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Abstract
In this article, we introduce a lattice congruence θdI with respect to a nonempty ideal
I of a distributive lattice L and a derivation d on L . We investigate some necessary
and sufficient conditions for the quotient algebra L/θdI to be a Boolean algebra.
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1 Introduction and Preliminaries

In calculus a derivation is a linear map d with the additional property d( f · g) =
d( f ) · g+ f · d(g). Based on this property, several authors have adapted the notion of
derivation in different contexts. First, the notion of derivation has been studied in rings
and near-rings [5, 12].After that, some authors have considered the notion of derivation
in other structures: Jun and Xin [10] in BCI-algebras, [2, 7, 15–17] in lattices and [3,
9, 13] in Leibnez Algebras. In [17], Xin et al, gave some equivalent conditions under
which a derivation is isotone for lattices with a greatest element, modular lattices,
and distributive lattices. They characterized modular lattices and distributive lattices
in terms of isotone derivations. Also, Xin answered to some other questions about the
relations among derivations, ideals, and sets of fixed points in [16].

Lattices and Boolean algebras play a significant role in computer science and logic
as well. Recall that a Boolean algebra is a bounded complemented distributive lattice.
So Boolean algebras can be seen as a special class of lattices. One of the common
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subjects in all kinds of algebras is congruences. The study of congruence relations on
lattices and an the connections between ideals and congruences in a lattice have been
investigated by many authors, see for example [1, 8, 11].

In [14], two types of congruences are introduced in distributive lattices, both of
them defined in terms of derivations. After that, we are interested to generalize the
work on a distributive lattice with a nonempty ideal. To this aim, in this section we
briefly first recall some ingredients needed in the sequel. For more information see,
for example, [6, 7, 17].

Throughout the paper L stands for a distributive lattice. The bottom element of a
distributive lattice, if it exists, is denoted by ⊥L(or⊥) and the top element is denoted
by �L(or�). If both ⊥ and � exist, L is called a bounded lattice. By a lattice map (or
homomorphism) we mean a map f : A → B between two lattices which preserves
binary operations ∨ and ∧. Recall that a nonempty subset I of L is called an ideal
(filter) of L if a∨ b ∈ I (a∧ b ∈ I ) and a∧ x ∈ I (a∨ x ∈ I ) whenever a, b ∈ I and
x ∈ L . An ideal I of L is called prime ideal if, for each x, y ∈ L , x ∧ y ∈ I implies
x ∈ I or y ∈ I . An equivalence relation θ defined on L is said to be a lattice congruence
on L if for all a, b, c ∈ L , aθb implies that (a ∨ c)θ(b ∨ c) and (a ∧ c)θ(b ∧ c).

Definition 1.1 [7] For a lattice L , a function d : L → L is called a derivation on L , if
for all x, y ∈ L: (i) d(x ∧ y) = (d(x)∧ y)∨ (x ∧ d(y)). (ii) d(x ∨ y) = d(x)∨ d(y).

In [17,Th. 3.21], itwas shown that the condition (i) canbe simplified in the following
way which we use throughout the paper from now on.

Lemma 1.2 [17] If L is a distributive lattice, then d : L → L is a derivation if and
only if the following conditions hold: (i) d(x ∧ y) = d(x) ∧ y = x ∧ d(y). (ii)
d(x ∨ y) = d(x) ∨ d(y).

One can find the proof of the following lemma in [7] and [16].

Lemma 1.3 Let d : L → L be a derivation and x, y ∈ L.

(i) If L has a bottom element ⊥, then d(⊥) = ⊥.
(ii) d(x) ≤ x.
(iii) d(d(x)) = d(x).
(iv) If x ≤ y, then d(x) ≤ d(y).
(v) If I is an ideal of L, then d(I ) ⊆ I .
(vi) If L has a top element �, then d(x) = x ∧ d(�).

As a consequence of Lemma 1.3.(iii), we have the following corollary.

Corollary 1.4 Every derivation d : L → L is a lattice homomorphism.

In [14], there are some notions concerning a distributive lattice with 0 (bottom
element) such as ideals and congruences defined based on 0. In Section 2, replacing
0 by a nonempty ideal I of a distributive lattice, we general these notions and study
their properties

Section 3 is devoted to the case where a distributive lattice L is an atomic lattice or,
more generally, an I -atomic lattice. Our main results, can be found in Sect. 4. Here
we show that for an ideal I , the identity map is a derivation such that L/θdI become
a Boolean algebra with maximal cardinality. Finally we demonstrate some necessary
and sufficient conditions under which L/θdI is a Boolean algebra.
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Boolean Algebras Derived... 2271

2 Congruences and Ideals with Respect to a Derivation in a
Distributive Lattice

In what follows, which is a generalization of the article [14], we introduce some
special ideals and congruences with respect to a nonempty ideal and a derivation on
distributive lattices. After that, we study some essential properties of this congruences,
which will be used in Sects. 3 and 4. Note that most of the definitions of this section
have been selected from [14].

Suppose L is a distributive lattice, I a nonempty ideal of L , a ∈ L and d a derivation
on L . By definition, we consider kerI d = d−1(I ) = {x ∈ L | d(x) ∈ I } and
(a)dI = {x ∈ L | a∧ x ∈ kerI d} = {x ∈ L | d(a∧ x) ∈ I }. Observe that we also have
(a)dI = (d ◦ λa)

−1(I ), where λa : L → L is the derivation defined by λa(x) = a ∧ x .
All parts of the following lemma will be used in what follows.

Lemma 2.1 Let a, b ∈ L and I be an ideal of L. Then,

(i) kerI d and (a)dI are ideals of L.
(ii) if a ≤ b, then (b)dI ⊆ (a)dI .
(iii) (a ∨ b)dI = (a)dI ∩ (b)dI .
(iv) I ⊆ kerI d ⊆ (a)dI .
(v) a ∈ kerI d iff a ∈ (a)dI iff (a)dI = L.
(vi)

⋂
a∈L (a)dI = kerI d.

(vii) a ∈ (b)dI if and only if b ∈ (a)dI .
(viii) if (a)dI �= L, then

⋂

b∈(a)dI

(b)dI �= kerI d.

(ix) if I and J are ideals of L in which I ⊆ J , then kerI d ⊆ kerJ d and (a)dI ⊆ (a)dJ ,
for each a ∈ L.

Now we introduce a binary relation on a distributive lattice with respect to an ideal
and a derivation. The following proposition, which has an easy proof, shows that this
binary relation is a lattice congruence.

Proposition 2.2 For an ideal I of L, the binary relation θdI defined as

xθdI y iff (x)dI = (y)dI

is a lattice congruence.

