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Abstract
For a topological space X , let C L(X) be the set of all non-empty closed subset of
X , and denote the set C L(X) with the Vietoris topology by (C L(X),V). In this
paper, we mainly discuss the hyperspace (C L(X),V) when X is an infinite countable
discrete space. As an application, we first prove that the hyperspace with the Vietoris
topology on an infinite countable discrete space contains a closed copy of nth power
of Sorgenfrey line for each n ∈ N. Then we investigate the tightness of the hyperspace
(C L(X),V) and prove that the tightness of (C L(X),V) is equal to the set-tightness of
X . Moreover, we extend some results about the generalized metric properties on the
hyperspace (C L(X),V). Finally,wegive a characterization of X such that (C L(X),V)

is a γ -space.
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1 Introduction

It is well known that the topics of the hyperspace has been the focus of much research,
see [7–11, 15–25, 27]. There are many results on the hyperspace C L(X) of closed
subsets of a topological space equipped with various topologies. In this paper, we
endow C L(X) with the Vietoris topology V, or the so-called finite topology, the base
of which consists of all subsets of the following form:

〈U1, ..., Uk〉 = {K ∈ C L(X) : K ⊂
⋃k

i=1
Ui and K ∩ U j �= ∅, 1 ≤ j ≤ k},

where each Ui is open in X and k ∈ N. We denote the hyperspace C L(X) with
Vietoris topology by (C L(X),V). In 1997, Holá and Levi in [16, Corollary 1.8] gave
a characterization of the first countability of (C L(X),V); in 2003, Holá, Pelant and
Zsilinszky in [15, Theorem3.1] proved that (C L(X),V) is developable iff (C L(X),V)

is Moore iff (C L(X),V) is metrizable iff (C L(X),V) has a σ -discrete network iff
X is compact and metrizable. So it is natural for us to consider the following two
problems:

Problem 1.1 Let C be a proper subclass of the class of first-countable spaces, and let
P be a topological property. If (C L(X),V) ∈ C, does X have the property P?

Problem 1.2 Let C be a class of generalized metrizable spaces. If (C L(X),V) ∈ C, is
X compact and metrizable?

The paper is organized as follows. In Sect. 2, we introduce the necessary notation
and terminology which are used in the paper. In Sect. 3, we mainly discuss the hyper-
space (C L(D(ω)),V) and prove that (C L(D(ω)),V) contains a closed copy of Sn

for each n ∈ N, where S is the Sorgenfrey line. In Sect. 4, we prove that the tightness
of (C L(X),V) is equal to the set-tightness of X ; moreover, we give a characteri-
zation of (C L(X),V) which is Fréchet-Urysohn. In Sect. 5, we give some answers
to Problems 1.1 and 1.2, respectively. In particular, we prove that (C L(X),V) is
quasi-developable iff (C L(X),V) is a semi-stratifiable space iff (C L(X),V) is sym-
metrizable iff (C L(X),V) is a D1-space iff X is compact and metrizable; moreover,
we prove that (C L(X),V) is a γ -space iff X is a separable metrizable space and S(X)

is compact, where S(X) is the set of all non-isolated points of X .

2 Preliminaries

In this paper, the base space X is always supposed to be regular. Let N and ω denote
the sets of all positive integers and all nonnegative integers, respectively. Let S be
the real line endowed with half open interval topology, that is, Sorgenfrey line. For a
space X , S(X) is the set of all non-isolated points of X . For undefined notations and
terminologies, the reader may refer to [6], [12] and [22].
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A Note on Hyperspaces by Closed Sets with Vietoris Topology 1957

Let X be a topological space and A ⊆ X be a subset of X . The closure of A in X is
denoted by A. A subset P of X is called a sequential neighborhood of x ∈ X , if each
sequence converging to x is eventually in P . A subset U of X is called sequentially
open if U is a sequential neighborhood of each of its points. A subset F of X is called
sequentially closed if X \ F is sequentially open. The space X is called a sequential
space if each sequentially open subset of X is open. The space X is said to be Fréchet-
Urysohn if, for each x ∈ A ⊂ X , there exists a sequence {xn} in A such that {xn}
converges to x .

Definition 2.1 Let P be a cover of a space X such that (i) P = ⋃
x∈X Px ; (ii) for

each x ∈ X , if U , V ∈ Px , then W ⊆ U ∩ V for some W ∈ Px ; (iii) x ∈ ⋂
Px for

each x ∈ X ; and (iv) for each point x ∈ X and each open neighborhood U of x there
is some P ∈ Px such that x ∈ P ⊆ U .

• The familyP is called a weak base for X if, for every G ⊂ X , the set G must be
open in X whenever for each x ∈ G there exists P ∈ Px such that P ⊂ G, and X is
weakly first-countable if X has a weak base P and Px is countable for each x ∈ X .

Definition 2.2 Let P be a family of subsets of a space X . The family P is called a
k-network if for every compact subset K of X and an arbitrary open set U containing
K in X there is a finite subfamily P ′ ⊆ P such that K ⊆ ⋃

P ′ ⊆ U .

A space X is said to be Lašnev if it is the continuous closed image of some metric
space. The following Lašnev space in Definition 2.3 plays an important role in the
study of the generalized metric theory.

Definition 2.3 Let κ be an infinite cardinal. For each α ∈ κ , let Tα be a sequence
converging to xα /∈ Tα . LetT = ⊕

α∈κ(Tα∪{xα})be the topological sumof {Tα∪{xα} :
α ∈ κ}. Then Sκ = {x}∪⋃

α∈κ Tα is the quotient space obtained from T by identifying
all the points xα ∈ T to the point x . The space Sκ is called a sequential fan.

The following space is not a Lašnev space.

Definition 2.4 A space X is called an S2-space (Arens’ space) if

X = {∞} ∪ {xn : n ∈ N} ∪ {xn,m : m, n ∈ ω}

and the topology is defined as follows: Each xn,m is isolated; a basic neighborhood of
xn is {xn} ∪ {xn,m : m > k}, where k ∈ ω; a basic neighborhood of ∞ is

{∞} ∪ (
⋃

{Vn : n > k}) for some k ∈ ω,

where Vn is a neighborhood of xn for each n ∈ ω.

Given a topological space X , we define its hyperspace as the following set:

C L(X) = {H : H is non-empty, closed in X}.
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1958 C. Liu, F. Lin

We endow C L(X) with Vietoris topology defined as the topology generated by the
following family

{〈U1, . . . , Uk〉 : U1, . . . , Uk are open subsets of X , k ∈ N},

where 〈U1, ..., Uk〉 = {H ∈ C L(X) : H ⊂ ⋃k
i=1Ui and H ∩ U j �= ∅, 1 ≤ j ≤ k}.

We denote this hyperspace with Vietoris topology by (C L(X),V).
If U is a subset of X , then

U− = {H ∈ C L(X) : H ∩ U �= ∅}

and

U+ = {H ∈ C L(X) : H ⊂ U }.

