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Abstract

The main aim of this paper is to investigate the effects of a slightly perturbed boundary
on the MHD flow through a channel filled with a porous medium. We start from a
rectangular domain and then perturb the upper part of its boundary by the product
of the small parameter ¢ and an arbitrary smooth function 4. Employing asymptotic
analysis with respect to €, we derive the first-order effective model. We can clearly
observe the nonlocal effects of the small boundary perturbation with respect to the
Hartmann number since the asymptotic approximation is derived in explicit form.
Theoretical error analysis is also provided, rigorously justifying our formally derived
model.
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1 Introduction

It is well known that one can rarely compute an exact solution of the boundary-value
problem describing a fluid flow. This can be done only if we start with very simplified
mathematical models and consider the flow domains with ideal geometries, i.e., with no
distortions. However, in real-life applications, the domain boundary can contain small
irregularities such as rugosities and dents, being far from the ideal one. These kinds
of problems are usually very challenging from the mathematical point of view and are
commonly treated numerically (see, e.g., [11]). The main reason lies in the fact that the
introduction of the small parameter in the boundary perturbation forces us to perform
very tedious change of variables. In view of that, one cannot find many analytical
results on the subject throughout the literature, both engineering and mathematical.

Many different empirical laws have been employed in order to describe the filtration
of a fluid through a porous medium. One of the more widely used is the Darcy—
Brinkman law (see, e.g., [2, 4, 15, 24]), representing a natural extension of the Darcy
law (see [5]) which is not capable of taking into account the classical no-slip boundary
condition on the walls of the domain. For this reason, the Darcy—Brinkman law is more
suitable for numerical simulations of fluid flows through a porous medium.

In this paper, we consider a magnetohydrodynamic (MHD) flow through a channel
filled with a porous medium. The MHD flow of a viscous incompressible conducting
fluid through a porous medium naturally arises both in natural settings (e.g., plasma
dynamics and astrophysics), as well as in the engineering applications (e.g., nuclear
engineering and metallurgy). For that reason, MHD flow problems have been a subject
of investigation over a long period of time, starting from the pioneering work of
Hartmann [10] to more recent papers that influenced our work (see [6, 9, 12, 13, 23,
25, 27-29]). In the present paper, we assume that the porous medium flow in the
channel is under the action of the transverse magnetic field, leading to the following
boundary-value problem:

- 2 % *
HeAu* — —u* — o Bju*.e; = Vp*,
‘ K 0% (1.1)

diva™ = 0in Q.

Here, u* = (u}:, u}.) and p* denote the (dimensional) filter velocity and pressure.
Furthermore, 1 is the physical viscosity of the fluid, . denotes the effective viscosity
for the Brinkman term, K stands for the permeability of the porous medium, o is the
conductivity of the fluid, while By represents the uniform magnetic field. Hereinafter,
we denote by (e, ey) the standard Cartesian basis. Since we are dealing with a second-
order PDE for the velocity, Eq. (1.1); can handle the presence of a boundary on
which the no-slip condition is imposed. In this way, the above system is capable of
successfully describing numerous situations naturally arising in the applications.

The goal of this work is to investigate the influence of the slightly perturbed channel
wall and the MHD effects on the effective flow. We start from a rectangular domain
(0, H)? and apply a small perturbation of magnitude & on the upper part of the bound-
ary. In view of that, the considered domain has the following form:
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*

Qf = {(x*,y*) eR?: 0 <x* < H, 0<y* < H—Ah(%)].

Lete = % <« 1 be a small positive parameter (0 < ¢ < 1), while % is assumed to be
an arbitrary smooth function of O(1) magnitude. For the purpose of our analysis, we
need to work in a non-dimensional setting. Thus, we normalize the physical variables
by H and the velocity by GM—HZ, where G denotes the pressure gradient. In other words,
we introduce the new variables:

, U= .
GH?
He

As a consequence, the dimensionless form of the system (1.1) reads as follows:

Au — k*u — Mzuxel =Vp,
diva = 0in .,

now posed in the domain (see Fig. 1)

Q ={(x,y)eR?: 0<x<1, 0<y<1—chk).

Here, we have the non-dimensional parameter k = H M“—K characterizing the porous
e

medium and the Hartmann number M = H By, / % taking into account the MHD

effects.

The paper is organized as follows. In Sect. 2, we present the problem settings,
namely the perturbed domain under consideration and the governing system of equa-
tions for the MHD flow with the corresponding boundary conditions. In Sect. 3,

y=1-—c¢h(x)

Y

0 x 1

Fig. 1 The domain after non-dimensionalization
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assuming that 7 < 0 on (0, 1), we derive the effective boundary conditions at the
upper boundary of the domain by using the Taylor series approach with respect to
y. We then seek the solution of the problem using the method of formal asymptotic
expansions and compute the first two terms in the expansion. Since the terms are given
as explicit expressions, we easily verify that they take into account the effects of the
boundary perturbation as well as the effects of the imposed magnetic field through
the presence of the boundary perturbation function 4 and the Hartmann number M,
respectively. The nonlocal effects of the boundary perturbation depend on the value
of the Hartmann number and this is visually presented in Sect. 3.3. Finally, in Sect. 4,
we provide a rigorous mathematical justification of the formally derived model from
Sect. 3. In order to accomplish that, we apply the idea originally proposed in [17]. We
first prove that the solution obtained in Sect. 3 is asymptotically the same as the one
obtained for a general function /4. The model is then justified in a classical way, via
error estimates in suitable norms for the difference between the original solution and
the obtained asymptotic approximation.