An element a ∈ L is called a kernel element with respect to an ideal I , if (a)dI =
kerI d. Let us denote the set of all kernel elements with respect to the ideal I of L by
Kd

I .
For the ideal L , it is not difficult to check that L = kerLd = (a)dL = Kd

L and hence
θdL = ∇ = {(a, b) | a, b ∈ L}, which implies that L/θdL is a singleton. So, from now
on, all the ideals I will be assumed to be nontrivial (I �= L).

Lemma 2.3 (i) Kd
I �= ∅, then Kd

I is a filter of L.
(ii) kerI d = L if and only if Kd

I = L.
(iii) If (a)dI and Kd

I are nontrivial, then Kd
I ∩ (a)dI = ∅.
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2272 H. Barzegar

(iv) (x)dI = (d(x))dI and xθdI d(x), for all x ∈ L.
(v) If xθdI y, then d(x)θdI d(y).

Proof (i) Let a, b ∈ Kd
I and c ∈ L . By Lemma 2.1(iv), kerI d ⊆ (a ∧ b)dI . For the

converse, let x ∈ (a∧ b)dI . Then d((a∧ b)∧ x) ∈ I and hence b∧ x ∈ (a)dI = kerI d.
So d(b ∧ x) ∈ I , which implies x ∈ (b)dI = kerI d. Thus (a ∧ b)dI = kerI d, hence
a ∧ b ∈ Kd

I . Also a ∨ c ∈ Kd
I , by Lemma 2.1(iii) and (iv).

To prove (ii), apply Lemma 2.1(v) and for (iii), let b ∈ Kd
I ∩ (a)dI . Appling Lemma

2.1(vii), a ∈ (b)dI = kerI d. So by Lemma 2.1(v), (a)dI = L , which is impossible.
(iv) By Lemma 1.3(ii), d(x) ≤ x and hence (x)dI ⊆ (d(x))dI . Let y ∈ (d(x))dI .

Hence d(y∧ x) = d(y∧ d(x)) ∈ I , which implies y ∈ (x)dI . Thus (x)dI = (d(x))dI . ��
The following proposition shows that the quotient lattice L/θdI is a bounded lattice.

Proposition 2.4 For a nontrivial ideal I of L, the distributive lattice L/θdI is a bounded
lattice with

(i) ⊥L/θdI
= kerI d,

(ii) �L/θdI
= Kd

I whenever Kd
I �= ∅.

Proof (i) Let a ∈ kerI d. By Lemma 2.1, for each b ∈ kerI d, (a)dI = L = (b)dI
and hence aθdI b. Thus kerI d ⊆ [a]θdI . For the converse, let c ∈ [a]θdI . Again,
by Lemma 2.1, (c)dI = (a)dI = L and hence c ∈ (c)dI . So d(c) = d(c ∧ c) ∈ I ,
which implies c ∈ kerI d. Thus kerI d = [a]θdI . Since kerI d is an ideal of L ,

for each [y]θdI ∈ L/θdI , we get that a ∧ y ∈ kerI d and hence kerI d = [a]θdI =
[a ∧ y]θdI ≤ [y]θdI . Therefore ⊥L/θdI

= kerI d.
(ii) The proof is similar to (i). ��
The following theorem is another version of [14, Th. 3.4].

Theorem 2.5 Let I be an ideal of L and d a derivation on L. Then the following are
equivalent:

(i) θdI = ∇.
(ii) kerI d = L
(iii) For each x ∈ L, I ∩ [x]ker(d) is a singleton set.

Proof (i) ⇒ (ii) Let x ∈ L and a ∈ kerI d. Since θdI = ∇, xθdI a and, by Lemma
2.1(v), x ∈ kerI d. So kerI d = L .

(ii) ⇒ (iii) From the part one of the proof of [14, Th. 3.4].
(iii) ⇒ (i) Let x, y ∈ L . Consider I ∩ [x]ker(d) = {x0} and I ∩ [y]ker(d) = {y0}.

By Lemma 1.3(ii), d(x) = d(x0) ≤ x0 and, since I is an ideal, d(x) ∈ I . By Lemma
1.3(ii), d(x) ∈ I ∩ [x]ker(d), which implies d(x) = x0. Similarly d(y) = y0. Using
Lemma 2.3(iv) and Proposition 2.4(i), xθdI x0θ

d
I y0θ

d
I y. Thus θdI = ∇. ��

As seen in Lemma 2.3(i), Kd
I is a filter, whenever Kd

I �= ∅. So in the following
lemma we investigate some conditions over which Kd

I �= ∅.
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Lemma 2.6 (i) If � ∈ L, then �, d(�) ∈ Kd
I .

(ii) If I or kerI d is a prime nontrivial ideal of L, then Kd
I �= ∅ and if kerI d �= L,

then L is the disjoint union of kerI d and Kd
I . Also θdI = {(a, b) | {a, b} ⊆

kerI d or {a, b} ⊆ Kd
I }.

(iii) If L is a chain and I a nontrivial ideal of L, then Kd
I �= ∅.

Proof We just prove (ii). If kerI d = L , then kerI d = Kd
I = L . Let kerI d �= L

and b /∈ kerI d and x ∈ (b)dI . Then x ∧ d(b) ∈ I and d(b) /∈ I . If I is prime, then
x ∈ I ⊆ kerI d. Now let kerI d is prime. Since b /∈ kerI d and x ∧ d(b) ∈ I ⊆ kerI d,
x ∈ kerI d . Thus b ∈ Kd

I . So L = kerI d ∪ Kd
I and the first part of the proof will be

complete by using Lemma 2.3.(iii). Now by Proposition 2.4, θdI = {(a, b) | {a, b} ⊆
kerI d or {a, b} ⊆ Kd

I }. ��
As a consequence of Lemma 2.6(ii), we conclude that, if I ⊆ J , then there is no

information on the relation (with respect to containment) between Kd
I and Kd

J at all.
For example, let I ⊆ J be two prime ideals of L and d be the identity derivation.
By Lemmas 2.6(ii) and 2.1(x), Kd

J ⊆ Kd
I . For another example, assume that L has a

bottom element⊥. Consider⊥ �= a ∈ L , I = {⊥}, J =↓ a and a derivation d defined
by d(x) = a ∧ x . Clearly kerJ d = L and, since d(a) = a ∧ a = a �= ⊥, a /∈ kerI d.
So, by Lemma 2.3(ii), Kd

I ⊆ Kd
J .

In the lattice Con(L), all of congruences of L , θ1 ≤ θ2 if θ1 ⊆ θ2.

Proposition 2.7 For a nontrivial ideal I of L, the congruence θdI is the greatest con-
gruence relation having kerI d as a whole class.