Sometimes, we denote U− by U−X in order to prevent the confusion.
Let X be a space. The closed set character (resp. compact set character) of X is

the minimal cardinal τ ≥ ω such that for each closed (resp. compact) set A of X
the cardinal of the character of A in X is at most τ . The closed set character (resp.
compact set character) of X is denoted by clχ(X) (resp. coχ(X)). If clχ(X) = ω,
then X is called a D1-space [3] if sup{χ(H) : H ∈ C L(X)} ≤ ω; if coχ(X) = ω,
then X is called a D0-space [26] if sup{χ(H) : H is compact in X} ≤ ω. Clearly,
each D1-space is a D0-space.

3 The Topological Properties of Hyperspace on an Infinite Countable
Discrete Space

In this section, we mainly discuss the topological properties of hyperspace on an
infinite countable discrete space. First, we recall a concept.

A proper subset C of the rational number Q is called a cut if C has no largest
element and (−∞, p] ∩ Q ⊂ C for each p ∈ C . If C, D are cuts and C is a proper
subset of D, then denoted by C < D.

In this paper, we always denote any countable infinite discrete space by D(ω). The
following lemma is a simple modification of [14, Theorem 4.11].

Lemma 3.1 The hyperspace (C L(D(ω)),V) contains a closed copy of Sorgenfrey line
S.

Proof Let Q be the set of rational number with the discrete topology; then D(ω) is
homeomorphic to Q. Therefore, we may assume that D(ω) is Q. Let

X = {C ∈ C L(D(ω)) : C is a cut}.

It was proved that the subspaceX of (C L(D(ω)),V) is homeomorphic to the Sorgen-
frey line by [14, Theorem4.11].Nowweonly prove thatX is closed in (C L(D(ω)),V).

123



A Note on Hyperspaces by Closed Sets with Vietoris Topology 1959

Take any C ∈ C L(D(ω)) \ X; then C is not a cut. Hence, C has a largest element
or there exist p ∈ C such that ((−∞, p] ∩ Q) \ C �= ∅. In order to find an open
neighborhood Û of C in C L(D(ω)) such that Û ∩ X = ∅, we divide the proof into
the following two cases.

Case 1: C has a largest element p.
Then p ∈ C such that r ≤ p for any r ∈ C . Clearly, 〈C, {p}〉 is an open neighbor-

hood of C in (C L(D(ω)),V); hence, it easily follows that 〈C, {p}〉 ∩ X = ∅. Now
put Û = 〈C, {p}〉, as desired.

Case 2: There exist p ∈ C such that ((−∞, p] ∩ Q) \ C �= ∅.
Pick any q ∈ ((−∞, p] ∩ Q) \ C ; then q < p. Clearly, 〈C, {p}〉 is an open

neighborhood of C . We claim that 〈C, {p}〉 ∩X = ∅. Indeed, if not, there exists a cut
D ∈ X such that p ∈ D and D ⊂ C , then q ∈ D since q < p and D is a cut. This is
a contradiction since q /∈ C . Now put Û = 〈C, {p}〉, as desired.

Therefore, it follows from Cases 1 and 2 that X is closed in (C L(D(ω)),V). ��
Proposition 3.2 Let X be a space and X = ⊕

i∈N Xi , where Xi ∩ X j = ∅ for any
distinct i ∈ N and j ∈ N. Then the box product

∏
i∈N(C L(Xi ),V) is homeomorphic

to a closed subspace of (C L(X),V).

Proof Let

X
′ = {H ∈ C L(X) : H ∩ Xi �= ∅, i ∈ N}.

We claim that X′ is a closed subspace of (C L(X),V). Indeed, take any K ∈ C L(X) \
X

′; then K ∩Xi = ∅ for some i ∈ N. PutY = ⋃
j∈N\{i} X j . ThenY + is a neighborhood

of K and Y + ∩ X
′ = ∅. Now we prove that the box product

∏
i∈N(C L(Xi ),V) is

homeomorphic to X′.
Indeed, define the mapping f : ∏

i∈N(C L(Xi ),V) → X
′ by f (

∏
i∈N Ci ) =⋃

i∈N Ci for any
∏

i∈N Ci ∈ ∏
i∈N(C L(Xi ),V). Clearly, f is a bijection. Next it

suffices to prove that f is an open continuous mapping.

(1) The mapping f is continuous.
Take any nonempty open subset V of X . Then there exists a subset A ⊂ N such
that V ∩ Xn �= ∅ for each n ∈ A and V ∩ Xm = ∅ for each m ∈ N \ A. Then

f −1(V −X ∩ X
′) =

⋃

i∈A

⎛

⎝(V ∩ Xi )
−Xi ×

∏

j∈N\{i}
X+

j

⎞

⎠ ,

and then

f −1(V +) =
∏

i∈N
(Xi ∩ V )+

if A = N. Hence f is continuous.
(2) The mapping f is open.
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Let Vi ⊂ Xi be a nonempty open subset of Xi for each i ∈ N. For any subset
B ⊂ N, we have

f

⎛

⎝
∏

i∈B

V −Xi
i ×

∏

j∈N\B

V +
j

⎞

⎠ =
⋂

i∈B

V −X
i ∩

⎛

⎝
⋃

i∈B

Xi ∪
⋃

j∈N\B

Vj

⎞

⎠
+

∩ X
′.

Therefore, f is a homeomorphism. ��
By Proposition 3.2, we have the following theorem.

Theorem 3.3 The hyperspace (C L(D(ω)),V) contains a closed copy of the box prod-
uct

∏
n∈N Sn, where each Sn is homeomorphic the Sorgenfrey line S.

Proof We can write D(ω) = ⋃
i∈N Ei such that each Ei is infinite and Ei ∩

E j = ∅ for distinct i and j . From Proposition 3.2, it follows that the box prod-
uct

∏
i∈N(C L(Ei ),V) is homeomorphic to a closed subspace of (C L(D(ω)),V).

By Lemma 3.1, each (C L(Ei ),V) contains a closed copy of Sorgenfrey line, hence
(C L(D(ω)),V) contains a closed copy of the box product

∏
n∈N Sn . ��

From Theorem 3.3, we easily see the following corollary.

Corollary 3.4 The hyperspace (C L(D(ω)),V) contains a closed copy of Sn for each
n ∈ N.

Remark 3.5 It is well known that Sorgenfrey line S is a non-metrizable space which
is hereditarily Lindelöf, hereditarily separable, first-countable, perfect1 and non-
developable; moreover, it has the Baire property and a regular Gδ-diagonal. However,
the square of Sorgenfrey line is not normal. Therefore, (C L(D(ω)),V) is not normal.
Further, we have the following proposition.

Proposition 3.6 The Sorgenfrey line S does not belong to any one of the following
classes of spaces.