We conclude the Introduction by providing more bibliographic remarks on the
subject. The effects of periodically corrugated walls on the fluid flow (without porous
structure) have been investigated in [1, 3, 14, 22, 26]. Fluid flow through domain €2,
with small (not necessarily periodic) boundary perturbation has been addressed in
[16-20], for different regimes of the flow. Finally, the inertial effects on the MHD
flow within the channel with periodically corrugated walls have been studied in [21].

2 Problem Settings
As discussed in Sect. 1, we consider the following domain:
ng{(x,y)eRZ: O<x<1,0<y<l1—¢ehx))},

where ¢ > 0 is a small parameter and 7 € C°°(0, 1) an arbitrary smooth boundary
perturbation function. The MHD flow in the domain with the perturbed boundary €2,
is modeled by the (dimensionless) MHD extension of the Darcy—Brinkman equation
given by the following system of equations:

Auf — k2u8 _ Mzuiel — Vpg, o0
diva® = 0in €, '

where u® = (u, ui) is the unknown fluid velocity and p® the pressure, while k =

H MLK and M = HBy ;% are the non-dimensional parameters.
e e

In order to complete the problem, we need to add suitable boundary conditions. We
impose the standard no-slip boundary conditions on the upper and lower boundary
and prescribe the (dimensionless) values of pressures po, p1 (p1 < po) on the lateral
ends of the channel. More precisely:
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u®=0,fory=0, y=1-—¢h,
u‘; =0, forx =0, 1, 2.2)
pf = pi,forx =i € {0, 1}.

The well-posedness of the problem (2.1)—(2.2) can be established following the stan-
dard arguments, see, e.g., [8].

In this paper, we will focus on investigating the asymptotic behavior of the flow
described by the problem (2.1)—(2.2), as ¢ — 0.

3 Asymptotic Analysis

In the following, we follow the approach provided in [19].

In this section, we will derive the effective boundary conditions on the perturbed
upper part of the boundary. In order to simplify the notation, we will assume that the
boundary perturbation function 4 is negative, i.e., that s < Oon (0, 1). This is assumed
so that our solution (u?, p?) of (2.1)—(2.2) is defined on the rectangle denoted by
Q={(x,y) eR?: 0<x <1, 0<y< 1} C Q° and we can directly use the formal
Taylor series approach. More precisely, we will expand the velocity u® with respect
to y near the upper boundary y = 1. It is important to emphasize at this point that the
derived results are valid for a general function 4 and this can be rigorously justified by
proving that the obtained asymptotic approximation in this section is asymptotically
the same as the one obtained with no constraints on the boundary function % (see Sect.
4.1).

We formally expand in the following way:

o .
1 3/u® .
& — — 1)/
u (x,y)—zj! 357 = DO =1,
j=0
We deduce from (2.2); the following:
ou’ 232 e
0=uv'(r,l—eh) =u'(x, 1) — e (x, Dh + =2 e, DR2—.... (.1
ay 2 9y?

We seek the solution of the governing problem (2.1)—(2.2) in the form of a power
series in terms of the small parameter ¢:

ux,y) = Vo, y) +eVix, y) + e2V2(x, y) + ...,

(3.2)
Pre,y) = 0%, y) +eQ' (x,y) +20%(x, ) + ...

In order to derive the boundary conditions at y = 1, we substitute (3.2) into (3.1) and
obtain the following identity:
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0=V'(x, 1)~|—5(V (x, 1)—h—(x 1))
2

1 I’l2

oV
+ 82(V2(x, D= h D+

VO

5y 1)) +

We thus obtain the following boundary conditions:

Vi, 1)=0,Vix, 1) = h(x) (x 1).

The divergence-free condition is given by:

a0 av0
divv? = —* + —2 =0,
ax ay
and we obtain the following at y = 1:
aVO 8V°
Y (x 1) =0.

V

Since 2 vy 2 (x, 1) = 0, we now obtain that (x 1) = 0 and conclude:

Vo(x, 1) =0, Vo(x 1) =0,

Vi 1=

3.1 Zero-Order Approximation

Substituting the asymptotic expansions (3.2) into the system of Eq. (2.1) and taking
into account the boundary conditions, we obtain the following problem posed in the
e-independent domain €2:

1: AV? —k2V0 — M?v0% = vQ'in @,
1: divV® = 0in ©,

(3.3)
1: VO(x,0) =0, VO(x, 1) = 0,
1: V2(0.y) =0,V)(1,y) =0,0°0,y) = po. Q' (1, y) = p1.
The solution of the problem (3.3) is given in the following form:
V0=V = V(e 0° = Q°). (3.4)
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Due to the pressure boundary conditions (3.3)4, Q° is given in the following form:

0°%x) = po + (p1 — po)x. (3.5)

Taking into account (3.4)—(3.5), we obtain from (3.3) the following:

a2vY

sz — V) = M*V{ = p1 — po.
leading to

a*vY

sz — (k> + MQ)V;? = p1 — po.

The zero-order velocity approximation V)? is thus given in the following form:

_ 2 2
o pi—po ! cosh(«/k +M)
Vx()’)—

e o (V) sinh (/&2 + M2) + cosh (y k2+M2)_1).
(3.6)

It is important to emphasize at this point that the zero-order approximation of the
velocity given by (3.6) contains the effects of the imposed magnetic field appearing
through the presence of the Hartmann number M. However, we do not observe any
effects of the boundary perturbation /, and thus we need to continue our computation
by looking at the next-order term in the expansion.