Proof Let θ be a lattice congruence on L such that kerI d is a congruence class and xθ y.
At first suppose that Kd

I �= ∅. By Proposition 2.4, Kd
I and kerI d are two congruence

classes, i.e., elements of L/θdI . The following cases may occur:
Case 1. x, y ∈ Kd

I . Hence (x)dI = kerI d = (y)dI and xθdI y.
Case 2. x, y /∈ Kd

I . For each a ∈ (x)dI , (x ∧ a)θ(y ∧ a) and x ∧ a ∈ kerI d. Then
[y ∧ a]θ = [x ∧ a]θ = kerI d. So y ∧ a ∈ kerI d and a ∈ (y)dI . Thus (x)dI ⊆ (y)dI
and, analogously, (y)dI ⊆ (x)dI , which implies that xθdI y.

Case 3. x ∈ Kd
I and y /∈ Kd

I (or similarly y ∈ Kd
I and x /∈ Kd

I ). This case cannot
occur. For, consider b ∈ (y)dI \ (x)dI . Then b ∧ y ∈ kerI d and b ∧ x /∈ kerI d. Also
(b ∧ x)θ(b ∧ y). So b ∧ x ∈ kerI d, which is impossible. Therefore θ ⊆ θdI . Now let
Kd

I = ∅. So only the case 2 may be occured, which implies xθdI y. ��
From now on, up to Lemma 2.11, we investigate some conditions over ideals and

derivations to get a smallest congruence θdI . The smallest one infer that the quotient
lattice L/θdI has the maximal cardinality.

Proposition 2.8 For an ideal I and a derivation d on L, θ idI ⊆ θdI .

Proof Let aθ idI b and x ∈ (a)dI . Then d(x) ∈ (a)idI = (b)idI . So d(b ∧ x) = b ∧
id(d(x)) ∈ I . Thus x ∈ (b)dI which implies (a)dI ⊆ (b)dI and, by similar way,
(b)dI ⊆ (a)dI . So aθdI b. ��
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The following example shows that the maps that assign each ideal I to θdJ and Kd
J

need not be increasing or decreasing.

Example 2.9 (i) Let L = {a, b, c, d} in which a ≺ b ≺ c ≺ d where ≺ denotes the
covering relation, I = {a} and J = {a, b, c}. So I ⊂ J . It is not difficult to check that
(a, b) ∈ θ idJ \ θ idI and (c, d) ∈ θ idI \ θ idJ . Thus θ idI ⊆ / θ idJ and θ idJ ⊆ / θ idI . Also,
we can conclude that Kid

J = {d} and d ∈ Kid
I . So Kid

J ⊆ Kid
I .

(ii) Consider the four element Boolean algebra L = {a, b, c, d} in which a and d
are bottom and top elements, respectively. Consider I = {a} and J = {a, b} and id
the identity map. So I ⊂ J and clearly Kid

I = {d} ⊂ {c, d} = Kid
J . Also it is not

difficult to check that (a)idI = L , (b)idI = (c)idI = (d)idI = {a}, (a)idJ = (b)idJ = L
and (c)idJ = (d)idJ = J . So (b, c) ∈ θ idI \ θ idJ and (a, b) ∈ θ idJ \ θ idI .

Lemma 2.10 For ideals I ⊆ J and a derivation d on L, if there exists a derivation d1
on L such that kerI d1 = J , then θdI ⊆ θdJ and the equality holds if d1 = d.

Proof Let aθdI b and x ∈ (a)dJ . Then d(x ∧ a) ∈ J = kerI d1, which implies d1(x) ∧
d(a) = d1(d(x ∧a)) ∈ I . So d1(x) ∈ (a)dI = (b)dI and hence d(x ∧b) ∈ kerI d1 = J .
Thus x ∈ (b)dJ . This gives that θ

d
I ⊆ θdJ .

Now let d1 = d. Consider aθdkerI d
b and x ∈ (a)dI . Since kerI d is an ideal and

d(x) ≤ x , d(x) ∧ a = d(x ∧ a) ∈ kerI d. So x ∈ (a)dkerI d
= (b)dkerI d and d(x ∧ b) ∈

kerI d. Now it is not difficult to show that x ∈ (b)dI . Thus θdkerI d
⊆ θdI . ��

Lemma 2.11 Let I be an ideal of L and a ∈ L. If J = (a)dI and K is an ideal of L
such that I ⊆ K ⊆ J , then

(i) (a)dI = (a)dK .
(ii) a ∈ Kd

J .
(iii) θdK ⊆ θdJ .
(iv) θdK = θdJ whenever a ∈ Kd

I .

Proof (i) By Lemma 2.1(x), (a)dI ⊆ (a)dK . Now let x ∈ (a)dK . Then d(x ∧ a) ∈
K ⊆ (a)dI , which implies a ∧ d(x) = d(d(a ∧ x) ∧ a) ∈ I . So x ∈ (a)dI .

(ii) By part (i), it is enough to consider K = J . So (a)dJ = (a)dI = J , which means
a ∈ Kd

J .
(iii) Let xθdK y and z ∈ (x)dJ . Then d(x ∧ z) ∈ J , which implies d(x) ∧ (d(z) ∧ a) =

d(d(x ∧ z) ∧ a) ∈ I ⊆ K . So d(z) ∧ a ∈ (x)dK and since (x)dK = (y)dK ,
d(d(y ∧ z) ∧ a) = d(y) ∧ (d(z) ∧ a) ∈ K , hence d(y ∧ z) ∈ (a)dK = (a)dI = J .
Thus z ∈ (y)dJ . Similarly, we can prove (y)dJ ⊆ (x)dJ . So (x)dJ = (y)dJ , which
implies that θdK ⊆ θdJ .

(iv) By (i), (a)dK = (a)dI = kerI d ⊆ kerK d. So by Lemma 2.1.(iv), a ∈ Kd
K . Now

the proof is straightforward, using Lemma 2.10. ��
Note that the following example shows that in Lemma 2.11(iii), θdK can be a strict

subset of θdJ . Consider I a nontrivial prime ideal of L and a ∈ I . Then J = (a)dI = L
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and hence for each x ∈ L , (x)dJ = L . So θdJ = ∇ and, by Lemma 2.6, θdI = {(a, b) |
{a, b} ⊆ kerI d or {a, b} ⊆ Kd

I }. Thus θdI �= θdJ .
In the rest of this section we investigate some relationships between prime ideals

and ideals of the form (x)dI . First note that, if I is a prime ideal, then so is kerI d.

Lemma 2.12 (i) If I is a prime ideal of L, then kerI d = L or for each x /∈ kerI d,
I = kerI d = (x)dI .

(ii) If (x)dI is not a subset of the prime ideal (y)
d
I , then x ∧ y ∈ kerI d.