(1) β-spaces;2

(2) spaces with a point-countable k-network;
(3) spaces with a BCO;3

(4) p-spaces;4

1 A space X is called perfect if every closed subset of X is a Gδ-set.
2 A space (X , τ ) is called a β-space if there exists a function g : N × X → τ such that (i) for any x ∈ X ,
we have g(n + 1, x) ⊂ g(n, x) for any n ∈ N, (ii) for any x ∈ X and sequence {xn} in X , if x ∈ g(n, xn)

for each n ∈ N, then {xn} has an accumulation point in X
3 A space X is said to have a base of countable order if there is a sequence {Bn} of bases for X such that:
Whenever x ∈ bn ∈ Bn and {bn} is decreasing, then {bn : n ∈ ω} is a base at x . We use ‘BCO’ to abbreviate
‘base of countable order’.
4 A regular space X is called a p-space if there is a sequence {Un} of families of open sets in β X such
that (1) each Un covers X ; (2) for each x ∈ X ,

⋂
n∈N st(x,Un) ⊂ X . If we also have (3) for each x ∈ X ,⋂

n∈N st(x,Un) = ⋂
n∈N st(x,Un), then X is called a strict p-space.
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(5) symmetrizable5

(6) quasi-developable spaces;6

(7) D1-spaces.

Therefore, (C L(D(ω)),V) does not belong to any one of the classes of spaces
(1)–(7).

Proof (1) If the Sorgenfrey line S is a β-space, then it is a Moore space7 hence, S is
metrizable since a paratopological group which is a β-space is developable. This
is a contradiction.

(2) If the Sorgenfrey line S has a point-countable k-network, then it has a point-
countable base [13, Corollary 3.6] since S is a first-countable space. Since a
separable space with a point-countable base has a countable base by [12, The-
orem 7.2], it follows that S has a countable base, thus it is metrizable, this is a
contradiction.

(3) If the Sorgenfrey line S has a BCO, then it follows that it is developable since each
submetacompact space with a BCO is developable [12, Theorem 6.6], hence it is
metrizable. This is a contradiction.

(4) If the Sorgenfrey line S is a p-space, then it is a Lindelöf p-space with a Gδ-
diagonal8, hence S is metrizable by [12, Corollaries 3.4 and 3.20]. This is a
contradiction.

(5) If the Sorgenfrey line S is symmetrizable, then it is a semi-stratifiable9 space by
[12, Theorem 9.6] and [12, Theorem 9.8], hence a β-space [12, Page 475], this is
a contradiction to (1).

(6) If the Sorgenfrey lineS is quasi-developable, then it is developable by [12, Theorem
8.6] since S is perfect, this is a contradiction.

(7) If the Sorgenfrey line S is a D1-space, then S is metrizable [5, Theorem 7(4)] since
S has a Gδ-diagonal, this is a contradiction.

��
Theorem 3.7 The hyperspace (C L(D(ω)),V) is non-Archimedean quasi-metrizable;
thus it is quasi-metrizable.

Proof Let D(ω) = {rn : n ∈ N} endowed with a discrete topology τ . Now we define
a g-function from N × C L(D(ω)) → V as follows (1) and (2):

5 A function d : X × X → R
+ is called symmetric on a set X if for each x, y ∈ X , we have (1) d(x, y) = 0

if and only if x = y and (2) d(x, y) = d(y, x). A space (X , τ ) is called symmetrizable if there exists a
symmetric d on X such that the topology τ given on X is generated by the symmetric d, that is, a subset
U ∈ τ if and only if for every x ∈ U , there is ε > 0 such that B(x, ε) ⊂ U .
6 A space (X , τ ) is called quasi-developable if there exists a sequence {Un} of families consisting of open
sets in X such that for each x ∈ U ∈ τ there exists n ∈ N such that x ∈ st(x,Un) ⊂ U .
7 A space (X , τ ) is called developable if there exists a sequence {Un} of families of open covers of X such
that, for each x ∈ X , {st(x,Un)} is an open neighborhood base of x in X . A regular developable space is
called a Moore space;
8 A space X is said to have a Gδ-diagonal if there is a sequence {Un} of open covers of X , such that, for
each x ∈ X , {x} = ⋂

n∈N st(x,Un).
9 A space (X , τ ) is called a semi-stratifiable if, there exists a function F : N × τ → τ c satisfying the
following conditions: (1) U ∈ τ ⇒ U = ⋃

n∈N F(n, U ); (2) V ⊂ U ⇒ F(n, V ) ⊂ F(n, U ), where
τ c = {F : F ⊂ X , X \ F ∈ τ }.
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(1) If A ∈ C L(D(ω)) is a finite subset of D(ω), then there exist kA ∈ N and a finite
subset {n(1, A), . . . , n(kA, A)} of N with n(1, A) < . . . < n(kA, A) such that
A = {rn(1,A), · · · , rn(kA,A)}; then put

G(m, A) = 〈{rn(1,A)}, . . . , {rn(kA,A)}〉

for each m ∈ N.
(2) If A ∈ C L(D(ω)) is an infinite subset of D(ω), then there exists a strictly increas-

ing sequence {n(i, A)}i∈N of N such that A = {rn(i,A) : i ∈ N}; then put

G(m, A) = 〈{rn(1,A)}, . . . , {rn(m,A)}, A〉

for each m ∈ N.

Now it easily check the following two conditions hold.

(i) For each A ∈ C L(D(ω)) the family {G(m, A)}m∈N is a base at A in
(C L(D(ω)),V).

(ii) For each A ∈ C L(D(ω)), if B ∈ G(m, A), then G(m, B) ⊂ G(m, A). There-
fore, it follows from [12, Theorem 10.2] that (C L(D(ω)),V) is non-Archimedean
quasi-metrizable.

��
Let Cω = {∞} ∪ {xmn : n, m ∈ N} be a countable infinite set. Endow Cω with a

topology υ as follows:

(1) Each single point set {xmn} is open in Cω;
(2) For each k ∈ N, put Uk = {xmn : m ∈ N, n ≥ k + 1} ∪ {∞}; the family {Uk} is a

base at the point ∞.

From Theorem 5.17, it follows that (C L(Cω),V) is a γ -space10. However, the fol-
lowing question is still unknown for us.

Question 3.8 Is the hyperspace (C L(Cω),V) quasi-metrizable?

4 The Characterizations of Tightness in Hyperspaces

In this section, we mainly give a characterization of tightness in hyperspace; in par-
ticular, we give a characterization of hyperspace which is Fréchet–Urysohn. First, we
recall and introduce some concepts.

The tightness of a space X is the minimal cardinal τ ≥ ω such that if any x is a
cluster point of any subset A of X , then there is a subset B of A such that |B| ≤ τ and
x is a cluster point of B. The tightness of X is denoted by t(X).

Definition 4.1 Let X be a space, F ⊂ C L(X) and A ∈ C L(X).

10 A space (X , τ ) is a γ -space if there exists a function g : ω × X → τ such that (i) {g(n, x) : n ∈ ω} is a
base at x ; (ii) for each n ∈ ω and x ∈ X , there existsm ∈ ω such that y ∈ g(m, x) implies g(m, y) ⊂ g(n, x).
By [12, Theorem 10.6(iii)], each γ -space is a D0-space.
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(1) The set A is called a cluster set ofF in X if for any finite open subsets {Vi : i ≤ k}
with Vi ∩ A �= ∅ (i ≤ k) and any open neighborhood U of A, there is a F ∈ F
such that F ⊂ U and F ∩ Vi �= ∅ for any i ≤ k.

