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Abstract

In this article, we introduce a lattice congruence 9;1 with respect to a nonempty ideal
I of a distributive lattice L and a derivation d on L. We investigate some necessary
and sufficient conditions for the quotient algebra L/ 9? to be a Boolean algebra.
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1 Introduction and Preliminaries

In calculus a derivation is a linear map d with the additional property d(f - g) =
d(f)-g+ f-d(g).Based on this property, several authors have adapted the notion of
derivation in different contexts. First, the notion of derivation has been studied in rings
and near-rings [5, 12]. After that, some authors have considered the notion of derivation
in other structures: Jun and Xin [10] in BCI-algebras, [2, 7, 15—17] in lattices and [3,
9, 13] in Leibnez Algebras. In [17], Xin et al, gave some equivalent conditions under
which a derivation is isotone for lattices with a greatest element, modular lattices,
and distributive lattices. They characterized modular lattices and distributive lattices
in terms of isotone derivations. Also, Xin answered to some other questions about the
relations among derivations, ideals, and sets of fixed points in [16].

Lattices and Boolean algebras play a significant role in computer science and logic
as well. Recall that a Boolean algebra is a bounded complemented distributive lattice.
So Boolean algebras can be seen as a special class of lattices. One of the common
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subjects in all kinds of algebras is congruences. The study of congruence relations on
lattices and an the connections between ideals and congruences in a lattice have been
investigated by many authors, see for example [1, 8, 11].

In [14], two types of congruences are introduced in distributive lattices, both of
them defined in terms of derivations. After that, we are interested to generalize the
work on a distributive lattice with a nonempty ideal. To this aim, in this section we
briefly first recall some ingredients needed in the sequel. For more information see,
for example, [6, 7, 17].

Throughout the paper L stands for a distributive lattice. The bottom element of a
distributive lattice, if it exists, is denoted by _L; (or_L) and the top element is denoted
by Tr(orT). If both L and T exist, L is called a bounded lattice. By a lattice map (or
homomorphism) we mean a map f : A — B between two lattices which preserves
binary operations Vv and A. Recall that a nonempty subset / of L is called an ideal
(filter)of Lifavbel(anbel)andanx €I (aVvx e€l)whenevera,b € [ and
x € L. Anideal I of L is called prime ideal if, for each x, y € L, x A’y € I implies
x € lory € I. Anequivalence relation 6 defined on L is said to be a lattice congruence
on L ifforall a, b, c € L, afb implies that (a vV ¢)0(b Vv ¢) and (a A ¢)8(b A ¢).

Definition 1.1 [7] For a lattice L, a functiond : L — L is called a derivation on L, if
forallx,ye L: ) d(xAy) =dXxX)Ay)V(xAd(y). () dxVy)=dx)Vvd(y).

In[17, Th.3.21], it was shown that the condition (i) can be simplified in the following
way which we use throughout the paper from now on.

Lemma 1.2 [17] If L is a distributive lattice, then d : L — L is a derivation if and
only if the following conditions hold: (1) d(x Ay) = d(x) Ay = x Ad(y). (ii)
dixVvy) =dx)vd(y).

One can find the proof of the following lemma in [7] and [16].

Lemma 1.3 Letd : L — L be a derivation and x,y € L.

(i) If L has a bottom element L, then d(L) = L.
(ii) d(x) < x.
(iii) d(d(x)) = d(x).
(iv) If x <y, thend(x) < d(y).

(v) If I is an ideal of L, then d(I) < I.
(vi) If L has a top element T, then d(x) = x ANd(T).

As a consequence of Lemma 1.3.(iii), we have the following corollary.
Corollary 1.4 Every derivation d : L — L is a lattice homomorphism.

In [14], there are some notions concerning a distributive lattice with O (bottom
element) such as ideals and congruences defined based on 0. In Section 2, replacing
0 by a nonempty ideal I of a distributive lattice, we general these notions and study
their properties

Section 3 is devoted to the case where a distributive lattice L is an atomic lattice or,
more generally, an /-atomic lattice. Our main results, can be found in Sect. 4. Here
we show that for an ideal 7, the identity map is a derivation such that L /Qld become
a Boolean algebra with maximal cardinality. Finally we demonstrate some necessary
and sufficient conditions under which L/ 9;’ is a Boolean algebra.
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2 Congruences and Ideals with Respect to a Derivationin a
Distributive Lattice

In what follows, which is a generalization of the article [14], we introduce some
special ideals and congruences with respect to a nonempty ideal and a derivation on
distributive lattices. After that, we study some essential properties of this congruences,
which will be used in Sects. 3 and 4. Note that most of the definitions of this section
have been selected from [14].

Suppose L is a distributive lattice, I anonempty ideal of L,a € L and d a derivation
on L. By definition, we consider ker,d = d='(I) = {x € L | dix) € I} and
(@f={xeLlanxce ker,d} = {x € L | d(a Ax) € I}. Observe that we also have
(a)d = (do)y)~1(I), where A, : L — L is the derivation defined by Aq(x) =a Ax.