(iii) If (x)dI �= (y)dI are prime ideals, then x ∧ y ∈ kerI d.

Proposition 2.13 There exist prime ideals P1, P2 in L in which P1 ∪ P2 = L and
P1∩P2 = kerI d if and only if there exist two classes [a]θdI and [b]θdI such that for each
x ∈ [a]θdI and y ∈ [b]θdI , x ∧ y ∈ kerI d and L/θdI is of the form {kerI d, [a]θdI , [b]θdI }.

Proof Let L/θdI = {kerI d, [a]θdI , [b]θdI }. First note that, by Lemma 2.1(v), for each
x ∈ [a]θdI , x ∧ a /∈ kerI d. The subsets P1 = [a]θdI ∪ kerI d and P2 = [b]θdI ∪ kerI d
of L are prime ideals. For, let x, y ∈ P1. In the case where x ∈ kerI d or y ∈ kerI d,
by Lemma 2.1(i), x ∨ y ∈ P1, else, (x ∨ y)dI = (x)dI ∩ (y)dI = (a)dI . Thus x ∨ y ∈ P1.
Consider x ∈ P1, z ∈ L and z ≤ x . Then z ∧ a ≤ x ∧ a ∈ kerI d. Thus z ∈ (a)dI and
hence z ∈ P1. Now let x ∧ y ∈ P1 and y ∈ [b]θdI . So y ∧ b /∈ kerI d. If y ∧ b ∈ [a]θdI ,
then y ∧ b = (y ∧ b) ∧ b ∈ kerI d, which is impossible. So y ∧ b ∈ [b]θdI . Consider
x ∈ [b]θdI , so (x)dI = (b)dI = (y ∧ b)dI . If x ∧ y ∈ P1, then (x ∧ y) ∧ b ∈ kerI d and

hence x ∈ (b ∧ y)dI = (x)dI . So x ∈ kerI d which is a contradiction. Thus x ∈ P1.
For the converse, consider V1 = P1 \ kerI d and V2 = P2 \ kerI d. The subset V1

is a class, for, let a ∈ V1. We show V1 = [a]θdI . Let x ∈ V1. For each y ∈ (a)dI ,

a ∧ y ∈ kerdI ⊆ P2 and, since a /∈ P2, y ∈ P2. If y ∈ kerI d, then y ∈ (x)dI , else,
y ∈ V2 ⊆ P2, which implies x ∧ y ∈ P1 ∩ P2 = kerI d ⊆ (x)dI . So y ∈ (x)dI and
hence (a)dI ⊆ (x)dI . The proof of (x)dI ⊆ (a)dI is similar. Thus (a)dI = (x)dI , which
implies V1 ⊆ [a]dI . Now let x ∈ [a]dI . Then (x)dI = (a)dI and, since a /∈ kerI d, then
x /∈ kerI d, too. If x /∈ P1, then x ∈ P2 and hence a ∧ x ∈ P1 ∩ P2 = kerI d. Thus
a ∈ (x)dI = (a)dI . By Lemma 2.1(iv), (a)dI = L , which is a contradiction. Thus x ∈ P1
and hence x ∈ V1. So V1 = [a]θdI . Similarly, V2 = [b]θdI . ��
Definition 2.14 For a nontrivial ideal I of L , an ideal P is called I -minimal, if it is
minimal in the set of ideals containing I and it is called an I -minimal prime ideal, if
P is a least prime ideal containing I .

From now on, we consider the set� = {(x)dI | x ∈ L \kerI d}. The set� is a poset
under the inclusion relations.

Theorem 2.15 Let I be an ideal of L and a ∈ I . The following assertions are equiv-
alent:

(i) (a)dI is a maximal element in �.
(ii) (a)dI is a prime ideal.
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(iii) (a)dI is a kerI d-minimal prime ideal.

Proof (i)⇒ (ii) Let x ∧ y ∈ (a)dI and x /∈ (a)dI . Since a∧ x ≤ a, using Lemma 2.1(ii),
(a)dI ⊆ (a∧x)dI . By the hypothesis, (a)dI = (a∧x)dI or (a∧x)dI = L . If (a∧x)dI = L ,
then a ∧ x ∈ kerI d, which is a contradiction. Thus (a)dI = (a ∧ x)dI , which gives that
y ∈ (a)dI . Now, the proof is complete using Lemma 2.1(i).

(ii)⇒ (iii) Since (a)dI is a prime ideal, it is a proper ideal of L and, by Lemma
2.1(v), a /∈ kerI d. If kerI d is a prime ideal, we are done, by Lemma 2.12(i). Let Q
be a prime ideal of L containing kerI d such that Q ⊆ (a)dI and x ∈ (a)dI \ Q. Then
x ∧ a ∈ kerI d ⊆ Q. Since x /∈ Q and Q is a prime ideal, a ∈ Q ⊆ (a)dI . Now, by
Lemma 2.1(v), (a)dI = L , which is a contradiction.

(iii)⇒ (i) Let (a)dI ⊆ (x)dI �= L . Consider y ∈ (x)dI \ (a)dI . Then y ∧ x ∈ kerI d ⊆
(a)dI , which implies that x ∈ (a)dI ⊆ (x)dI . Again, by Lemma 2.1(v), (x)dI = L , which
is a contradiction. ��
Lemma 2.16 In the following assertions we have, (i)⇒ (ii)⇒ (iii).

(i) The set � satisfies the descending chain condition with respect to inclusion.
(ii) L does not have an infinite M ⊆ L \ kerI d such that for each x, y ∈ M,

x ∧ y ∈ kerI d.
(iii) The set � satisfies the ascending chain condition with respect to inclusion.

Proof (i)⇒(ii) Let L have an infinite M ⊆ L \ kerI d such that for each x, y ∈ M ,
x ∧ y ∈ kerI d and consider x1, x2 ∈ M . By Lemma 2.1(ii), (x1 ∨ x2)dI ⊆ (x1)dI
and clearly x2 ∈ (x1)dI \ (x1 ∨ x2)dI . Thus the following proper descending chain is
induced, which is a contradiction:

(x1)
d
I ⊃ (x1 ∨ x2)

d
I ⊃ (x1 ∨ x2 ∨ x3)

d
I ⊃ · · ·

(ii)⇒(iii) Let (a1)dI ⊂ (a2)dI ⊂ · · · be a proper chain and x j ∈ (a j )
d
I \ (a j−1)

d
I

for j = 2, 3, · · · . Consider y j = x j ∧ a j−1 /∈ kerI d. For each i < j , since xi ∈
(ai )dI ⊆ (a j−1)

d
I , it is not difficult to show that yi ∧ y j ∈ kerI d. Also, if yi = y j , then

yi = yi ∧ y j ∈ kerI d, a contradiction. Thus the set M = {yi | i = 2, 3, · · · } is an
infinite set such that for each x, y ∈ M , x ∧ y ∈ kerI d, which is a contradiction. ��

We say that the lattice L satisfies the condition (∗), if L does not have an infinite
M ⊆ L \ kerI d such that for each x, y ∈ M , x ∧ y ∈ kerI d.

