp(x; B)(1 — e~ /7 )exptif)—

From these, the likelihood function for the Exponential distribution is obtained as

1-8;

n —ti/y 8
LB,y 1) = l_[ [e . exp(xi B)(1 — eli/)')exp(xiﬂ)1:| [(1 _ e*li/y)exp(xiﬁ)]

i=1
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so that the log likelihood function is

n n n n
1 . ;.
uﬁ%n=§Smﬂ—;E}m—Eamw+§<wﬁ—mma—e”m
i=1 i=1

i=1 i=1
Log-normal Distribution

When the lifetime random variable follows a Log-normal distribution, the baseline
distribution function is given by

In(t) —
Fo(t):dﬁ(M), t>0;u,0>0
o
The baseline Reversed Hazard Rate of T is then obtained as

1 _ n@®—pt?
2rot exp ( 202 )
@ (ln(t;7M>

In the presence of the covariates X, we have the following

exp< LI ul? )

\/_at @ (ln(t) M)

_ exp(x; B)
oo ()

_ ! [In(t) — u]? In(t) — ) ]*PCA !
fX) = Wi exp (—T +xi'3> |:q) <T)i|

From these, the likelihood function for the Log-normal distribution is obtained as

Ao(t) =

A(t]X) =

exp(x; B)

5 .

S [In(r) — pI? [ Cmn_M>Twmw—lt
L(p,o,1) = — . F )
.o 1:[1 [mm e""( 272 “lﬂ> .

5 |:¢ <1n(t) _ M>](l—3i)exp(x,'ﬁ)
o

so that the log likelihood function is

I, o, l)—Zﬁxlﬂ ZB ln(«/_at,)—i-z(s [ln(t)— ]

B _ In(t) —
+Z(e —8)1n [qs (—0 )]
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Inverse Gaussian Distribution

When the lifetime random variable follows a Inverse Gaussian distribution, the baseline
distribution function is given by

e[ fE ()] ([ r)) or

The baseline Reversed Hazard Rate of T is then obtained as

T S R CO T BT )

In the presence of the covariates X, we have the following

ro(r) =

A(t]X) =

exp(x; )
ruo={o[% (5 -1)] ~ee () [/7 (5 +)])

t o o t (07

% —y(t —a)?
RO A ETE
exp(x; B)—1
oG] e () [V Gl
t o o t o

From these, the likelihood function for the Inverse Gaussian distribution is obtained
as

5:
n 2 1
Y —r(ti —)
L(a,y,t)zll{ zmﬁ‘”“’[ %h +xiﬂ”
1

i=1

el E )L

so that the log likelihood function is

u 1< " sy — )?
l(a,y,t)=25ixiﬁ+225iln( )Z[lzgﬂ;}
i=l1 i=l1 i=l1 !
n

+g [ex,'ﬂ _Bi]ln{qﬁ [—\/g (%’ + 1)]} +>° [ex,'ﬂ _5,.]1[1 [1 —exp <%”>}

i=1

Y
2mfi3
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Log-logistic Distribution

When the lifetime random variable follows a Log-logistic distribution, the baseline
distribution function is given by

1
Fpt)=—, t>0;0,0>0
1+

W’

—~
R~
~—

The baseline Reversed Hazard Rate of T is then obtained as

w
o
!
+(5)”
In the presence of the covariates X, we have the following

NN L CLL)

1 exp(x; B)
FaXy=|—"r=
| [1+(é) “’}
ft1X) = 7 exp(xi ) 1 exp(x; B)
L+ (5 L+ ()™

From these, the likelihood function for the Log-logistic distribution is obtained as

® S exp(x; B)
1| 7 expxiB) 1
oo =[1 B0 | | =

i=l o

so that the log likelihood function is

I . t)_Z(S x,ﬁ+25 ln( ) Z(S ln[1+(f:> ]+Xn:exiﬁln[l+(2)w}

i=1
Gompertz-Makeham Distribution

When the lifetime random variable follows a Gompertz—Makeham distribution, the
baseline distribution function is given by

Fo(l)zl—exp[—g(ew—l)], t>0;a,y >0
14
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The baseline Reversed Hazard Rate of T is then obtained as

ae’! exp [—% (e?" — 1)]

ro(t) = I —exp I:_% (ev! — 1)]

In the presence of the covariates X, we have the following

et exp [_% (e7" — 1)] exp(x; B)