All parts of the following lemma will be used in what follows.

Lemma 2.1 Leta,b € L and I be an ideal of L. Then,

(i) ker,d and (a)‘;' are ideals of L.
(i) ifa < b, then (b)4 C (a)?.
(iii) (a Vv b)4 = (@)% N (B).
(iv) I Cker,d C (a)d.
(v) a € ker,d iff a € (a)} iff (a)} = L.
i) N,_, (@9 =ker,d.
(vii) a € (b)} ifand only if b € (a)?.
(viii) if (@) # L, then mbgmd (b)? # ker,d.

(ix) if I and J are ideals of L in which I C J, thenker;d C ker;d and (a)‘li - (a)d,
foreacha € L.

Now we introduce a binary relation on a distributive lattice with respect to an ideal
and a derivation. The following proposition, which has an easy proof, shows that this
binary relation is a lattice congruence.

Proposition 2.2 For an ideal I of L, the binary relation 6;1 defined as
x0%y iff (0)F = ()¢

is a lattice congruence.

An element a € L is called a kernel element with respect to an ideal I, if (a)d =
ker,d. Let us denote the set of all kernel elements with respect to the ideal I of L by
K.

For the ideal L, it is not difficult to check that L = kerpd = (a)d = IC‘L’ and hence
GZ =V ={(a,b) | a,b € L}, which implies that L/GZ is a singleton. So, from now
on, all the ideals I will be assumed to be nontrivial (/ # L).

Lemma23 (i) IC‘; % (), then IC‘IJ is a filter of L.
(ii) keryd = L if and only if K¢ = L.
(iii) If(a)‘; and IC‘II are nontrivial, then IC‘II N (a)‘ll =0.
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(iv) ()¢ = (d(x)){ and x6¢d (x), for all x € L.
(v) If x6%y, then d(x)0¢d(y).

Proof (i) Leta,b € K¢ and ¢ € L. By Lemma 2.1(iv), ker;d < (a A b)%. For the
converse, let x € (a Ab)4. Thend((a Ab) Ax) € I and hence b Ax € (a)! = ker;d.
Sod(b A x) € I, which implies x € (b)¢ = keryd. Thus (a A b)? = ker;d, hence
anbeKd AlsoaVce K¢, by Lemma 2.1(ii) and (iv).

To prove (ii), apply Lemma 2.1(v) and for (iii), let b € IC? N (a)‘li. Appling Lemma
2.1(vii), a € (b)‘; = keryd. So by Lemma 2.1(v), (a)d = L, which is impossible.

(iv) By Lemma 1.3(ii), d(x) < x and hence (x)¢ C (d(x))?. Let y € (d(x))4.
Hence d(y Ax) = d(y Ad(x)) € I, whichimplies y € (x)¢. Thus (x)¢ = (d(x))4. O

The following proposition shows that the quotient lattice L/ 0}1 is a bounded lattice.

Proposition 2.4 For anontrivial ideal I of L, the distributive lattice L/9;1 is a bounded
lattice with

(i) J_L/G;l = keryd,

(ii) TL/@;’ = IC‘}'7 whenever IC‘; * 0.

Proof (i) Leta € ker;d. By Lemma 2.1, for each b € kerjd, (a)¢ = L = (b)?
and hence a@}ib. Thus ker;d C [a]e;l' For the converse, let ¢ € [a]e;l' Again,
by Lemma 2.1, (¢)¢ = (a)? = L and hence ¢ € (¢)¢. Sod(c) =d(c Ac) € 1,
which implies ¢ € ker;d. Thus ker;d = [a]e;l' Since kerjd is an ideal of L,
for each [Y]e;i € L/G;i, we get thata A y € ker;d and hence ker;d = [Cl]o;j =

[a A y]gld < [y]g;j. Therefore J_L/eld = keryd.
(ii) The proof is similar to (i). O

The following theorem is another version of [14, Th. 3.4].

Theorem 2.5 Let I be an ideal of L and d a derivation on L. Then the following are
equivalent:

(i) 04 = V.

(ii) kerjd = L

(iii) For each x € L, I N [x]ker ) is a singleton set.

Proof (i) = (ii) Let x € L and a € kerjd. Since 0;’ =V, xefla and, by Lemma
2.1(v), x € ker;d. So ker;d = L.

(ii)) = (iii) From the part one of the proof of [14, Th. 3.4].

(iii) = (1) Let x, y € L. Consider I N [x]ker@y = {x0} and I N [ylker@) = {Yo}-
By Lemma 1.3(ii), d(x) = d(xp) < xo and, since / is an ideal, d(x) € I. By Lemma
1.3(1), d(x) € I N [x]ker(q)> Which implies d(x) = xp. Similarly d(y) = yo. Using
Lemma 2.3(iv) and Proposition 2.4(i), x0¢x00¢ yo6¢y. Thus 6¢ = V. O

As seen in Lemma 2.3(i), IC? is a filter, whenever IC? # (). So in the following
lemma we investigate some conditions over which IC‘} # 0.
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Lemma2.6 (i) If T € L, then T,d(T) € K¢.