Lemma 2.17 Suppose that L satisfies the condition (∗), then L has only a finite number
of distinct kerI d-minimal prime ideals of the form (ai )dI (1 ≤ i ≤ n). Also

⋂n
i=1

(ai )dI =
kerdI .

Proof By Lemma 2.16, � has maximal elements. Let (a)dI �= (b)dI be two maximal
element in the set �. By Lemma 2.1(ii), (a)dI ⊆ (a ∧ b)dI and (b)dI ⊆ (a ∧ b)dI .
Since (a)dI and (b)dI are maximal elements in �, (a ∧ b)dI = L . Using Lemma 2.1(v),
a ∧ b ∈ kerI d. So if � has an infinite number of maximal element, then L has an
infinite M ⊆ L \ kerI d such that for each x, y ∈ M , x ∧ y ∈ kerI d, which is a
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contradiction. So � has a finite number of maximal elements. Now Theorem 2.15
completes the first part of the proof.

Now we show
⋂n

i=1
(ai )dI = kerdI . Using Lemma 2.16 and Zorn’s lemma, for each

a kerI d the set {(b)dI | (a)dI ⊆ (b)dI and b /∈ kerI d} has a maximal element. Thus
every proper ideal (a)dI is contained in amaximal ideal (ai )dI in�, 1 ≤ i ≤ n. Consider
x ∈ ⋂n

i=1
(ai )dI . If (x)dI �= L , there exists 1 ≤ i ≤ n such that ai ∈ (x)dI ⊆ (ai )dI . So

(ai )dI = L , which is not true. Thus (x)dI = L and hence x ∈ kerI d. ��
Corollary 2.18 If L satisfies the condition (∗), then every kerI d-minimal prime ideal
of L is of the form (a)dI , for some a ∈ L.

Proof Let P be a kerI d-minimal prime ideal of L . By Lemma 2.17,
⋂n

i=1
(ai )dI =

kerI d. Thus
⋂n

i=1
(ai )dI ⊆ P and, since P is a prime ideal, there exists j ∈ J such

that (a j )
d
I ⊆ P , which implies (a j )

d
I = P . ��

We close this section by the following important result, which is an immediate
consequence of Corollary 2.18.

Theorem 2.19 If L is a distributive lattice with a bottom element ⊥ and satisfies the
condition (∗) for ker⊥(id), then every minimal prime ideal of L is of the form (a)id⊥ ,
for some a ∈ L.

A special case of the previous theorem is the case where L is an atomic distributive
lattice with a finite number of atoms.

3 Atomic Distributive Lattices

In this section the lattice L will be assumed to be a kerI d-atomic distributive lattice
which will be defined in the following definition.

Definition 3.1 For an ideal I of L , an element a ∈ L \ I is called I -atom, if↓ a\{a} =
{x ∈ L | x < a} ⊆ I and the lattice L is called I -atomic if for each a ∈ L there exists
an I -atom a0 less than or equal to a.

From now on we denote with Ad
I (L) the set of all kerI d-atoms of L and we set,

Ad
I (a) = Ad

I (L)∩ ↓ a and Ad
I (a)c = Ad

I (L) \ Ad
I (a).

Lemma 3.2 (i) Let L have a top element �. If
∨

j∈J
a j = �, for some kerI d-atoms

a j , then L \ {�} ⊆ ⋃
j∈J

(a j )
d
I .

(ii)
⋂

ai∈AdI (L)
(ai )dI = kerI d.

Proof (i) Let x ∈ L , x �= �. There exists a kerI d-atom a j such that a j ≤ / x . Then
a j ∧ x ∈↓ a j \ {a j } ⊆ kerI d, which means x ∈ (a j )

d
I .

(ii) By Lemma 2.1, kerI d ⊆ ⋂

ai∈AdI (L)
(ai )dI . For the converse let x ∈

⋂

ai∈AdI (L)
(ai )dI \ kerI d. Then there exists a kerI d-atom a ≤ x in such a way that

x ∧ a = a /∈ kerI d. So x /∈ (a)dI , which is impossible. ��
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In part (i) of the following lemma, for a kerI d-atomic distributive lattice, we get a
characterization of the congruence θdI .

Lemma 3.3 If a, b ∈ L, then;

(i) aθdI b if and only if Ad
I (a) = Ad

I (b).
(ii) a ∧ b ∈ kerI d if and only if Ad

I (a) ∩ Ad
I (b) = ∅.

(iii) For an element a ∈ L, if Ad
I (L) = Ad

I (a), then a ∈ Kd
I .

(iv) If x = ∨
ai∈A

Id (L)

ai , then x ∈ Kd
I .

Proof (i) Let aθdI b and x ∈ Ad
I (a). So (a)dI = (b)dI , x ≤ a, x /∈ kerI d and ↓ x \{x} ⊆

kerI d. If x � b, then b ∧ x < x and b ∧ x ∈ kerI d which implies x ∈ (b)dI = (a)dI .
So x = x ∧a ∈ kerI d which is a contradiction. Thus x ≤ b which implies x ∈ Ad

I (b)
and Ad

I (a) ⊆ Ad
I (b). By a similar way Ad

I (b) ⊆ Ad
I (a).

For the converse, let Ad
I (a) = Ad

I (b) and x ∈ (a)dI . Then a ∧ x ∈ kerI d. Consider
b ∧ x /∈ kerI d. Since L is kerI d-atomic distributive lattice, there exists x0 ∈ Ad

I (b ∧
x) ⊆ Ad

I (b) = Ad
I (a). So x0 = a ∧ x0 ≤ a ∧ (b ∧ x) ∈ kerI d, which contradicts

x0 /∈ kerI d. Thus b ∧ x ∈ kerI d and hence x ∈ (b)dI . By a similar way (b)dI ⊆ (a)dI .
The proof of (ii) is clear.
(iii) Since Ad

I (L) = Ad
I (a), for each ai ∈ Ad

I (L), ai ≤ a. By Lemmas 2.1(ii) and
3.2(ii), (a)dI ⊆ ⋂

ai∈AdI (L)
(ai )dI = kerI d ⊆ (a)dI . Then a ∈ Kd

I .

(iv) Straightforward, by (iii). ��
Lemma 3.4 If a ∈ Ad

I (L), then (a)dI is a maximal element in the set �.