(2) The set-tightness of X is the minimal cardinal τ ≥ ω such that if A is a cluster set
of any F ⊂ C L(X), then there is a subfamily F ′ ⊂ F such that |F ′| ≤ τ and A
is a cluster set of F ′. The set-tightness of X is denoted by st(X).

(3) The sequence {A j : j ∈ N} of C L(X) is called strongly converging to A in X if
for any finite open subsets {Vi : i ≤ k} with A ∩ Vi �= ∅ ( j ≤ k) and any open
neighborhood U of A, there exists N ∈ N such that A j ⊂ U and A j ∩ Vi �= ∅
(i ≤ k) whenever j ≥ N .

(4) The space X has set-FU property if whenever A is a cluster set of F ⊂ C L(X),
there is a countable subfamily {A j : j ∈ N} of F such that {A j : j ∈ N} strongly
converges to A in X .

From the definition of the set-FU property, it follows that if elements of F and A
are all singleton, then X is Fréchet–Urysohn. Therefore, it easily see that there exists a
countable set-tightness space X such that X is not set-FU property, such asArens space
S2. Now we can use the concepts of set-FU property and set-tightness to characterize
the Fréchet–Urysohn and tightness of (C L(X),V), respectively. First, the following
proposition gives a characterization of X such that t((C L(X),V)) ≤ τ .

Proposition 4.2 Let X be a space. Then t((C L(X),V)) ≤ τ if and only if st(X) ≤ τ .

Proof Sufficiency. Assume t((C L(X),V)) ≤ τ . Let A be a cluster set ofF ⊂ C L(X).
For any finite open subsets {Vi : i ≤ k} with A ∩ Vi �= ∅ (i ≤ k) and any open
neighborhood U of A, the set 〈V1 ∩ U , ..., Vk ∩ U , U 〉 is a neighborhood of A in
(C L(X),V). Since t((C L(X),V)) ≤ τ , there exists a subfamily F ′ ⊂ F such that
|F ′| ≤ τ and A ∈ F ′ in (C L(X),V). Since A ∈ 〈V1 ∩ U , ...Vk ∩ U , U 〉, there exists
F ∈ F ′ such that F ∈ 〈V1 ∩ U , ..., Vk ∩ U , U 〉; then F ⊂ U , F ∩ Vi �= ∅ for any
i ≤ k. Therefore, A be a cluster set of F ′. Thus st(X) ≤ τ .

Necessity. Assume st(X) ≤ τ , and suppose that A belongs to the closure of F
in (C L(X),V), where F ⊂ C L(X). We claim that A is a cluster set of F . Indeed,
for any finite open subsets {Vi : i ≤ k} and any open neighborhood U of A, the set
〈V1 ∩ U , ..., Vk ∩ U , U 〉 is a neighborhood of A in (C L(X),V). Then there exists
F ∈ F such that F ∈ 〈V1 ∩ U , ..., Vk ∩ U , U 〉, which implies that F ∩ Vi �= ∅ for
i ≤ k and F ⊂ U . Hence, A is a cluster set ofF . Since st(X) ≤ τ , there is a subfamily
F1 ⊂ F such that |F1| ≤ τ and A is a cluster set of F1 in X . Finally it suffices to
prove the following claim.

Claim: A ∈ F1 in (C L(X),V). Let 〈W1, ..., Wm〉 be a neighborhood of A in
(C L(X),V), and let W = ∪{Wi : i ≤ m}. Then A ∩ Wi �= ∅ for any i ≤ m and
A ⊂ W . Since A is a cluster set of F1, there exists F ∈ F1 such that F ∩ Wi �= ∅ for
any i ≤ m and F ⊂ W . Hence, F ∈ 〈W1, ..., Wm〉. Therefore, A ∈ F1 in (C L(X),V).

��
Corollary 4.3 Let X be a space. Then (C L(X),V) is of countable tightness if and only
if X is of countable set-tightness.

Proposition 4.4 Let X be a (regular) space. Then we have the following statements:
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(1) coχ(X) ≤ st(X);
(2) If X is a normal space, then clχ(X) ≤ st(X).

Proof We only prove (2), and the proof of (1) is similar. Let st(X) = τ , let A be an
arbitrary closed subset of X , and letBA = {Uα : α ∈ I } be an open neighborhood base
at A in X . Since X is normal, it follows that BA = {Uα : α ∈ I } be a neighborhood
base at A in X , hence it easily check that A is a cluster set of BA. Because st(X) ≤ τ ,
there exists a subfamilyB′

A = {Uα : α ∈ I1} ofBA such that |I1| ≤ τ and A is a cluster
set of B′

A. Therefore, for any open neighborhoodU of A in X , there exists α ∈ I1 such
that A ⊂ Uα ⊂ U . Hence B′

A is a neighborhood of A in X . Hence clχ(X) ≤ st(X).
��

Corollary 4.5 If X is a (regular) space with countable set-tightness, then X is a D0-
space; in particular, X is a D1-space if X is normal.

By Proposition 4.2 and Corollary 4.5, we have the following corollary.

Corollary 4.6 If X is a space and (C L(X),V) has countable tightness, then X is a
D0-space; in particular, X is a first-countable space.

By [1, Proposition 3], it is natural to pose the following question.

Question 4.7 Let X be a space. If (C L(X),V) has countable tightness, does then
(C L(X),V) contain a copy of Sω?

Question 4.8 Under what conditions of a space X, we have t(X) = st(X).

The following proposition gives a partial answer to Question 4.8.

Proposition 4.9 Let X be a normal space. Then X has countable set-tightness if and
only if X has the following properties:

(1) X is perfectly normal;
(2) the set X \ S(X) is countable;
(3) S(X) is countably compact, hereditarily separable and χ(S(X), X) ≤ ℵ0.

Proof Suppose that X has the properties (1)-(3), then it follows from [16, Corollary
1.8] that (C L(X),V) is first-countable, hence X has countable set-tightness. Now it
suffices to prove the necessity. Let X have countable set-tightness. By Proposition 4.2,
(C L(X),V) has countable tightness. Since X is normal, it follows from [14, Proposi-
tion 2.6] that (C L(X),V) is first-countable. Then the necessity holds by [16, Corollary
1.8]. ��
Remark 4.10 By Proposition 4.9, there exists a metrizable space X such that X is not
countable set-tightness. Indeed, let X be an arbitrary non-compact metrizable space
such that any point of X is not isolated. By Proposition 4.9, X is not countable set-
tightness.

The gap between D1-spaces and D0-spaces is large, see [5, Theorem 4]. The fol-
lowing proposition gives some relations between D0-spaces and other generalized
metric spaces.
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Proposition 4.11 Let X be a developable space or a space with a point-countable
base. Then X is a D0-space.