(it) If I or kerid is a prime nontrivial ideal of L, then IC‘IZ # @ and if kerjd # L,
then L is the disjoint union of ker;d and IC‘Ii. Also 9;1 = {(a,b) | {a,b} C
ker;d or {a, b} € K9).

(iii) If L is a chain and I a nontrivial ideal of L, then IC? # 0.

Proof We just prove (ii). If ker;d = L, then ker;d = IC‘; = L. Let kerjd # L
and b ¢ kerjd and x € (b)‘li. Then x Ad(b) € I and d(b) ¢ I.If I is prime, then
x € I C keryd. Now let ker;d is prime. Since b ¢ keryd and x Ad(b) € I C kerjd,
x € keryd . Thus b € IC‘IJ. So L = kerjd U IC‘} and the first part of the proof will be
complete by using Lemma 2.3.(iii). Now by Proposition 2.4, 9;1 ={(a,b) | {a, b} C
ker;d or {a, b} € K9}. O

As a consequence of Lemma 2.6(ii), we conclude that, if / € J, then there is no
information on the relation (with respect to containment) between le and IC”; at all.
For example, let I C J be two prime ideals of L and d be the identity derivation.
By Lemmas 2.6(ii) and 2.1(x), IC‘; - IC‘;. For another example, assume that L has a
bottom element L. Consider L % a € L,I = {Ll}, J =| a and a derivation d defined
by d(x) = a A x. Clearly ker;d = L and, since d(a) =a na=a # L,a ¢ ker;d.
So, by Lemma 2.3(ii), K¢ < K4.

In the lattice Con(L), all of congruences of L, 01 < 6, if 01 C 6,.

Proposition 2.7 For a nontrivial ideal I of L, the congruence 6’;1 is the greatest con-
gruence relation having keryd as a whole class.

Proof Let6 be alattice congruence on L such that ker;d is acongruence class and x6y.
At first suppose that IC‘I’ # (). By Proposition 2.4, IC‘IJ and ker;d are two congruence
classes, i.e., elements of L /9;’. The following cases may occur:

Casel.x,y € IC‘II. Hence (x)‘li = kerjd = (y)‘f and x@}iy.

Case2.x,y ¢ K4.Foreacha € (x)¢, (x Aa)d(y Aa) and x A a € ker;d. Then
[yAnalg =[x Aalg = kerjd. Soy Aa € kerjd and a € (y)‘li. Thus (x)?l - (y)‘;
and, analogously, (y)d - (x)d, which implies that xO;’l y.

Case3. x € IC? and y ¢ IC? (or similarly y € IC‘; and x ¢ IC?). This case cannot
occur. For, consider b € (y)¢ \ (x){. Then b Ay € ker;d and b A x ¢ kerjd. Also
(b Ax)I(D AyY).Sob A x € kerrd, which is impossible. Therefore 6 < 9;1. Now let
IC? = (. So only the case 2 may be occured, which implies xef y. O

From now on, up to Lemma 2.11, we investigate some conditions over ideals and
derivations to get a smallest congruence Gld . The smallest one infer that the quotient
lattice L/ 9;1 has the maximal cardinality.

Proposition 2.8 For an ideal I and a derivation d on L, Gfd C 971.

Proof Let afi’b and x € (a){. Then d(x) € (a)¥ = (b)i?. Sod(b A x) = b A
id(d(x)) € I. Thus x e (b)¢ which implies (@) < (b)? and, by similar way,
(b)4 < (@)4. So ad?b. o
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The following example shows that the maps that assign each ideal 7 to 9? and IC”J’
need not be increasing or decreasing.

Example 2.9 (i) Let L = {a, b, ¢, d} in whicha < b < ¢ < d where < denotes the
covering relation, / = {a} and J = {a, b, c}. So I C J.Itis not difficult to check that
(a,b) € 0\ i and (c,d) € 19\ 0'?. Thus i < /0¥ and 61¢ C  / 6i?. Also,
we can conclude that IC’d {d}and d € IC’d So IC’d C IC‘d

(i) Consider the four element Boolean algebra L = {a, b ¢, d} in which a and d
are bottom and top elements, respectively. Consider I = {a} and J = {a, b} and id
the identity map. So I C J and clearly ICid = {d} C {c,d} = ICid Also it is not
difficult to check that (a)i? = L, (b)id = (c)’d (@) = {a}, (a)’d =0 =L
and (¢)'d = (d)'? = J.So (b, ¢) € 9”’ \ 04 and (a, b) € 617 \ 01,

Lemma 2.10 For ideals I C J and a derivation d on L, if there exists a derivation d;
on L such that kerydy = J, then Gld - 9? and the equality holds if di = d.

Proof Let ad¢b and x € (a)4. Then d(x A a) € J = ker;d;, which implies d; (x) A
d(a) = di(d(x Ana)) € 1.S0d;(x) € (@)} = (b)} and hence d(x AD) € kerd) = J.
Thus x € (b)4. This gives that 6 < 69.