Proof Let (a)dI ⊆ (b)dI � L(b /∈ kerI d). If a ∧ b ∈ kerI d, then b ∈ (a)dI ⊆ (b)dI and,
by Lemma 2.1(v), (b)dI = L . So a ∧ b /∈ kerI d. Since a is kerI d-atom, a = a ∧ b
and hence a ≤ b. By Lemma 2.1(ii), (b)dI ⊆ (a)dI , which implies (b)dI = (a)dI . Thus
(a)dI is a maximal element in the set �. ��

Theorem 3.5 For an element a ∈ L, (a)dI is a maximal element in the set � if and
only if there exists a kerI d-atom a0 such that Ad

I (a) = {a0}.

Proof Let (a)dI is a maximal element in the set�. By Lemma 2.1(v), a /∈ kerI d. Since
L is a kerI d-atomic distributive lattice, there exists a0 ∈ Ad

I (a) which Lemma 2.1(ii)
implies that (a)dI ⊆ (a0)dI . So (a)dI = (a0)dI and hence Ad

I (a) = Ad
I (a0) = {a0}.

For the converse, let (a)dI ⊆ (b)dI � L . By Lemma 2.1, a /∈ kerI d and b ≤ a.
So Ad

I (b) �= ∅ and since Ad
I (b) ⊆ Ad

I (a) = {a0}, Ad
I (b) = Ad

I (a). Now by Lemma
3.3.(i), (a)dI = (b)dI which implies (a)dI is a maximal element in �. ��
Lemma 3.6 Let L satisfy the condition (∗). Then

(i) Every kerI d-minimal prime ideal of L is of the form (a)dI , for some a ∈ Ad
I (L).

(ii) If L is atomic, then every minimal prime ideal of L is of the form (a)dI , for some
atom a.
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Proof (i) Let P be a kerI d-minimal prime ideal of L . UsingCorollary 2.18, P = (a j )
d
I

for some a j ∈ L . Now, by Theorems 2.15 and 3.5, there exists a ∈ Ad
I (L) such that

Ad
I (a j ) = {a}. Thus, Ad

I (a j ) = Ad
I (a) and by Lemma 3.3(i), P = (a j )

d
I = (a)dI .

Item (ii) is a particular case of item (i) in the case where I = {0}. ��
Theorem 3.7 Let L satisfy the condition (∗), then L has only a finite number of dis-
tinct kerI d-minimal prime ideals Pi (1 ≤ i ≤ n). Furthermore,

⋂n
i=1

Pi = kerI d,
⋂

i �= j
Pi �= kerI d for all 1 ≤ j ≤ n and L \ ⋃n

i=1
Pi = Kd

I .

Proof By Lemmas 2.17 and 3.6, L has only a finite number of distinct kerI d-minimal
prime ideals Pi (1 ≤ i ≤ n), in which

⋂n
i=1

Pi = kerI d. Let
⋂

i �= j
Pi = kerI d, for

some index j . By Lemma 3.6, each Pi is of the form (ai )dI , for some ai ∈ Ad
I (L).

Consider for all i �= j , xi ∈ (ai )dI \ (a j )
d
I . Then

∧
i �= j

xi ∈ ⋂
i �= j

Pi = kerI d ⊆
(a j )

d
I . Since (a j )

d
I is a prime ideal, there is an i �= j such that xi ∈ (a j )

d
I , which

is a contradiction. Therefore
⋂

i �= j
Pi �= kerI d for all 1 ≤ j ≤ n. Now we show

L \ ⋃
Pi = Kd

I . Let x ∈ L \ ⋃
Pi and y /∈ kerI d. If x ∧ y ∈ kerI d, then x ∈ (y)dI

and by Lemma 2.16(iii), there exists a maximal element (ai )dI ∈ � such that (y)dI ⊆
(ai )dI . By Theorem 2.15, (ai )dI is a kerI d-minimal prime ideal. So x ∈ (ai )dI which
contradicts the property x ∈ L \ ⋃

Pi . Thus y /∈ (x)dI and hence (x)dI = kerI d. So
x ∈ Kd

I . Now consider x ∈ Kd
I . If there exists 1 ≤ i ≤ n such that x ∈ (ai )dI , then

ai ∈ (x)dI = kerI d ⊆ (ai )dI , which is a contradiction. Thus x ∈ L \ ⋃
Pi and hence

L \ ⋃
Pi = Kd

I . ��
Corollary 3.8 If L has a bottom element ⊥ and does not have an infinite M ⊆ L \ {⊥}
such that for each x, y ∈ M, x ∧ y = ⊥, then L has only a finite number of minimal
prime ideals.

Theorem 3.9 The following assertions are equivalent:
(i) L satisfies the condition (∗).
(ii) There exists a finite number of minimal kerI d-prime ideals Pi (1 ≤ i ≤ n) such

that
⋂n

i=1
Pi = kerI d.

Proof (i)⇒(ii) This is Theorem 3.7.
(ii)⇒(i) Let M ⊆ L \ kerI d such that for each x, y ∈ M , x ∧ y ∈ kerI d and

| M |≥ n. By Pigeonhole principle, there exist x, y ∈ M and Pi such that x, y ∈ Pc
i ,

which is a contradiction, because, Pi is prime and x ∧ y ∈ kerI d ⊆ Pi . ��
In the following, the subset

⋃
(ai )dI \ kerI d of L in which ai /∈ kerI d is denoted

by �d
I (L). As an immediate consequence of Lemma 2.1(ii), If L is a kerI d-atomic

lattice, then �d
I (L) = ⋃

(ai )dI \ kerI d for all ai ∈ Ad
I (L). For a subset A of L , the

upset generated by A is denoted by ⇑ A, which is the set {x ∈ L | ∃a ∈ A s.t a ≤ x}.
In the following theorem we use the notation, Ad

I (a)c = Ad
I (L) \ Ad

I (a).

Theorem 3.10 Let L be a kerI d-atomic distributive lattice. Then for each a ∈ �d
I (L),

(a)dI =⇑ Ad
I (a)c\ ⇑ Ad

I (a), where Ad
I (a)c = Ad

I (L) \ Ad
I (a).
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Proof Let x ∈ (a)dI . If x ∈⇑ Ad
I (a), then there exists c ∈ Ad

I (a) such that c ≤ x .
Hence c ≤ x ∧ a ∈ kerI d, which is impossible. So x ∈⇑ Ad

I (a)c\ ⇑ Ad
I (a). For the

converse, assume that x ∈⇑ Ad
I (a)c\ ⇑ Ad

I (a). If x /∈ (a)dI , then a ∧ x /∈ kerI d and
so x ∈⇑ Ad

I (a ∧ x) ⊆⇑ Ad
I (a), which is a contradiction. ��

Consider Cd
I (L) = {B ⊆ L \ kerI d | ∀x, y ∈ B, x ∧ y ∈ kerI d}. It is easy to

check that Ad
I (L) ∈ Cd

I (L).