3.2 First-Order Corrector

Let us now compute the first-order velocity and pressure corrector (V!', Q'). We
obtain:

e: AV — 2V — M2V]e; = VQlin Q,
g divv! =0,
vy (3.7
er VI, 0)=0,Vi(r, ) =h(x)—=x, 1, Vy(x, 1) =0,
y ,

e: V) (0,y)=0,V/(1,y)=0,0'0,y) =0,0'(1,y) =0,

We expand the unknown functions in the form of the trigonometric Fourier series:

V! = "a;(y)cos(jmx),
j=0
V) = ij(y) sin(jmx), (3.8)

j=1
0'=Y cj(y)sin(jmx).
j=1
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Furthermore, we expand the given boundary function / in the following way:

ho .
hx) = — +Zh cos(jmx), hj = 2/ h(t)cos(jmt)dr. 3.9)

j=1

It is important to notice at this point that the expansions (3.8) automatically satisfy the
boundary conditions (3.7)4. We now deduce from the boundary conditions (3.7)3 the
following:

0="V!(x,0)=a;0)=0, j>0,
0=V)(x,00=b;(0)=0, j>1, (3.10)
0= Vyl(x, D=b;j(1)=0, j>1

The condition for V! at y = 1 reads:

leading to:
03\/
Zaj(l)cos(]rrx)
j=0
and we obtain:
ho V0 avo
ap(l) = = (1) = h; (3.11)

2 dy

It is important to note that there holds:

_ 2 2
BV)? P1—Po (1 cosh(\/k —|—M)

0= (e cosh (VK2 + M?) + sinh (VA2 + M2)) .

(3.12)
Now, plugging (3.8) into the problem (3.7) satisfied by (V!, Q'), we obtain:
o0 oo o
_ Z aj () (im)? cos(jmx) + Z a}-/(y) cos(jmx) — <k2 + Mz) Z aj(y)cos(jmx)
j=0 j=0 Jj=0

= Z cj(y)(jm) cos(jmx),

8

o o0
Z b () (jm)* sin(imx) + Y b (y)sin(jmx) —k* Y bj(y) sin(jmx)

j=1 j=I j=I
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o0
=) i sin(jmx),
j=1
o0 o0
=Y aj(y)(jm)sin(jrx)+ Y b, () sin(jmx) = 0. (3.13)
j=0 j=1

We now obtain from (3.13) the following identities:

ag — (K* + M*)ag = 0,
a}’—jznZaj—(kz—l—Mz)aj=j7TCj’ j=1 (3.14)
b — j*rtbj — kb =), j =1,

—jJTaj—i-b;- =0, j>1.
We directly deduce from (3.14);:
ap(y) = Acosh ( K2+ M2y) + Bsinh ( k2 + M2y) .

Taking into account the boundary conditions (3.10); and (3.11)—(3.12), we obtain:

ho pi—po Cosh («/k2 + M2) -1
2 VM ginn? (Vi)

ao(y) = sinh ( K2+ M2y) .

We now obtain from (3.14)4 the following:

1
=—0b", j>1. 3.15
a] ]7T J .] e ( )

From (3.15) and (3.14),, we get:

1 1 1
P jznzj—ﬂb;- - (k2 + M2> by =imei iz,

from which we directly obtain:

_ l b///
- j27T2

b, — <k2 4 M2>

/
i b (3.16)

Ci
J ]27.[2 J

Now, from (3.16) and (3.14)3, we have:
b — 2 zb'—kzb' _ 1 b(4)_b//_ 1 k2+M2 b
j b I = G227 I g2 7
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which can be rewritten in the following way:
b — 222 — (K2 + M2) b + (47 + k2272 by = 0. (3.17)
The solution of (3.17) is given in the following form:
bj(y) = Cjsinh(A;y) + Djcosh(A;y) + E; sinh(u;y) + Fjcosh(u;y), (3.18)

where

\/—\/47721'2M2 + k% +2k2M? + M* + 272 j2 + k% 4+ M?

)\- b
J «/E
\/\/4n2j2M2 + k% +2k2M? + M* + 272 j2 + k% 4+ M?
M] - ﬁ .
We now obtain from the boundary conditions (3.10), and (3.10)3 the following:
D+ F; =0,
s . (3.19)
Cjsinh(A;) + Dj cosh(A;) + E sinh(u ;) + Fj cosh(u ;) = 0.
From (3.15), we now have:
aj = ;7_[] cosh(2;y) + j J sinh(2;y)
+28 cosh(ujy) + —LL sinh(y). (3.20)
J7 J7
Taking into account the boundary conditions (3.10); and (3.11), we obtain:
Cjrj+Ejun; =0,
CjAjcosh(A;) + DjAjsinh(A;) + Eju;jcosh(u;) + Fjujsinh(u ;) 321)

Vo
= jmh; —=(1).
J 8y

We now obtain from (3.19) and (3.21):

- 2 2
) pzlipg 1 cosh( k> +M
Je+M sinh(«/kz-#Mz)

juj cosh(pej)—p;j cosh(h ;)
fj sinh(%;)—2; sinh(e ;)

jmh

cosh (VITF HZ) VETT 7 -+ sinh (VT ) W)