Now let dj = d. Consider a6, ,band x € (a){. Since ker;d is an ideal and
d(x) < x,d(x) Na =d(x Aa) € keryd. So x € (a)f,,, 4 = D), s and d(x A D) €
keryd. Now it is not difficult to show that x € (b)d Thus ler 4 S 9‘] O

Lemma 2.11 Let I be an ideal of L and a € L. If J = (a)‘ll and K is an ideal of L
such that I € K C J, then

(i) (@f = (@
.. d
(i) a <k,
(iii) 0% < 07.
(iv) 04 = 031 whenever a € IC?.

Proof (i) By Lemma 2.1(x), (a)‘ll C (a)‘,’(. Now let x € (a)‘;{. Then d(x A a) €
K C (a)4, which implies a A d(x) = d(d(a A x) Aa) € I.S0 x € (a)d.

(i) By part (i), it is enough to consider K = J. So (a)d = (a)‘,i = J, which means
ae lCd

(iii) Let x4 xyandz € (x)d Thend(x A z) € J, which 1mplles dx)ANd@)Na) =
ddx Az)Aa) € I € K.Sod(z) Aa € (x)% and since ()% = ()%,
dd(yAz)ra) =d(y) Ad(z) Aa) € K, henced(y Az) € (a)h = (a)‘;l =J.
Thus z € (y)?. Similarly, we can prove (y)d - (x)”Jl. So (x)4 = (y)d, which
implies that 9,d< - 9?.

(iv) By (i), (@)% = (@)} = ker;d C kergd. So by Lemma 2.1.(iv), a € K. Now
the proof is straightforward, using Lemma 2.10. O

Note that the following example shows that in Lemma 2.11(iii), 9% can be a strict
subset of 9;’. Consider I a nontrivial prime ideal of L anda € I. Then J = (@4 =L
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and hence for each x € L, (x)? = L. So 6;1 = V and, by Lemma 2.6, 9;’ = {(a,b) |
{a,b} C ker;d or {a, b} € K{}. Thus 65 # 64.

In the rest of this section we investigate some relationships between prime ideals
and ideals of the form (x)‘ll. First note that, if 7 is a prime ideal, then so is ker;d.

Lemma 2.12 (i) If I is a prime ideal of L, then ker;d = L or for each x ¢ kerd,
I =ker;d = (x)4.

(i) If(x)‘; is not a subset of the prime ideal (y)‘li, thenx ANy € kerjd.

(iii) If(x)‘li #= (y)‘li are prime ideals, then x Ny € ker;d.

Proposition 2.13 There exist prime ideals Py, P, in L in which Py U P, = L and
PN Py = ker;d if and only if there exist two classes [a]g;z and [b]g;z such that for each

X € [a]e;z andy € [b]e;z, XAy € keryd and L/@;I is of the form {ker;d, [a]g;z, [b]ej’}'

Proof Let L/Q,d = {ker;d, [a]ef, [b]g;/}. First note that, by Lemma 2.1(v), for each
X € [a]e;” X Aa ¢ keryd. The subsets P; = [a]e;’ Uker;d and P, = [b]9;1 Ukerid
of L are prime ideals. For, let x, y € Pj. In the case where x € kerjd or y € ker;d,
by Lemma 2.1(1), x Vy € Py, else, (x V y)d = (x)‘ll N (y)d = (a)‘l"’. Thusx vy € Py.
Consider x € Pj,ze Landz < x.ThenzAa <x Aa € ker;d. Thus z € (a)? and
hencez € Pj.Nowletx Ay € Piandy € [b]e;i. SoyADb ¢ kerjd. IfyAb e [a]g;z,
then y Ab = (y Ab) A b € kerjd, which is impossible. So y A b € [b]g;z. Consider
X € [b](%;” so)?=m94=un b)”}. Ifx Ay € Pp,then (x A y) Ab € ker;d and
hence x € (b A y)‘li = (x)‘li. So x € ker;d which is a contradiction. Thus x € Pj.
For the converse, consider V| = Pj \ kerjd and Vo, = P> \ kerjd. The subset V;
is a class, for, let a € V|. We show V| = [a]e;i~ Let x € Vi. For each y € (a)?,
any€ker! C Pand sincea ¢ P,y € P,.If y € keryd, then y € (x)4, else,
y € Vo C Py, which implies x Ay € Py N P, = kerjd € (x)¢. So y € (x)¢ and
hence (a)§ C (x)¢. The proof of (x)¢ C (a)} is similar. Thus (@)} = (x)4, which
implies V| C [a]”,l. Now let x € [a]’;. Then (x)d = (a)”,l and, since a ¢ kerjd, then
x ¢ keryd,too. If x ¢ Py, thenx € P, and hence a A x € P N\ P, = kerjd. Thus
ae (x)d = (a)‘ll. By Lemma 2.1(iv), (a)d = L, whichis a contradiction. Thus x € P;
and hence x € V1. So V| = ["]0;1- Similarly, V, = [b]ef- O

Definition 2.14 For a nontrivial ideal I of L, an ideal P is called /-minimal, if it is
minimal in the set of ideals containing / and it is called an /-minimal prime ideal, if
P is a least prime ideal containing /.