Proof Fix an arbitrary compact subset K ⊂ X .

(1) Assume that X is a space with a point-countable base. Let B be a point-countable
base of X . Then K is metrizable by [12, Theorem 7.6]. Let D be a countable dense
subset of K , and put B′ = {B ∈ B : B ∩ K �= ∅}; then |B′| ≤ ω. Let

B′′ = {∪F : F ⊂ B′ is a finite cover of K }.

We prove that B′′ is a countable base of K . Indeed, if K ⊂ U with U open, then,
for any x ∈ K , pick Bx ∈ B′ such that x ∈ Bx ⊂ U . Since {Bx : x ∈ K } is an
open cover of K , there exists n ∈ N such that {Bxi : i ≤ n} is a finite open cover
of K , then K ⊂ ⋃

i≤n Bxi ⊂ U and
⋃

i≤n Bxi ∈ B′′.
(2) Let X be a developable space, and let Y be the quotient space by identifying K

to a point z with the canonical map f . It is easy to see that f is a perfect map.
Since developable spaces are preserved by perfect maps, then Y is developable.
Let {Un : n ∈ N} be a countable local base at z, and put Vn = f −1(Un) for each
n ∈ N. Then {Vn : n ∈ N} is a countable base of K . Hence X is a D0-space.

��
From Theorems 5.1 and 5.17, there exists a space X such that (C L(X),V) is a D0-

space, but (C L(X),V) is not a D1-space. Indeed, let X be the space of topological
sum of a compact metrizable space C and a countable infinite discrete space D, that
is, X = C

⊕
D. Then it follows that (C L(X),V) is a D0-space and not a D1-space.

The following proposition gives a characterization of X such that (C L(X),V) is
Fréchet–Urysohn, which could be proved by a similar proof of Proposition 4.2.

Proposition 4.12 Let X be a space. Then (C L(X),V) is Fréchet–Urysohn if and only
if X has set-FU property.

It is well known that a strongly Fréchet–Urysohn space is Fréchet–Urysohn, but not
vice versa. It is natural to pose the following two questions. Clearly, if Question 4.14
is positive, then Question 4.13 is also positive.

Question 4.13 Let X be a space. If (C L(X),V) is Fréchet–Urysohn, is then
(C L(X),V) strongly Fréchet–Urysohn?

Question 4.14 Let X be a space. If (C L(X),V) contains a (closed) copy of Sω, does
then (C L(X),V) contain a (closed) copy of S2?

5 Some GeneralizedMetric Properties on Hyperspaces

In this section, we mainly give the characterizations of some generalized metric
properties on hyperspaces, such as semi-stratifiable spaces, quasi-developable spaces,
D1-spaces, symmetrizable spaces, and γ -spaces.

First, we prove the first main theorem in this section as follows, which gives a
partial answer to Problem 1.2.
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Theorem 5.1 Let X be a space. Then the following statements are equivalent.

(1) (C L(X),V) is a semi-stratifiable space;
(2) (C L(X),V) is quasi-developable;
(3) (C L(X),V) is a D1-space;
(4) (C L(X),V) is symmetrizable;
(5) X is a compact metrizable space.

In order to give the proof, we give some technique lemmas and theorems.

Lemma 5.2 Let P be a topological property that is closed hereditary, and let there
exist n ∈ N such that Sn does not have the property P . If (C L(X),V) has the property
P , then X is countably compact.

Proof Suppose X is not countably compact, then there exists a closed, countable
infinite discrete subset D(ω) ⊂ X . Then (C L(D(ω)),V) is a closed subspace of
(C L(X),V). By Corollary 3.4, (C L(X),V) contains a closed copy of Sn for each
n ∈ N, then S

n has the property P , this is a contradiction. Hence X is countably
compact. ��

Since all properties in Proposition 3.6 are closed hereditary, it follows from
Lemma 5.2 that we have the following theorem.

Theorem 5.3 If (C L(X),V) belongs to any one of spaces in Proposition 3.6, then X
is countably compact.

Since each strict p-space is a β-space [12, page475], it follows from Theorem 5.3
that we have the following corollary.

Corollary 5.4 A space X is compact if and only if (C L(X),V) is a strict p-space.

Proof If (C L(X),V) is a strict p-space, then it follows from Theorem 5.3 that X is
countably compact. Since X is a strict p-space, X is submetacompact, hence X is
compact. If X is compact, then it follows from [4, Corollary 13] that (C L(X),V) is
compact, thus it is a strict p-space by [12, Theorem 3.19]. ��
Remark 5.5 It is well known that (C L(X),V) is locally compact if and only if X is
compact if and only if (C L(X),V) is compact, see [4, Corollary 13]. Both locally
compact spaces and strict p-spaces are p-spaces, it is natural to ask the following
question.

Question 5.6 If (C L(X),V) is a p-space, is then X compact?

Lemma 5.7 Let P be a property that is closed hereditary, and let there exists some
n ∈ N such thatSn does not have the propertyP . Then a space X is compact metrizable
if and only if (C L(X),V) is perfect and has property P .

Proof It suffices to prove the sufficiency. By Lemma 5.2, X is countably compact.
Next we prove that X has a Gδ-diagonal. Since X is a closed subset of (C L(X),V)

(indeed, X is the set {{x} : x ∈ X}), there exists a sequence {Un : n ∈ N} of open
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subsets of (C L(X),V) such that X = ⋂
n∈N Un . Put F2(X) = {B ⊂ X : |B| ≤ 2};

then {F2(X) ∩ Un : n ∈ N} is a countable family of open subsets of F2(X). Define
f2 : X × X → F2(X) by f2(x, y) = {x, y}; then it is well known that f2 is an open
and closed continuous mapping from X2 to F2(X). Note that f −1

2 (X) = {(x, x) : x ∈
X} = 
 is the diagonal of X , and that { f −1

2 (F2(X) ∩ Un) : n ∈ N} is a countable
family of open neighborhoods of 
 and

⋂
n∈N f −1

2 (Un ∩ F2(X)) = 
, hence X has
a Gδ-diagonal; therefore, X is compact metrizable by [12, Theorem 2.14]. ��

Now we can prove our first theorem.

Proof of Theorem 5.1 Clearly, it suffices to prove that (1), (2), (3), (4) ⇒ (5). By
Lemma 5.7, we have (1) ⇒ (5) and (3) ⇒ (5).

(2) ⇒ (5). Assume that (C L(X),V) is quasi-developable. Then, by Theorem 5.3,
X is countably compact. Since each countably compact space is a M-space, it follow
from [12, Theorem 8.5] and [12, Corollary 8.3(ii)] that X is metrizable.

(4)⇒ (5). Let (C L(X),V) be symmetrizable; then (C L(X),V) has countable tight-
ness, hence fromTheorem5.3 andCorollary 4.6, it follows that X is first-countable and
countably compact. Since a first-countable, symmetrizable space is semi-stratifiable, it
concludes that X has a Gδ-diagonal. Hence X is compact metrizable by [12, Theorem
2.14]. The proof is completed. ��

It was proved that if (C L(X),V) is a σ -space (i.e., a regular space with a σ -discrete
network11), then X is compact metrizable by [14, Theorem 4.14]. So it is natural to
ask the following question.