Theorem 3.11 If L is a kerI d-atomic lattice, then for each B ∈ Cd
I (L), | B |≤|

Ad
I (L) |.

Proof Let B ∈ Cd
I (L) and x, y ∈ B. By Lemma 3.3(ii), Ad

I (x)∩ Ad
I (y) = ∅ such that

Ad
I (x) and Ad

I (y) are nonempty set. By the axiom of choice, for each b ∈ B, choose
and fix ab ∈ Ad

I (b) �= ∅. So the map f : B → Ad
I (L), defined by f (b) = ab, is a

one-to-one map. Hence | B |≤| Ad
I (L) |. ��

4 When a Quotient of a Distributive Lattice is a Boolean Algebra

In this section some necessary and sufficient conditions are derived for the quotient
algebra L/θdI to be a Boolean algebra. For a distributive lattice L and a lattice con-
gruence θ on L , It can be easily observed that L/θ is a distributive lattice in which
[x]θ ∧ [y]θ = [x ∧ y]θ and [x]θ ∨ [y]θ = [x ∨ y]θ .
Theorem 4.1 Let I be a nontrivial ideal of L. Then L/θdI is a Boolean algebra if and
only if for each x ∈ L, there exists y ∈ (x)dI such that x ∨ y ∈ Kd

I .

Proof Let L be a distributive lattice and θ be a lattice congruence on L . It is not
difficult to check that, the distributive lattice L/θ is a Boolean algebra if and only if
the following conditions hold:

(i) There exists a0, b0 ∈ L such that for each x ∈ L , [a0]θ ≤ [x]θ ≤ [b0]θ , which
means that ⊥L/θ = [a0]θ and �L/θ = [b0]θ .

(ii) For each x ∈ L there exists y ∈ L such that (x ∧ y)θa0 and (x ∨ y)θb0.
The proof is now complete using Propositions 2.4 and 2.7. ��
For a particular case of the previous theorem see [14, Th.2.8], where I = {⊥}. The

complement of an element x in a Boolean algebra L is denoted by x−1.

Corollary 4.2 Let L/θdI be a Boolean algebra. Then [x]−1

θdI
= [y]θdI if and only if

x ∧ y ∈ kerI d and x ∨ y ∈ Kd
I .

In the following proposition we give some conditions under which L/θdI is a
Boolean algebra.

Proposition 4.3 (i) If I or kerI d is a prime ideal of L, then L/θdI is a Boolean algebra.
(ii) If each (x)dI has a maximum element, then L/θdI is a Boolean algebra.
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Proof (i) If kerI d = L , then kerI d = Kd
I = L . Thus θdI = ∇ and L/θdI is a singleton

set. Let kerI d �= L and x ∈ L . By Lemma 2.6(ii),Kd
I �= ∅ and L is a disjoint union of

kerI d and Kd
I . It follows that L/θdI � {0, 1}, with 0 < 1, which is trivially a Boolean

algebra.
(ii) If kerI d = L , then kerI d = Kd

I = L . Thus θdI = ∇ and L/θdI is a singleton
set. IfKd

I = L , then for each a, b ∈ L , (a)dI = kerI d = (b)dI . Thus θdI = ∇ and L/θdI
is a singleton set. Let kerI d and Kd

I be nontrivial and x ∈ L . Consider a0 ∈ kerI d
and b0 ∈ Kd

I . If x ∈ kerI d, then x ∧ b0 ∈ kerI d and x ∨ b0 ∈ Kd
I . If x ∈ Kd

I ,
then x ∧ a0 ∈ kerI d and x ∨ a0 ∈ Kd

I . Now, let x /∈ kerI d ∪ Kd
I and y be the

maximum element of (x)dI . Then x ∧ y ∈ kerI d. We show that x ∨ y ∈ Kd
I . Let

z ∈ (x ∨ y)dI = (x)dI ∩ (y)dI . Since y is a maximum element of (x)dI , z = (x ∧ z)∨ z =
(x ∧ z) ∨ (y ∧ z) = (x ∨ y) ∧ z ∈ kerI d. Thus (x ∨ y)dI ⊆ kerI d and, by Lemma
2.1(iv), x ∨ y ∈ Kd

I . So, Theorem 4.1 completes the proof. ��
One of the important special case of Proposition 4.3(i) is when L is a chain, indeed,

each ideal in a chain is prime ideal.

Lemma 4.4 If L is a Boolean algebra with a bottom element ⊥, then θ id⊥ = � =
{(a, a) | a ∈ L}.
Proof It is clear that ker⊥(id) = {⊥} and (a)id⊥ =↓ a−1. If aθ id⊥ b, then↓ a−1 =↓ b−1

and hence a−1 = b−1. Thus a = b, which implies θ id⊥ = �. ��
By Corollary 1.4, every derivation is a lattice homomorphism. So for a derivation

d, ker(d) = {(a, b) | d(a) = d(b)} is a lattice congruence on L .
It is not difficult to show that for a nontrivial ideal I and a derivation d, ker(d) ⊆ θdI ,

but the converse is not generally true. For example, consider I �= ⊥ and d = id. Then
ker(d) = � and for each x, y ∈ I (x �= y), (x)dI = (y)dI = L . So xθdI y. In the
case where I = {⊥}, using Lemma 2.1(v), θd⊥ = ∇ implies that ker(d) = ∇. The
following lemma show that, when L is a Boolean algebra with a bottom element ⊥,
then θd⊥ = ker(d) in general.

Lemma 4.5 Let L be a Boolean algebra with a bottom element ⊥ and d a derivation
on L. Then ker(d) = θd⊥.

Proof Let xθd⊥y. Since L is a Boolean algebra, y has a complement element y−1

and y−1 ∈ (y)d⊥ = (x)d⊥. Thus d(x) ∧ d(y−1) = ⊥. Also x ∨ y ≤ �, implies
d(x) ∨ d(y) = d(x ∨ y) ≤ d(�) = d(y) ∨ d(y−1). Hence d(y) ∨ d(x) = (d(y) ∨
d(x)) ∧ (d(y) ∨ d(y−1)) = d(y) ∨ (d(x) ∧ d(y−1)) = d(y) ∨ ⊥ = d(y). So
d(x) ≤ d(y) and, similarly, d(y) ≤ d(x). Therefore (x, y) ∈ ker(d).

Proposition 4.6 The Boolean algebra L/θdI is isomorphic to 2 if and only if kerI d is
a prime ideal of L.