From now on, we consider the set ¥ = {(x)”,l | x € L\ keryd}. The set X is a poset
under the inclusion relations.

Theorem 2.15 Let I be an ideal of L and a € 1. The following assertions are equiv-
alent:

(i) (a)?’ is a maximal element in X.
(ii) (a)‘li is a prime ideal.
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(iii) (a)? is a keryd-minimal prime ideal.

Proof (i)= (ii) Letx Ay € (a)j’ and x ¢ (a)”li. Since a Ax < a, using Lemma 2.1(ii),
(@)} < (anx)4. By the hypothesis, ()4 = (aAx){ or (anx)d = L.If (anx)? = L,
then a A x € kerjd, which is a contradiction. Thus (a)? = (a A x)¢, which gives that
y€E (a)‘;. Now, the proof is complete using Lemma 2.1(1).

(il)= (iii) Since (a)? is a prime ideal, it is a proper ideal of L and, by Lemma
2.1(v), a ¢ kerd. If ker;d is a prime ideal, we are done, by Lemma 2.12(i). Let Q
be a prime ideal of L containing ker;d such that O (a)‘,i and x € (a)‘}l \ Q. Then
x ANa € keryd € Q. Since x ¢ Q and Q is a prime ideal, a € Q C (a)?. Now, by
Lemma 2.1(v), (@)¢ = L, which is a contradiction.

(ii)= (i) Let (@)} € (x)4 # L. Consider y € (x)4\ (a)¢. Then y A x € ker;d €
(a)?, which implies that x € (a)? - (x)’}l. Again, by Lemma 2.1(v), (x)¢ = L, which
is a contradiction. 0

Lemma 2.16 In the following assertions we have, ()= (ii)= (iii).

(i) The set X satisfies the descending chain condition with respect to inclusion.
(ii) L does not have an infinite M C L \ ker;d such that for each x,y € M,
XAy €kerid.
(iii) The set X satisfies the ascending chain condition with respect to inclusion.

Proof (i)=(ii) Let L have an infinite M C L \ ker;d such that for each x,y € M,
X Ay € keryd and consider x1,x, € M. By Lemma 2.1(ii), (x; V xg)‘lj C (xl)”ll
and clearly x, € (xl)? \ (x1 V xz)ﬁj. Thus the following proper descending chain is
induced, which is a contradiction:

d
(xl)’,j D (x1 Vx2)7 D (x1 \/xz\/x3)’f Do

(ii)=-(iii) Let (al)‘; C (az)‘lj C --- be a proper chain and x; € (aj)‘f \ (aj,l)‘ll
for j = 2,3,---. Consider y; = x; Aaj_1 ¢ kerjd. For eachi < j, since x; €
(@) € (aj_1)4. itis not difficult to show that y; A y; € ker;d. Also, if y; = y;, then
Yi = Yi Ayj € keryd, a contradiction. Thus the set M = {y; | i = 2,3,---}isan
infinite set such that for each x, y € M, x A y € kerjd, which is a contradiction. 0O

We say that the lattice L satisfies the condition (x), if L does not have an infinite
M C L\ keryd such that foreachx,y € M, x Ay € ker/d.

Lemma 2.17 Suppose that L satisfies the condition (x), then L has only a finite number
of distinct ker d-minimal prime ideals of the form (a,-)‘;(l <i <n).Also ﬂ:’jl (a,-)d =
kerjl.

Proof By Lemma 2.16, ¥ has maximal elements. Let (a)‘Ii * (b)'}l be two maximal
element in the set X. By Lemma 2.1(ii), (@){ € (a A b){ and (b)] C (a A b)4.
Since (a)? and (b)? are maximal elements in £, (a Ab)? = L. Using Lemma 2.1(v),
a Ab € kerjd. So if ¥ has an infinite number of maximal element, then L has an
infinite M C L \ ker;d such that for each x,y € M, x Ay € ker;d, which is a
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contradiction. So X has a finite number of maximal elements. Now Theorem 2.15
completes the first part of the proof.
Now we show ﬂll (ai)‘f = ker;l. Using Lemma 2.16 and Zorn’s lemma, for each

a keryd the set {(b)? | ()4 € (b)? and b ¢ ker;d) has a maximal element. Thus
every proper ideal (a)‘,l is contained in a maximal ideal (ai)‘}l inX,1 <i < n.Consider
X € ﬂ:’zl(a,')f. If (x)? # L, there exists | <i < n suchthata; € (x)? - (ai)?. So
(ai)‘f = L, which is not true. Thus (x)d = L and hence x € ker;d. O

Corollary 2.18 If L satisfies the condition (x), then every kerjd-minimal prime ideal
of L is of the form (a)‘ll,for some a € L.