1 —exp [—% (evt — 1)]
o exp(x; f)
F(t|X) = {1 — exp [—; (e"" — 1)]}

o o exp(xi)—!
f(1X) = ae’ exp |:—; (e — 1)] etif {1 — exp |:—; (e — 1):“

X)) =

From these, the likelihood function for the Gompertz—Makeham distribution is
obtained as

n 5
L(a,y,1) = ]—[ {cxe’”’i exp [_g (7 — 1)} exiﬁ}
Y

i=1

o exp(x; B)—5;
X {l — exp |:—— (e¥ — 1)]}
14

so that the log likelihood function is

n n n n
S
Ha,y,t) = ZS,‘X,‘,B + ZS,’ Ino + Z&-yti — Z 1705 (eWi — 1)
i=1 i=1 i=1

i=1

- Z (¢ —5;)In {1 — exp [—% (e = 1)]}

i=1
Gamma Distribution

When the lifetime random variable follows a Gamma distribution, the baseline distri-
bution function is given by

, wt
Fo(t)=—y(a w), t>00,0>0
I'(a)
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where y («, t) is the incomplete Gamma function and I"(«) is the complete Gamma
function. The baseline Reversed Hazard Rate of T is then obtained as

a)ata—le—wl

Ao(r) = o

In the presence of the covariates X, we have the following

0t Lexp(—wt + x; B)

At X) = o
exp(x; f)
o =[5
ot Lexp(—ot + x;B) [y (e, wr) PP
s = y (@, f) [ I'(@) ]

From these, the likelihood function for the Gamma distribution is obtained as

" a)“‘t.“_lexp(—wti + xi B) % v (a, wt;) exp(x; B)
L(Ol,a),t)zl_[|: y(a,wti) :| |: F(Ol) :|

i=1
so that the log likelihood function is
n n n n
low,n) =Y 8ixip+Y Sialno+@—1)» &t — Y So
i=1 i=1 i=1 i=1

+ Z (e¥F — &) In [v (@, ot;)] — Ze"iﬁ In[I ()]
i=1

i=1

Note that the Exponential distribution is a special case of this result.

Generalized Gamma Distribution

When the lifetime random variable follows a Generalized Gamma distribution, the
baseline distribution function is given by

v [$. 00°]
r) -’

w

Fo(r) = t>0,a,w,A >0

where y («, t) is the incomplete Gamma function and I"(«) is the complete Gamma
function. The baseline Reversed Hazard Rate of T is then obtained as

w)hata—le—()ht)w

A - -
o(?) XD
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In the presence of the covariates X, we have the following

YK toz—l e—()»t)“’-i—)qﬂ

At X) =
(#1X) JTZ. 6]
o w exp(x; B)
F(t|X) = |:7/[5—(:‘t)]:|
r(%)
o po—1,—(At)?+x; B a w1 expif)
f(t|X)=w}‘ ! ae V[w’(i") ]
v 5. @] r(s)

From these, the likelihood function for the Generalized Gamma distribution is
obtained as

Lo, w, A, t) =
oo =11 = =50 (@)

i=1 [

d [w}\“r;"e—@”)”’”t‘ﬁr [V [&. m,-)w]}""“"""“)
so that the log likelihood function is

n n n n
I, w, A, 1) = Z(Six,-ﬂ + Za,-a In(wA) + (@ — 1) Zai Int; — Zai(m,-)w
i=1

i=1 i=1 i=1

+ i(exiﬁ —s)In [V [g (/\ti)w]] - iex’ﬂ In [F (%ﬂ
i=1 i=1

Inverse Gamma Distribution

When the lifetime random variable follows a Inverse Gamma distribution, the baseline
distribution function is given by

y(a, 1)

Fo(t) = r@

t>00,0>0

where y («, t) is the incomplete Gamma function and I («) is the complete Gamma
function. The baseline Reversed Hazard Rate of T is then obtained as

a)at—a—le—w/t
ro(t) =
y(a, 1)

In the presence of the covariates X, we have the following

wat—a—l —w/t
Alt|X) = @ exp(xi B)
exp(x; B)
F(t|X) = [Vlf"" t)}
(@)
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wat—a—l —w/t

flX) = @ exp(x; B) |:

y(a, 1) ]exp(xfﬁ)
I' ()

From these, the likelihood function for the Inverse Gamma distribution is obtained
as