Proof Let L/θdI is isomorphic to 2, x ∧ y ∈ kerI d and x, y ∈ L \ kerI d. So by
Proposition 2.4(i), xθdI y. So x ∈ (y)dI = (x)dI = kerI d. This implies x ∈ (x)dI , which
contradicts Lemma 2.1(v).

The converse one gets using Lemma 2.6. ��
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Here we provide an example in which L/θdI = 2, but I is not prime. Consider
L = {⊥, a, b,�}, in which ⊥ and � are bottom and top element, respectively, and

a, b are not comparable. The map d : L → L defined by d(x) =
{⊥, if x = ⊥, b
a, if x = a,�

is a derivation. It is clear that kerI d = {⊥, b} and Kd
I = {a,�}. So L/θdI = 2, but

I = {⊥} is not a prime ideal.
The set � = {(x)dI | x ∈ L} by an order given by, for each x, y ∈ L , (x)dI ≤ (y)dI

if and only if (y)dI ⊆ (x)dI , is a poset. Also by the usual operations, (x)dI ∨ (y)dI =
(x ∨ y)dI and (x)dI ∧ (y)dI = (x ∧ y)dI , � is a bounded distributive lattice. The bottom
and the top elements are of the form, ⊥� = (x)dI = L for each x ∈ kerI d and
�� = (x)dI = kerI d for each x ∈ Kd

I . The map f : L → � defined by f (x) = (x)dI
is a lattice epimorphism, in which ker f = θdI . Thus, by the Isomorphism Theorem,
L/θdI

∼= �.

Lemma 4.7 If the quotient lattice L/θdI is a Boolean algebra then for each x ∈ L, the
set {(z)dI | z ∈ (x)dI } has a maximum element.

Proof Let L/θdI be a Boolean algebra and x ∈ L . By Theorem 4.1, there exists y ∈ L
such that x ∧ y ∈ kerI d and x ∨ y ∈ Kd

I . Consider z ∈ (x)dI . Since x ∧ z ∈ kerI d,
applying Proposition 2.7, (x ∧ y)θdI (x ∧ z). Thus yθdI [y ∨ (x ∧ z)] = [(x ∨ y) ∧ (y ∨
z)]θdI (y∨ z). So (y)dI = (y∨ z)dI = (y)dI ∩ (z)dI and hence (y)dI ⊆ (z)dI , which implies
that (z)dI ≤ (y)dI . ��
Theorem 4.8 Let L be a kerI d-atomic distributive lattice. The lattice L/θdI is a
Boolean algebra if and only if for each x ∈ L, there exists y ∈ L such that Ad

I (x) and
Ad
I (y) are a partition of A

d
I (L) and [y]θdI is a complement of [x]θdI in L/θdI .

Proof (⇐) It is clear that x ∧ y ∈ kerI d and, by Lemma 3.3, x ∨ y ∈ Kd
I . Hence,

Theorem 4.1 completes the proof.
(⇒) Consider x ∈ L . Since L/θdI is a Boolean algebra, by Theorem 4.1, there

exists y ∈ L such that x ∧ y ∈ kerI d and x ∨ y ∈ Kd
I . Clearly Ad

I (x) ∩ Ad
I (y) = ∅.

Let a ∈ Ad
I (L) \ (Ad

I (x) ∪ Ad
I (y)). Using Lemma 2.3(i), (x ∨ a) ∨ y ∈ Kd

I . Also
(x ∨ a)∧ y ∈ kerI d. So, by Corollary 4.2, [y]θdI has two different complements [x]θdI
and [x ∨ a]θdI , which is a contradiction, because a ∈ (x)dI and a /∈ (x ∨ a)dI . ��
Theorem 4.9 If L/θdI is a Boolean algebra, then the congruence θdI is the only con-
gruence relation having kerI d as a whole class.

Proof Let θ be a lattice congruence on L such that kerI d is a whole class. By Proposi-
tion 2.7, θ ⊆ θdI . For the converse, let xθ

d
I y. Then there exists z ∈ L such that [x]−1

θdI
=

[y]−1
θdI

= [z]θdI . By Proposition 2.4, [x ∧ z]θdI = [x]θdI ∧[z]θdI = ⊥L/θdI
= kerI d. Thus

x ∧ z ∈ kerI d and also y ∧ z ∈ kerI d, which implies (x ∧ z)θ(y ∧ z). By a similar
way, (x ∨ z)θ(y ∨ z). Now we have x = x ∨ (x ∧ z)θ [x ∨ (y ∧ z)]θ [(x ∨ y) ∧ (x ∨
z)]θ [(x ∨ y) ∧ (y ∨ z)] = [y ∨ (x ∧ z)]θ [y ∨ (y ∧ z)] = y. Thus θdI ⊆ θ and hence
θdI = θ . ��
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Corollary 4.10 For a congruence θ , if L/θdI and L/θ are Boolean algebras such that
the congruence θ having kerI d as a whole class, then θdI = θ .

Corollary 4.11 If L is a distributive lattice with a least element ⊥, kerI d = {⊥} and
L/θdI is a Boolean algebra, then θdI = �.

Conclusion

In this final section, for an ideal I , we conclude that the lattice congruence θ idI is
the smallest congruence in the set of all congruences of the form θdI and so the best
congruence in the sense that the Boolean algebra L/θ idI has the maximum cardinality
in the set of all Boolean algebras L/θdI .

(i) Consider an ideal I and a derivation d on L . By Proposition 2.8, θ idI ⊆ θdI . Thus
the map π : L/θ idI → L/θdI defined by π([a]θ idI ) = [a]θdI is a lattice homomorphism.

Using the first isomorphism theorem, if L/θ idI is a Boolean algebra, then so is L/θdI .
Thus the lattice congruence θ idI is the best congruence in the set {θdI | d is a derivation}.

(ii) Combining Theorem 4.9 and Proposition 2.8, it is concluded that θ idI is the
smallest congruence in the set of all congruences having kerI d as a whole class.

(iii) Using Lemma 2.10, θ idI is the smallest congruence in the set {θdJ } in which
there exists a derivation d on L such that kerI d = J .

(iv) Using Lemma 2.11, θ idI is the smallest congruence in the set {θdJ } in which
J = (a)dI , for all a ∈ L .

(v) Using Theorem 4.9, θ idI is the smallest congruence in the set of all congruences
having I as a whole class.

(vi) In the case where L is a kerI d-atomic distributive lattice such that for each
x ∈ L , there exists y ∈ L such that Ad

I (x) and Ad
I (y) are a partition of Ad

I (L), then
θ idI is the smallest congruence in which L/θdI is a Boolean algebra.

There is still an open question concerning θdI :
Is there a necessary and sufficient condition on an ideal I such that θdI is the smallest

congruence in which L/θdI is a Boolean algebra?
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