Proof Let P be a kerjd-minimal prime ideal of L. By Lemma 2.17, ﬂ:lzl ()¢ =
keryd. Thus ﬂil (a,-)‘,i C P and, since P is a prime ideal, there exists j € J such
that (aj)‘,l C P, which implies (aj)? = P. O

We close this section by the following important result, which is an immediate

consequence of Corollary 2.18.

Theorem 2.19 If L is a distributive lattice with a bottom element L and satisfies the
condition (x) for ker | (id), then every minimal prime ideal of L is of the form (a)’f,
for some a € L.

A special case of the previous theorem is the case where L is an atomic distributive
lattice with a finite number of atoms.

3 Atomic Distributive Lattices

In this section the lattice L will be assumed to be a kerjd-atomic distributive lattice
which will be defined in the following definition.

Definition 3.1 Foranideal / of L, anelementa € L\ I iscalled /-atom, if | a\{a} =
{x € L | x < a} C I and the lattice L is called /-atomic if for each a € L there exists
an [-atom qag less than or equal to a.

From now on we denote with A‘Ii(L) the set of all ker;d-atoms of L and we set,
Ad(a) = AN(L)N | a and AY(a)* = AL(L) \ Ad(a).
Lemma3.2 (i) Let L have atop element T. If\/,-e/ aj = T, for some kerd-atoms
aj, then L\{T} € U, (api.
(i) N (@) = ker;d.

Proof (i) Letx € L,x # T.There exists aker;d-atoma; suchthata; < / x.Then
aj Ax €l aj\{a;} C ker;d, which means x € (a;).

ai eA‘} L)

(i) By Lemma 2.1, kerjd < () J (ai)f. For the converse let x €
al-EAl(L)
N ; (a,-)‘} \ ker;d. Then there exists a kerjd-atom a < x in such a way that
ajeAq (L)
xAa=a ¢kerrd. Sox ¢ (a)?, which is impossible. O
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In part (i) of the following lemma, for a ker;d-atomic distributive lattice, we get a
characterization of the congruence 9;’.

Lemma3.3 Ifa,b € L, then;

(i) a0?b if and only if A%(a) = A (D).
(ii) a A b € keryd if and only ifA’;"(a) N A‘Ii(b) =0.
(iii) For an elementa € L, ifA‘Il(L) = A‘I[(a), then a € IC‘IJ.
(iv) If x = \/NA aj, then x € IC?.
iS2pd (1)

Proof (i) Let a@fb andx € A?(a). So(a)? = )%, x <a,x ¢ kerydand | x\{x} C
ker;d.If x % b, then b Ax < x and b A x € ker;d which implies x € (b)¢ = (a)d.
Sox = x Aa € keryd which is a contradiction. Thus x < b which implies x € A”Ii(b)
and A9(a) C A4(b). By a similar way A% (b) € A4(a).

For the converse, let A‘,i (a) = A? (b) and x € (a)‘,i. Then a A x € kerjd. Consider
b A x ¢ kerjd. Since L is ker;d-atomic distributive lattice, there exists xg € A‘[i(b A
x) € A4(h) = A%(a). Soxo = a Axo < a A (bAx) € kerrd, which contradicts
xo ¢ keryd. Thus b A x € ker;d and hence x € (b)‘li. By a similar way (b)‘} C (a)‘li.

The proof of (ii) is clear.

(iii) Since A4(L) = A%(a), for each a; € A%(L), a; < a. By Lemmas 2.1(ii) and
3.2(i), (@4 < N e (a)4 = ker;d C (a). Thena e K4.

i €A

(iv) Straightforward, by (iii). O
Lemma3.4 Ifa € A‘Il (L), then (a)?’ is a maximal element in the set .

Proof Let (a)] € (b)4 S L(b ¢ kerd).1fa Ab € ker;d, then b € (a)§  (b)? and,
by Lemma 2.1(v), (b)Y =L.Soanb ¢ keryd. Since a is kerjd-atom,a = a A b
and hence a < b. By Lemma 2.1(ii), (b){ < (a)¢, which implies (b)¢ = (a)¢. Thus
(a)‘li is a maximal element in the set X. O

Theorem 3.5 For an element a € L, (a)‘li is a maximal element in the set X if and
only if there exists a keryd-atom ao such that A‘;(a) = {ap}.

Proof Let (a)‘; is amaximal element in the set £. By Lemma 2.1(v), a ¢ ker;d. Since
L is a kerjd-atomic distributive lattice, there exists ag € A‘Ii(a) which Lemma 2.1(ii)
implies that (a)¢ € (ag)¢. So (a)4 = (ap)¢ and hence A% (a) = A%(ag) = {ao}.