L(a, o t):ﬁ AR R BACTON e
U y(a, 1) ()

so that the log likelihood function is

n n n n
8.
o= 8xp+Y salno—(@+DY &g -y 22
i=1 i=1 i=1 i=1

+Y (P —8)In[y (@ m)] =Y P In[I(@)]
i=1 i=1

Weibull Distribution

When the lifetime random variable follows a Weibull distribution, the baseline distri-
bution function is given by

_()*
Fot)=1—¢ (V) , t>0;a,y >0
The baseline Reversed Hazard Rate of 7T is then obtained as
a—1 t\*
o 1 “\y
(5)(5) e ()
1 — e‘(i)

In the presence of the covariates X, we have the following

Aro(r) =

A(t]X) =

L\ exp(if)
F(t|X) = [1 _e‘(v) }

F1%) = [(%) <£>‘H e—(;)“ﬂ,ﬁ} - e_(;)«]exmxiﬂH
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From these, the likelihood function for the Weibull distribution is obtained as

n . a—1 1 o i 4 o exp(xiﬁ)_(gl.
L y.n=]] [(%) <’;> (%) +x,-ﬂ] [] () }
i=1

so that the log likelihood function is
n n n n
Lo, v, 1) = ZSix,ﬂ + Za,- Ina — Z(Sialny +(@—1) 2‘31' Int;
i=1 i=1 i=1 i=1
n o n o
t; [t
—261 <—l> +Z(ex[,3—8i)ln |:1—€ (y) :|
: Y :
i=1 i=1

Generalized Inverse Weibull Distribution

When the lifetime random variable follows a Generalized Inverse Weibull distribution,
the baseline distribution function is given by

Fo(t) = e_y(%)a, t>0;0,7,1>0
The baseline Reversed Hazard Rate of T is then obtained as
A1) = ayr¥r— @D
In the presence of the covariates X, we have the following

(X)) = ayrt~ @ Detif
_ (.A)a exp(x; B)
F(t1X) = [e vy }

yeepi)
f(1]1X) = ayr— @ Dexib |:e y(‘> ]

From these, the likelihood function for the Generalized Inverse Weibull distribution
is obtained as
n 5T o (2\*7exPih)
L(a,y, A, t) = 1_[ [a)/)\ati_(a_l)exiﬁ] I:e V(,i) ]

i=1

so that the log likelihood function is

n n n n
loy at) =Y §xip+Y silna+ Y silny+Y Salni
i=1 i=1 i=1 i=1
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n n A o
(o — . . - iB
(a 1);51 Int Zy (h’) e’
=

i=1

Modified Weibull Distribution

When the lifetime random variable follows a Modified Weibull distribution [21], the
baseline distribution function is given by

Fo(t) = 1 —exp(—yt%e™), t>0;a,y,1>0
The baseline Reversed Hazard Rate of T is then obtained as

y (@ 4+ A0t Lexp(rr) exp(—yr¥et)
1 — exp(—yt2e?)

ho(t) =
In the presence of the covariates X, we have the following

y (o + a)t*Lexp(hr) exp(—y1%e*) exp(x; B)
1 — exp(—yt¥elt)

F@lX) = [1 — exp (_ytaext)]exp(x,-ﬁ)

FU1X) =y @+ e~ exp(un) exp(—y e exp(xiB) [ 1 - exp(—y e

AtX) =

exp(x; )—1
Xt)]

From these, the likelihood function for the Modified Weibull distribution is obtained
as

n
8
L@,y 2,0 =[] [y(@+ 26~ exp(ra) exp(—yie™) exp(xi p)]
i=1

x [1 = exp(—y12eHiy] PP =

so that the log likelihood function is

n n n n n
Hoy.hot) =Y 8ixif+ Y 8ilny + Y &iln(@+ar) +@—1DY 8lnt+ Y 8t

i=1 i=1 i=1 i=1 i=1

n n
- Z(Sl-ylf‘emi + Z (ex"ﬂ - 8i> In [1 - exp(—ytf‘e)"i)]
i=1 i=1

@ Springer



Parametric Regression Model Based on Reversed Hazard Rate ... S593

Flexible Weibull Distribution

When the lifetime random variable follows a Flexible Weibull distribution [3], the
baseline distribution function is given by

Fo(t) =1 —exp (—e""*%), t>0;a,y >0

The baseline Reversed Hazard Rate of T is then obtained as

Y

(a + tlz) exp (ar — L) exp (—e‘”‘?)
1 —exp (—e‘”’%)

Ao(r) =

In the presence of the covariates X, we have the following

<oz + tlz) exp (ozt - %) exp (—em_%> exp(x; B)