Cj= 2
. . cosh(zj)—cosh(h;)
Ajsinh( ;) — pujsinh(uj) = Aje; u(, sinh(};’/)f)»j sinhj(;ij)
I—cosh(VkZ+M?2
Jrhy B ( ) cosh («/kQ T M2) VIZ T M2 + sinh («/k2 T M2) VT M2
+M sinh(\/kzﬁ—Mz)
Dj = ,

(cosh(uj)—cosh()»j))z

Ajsinh(hj) — pjsinh(u ;) — Aju; T Sinh(h;)— A sinh(i;)

@ Springer



MHD Flow Through a Perturbed Channel Filled... 2451

1—po l—cosh(m)
+M? sinh(\/m)

j cosh(uj)—p;j cosh(n;)

ith: 2
Jmhja

cosh («/W) V2 + M? + sinh (m) m)

£ A J1; Sinh(.;)— A sinh(1t;)
j= 2
M \. » (cosh(u j)—cosh(k ;)
/ Ajsinh(dj) — o sinh(uj) — A 7 sinh(Aj_,)—A, sinﬁ(i,)
1—cosh(vk2+M?2
jrh; 2= ( ) cosh (¢k2 T M2) VEZ T M2 + sinh («/k2 T M2) ViZ+ M2
k*+M sinh(vk2+M2)
F .

% sinh(hs sinh (L P (cosh(p.l)—cosh(/\j))2
jsihQj) — g sinh (1)) — Xl 5 GamG =7 stah(ap)

(3.22)
Finally, we obtain the expression for ¢; from (3.16) and (3.18):
(Cjk? Cin k2+Mzcx) h(x;y)
ci= (221 oo~ 05 ) cosh(h
J 272 JJ 272 JJ jY
D3 K2 M2
+ ( .2'/ é —DjAj — %Dj)\j) sinh()\jy)
jim jim
3 (3.23)
Eju; k% + M?
(G2 = Eits = gz By ) cosha;)
Fju3 K2+ M? ,
+ <j2712 — Fjnj - J.QTF./M/) sinh(;y)-

This completes the formal derivation of the effective model describing the MHD flow
through a channel filled with a porous medium with slightly perturbed boundary. Our
asymptotic approximation takes the form:

Ve prox (. 3) = VY (p)er + eV (x, el + eV (x. y)es,

approx

X 0 X (3.24)
Qupprox (X, y) = 07(x) +0 (x,y), (x,y) € Q.

3.3 Numerical Example

Let us note at this point that the first-order asymptotic approximation derived in the
previous section (see 3.24) is given in explicit form. For this reason, we now visually
present our asymptotic solution in order to indicate how the flow adjusts to the presence
of the small boundary perturbation with regard to the Hartmann number M. In view
of that, we use the boundary perturbation function

h(x) = —cos (J%X),

and take the pressure drop p; — po = —1. The porous medium parameter k is setto 1,
while the Hartmann number takes the following values: M = 0, 2, 4, 6. We compute
the corrector approximations up to j = 10 in (3.8), since increasing j provides no
significant improvements. The same is done for the function 4 in (3.9), where the
coefficient 4 ; are computed using the numerical integration in MATLAB.
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Fig.2 Velocity corrector Vx1 with Hartmann number M = 0 (left) and M = 2 (right)
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Fig.3 Velocity corrector Vxl with Hartmann number M = 4 (left) and M = 6 (right)

In order to clearly observe the effects of small boundary perturbation, we present
corresponding 3D figures of the velocity corrector Vx1 computed in Sect. 3.2 for
different values of the Hartmann number M (see Figs. 2 and 3). We see that the
correctors acknowledge the effects of the slightly perturbed boundary and that those
effects are not just local. Moreover, we see that increasing the value of the Hartmann
number M decreases the overall magnitude of the velocity and that the boundary
perturbation effects are more localized near y = 1.

In view of that, we further depict the x-component of the velocity approximation
given by (3.24). The effects can be clearly observed for ¢ = 0.1 (see Figs. 4 and 5).
We again confirm that increasing the value of the Hartmann number M decreases the
overall magnitude of the velocity approximation and that the boundary perturbation
effects are more localized near y = 1.

In order to provide a more detailed visualization of the presented figures, we present
the 3D figures of the velocity corrector Vy1 and pressure corrector Q! with the 2D

velocity profiles of the velocity corrector Vx] and Vy] along with the x-component of
the velocity approximation given by (3.24) for fixed values x and y in Appendix A
(see Figs. 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21).
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Fig.5 Velocity approximation (x-component)with Hartmann number M = 4 (left) and M = 6 (right) and

e=0.1

4 Rigorous Justification

4.1 Transformed Problem

In order to evaluate the difference between the original solution and the asymptotic
one in terms of the small parameter ¢, the governing problem (2.1)—(2.2) needs to be
transformed and written in an e-independent domain € = (0, 1)%. To accomplish that,

we introduce a new variable: y

il g

and the new unknown functions

Uf(x,2) =u(x, z(1 — eh(x))), P*(x,2) = p*(x, z(1 — eh(x))).
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2454 E. Marusi¢-Paloka et al.

Let us note that there hold the following identities:

dz _ eyh' ezl

ax  (1—eh)? 1—¢h’

0z _ 1

ay 1—¢h’

a_2z _yeh"(1 —¢eh) +2ye*(h)? . zh" 5 z(h')?
ax2 (1 —eh)? T T 1—c¢h (1 —eh)?’