For the converse, let (a)‘; - (b)”,l g L.By Lemma 2.1, a ¢ ker;d and b < a.
So A%(b) # ¢ and since A (b) € Ad(a) = {ap}, A4(b) = A%(a). Now by Lemma
3.3.30), (@)? = (b)‘,i which implies (a)‘,l is a maximal element in 3. O

Lemma 3.6 Let L satisfy the condition (x). Then
(1) Every ker;d-minimal prime ideal of L is of the form (a)‘ll,for some a € A‘Ii (L).
@ii) If L is atomic, then every minimal prime ideal of L is of the form (a)”,l, for some
atom a.
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Proof (i) Let P be a kerjd-minimal prime ideal of L. Using Corollary 2.18, P = (a j)?

for some a; € L. Now, by Theorems 2.15 and 3.5, there exists a € A‘Il (L) such that

A4(a;) = {a}. Thus, A%(a;) = A%(a) and by Lemma 3.3(i), P = (a;)4 = (a)?.
Item (ii) is a particular case of item (i) in the case where I = {0}. O

Theorem 3.7 Let L satisfy the condition (x), then L has only a finite number of dis-
tinct keryd-minimal prime ideals P;(1 < i < n). Furthermore, ﬂ:':l P, = kerjd,
N, Pi #keryd forall 1 < j <nand L\ P; = K.

Proof By Lemmas 2.17 and 3.6, L has only a finite number of distinct ker;d-minimal
prime ideals P;(1 < i < n), in which ()| Pi = ker;d. Let ﬂi# P; = kerd, for
some index j. By Lemma 3.6, each P; is of the form (a,-)j’, for some a; € A?(L).
Consider for all i # j, x; € (a;)} \ (aj)}. Then A X € N, P = kerid C
(aj)‘ll. Since (aj)‘li is a prime ideal, there is an i # j such that x; € (aj)‘}l, which
is a contradiction. Therefore ﬂi 2 P; # keryd for all 1 < j < n. Now we show
L\UP, =Kd. Letx e L\|JPiandy ¢ ker;d.If x Ay € ker;d, then x € ()4
and by Lemma 2.16(iii), there exists a maximal element (ai)”ll € ¥ such that (y)‘li c
(a;)4. By Theorem 2.15, (a;)9 is a ker;d-minimal prime ideal. So x € (a;)¢ which
contradicts the property x € L \ |J P;. Thus y ¢ (x)”,l and hence (x)‘,j = kerjd. So
x € IC‘I’. Now consider x € IC‘II. If there exists 1 < i < n such that x € (a,')‘ll , then
a; € (x)‘,i = kerjd C (ai)”li, which is a contradiction. Thus x € L \ | P; and hence
L\UJP =Kl o

Corollary 3.8 If L has a bottom element L and does not have an infinite M C L\ {L}
such that for each x,y € M, x Ny = L, then L has only a finite number of minimal
prime ideals.

Theorem 3.9 The following assertions are equivalent:

(1) L satisfies the condition (x).

(ii) There exists a finite number of minimal ker d-prime ideals P;(1 <i < n) such
that ﬂf:l P; = kerjd.

Proof (i)=(ii) This is Theorem 3.7.

(i1)=(@1) Let M C L \ ker;d such that for each x,y € M, x Ay € ker;d and
| M |> n. By Pigeonhole principle, there exist x, y € M and P; such that x, y € Pf,
which is a contradiction, because, P; is prime and x A y € ker;d C P;. |

In the following, the subset U(a,-)‘l" \ ker;d of L in which a; ¢ ker;d is denoted
by Fjl(L). As an immediate consequence of Lemma 2.1(ii), If L is a kerjd-atomic
lattice, then 'Y (L) = (J(a;)¢ \ ker;d for all a; € A4(L). For a subset A of L, the
upset generated by A is denoted by 1} A, whichistheset{x € L | Ja € As.t a < x}.
In the following theorem we use the notation, A‘Il(a)c = A‘Ij (L) \ A‘Ii(a).

Theorem 3.10 Let L be a kerjd-atomic distributive lattice. Then for each a € F? (L),
(@ =t A{(@°\ + Af (@), where A(a)" = A{(L) \ A{(a).
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Proof Let x € (a)‘}l. If x ey A?(a), then there exists ¢ € A‘I’(a) such that ¢ < x.
Hence ¢ < x A a € ker;d, which is impossible. So x eft A%(a)°\ ft A% (a). For the
converse, assume that x €1} A‘Il @)\ A?(a). Ifx ¢ (a)?, thena A x ¢ kerjd and
sox € A‘} (anx) A‘Il(a), which is a contradiction. O

Consider C{(L) = {B € L\ ker;d | Vx,y € B,x Ay € ker;d}. It is easy to
check that A4(L) € C4(L).

Theorem 3.11 If L is a kerjd-atomic lattice, then for each B € C;‘!(L), | B |<|
A{(L) |.

Proof Let B € C¢(L)and x, y € B. By Lemma 3.3(ii), A¢(x) N A%(y) = ¥ such that
A‘[i (x) and A‘Ii(y) are nonempty set. By the axiom of choice, for each b € B, choose
and fix @, € A4(b) # 0. So the map f : B — A%(L), defined by f(b) = ap, is a
one-to-one map. Hence | B |<| A‘Ii(L) | O

4 When a Quotient of a Distributive Lattice is a Boolean Algebra

In this section some necessary and sufficient conditions are derived for the quotient
algebra L /0;1 to be a Boolean algebra. For a distributive lattice L and a lattice con-
gruence 6 on L, It can be easily observed that L/0 is a distributive lattice in which

[x]o Alyle =[x A ylg and [x]o V [y]s = [x V y]s.