Question 5.8 If (C L(X),V) has a σ -locally countable network, is then X compact
metrizable?

We give a partial answer to Question 5.8. First, we give a lemma.

Lemma 5.9 If X is a (regular) space having a σ -locally countable network, then each
singleton is a Gδ-set.

Proof Let P = ⋃
n∈N Pn be a σ -locally countable network of X , where each Pn is

locally countable. Since X is regular, we may assume that each element ofP is closed.
Fix any x ∈ X . For n ∈ N, letUn be an open neighborhood of x such thatUn intersects
at most countably many elements of Pn , and let P ′

n = {P ∈ Pn : P ∩ Un �= ∅}. For
each n ∈ N, enumerate {P ∈ P ′

n, x /∈ P} as {Pn,i : i ∈ N}, and let Vn,i = X \ Pn,i

for each i ∈ N; then Vn,i is open and x ∈ Vn,i for each i ∈ N. Now it suffices to prove
the following claim.

Claim: {x} = (
⋂

n∈N Un) ∩ (
⋂

n,i∈N Vn,i ).
Suppose not, then there exists y �= x such that y ∈ (

⋂
n∈N Un) ∩ (

⋂
n,i∈N Vn,i ).

Let V be an open neighborhood of y with x /∈ V . Pick P ∈ P with y ∈ P ⊂ V . Then
P = Pk, j for some k, j ∈ N, and y /∈ Vk, j = X \ Pk, j . This is a contradiction. ��
Theorem 5.10 (MA(ω1) + T O P) A (regular) space X is compact metrizable if and
only if (C L(X),V) has a σ -locally countable network.

11 A family P in a space X is called a network for X if, for each x ∈ U with U open in X , there exists
P ∈ P such that x ∈ P ⊂ U .
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Proof It suffices to prove the sufficiency. From Theorem 5.3, it follows that X is
countably compact. By Lemma 5.9, each singleton of (C L(X),V) is a Gδ-set, then X
is hereditarily separable by [15, Proposition 4.3]. Under MA(ω1)+TOP, X is Lindelöf.
Since a Lindelöf space with a σ -locally countable network has a countable network, X
is a countably compact space with a countable network, hence it is compact metrizable
by [12, Corollary 4.7(ii)]. ��

If X is a k-space,12 we have the following result.

Theorem 5.11 Let X be a (regular) k-space. Then X is compact metrizable if and only
if (C L(X),V) has a point-countable k-network.

Proof By Theorem 5.3, X is countably compact. Since X is k-space with a point-
countable k-network, it follows that X is compact metrizable space [13, Theorem
4.1]. ��

We do not know whether we can delete the condition ‘regular k-space’ in Theo-
rem 5.11, hence we have the following question.

Question 5.12 Suppose (C L(X),V) has a point-countable k-network, is X metriz-
able?

The following theorem gives a characterization of X such that (C L(X),V) has a
BCO under the assumption of MA(ω1) + T O P .

Theorem 5.13 (MA(ω1) + T O P) A (regular) space X is compact metrizable if and
only if (C L(X),V) has a BCO.

Proof By Theorem 5.3, X is countably compact. Moreover, it is obvious that each
singleton of (C L(X),V) is a Gδ-set, then X is hereditarily separable by [15, Propo-
sition 4.3], hence it is Lindelöf under MA(ω1)+TOP. A Lindelöf space having a BCO
is metrizable by [12, Theorem 6.6], therefore, X is compact and metrizable. ��

Next we prove the second main theorems in this section, see Theorem 5.15. First,
we give some concepts.

A family B of open subsets of a space X is called an external π -base of a subset A
if whenever A ∩ U �= ∅ with U open in X , there is B ∈ B such that A ∩ B �= ∅ and
A ∩ B ⊂ U . We denote

eπw(A) = inf{|B| : B is an external π -base of A}.

If B is an external π -base of A, then it easily see that {B ∩ A : B ∈ B} is a π -base of
A.

It was proved that

χ(C L(X),V) = hd(X) · sup{χ(H , X) : H ∈ C L(X)}

[14, Theorem 2.2(5)]. We describe this result in terms of external π -base.

12 A space X is called a k-space if, for each A ⊂ X , A is closed in X provided K ∩ A is closed for each
compact subset K of X .
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Proposition 5.14 For a space X, we have

χ(C L(X),V) = sup{χ(H , X) : H ∈ C L(X)} · sup{eπw(H) : H ∈ C L(X)}.

Proof Suppose χ(C L(X),V) ≤ κ . Fix any H ∈ C L(X), and let {Ûα : α < κ} be a
local base at H in (C L(X),V). We write Ûα = 〈U1(α), ..., Ukα (α)〉 for any α < κ ,
where each kα ∈ N. Let Wα = ⋃

j≤kα
U j (α) for each α; then, it is easy to check that

{Wα : α < κ} is a local base at H in X . Therefore, sup{χ(H , X) : H ∈ C L(X)} < κ .
Next we prove that the family B = {U j (α) : α < κ, j ≤ kα} is an external π -base
of H . Indeed, let V be an open subset of X with V ∩ H �= ∅; then 〈V , X〉 is a
neighborhood of H , hence there exists α < κ such that Ûα ⊂ 〈V , X〉, then it follows
from [22, Lemma 2.3.1] that V contains U j (α) for some j ≤ kα . Therefore, B is an
external π -base of H , that is, sup{eπw(H) : H ∈ C L(X)} ≤ κ .

Suppose sup{χ(H , X) : H ∈ C L(X)} ≤ κ and sup{eπw(H) : H ∈ C L(X)} ≤ κ .
Fix any H ∈ C L(X), let W be an external π -base of H in X with |W| < κ , and let
U = {Uα : α < κ} be a local base at H in X . We claim that

{〈W1 ∩ U , ..., Wr ∩ U , U 〉 : {W1, ..., Wr } ∈ W<ω, U ∈ U}

is a local base at H in (C L(X),V).
Indeed, let 〈V1, ..., Vp〉 be an open neighborhood of H in (C L(X),V); then H ⊂⋃
j≤p Vj and H ∩ Vj �= ∅ for each j ≤ p. Pick U ′ ∈ U such that U ′ ⊂ ⋃

j≤p Vj , and
W j ∈ W such that W j ⊂ Vj for each j ≤ p. Then H ∈ 〈W1∩U ′, ..., Wp ∩U ′, U ′〉 ⊂
〈V1, ..., Vp〉. ��

By Proposition 5.14, it is easily seen that the second main theorem holds, which
gives a partial answer to Problem 1.1.

Theorem 5.15 Let X be a space. Then (C L(X),V) is first-countable if and only if X
is a D1-space and each closed subset of X has a countable external π -base.