In view of that, the partial derivatives in new variables read:

Bl B 0z 0 9 zh 9 B
R R —_ h ]h]
ox  9x Toxdz ax  “T—ehar ax T °C Zs 97’
0 9z _ 1 a_isjhja
8y dydz 1 —ehdz ot az’
82_> 8+813 8+818
ax2 dx  0x 0z ax  9x 3z
9 9%z 23182+81232
T ax2 0 9x2 9z dx 0z0x ax ) 972
92 9 92
— h//_ 2h/
ox 2+<”’ 5z T7° azax>
+Z£jhj_2 h”h+2(J—1)(h)) O o' o2
- 020X

N2 82
+(h)( — 1)—8Z2] ,
32 1 - 92
_— — el (j + l)hf
; 152 =2
ay (1 —¢eh) 82 e

Taking into account the above change of variables, the system (2.1)—(2.2) becomes:

208 14 e2Z2(W)29U¢  2ezh 92UE £z . 2e(h)? aU®
dx2 (1—eh)? 9z2  1—¢ehdzdx T (h 1— eh) 9z
— KPU* — M?Ufe,
dPt  ezh’ 9P® 1 Pt
:(Bx +maz)l 1—¢h oz
U ezh’ AU 1 U
0x 1—¢h 0z 1—¢h 0z

exin 2,

= 0Oin €,
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Uf(x,0) =U(x, 1) =0, Uy(0,2) = Uy(1,2) =0,
P?(0,2) = po, P°(1,2) = p1. 4.1

where U® = (UZ, U;).
We expand the solution (U?, P?) of problem (4.1) in the form of a power series in
terms of the small parameter ¢ in the following way:

Uf = U +eU' +7U% +

0 1 2p2 4.2)
P =P’ 4+¢eP 4+ P +....

In the following, we identify the problems for (U/, PJ), j =0, 1 and link its solutions

with corresponding (V/, Q/) computed in Sect. 3.

Plugging the expansions (4.2) into the system of Eq. (4.1), we obtain the following
problem for (U°, PYy:

1: A U0 — k200 — M?U%; = v, Pin @,
1: div,.U° = 0in ©,
0 0 4.3)
1: U'(x,0)=U"(x,1) =0,
1: UY(0,2) =U)(1,2) =0, P°(0,2) = po, P'(1, 2) = pu,
where we use the usual notation A,,¢ = ax2 ¢4 %Zq;, Vi ® = e1 + Fr ez, div,, W =

BWX + 0W’ . Comparing problem (4.3) with the one satlsﬁed by (V9, Q%) given by

(3.3), we deduce that VO(x, y) = U%Gx, y), 0%x, y) = PO(x, y).
The first-order corrector (U, P!) is the solution of the following problem:

32U° 920 U0

g: A U! + zh" — —K*U' — M*Ue
0z ax 0z
apl 9 P° gpt  opP°
=|—+zh'— |e1+|(— +h— ) e2inQ,
ox 0z 9z 0z
1 0 1 0 “4.4)
g: U +z h’aUx + 90y —i—haUy = 0in £,
0x 0z 0z 0z

e: Ul(x,0) =U'(x, 1) =0,
:: Uy (0,2) =Uy(1,2) =0, P'(0,2) = P'(1,2) = 0.

Taking into account (3.4) and (3.6), the problem for (UL, P1) reduces to:

AU —kPUl — M?U!
_AP' Zh"(p1 = po)
T oox /k2 1+ M2
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" <1 cosh(vVk* 4+ M )cosh(mZ)JFSinh(mz))

sinh(vVkZ + M?)
1 — cosh(Wk2 + M?) .
—2h — h(vk2 + M?
(p1 po)( Snh(ViE D) sinh(v k? + M?z)

+ cosh(vVk2 + MZZ))in Q,
apP!.
AUy — KU} = —.in Q,

div,.U'

_ o poelt LoV I
RN =y R R oy ve N ‘
+sinh(Vk2 + Mzz))in Q.

Ul(x,0) =U'(x, 1) =0,
Uy(0,2) =Uy(1,2) =0, P1(0,2) = P'(1,2) = 0.

If we compare the problem (4.4) with the problem (3.7) satisfied by (V!, oh, we
observe that additional terms have appeared in the governing equations. This appears
due to the change of variables. As a result, we cannot explicitly compute U!, but we
can make a connection with V. It is straightforward to verify that there holds:

_ _ /2 & M2
Vi y) = Ul y) + yh(p1 Po)(l cosh(vk*+ M )cosh( @+ M)

kz + M? sinh(vk? + M?)
+ sinh(\/kz—i-—f\/lzy)>91,
0'(x,y) = P'(x,y). (4.5)

We clearly see from (4.5) that V! # U, implying that the two asymptotic approxi-
mation VO +¢V! and U® + ¢ U! are not equal. However, it can be shown that these two
approximations are asymptotically the same since there holds the following identity:

U%x, 2) + eU(x, 2)
= Uo(x, y +eyh(x)) + sUl(x, y) + 0(82)
0
=00, y) +e (Ul(x, )+ yh(x)%(x, y)) +0O(e?)

yh(x)(p1 — po)
= Uo(x, V) +e—mmF————
N
1 — cosh (~/k2 + M?
X ( >cosh( k2+M2y>+sinh(\/k2+M2y) e
sinh (V& + M7)
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+eUN(x, y) + O(?)
=VOx,y) +eVix, y) + OH).

For this reason, in order to rigorously justify the asymptotic approximation (V® +
eV, 0 + £Q") computed in Sect. 3, it is sufficient to derive error estimates for
(U0 + UL, PO+ ePhy.