1 —exp (—em_¥)

FaX) = [1-exp (—eal*%)]e"p()‘fﬂ)

flx) = (a + t%) exp (at - %) exp (—e‘”_%) etib [1 — exp (—e“t_%)]expmﬁ)_l

At X) =

From these, the likelihood function for the Flexible Weibull distribution is obtained
as

n Si
L(a,y,t) = 1_[ |:<a + tlz) exp <ozt,- - tz) exp (—em"_%) exp(xi,B)j|

i=1 i !

fi

[1 at— L\ EXPOiB) =i
x |1 —exp (—e )]

so that the log likelihood function is

n n n n

._Y

la,y, 1) = E Sixip + E 8 In (oz " tlz) " Z‘si (ati - tZ) a X:Siem' i
i=1 i i=1 ! i=1

i=1

Y

—i—i (exfﬂ — &) In [1 — exp (—em"_ﬁ)]

i=1
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Power Generalized Weibull Distribution

When the lifetime random variable follows a Power Generalized Weibull distribution
[1], the baseline distribution function is given by

1
"\ 7
Fo(t)zl—exp|:1—<1+<x) >y], t>00y,4>0

The baseline Reversed Hazard Rate of T is then obtained as
1_
et [ (T e 1= (1+(4)) |

1—ew[1-(1+ ()]

X|=

Aro(r) =

In the presence of the covariates X, we have the following

#t“‘l [1 + (%)a]?_l exp [1 - (1 + (%)a);:| exp(x; B)

l—exp|:l—(l+(§)a);:|
o 17y SPGB
F(X) = {l—exp|:l—<l+(%> )yjH
X) = ——1 AN 1- (1 ANY :
fl )_Wt |: +<X> } exp —< +<X> ) exp(x; B)
w17 ExPCiA) -1
x{l—exp|:l—(1+<£) )y:H

From these, the likelihood function for the Power Generalized Weibull distribution
is obtained as

n Ao 1. Ao 1
La,y, A1) = l_[ {y(;atf‘_l |:1 + (%) i|y exp |:1 - (1 + <%> )V:| exp(xiﬂ)}

i=1

x {1 exp {1 ~ (1 . (;)a>n} }@(p(x,ﬂ)-&

so that the log likelihood function is

n n n n n
ley hot) =) Sixif+ Y Silna—» &lny—Y Salni+@—1)) &lng
i=1 i=1 i=1 i=1 i=1

X)) =

3i

<
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1 - t\* . 1\ 7
+(——-1 Siln |1+ —l>i|+ 8i 1—<1+(—’>)
G-zeml () oz - 046
n t o %
—|—Zl:(e"iﬁ—8i)ln{1—exp|:1—(1+(xl) > :|}
1=

Marshal-Olkin Distribution

When the lifetime random variable follows a Marshal-Olkin distribution [26], the
baseline distribution function is given by
1 — e 0"

Folt) = 1= =

t>00,y,L>0

The baseline Reversed Hazard Rate of T is then obtained as

yar(an)ele= 0"

ho(1) = [1= (= p)e @] [1 = 0]

In the presence of the covariates X, we have the following

yar(a)?—le=(G0% pxif

At|X) =

( | ) [1 _ (1 _ y)e—(kt)ﬂt] [1 _ e_(M)a]

1— e_(M)a exp(x; B)

Ft|X) =

(t1%) [1_(1_ykww}

—le= ()" pxi —(A0)¥ (x;ip)—1
yar(h)? e A0 oxiB [1 _ o= (1) exp

Fa1X) = [ ]

[1-a- y)ef(xrw]expoffﬁ)“

From these, the likelihood function for the Marshal-Olkin distribution is obtained
as

) . n ya)\’()\lti)a_le_()\ti)aexiﬁ [1 . e—()nli)a]eXp(Xiﬂ)71 8
(Ol, Y, A, t) - l_[ [1 . (1 _ y)e*()\fi)a]e)(p(xiﬂ)—'—]

i=1

| — o )" (1=6;) exp(x; )

1— (1 —y)e- )"

so that the log likelihood function is

n n n n n
loy, ) =Y SixiB+ Y ilny+ Y Sina+ ) Salni+@—1) 8y
i=1 i=1 i=1 i=1 i=1
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- i 5 ()™ + i (e =8 m[1 - =]
i=1

i=1

- i (ex"ﬁ + 61-) In [1 -(1- y)ef()‘ti)u]

i=1
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