It is well known that each first-countable space is weakly first-countable. The
next theorem shows that weak first-countability is equivalent to first-countability in
(C L(X),V).

Theorem 5.16 Let X be a (regular) space. Then (C L(X),V) is first-countable if and
only if (C L(X),V) is weakly first-countable.

Proof Clearly, it suffices to prove the sufficiency. Assume that (C L(X),V) is weakly
first-countable, so it has countable tightness. Then X is first-countable byCorollary 4.6.
Moreover, we claim that d(A) ≤ ω for each A ∈ C L(X). Indeed, take any A ∈
C L(X), and let F = {C : C ⊂ A, |C | < ω}. Then A belongs to the closure of F in
(C L(X),V). In fact, for any open neighborhood 〈U1, . . . , Un〉 of A in (C L(X),V),
we have Ui ∩ A �= ∅ for any i ≤ n; hence pick an arbitrary xi ∈ Ui ∩ A for any
i ≤ n. Then {x1, . . . , xn} ∈ 〈U1, . . . , Un〉 ∩ F �= ∅. Therefore, A belongs to the
closure ofF in (C L(X),V). Since (C L(X),V) has a countable tightness, there exists
a countable subset F1 = {Cn : n ∈ N} of F such that A belongs to the closure of F1
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in (C L(X),V). Put D = ⋃F1. Then the closure of D in X is just A. In fact, let U be
an arbitrary open subset of X such that U ∩ A �= ∅; then U− is an open neighborhood
of A in (C L(X),V), hence U− contains some element F ∈ F1, then F ∩ U �= ∅.
Therefore, D ∩ U �= ∅. Thus d(A) ≤ ω.

Take any A ∈ C L(X); then, by Proposition 5.14, it suffices to prove that eπw(A) =
ω and χ(A, X) = ω.

(1) eπw(A) = ω. Let D be a countable dense subset of A; for each d ∈ D, let Bd

be a countable base at d in X . Then it is easy to check that
⋃{Bd : d ∈ D} is an

external π -base of A, hence eπw(A) = ω.
(2) χ(A, X) = ω. Let {Ui : i ∈ N} be a countable weak base at A, and let Ui = ⋃Ui

for each i ∈ N. obviously, A ⊂ Ui for each i ∈ N. We prove that {int(Ui ) : i ∈ N}
is a countable base at A in X .

First, we prove that each Ui is a sequential neighborhood of A in X . Indeed, let
xn → x ∈ A as n → ∞, and let An = A ∪ {xn} for each n ∈ N; then An → A as
n → ∞ in (C L(X),V). Since Ui is a weak neighborhood of A in (C L(X),V), there
exists k ∈ N such that An ∈ Ui whenever n > k, it implies An ⊂ Ui for n > k, hence
{xn : n > N } ⊂ Ui .

Second, for any A ⊂ U with U open in X , the set 〈U 〉 is an open neighborhood of
A in (C L(X),V), hence there exists Ui such that A ∈ Ui ⊂ 〈U 〉, then A ⊂ Ui ⊂ U .

Finally,we prove A ⊂ int(Ui ) for each i ∈ N. Suppose not, pick any x ∈ A\int(Ui ).
Since X is first-countable, there is a sequence {xn : n ∈ N} ⊂ X \Ui such that xn → x
as n → ∞, which is a contradiction because Ui is a sequential neighborhood of A.

Therefore, {int(Ui ) : i ∈ N} is a countable base at A, i.e., χ(A, X) = ω. ��
Finally we prove the third main theorem in this section (see Theorem 5.17), which

also gives a partial answer to Problem 1.1. Recall that the set of non-isolated points
of a space X is denoted by S(X).

Theorem 5.17 Let X be a space. Then (C L(X),V) is a γ -space if and only if X is a
separable metrizable space and S(X) is compact.

Proof Necessity. Clearly, (C L(X),V) is first-countable, then it follows from Theo-
rem 5.15 that X is a D1-space; moreover, X is a γ -space since the property of γ -space
is hereditary. Therefore, X is metrizable by [5, Theorem 7(8)], and S(X) is also count-
ably compact by [5, Theorem 1], thus S(X) is compact. Since X has a countable
external π -base by Theorem 5.15, it follows that X is separable.

Sufficiency. Assume that X is a separable metrizable space and S(X) is compact,
and assume that d is themetric on X . Let X = I (X)∪S(X), where I (X) is the set of all
isolated points of X . Clearly, I (X) is countable, andwewrite I (X) = {r1, r2, ......}. Let
C′ be a countable base of X , and let C = {C ∈ C′ : C ∩S(X) �= ∅}; then C is an external
base13 of S(X), and we write C = {C1, C2, ..., Cn, ...}. For any subset A ⊂ I (X),
if A is finite then there exist kA ∈ N and a finite subset {n(1, A), . . . , n(kA, A)}
of N with n(1, A) < . . . < n(kA, A) such that A = {rn(1,A), ..., r(kA,A)}; if A is

13 A family B of open subsets of a space X is called an external base [2, Page 467] of a set Y ⊂ X if for
every point y ∈ Y and every neighborhood U of y in X there exists V ∈ B such that y ∈ V ⊂ U .
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infinite, then there exists a strictly increasing sequence {n(i, A)}i∈N of N such that
A = {rn(i,A) : i ∈ N}.

For each A ∈ C L(X) and n ∈ N, we define a function G : N × C L(X) → τ as
follows, where τ is the topology of (C L(X),V).

Case 1: A ⊂ I (X). If A is finite, then put

G(n, A) = 〈{rn(1,A)}, ..., {rn(kA,A)}〉 = {A}

for each n ∈ N. If A is infinite, then put

G(m, A) = 〈{rn(1,A)}, . . . , {rn(m,A)}, A〉

for each m ∈ N. We verify that the family {G(n, A) : n ∈ N} satisfies the conditions
(i) and (ii) of the definition of γ -space.

(i) Let U = 〈U1, .., Um〉 be an arbitrary open neighborhood of A. Pick rn( ji ,A) ∈ Ui

for i ≤ m, and let k = max{ ji : i ≤ m}; then

A ∈ 〈{rn(1,A)}, ..., {rn(k,A)}, A〉 = G(k, A) ⊂ U.

Hence {G(n, A) : n ∈ N} is a local base at A.
(ii) For any m ∈ N, let B ∈ G(m +1, A); then {rn(1,A), ..., rn(m,A), rn(m+1,A)} ⊂ B ⊂

A. If B is finite, it is obvious that G(kB + 1, B) = {B} ⊂ G(m + 1, A); if B is
infinite, then rn(i,B) = rn(i,A) for any i ≤ m + 1, hence

G(m + 1, B) = 〈{rn(1,B)}, ..., {rn(m+1,B)}, B〉 ⊂ 〈{rn(1,A)}, ..., {rn(m+1,A)}, A〉,

that is, G(m + 1, B) ⊂ G(m + 1, A) ⊂ G(m, A).