4.2 Error Estimates

In order to rigorously justify our model, we need to evaluate the difference between
the original solution (U?, P?) of the transformed problem (4.1) and the corresponding

asymptotic approximation Ug ., = U% + U

To achieve this, we need the following technical results (see, e.g., [7]):

Lemma 4.1 There exists a constant C, independent of €, such that there holds the
estimate:

@12 < ClIVE Il 20 (4.6)
for any ¢° € H'(Q) such that ¢° forz =0, 1.

Lemma 4.2 The problem
divg® = ¢ e L§(Q)in ,
¢° = 0on 3L2,

has a solution ¢° € H& (2) such that there hold the estimates:

VeIl < CLF N2 g)-
In the following, we derive the a priori estimates for the velocity U®.

Proposition 4.1 Let (U®, P?) be the solution of problem (4.1). Then, there hold the
following estimates:

IVU]] 20 < C- @.7)
Proof Let us recall that the system satisfied by the original solution (U?, P?) reads:

2U° 1+ e2Z2(W)2 92U 2ezh’ 92UF
ax2 (1—eh)?2 972 1 —eh 9z0x

€z ” 2‘9(1’1/)2 oU* 2y7€ 2r7e
+ 1o (h +—1_8h)a—z—kU — M*Ute
dP®  ezh’ 9P® 1 ape
:(ax e az> VT g e
UL ezh’ Uy 1 Uy

y :
e o e,
ox " 1—eh 9z " 1—eh 9z ™

U (x,0) =U*(x, 1) =0,U;(0,2) = Uy(l,2) = 0, P°(0,2) = po, P*(1,2) = pi,
4.8)
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We introduce z° as the solution of the following auxiliary problem:

1
divz® = Pf — Pe = f%in Q,
1| (4.9)
¥ = 00n Q.

Due to Lemma 4.2 and since fQ f¢ = 0, problem (4.9) admits at least one solution
satisfying the following estimate:

£ & l &
||VZIISCHP -—— | P . (4.10)
Q] Jo 2@
We now multiply (4.8) by z° and integrate over €2 to obtain:
I
12| L2(Q)
- / ——— / 2eh — &2h? + &2722(W')? 9*U° 5
~Ja Q (1 —eh)? dz2
/ 2ezh’ IPU¢
- zZ
ol —ehdzox
N2 3
- L (n+ 2¢(h) gzs + | KPUZ + | M*Ufeizr (4.11)
1 —eh 1 —eh o
Q € € Q Q

/' Szh’ /'
o 1—8h |Q|
/‘ eh’ .
- (P N )z el
o1 —ch |Q|
1 0
—/ sh(PS ——|r )iez
Q 12| Jo 0z

Let us now estimate the terms on the right-hand side of (4.11) using Poincare’s inequal-
ity (4.6) and the estimate (4.10):

‘f VU vzt
Q
< CIIVU [l 1Y% Nl 2y = CUIVU 2y || P
l &
|2 L2(Q)’
‘ f 2h — 8h2 + ez2(h)? 92UF
Z
(1 — eh)? 972
< CellVU Il 200 IV2 I 2y < Coll VU] 2y || P
1 &
9] L2(Q)
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g

270 a2U8
1—c¢ch Bzax

< Cell VU2 192 [l 2y < ColIVU |2y || P

1
|€2]

&

2@’
. 2e(W)?

o,

Q
b4
h
8‘/9]—8/’1( +

)%

1—c¢h

< CellVU Il 200 IV2 I 2y < CollVU |2y || P

1
€2

Q
kz‘ f Uz
Q

&

L2’

< ClIVU || 2@ IV2 Il 2@ = CIVU |20y || P*

1
|€2]

Q

2 & e

M ‘f Uieiz
Q

&

2@’

< ClIVU |20 IVZ ]I 2y < CIVU N2y ||P*

1
1$2]

)/ zh/

e

l—eh
<C8HP£

1
IQI

A

<C8HP8

l—eh

1
182

1,

§C8HP‘8

1—c¢h

1
£

&

2@’

IQI/

&

_el

[IVZ*]|12(q) < CEHPE

|§2| L2(Q)
&
2@’
1
P)zgel‘
el
a1 o Pl 197 Niza = Cef P
£
L2’
1 / P) 9zt
- — —e
Q] 2
el LZ(Q)”VZ 2 = CgHPS
e ) 4.12
2@ (4.12)
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Now, for sufficiently small &, we obtain from (4.11)—(4.12) the following estimate:

HPS_L P
12|

pey = OVl (.13)

Multiplying (4.8) by U? and integrating over €2 yields:

Q Q Q

/ 2eh — e*h? + &22%(W')* 3*U° - / i AUf Ut
= —&
Q (1 — gh)? 072 1 —sh ax 0z

/ " aUSU / (h”(x) e(h (x))2>aU€
— — &
1 —¢h ox a\1l —¢h (1—8/’1)2
/ & & 2
_8/ zh' 9U*® oU +/ ez (,, 28(]1))
ol—eh 0z ox ol —c¢h 1—¢h
1
[ p‘s U . e - .
+(p° 1 )/Eo (p‘ |sz| ) ©
1 h' 9 1
P — — Pgd'Us— / —(PF— P€U8
+/Q( |sz| )IV ¢ Ql—shaz< 12l )

h
_ Ule,.
8/ l—shaz |Q|/ ) @

where ¢ = {i} x (0,¢),i =0, 1.
We now have the following identity (using (4.8)>):