Case 2: A\ I (X) �= ∅. Then A = A1∪ A2, where A1 = A∩ I (X), A2 = A∩S(X).
Clearly, A2 is compact. For each n ∈ N, let B1/n(A2) = {x ∈ X , d(A2, x) < 1/n},
and put D = {D ∈ C : D ∩ A2 �= ∅}. Then we write D = {D1, D2, ..., Dk, ...}
such that Di = Cqi for i ∈ N and {qi : i ∈ N} is increasing. For each n ∈ N, let
Vn = B1/n(A2) ∪ A1. If A1 is finite, then A1 = {rn(1,A1), ..., r(kA1 ,A1)}, then put

G(m, A) = 〈D1 ∩ Vm, ..., Dm ∩ Vm, {rn(1,A1)}, ..., {rn(kA1 ,A1)}, Vm〉;

if A1 is infinite, then A1 = {rn(i,A1) : i ∈ N}, then for each m ∈ N put

G(m, A) = 〈D1 ∩ Vm, ..., Dm ∩ Vm, {rn(1,A1)}, ..., {rn(m,A1)}, Vm〉.

Now it suffices to prove G(n, A) satisfies (i) and (ii) in the definition of γ -space as
A1 is infinite; for the case that A1 is finite, we may use a similar way to prove it.

(i′) Let U = 〈U1, .., Um〉 be an arbitrary open neighborhood of A. Since A2 ⊂⋃{Ui : i ≤ m}, there is n′ ∈ N such that A2 ⊂ B1/n′(A2) ⊂ ⋃{Ui : i ≤ m}. For
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each i ≤ m, if Ui ∩ A2 �= ∅, then we can find D ji ∈ D such that D ji ∩ A2 �= ∅ and
D ji ⊂ Ui . Let n′′ = max{ ji : i ≤ m}, and let m′ = max{n′, n′′}. Then

A ∈ G(m′, A)

= 〈D1 ∩ Vm′ , ..., Dm′ ∩ Vm′ , {rn(1,A1)}, ..., {rn(m′,A1)}, Vm′ 〉 ⊂ 〈U1, ..., Um〉

by [22, Lemma 2.3.1]. Hence {G(m, A) : m ∈ N} is a countable local base at A.
(ii′) For anym ∈ N, let s = qm , then s > m.We claim that, for any B ∈ G(s, A), we

have G(s, B) ⊂ G(m, A). Indeed, it is obvious that B ∩ (Di ∩ Vs) �= ∅ for each i ≤ s
and rn(i,B) = rn(i,A) for each i ≤ s and B ⊂ Vs ⊂ Vm . Let E = {C ∈ C : C ∩ B �= ∅};
then we write E = {Ei : i ∈ N} such that Ei = Cli for i ∈ N and {li } is increasing.
Note that B ∩ Di �= ∅ and B ∩ E j �= ∅ for any i ≤ m, j ≤ s, we can see that
{D1, ..., Dm} ⊂ {E1, ..., Es}. Therefore, it follows from [22, Lemma 2.3.1] that

G(s, B) = 〈E1 ∩ Vs, ..., Es ∩ Vs, {rn(1,A)}, ..., {rn(s,A)}, Vs〉
⊂ 〈D1 ∩ Vm, ..., D2 ∩ Vm, {rn(1,A)}, ..., {rn(m,A)}, Vm〉
= G(m, A).

Therefore, (C L(X),V) is a γ -space. ��
Corollary 5.18 The following statements are equivalent for a space X.

(1) (C L(X),V) is a γ -space;
(2) (C L(X),V) is a weakly first-countable and submetrizable space;
(3) (C L(X),V) is weakly first-countable and has a Gδ-diagonal;
(4) X is a separable metrizable space and S(X) is compact.

Proof (1) ⇐⇒ (4) by Theorem 5.17. (2) ⇒ (3) is trivial.
(3) ⇒ (4). By Theorems 5.15 and 5.16, X is a separable D1-space with a Gδ-

diagonal, then S(X) is countably compact by [5, Theorem 1], hence S(X) is compact
metrizable. Thus X is metrizable by [5, Theorem 7(8)].

(4) ⇒ (2). By [15, Proposition 8(2)], (C L(X),V) is submetrizable. Moreover, X
is also first-countable by [14, Theorem 2.3]. ��

By Theorem 5.16 and Corollary 5.18, we have the following corollary.

Corollary 5.19 Let X be a (regular) space. Then (C L(X),V) is a γ -space if and only
if (C L(X),V) is weakly first-countable and has a Gδ-diagonal.

The following theorem shows that the classes of D0-spaces and γ -spaces are equiv-
alent in (C L(X),V) under the assumption of M A + ¬C H .

Theorem 5.20 (M A + ¬C H) Let X be a space. Then (C L(X),V) is a D0-space if
and only if (C L(X),V) is a γ -space.

Proof By [12, Theorem 10.6 (iii)], every γ -space is a D0-space, so the necessity is
done.
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Sufficiency. Assume (C L(X),V) is a D0-space, then, by Theorem 5.17, it suffices
to prove that X is a separable metrizable space and S(X) is compact.

By Theorem 5.15, X is a D1-space and every closed subset of X has countable
external π -base, hence S(X) is countably compact by [5, Theorem 1] and X is hered-
itarily separable. Under M A + ¬C H , X is strongly paracompact by [5, Theorem 5
(2)], which implies that S(X) is compact. Moreover, S(X) is a closed subset of X , then
(C L(S(X)),V) is a closed subspace of (C L(X),V). Since S(X) is compact, it follows
that (C L(S(X)),V) is a compact D0-space. Then (C L(S(X)),V) is a D1-space since
every closed subset of (C L(S(X)),V) is compact. By Theorem 5.1, S(X) is compact
metrizable, hence X is metrizable by [5, Theorem 7 (2)]. Therefore, (C L(X),V) is a
γ -space by Theorem 5.17. ��

Since each quasi-metrizable space is a γ -space, we have the following conjecture.

Conjecture 1 Let X be a space. Then (C L(X),V) is quasi-metrizable if and only if
X = C ⊕ D, where C is a compact metrizable space and D is a countable discrete
space.

Remark 5.21 If Question 3.8 is affirmative, then it is obvious that this Conjecture 1
does not hold. If Question 3.8 is negative, then this Conjecture 1 holds. Indeed, assume
that (C L(X),V) is quasi-metrizable, then it follows from Theorem 5.17 that X is a
separable metrizable space and S(X) is compact. Since (C L(Cω),V) is not quasi-
metrizable, it follows that X is locally compact, which implies that S(X) is open in
X . Therefore, X is the topological sum of a compact metrizable space and a count-
able discrete space. Moreover, from Proposition 3.2 and Theorem 3.7, it follows that
(C L(X),V) is quasi-metrizable if X is the topological sum of a compact metrizable
space and a countable discrete space.

From Theorem 3.7, we also have the following conjecture.

Conjecture 2 Let X be a space. Then (C L(X),V) is quasi-metrizable if and only if
(C L(X),V) is non-Archimedean quasi-metrizable.
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