1 Woa 1
f (PE - Ps)divUS - gf — — (PP - Pg)Uj
Q 12| Jo Ql—e¢ehoz 12| Jo
hood 1
—8/ —(P€ Pf)Us
o1 —choz ]
£ 1 £ . & h &
- (P N P)dwU te P
o |sz| l—sh |sz|
zh’ 8U8 3U€
e[ (e ,7) / /
o l—eh Tl Ql—eh BTe)
B |
- | C— PS)US.
S/Q l—sh( 2l Jo x

We now estimate the right hand side of (4.14) using Poincare’s inequality (4.6) and
(4.13):

(4.14)

U®

‘/ 2h — eh® + ez2(h)? 92U
(1 — eh)? 072
2
E C8||VU ||L2(Q)’
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™

/ zh' dU" JU*
ol—c¢eh dx 9z
2

S C8||VU€||L2(Q),

/ AU
1—c¢ch ox

<C8|IVU€||L2(Q),

/ (h”(x) N e(h’ (x))2>8U8U8
l—eh (1 —¢h)?

< C8||VU8||L2(Q),

/ zh' 9U°® 9U*®

ol—¢ch 9z ox

< Ce||VU°|[75 g

z 2e(h')?\ AUF
h// US‘
/;zl—sh( +l—8h> 0z
2
E C8||VUS||L2(Q),

(- Pf)/zgvf (=g ) [ v

1
d1V po— — PS
f ‘ |Q|

+(p1 - Po)x>Us < C||VU£||L2<Q),

| [ = 5 s

l—ah Tl x

< CstP"3 /
12

< Ce||VUE

)

™

™

™

US
L2(S2) ll22(@)

| |L2(Q) )
and now, for sufficiently small ¢, we obtain:
VU2 < C,
thus obtaining estimate (4.7). This completes our proof. O
Theorem 4.1 Let (U®, P?) be the solution of the transformed problem (4.1), and let

Ul pprox = U0 + U, Pipprox = PO + & P! be the asymptotic solution provided in
Sect. 4.1. Then, there hold the following estimates:

2
- prmx”Hl(Q) =ce (4.15)

||P€ approx“Lz(Q)/]R = C8

@ Springer



2462 E. Marusi¢-Paloka et al.

Proof Let us denote the difference between the original solution and the computed
asymptotic approximation by:
& & &€ & & &
R*=U0°-U r' =P = Py o

approx’

Let us recall that the system satisfied by the original solution (U, P¢) reads:

92Uf 1+ e22(W)2 90U 2ezh’ 32UF

9x2 (1 —¢eh)?2 98z2 1 —¢ehdzdx
£z 2e(h)%\ 9U
h// ) _ k2U£ _ M2U6
+1—£h( 1 —en) 0z x €1
(BPS N ezh’ 8P£>e N 1 8P5e, o
= _— _ in 2,
ox 1—eh 9z /" T 1—¢en 87 *

aUt h 9 1 aUy

Ux EZ Uy + y =0inQ,

ax 1 —¢h oz 1 —¢h oz

U'(x,00 =U(x, 1) =0,U5(0,2) = Uy(l,2) = 0, P°(0,2) = po, P°(1,2) = p1,

(4.16)
The system satisfied by our asymptotic approximation (Ug,,,.oxs Pgpprox)> Where
Uipprox = U0 +eU', P? = PO(x, y) + eP'(x, y), is given by the following:
2170 , 2170 . 8UO
&
AXZUapprOX +2h8 812 —+ 28Zh BZE —+ EZ]’Z a—Z
2 2
—k Uprrox -M U;pprox,xel
P, apP° IP, ap°
pprox / approx .
=(—F +szh —)e + (——i—eh—)e in 2,
(= e )Y oz 0z ) (.17)
0 0
—8U§m’mx’x + ezh’aUX + Wepprox. + shaUy = Oin 2,
ox 0z 0z 0z
Uzpprox (x’ 0) = Uprrox (x’ 1) = 0’ U;pprox,y(o’ Z) = Uaspprox,y(l’ Z)

=0, Pgyprox(0,2) = pos Pypprox(1,2) = p1.
Now, subtracting (4.16) and (4.17), we obtain the system satisfied for (R?, r¢):

9°R® 32R® IRE
AR (2h 220 ,h”—) — kK’R® — M2R®
R"+ ¢ Py + 2z 920 +2z 9z el
are are
= Verf + 8<zh/Le1 + hLe2> +EfinQ,
0z 0z @18
aRE  OR: :
h—) = B%in Q,
0z + 9z " in
R°(x,0) = 0,R¢(x, 1) = 0,

RE(0.2) = 0, RE(1,2) = 0,7°(0, 2) = 0,7°(1, 2) =0,

div,,R® + 8<zh/

where ||E8||L2(Q) = O(e?), ||:38||L2(Q) = O(e?).
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Now, we introduce w® as the solution of the following auxiliary problem:

divw® =rf1in Q,

4.19
¢ = (Qon 092. ( )

Due to Lemma4.2 and assuming f o ¢ = 0, problem (4.19) admits at least one solution
satisfying the following estimate:
VWl L2 = ClIF L2 (q)- (4.20)

We now multiply (4.18) with w® and integrate over €2 to obtain:

&2
||r ||L2(Q)

oR¢ 0 oR?® OR? ow®
=/ VREVW€+ef2h v /2h’ we +e/2h’z i
Q Q dz 0z Q ox Q ox 0z
//aRE e 2 € & 2 5 &
—¢& | zh"—w" +k R°w* + M Riew
Q 0z Q Q

ow? ow®
—s/ zh'ré hid el—s/ h’reweel—ef A /ESWE
Q 0z Q Q 0z Q
4.21)

Let us now estimate the terms on the right-hand side of (4.21) using Poincare’s inequal-
ity (4.6) and the estimate (4.20):

I

8R a & £ & &
‘ hiiz < C¢||[VR ||LZ(Q)||VW ||LZ(Q) < Ce¢||VR HLZ(Q)HV ||LZ(Q)7

s‘/ 2h’—w£
EE o B < CellVR 2y [Vl < CEIIVR 200y 20,
e Zh“iws
‘];2 0z
k2’f Réw®
Q
2 e
M ‘/ R

‘/ h'r® 91‘ < Cellr®ll 2 IVWel L2 ()

S IVR 2 IVWE 2y < CIVR |2 171 12y

< CelIVR|| 2 lIVW I 12() < Cell VR 2017 (122

< Ce||VR?|| 12 [IVW I 12(0) < CellVR || 20 [I7°11 12(0)»

< C|IVR®[|;20)[IVW 120y < CIIVR®[[ 1200|171 12(0)»

N2@IVWil2@) < CHIVR | 2 17¥1 1 12(0)» (4.22)

< Cellr Iy
ef [ e < Cellrlag19w iz
Q

2
< Cellrfl g

ef [ 17 S| = Cell iz IV iz

‘ / Efwe
Q

e 112
< Cellrf] g

@ < CIrfll 20
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Now, for sufficiently small &, we obtain from (4.21)—(4.22) the following estimate:
Irllz2@) < CUIVR I 2(g) + &) (4.23)

We now multiply (4.18) by R? and integrate over <2 to obtain:

oR® BRE /,BR R ,0R? 9R?
= 2h — zh"—R* —¢ | zh
Q dz 0z Q 0z Q dz dx
oR® dR?¢ 9R® oR®
—8/ W —R® —8/ zh’ —|-8f zh" —R®
Q dx Q ox 9z Q a9z
oré oré
+f rsdiVRg—s/ zh/Lele—(e/ hLest—/ E°R®.
Q Q 0z Q 0z Q

We now use the following identity (see (4.18)):

oré oré
/rfdivRS —g/ e R® —s/ e e,R®
Q Q 0z Q 0z
oR¢ RS
:/ rédivR® —i—s/ reh'Rée; +8/ rézh/ —= +£/ reh—2
Q Q Q 0z Q 0z

:f ﬂ5r£+s/ r*h'Reey.
Q Q

We now estimate the right hand side in (4.24) using Poincare’s inequality 4.6 and
(4.23):

IR? 9R® .
g\ 2 < C¢||VR®|2,
Q dz 0z

(4.24)

()’

//8R8 £ £ &
e| [ zh SR = CelIVR 2[Rl 2y < CelIVRCII,
Q

,OR® 9R® .
e) ' T < el VRYI2,
Q

()’

dz Ox ’

dR®
8‘/ h/WRg < Cel||VR?|| 2 [IR*[| 12y < C8||VR8||L2(Q)7
Q

)/ R - copvrel2
£ £
QZ Jx 0z L

()’

/,3RS e e &
8‘ 2h 8_ZR < Ce||VR?|| 20 IIR®[| 12y < Ce[|VR® ||L2(Q)’
Q

‘/9,38”8 < B N2@llrllL2 ) < C82(||VRS||L2(Q) +e?),

8‘/7’8h/R€e1 SC8||r€||L2(Q)||R€||L2(Q)
Q
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‘ / E°R®
Q

and now, for sufficiently small ¢, we obtain:

< Cel|VR®|| 2 (IIVR? || 12y + 7).

< ClIE*|| 2 IR L2y < Ce*||VR® 2(0)s

IVR?|| 2(qe) < Ce?, (4.25)

yielding the estimate (4.15);. Finally, from (4.23) and (4.25) we obtain the estimate
(4.15),. O
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Fig.7 Velocity corrector Vy1 with Hartmann number M = 4 (left) and M = 6 (right)
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Fig. 11 Velocity corrector VX1 profile for fixed y = 1 with Hartmann number M = 4 (left) and M = 6
(right)
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Fig. 12 Velocity corrector VXl profile for fixed x = 0.5 with Hartmann number M = 0 (left) and M = 2
(right)
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Fig. 13 Velocity corrector Vxl profile for fixed x = 0.5 with Hartmann number M = 4 (left) and M = 6
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Fig. 16 Velocity corrector vl profile for fixed x = 0.5 with Hartmann number M = 0 (left) and M = 2
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Fig. 17 Velocity corrector Vy1 profile for fixed x = 0.5 with Hartmann number M = 4 (left) and M = 6
(right)
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Fig.18 Velocity approximation (x-component) profile for fixed y = 1 with Hartmann number M = 0 (left)
and M = 2 (right) and ¢ = 0.1
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Fig. 19 Velocity approximation (x-component) profile for fixed y = 1 with Hartmann number M = 4 (left)
and M = 6 (right) and ¢ = 0.1
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Fig. 20 Velocity approximation (x-component) profile for fixed x = 0.5 with Hartmann number M = 0
(left) and M = 2 (right) and ¢ = 0.1
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