Theorem 4.1 Let I be a nontrivial ideal of L. Then L/ 9;’ is a Boolean algebra if and
only if for each x € L, there exists y € (x)‘; such thatx V'y € K‘Ii.

Proof Let L be a distributive lattice and 6 be a lattice congruence on L. It is not
difficult to check that, the distributive lattice L/6 is a Boolean algebra if and only if
the following conditions hold:

(i) There exists ag, bg € L such that for each x € L, [agly < [x]s < [bolg, which
means that J_L/g = [agp]y and TL/(; = [bols.

(ii) For each x € L there exists y € L such that (x A y)8ag and (x V y)0by.

The proof is now complete using Propositions 2.4 and 2.7. O

For a particular case of the previous theorem see [14, Th.2.8], where I = {_L}. The

complement of an element x in a Boolean algebra L is denoted by x .

Corollary 4.2 Let L/Ofl be a Boolean algebra. Then [x]; = [y]O;’ if and only if
1
x/\yekerIdandeyele.

In the following proposition we give some conditions under which L /9;1 is a
Boolean algebra.

Proposition 4.3 (i) If I orkerd is a prime ideal of L, then L/@;i is a Boolean algebra.
(i) If each (x)”,i has a maximum element, then L/ 9;1 is a Boolean algebra.
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Proof (i) If ker;d = L, then ker;d = K¢ = L. Thus 97 = V and L/Gf is a singleton
set. Letkerjd # L and x € L. By Lemma 2.6(ii), IC? # () and L is a disjoint union of
keryd and KC¢. Tt follows that L/6¢ ~ {0, 1}, with 0 < 1, which is trivially a Boolean
algebra.

(ii) If ker;d = L, then ker;d = K¢ = L. Thus ¢ = V and L/6¢ is a singleton
set. IflC? = L, thenforeacha,b € L, (a)‘,i =ker;d = (b)?. Thus 9;1 = Vand L/G;l
is a singleton set. Let ker;d and IC‘II be nontrivial and x € L. Consider ag € kerjd
and by € K¢.If x € keryd, then x A by € ker;d and x vV by € K4.If x € KY,
then x A ag € kerjd and x V ag € IC‘;. Now, let x ¢ ker;d U IC? and y be the
maximum element of (x)‘,i. Then x Ay € keryd. We show that x V y € IC‘f. Let
z€(xV y)d = (x)’}l N (y)‘,i. Since y is a maximum element of (x)‘,’, z=(xAZ)VZz=
(xAzZ)V(yAz)=((xVy) Az € kerid. Thus (x V y)‘; C keryd and, by Lemma
2.134v),x Vy € IC‘Ii. So, Theorem 4.1 completes the proof. O

One of the important special case of Proposition 4.3(i) is when L is a chain, indeed,
each ideal in a chain is prime ideal.

Lemma4.4 If L is a Boolean algebra with a bottom element L1, then Qj_d = A=
{(a,a) | a e L}

Proof Itis clear thatker | (id) = {L}and (@)’ =] a='.1fa®!?b,then | a=! = b~!
and hence ¢! = b~!. Thus a = b, which implies Gj_d = A. O

By Corollary 1.4, every derivation is a lattice homomorphism. So for a derivation
d,ker(d) = {(a,b) | d(a) = d(b)} is a lattice congruence on L.

It is not difficult to show that for a nontrivial ideal I and a derivation d, ker(d) C Qd,
but the converse is not generally true. For example, consider / # | andd = id. Then
ker(d) = A and for each x,y € I(x # y), ()9 = ()¢ = L. So x6¢y. In the
case where / = {l}, using Lemma 2.1(v), Oj = V implies that ker(d) = V. The
following lemma show that, when L is a Boolean algebra with a bottom element L,
then Hi = ker(d) in general.

Lemma4.5 Let L be a Boolean algebra with a bottom element 1. and d a derivation
on L. Then ker(d) = Qf_.

Proof Let x@j{y. Since L is a Boolean algebra, y has a complement element y~!

and y~' € ()¢ = (x)¢. Thus d(x) Ad(y™") = L. Also x vy < T, implies
d(x)vd(y) =d(xVvy) <d(T)=d(y)vd(y").Henced(y) vdx) = (d(y) Vv
d(x) A d(y) vdy ™)) = dy) v @dx) Adiy™)) = d(y) v L = d(y). So
d(x) <d(y) and, similarly, d(y) < d(x). Therefore (x, y) € ker(d).

Proposition 4.6 The Boolean algebra L/Qld is isomorphic to 2 if and only if kerd is
a prime ideal of L.

Proof Let L/Q;i is isomorphic to 2, x Ay € kerjd and x,y € L \ ker;d. So by
Proposition 2.4(i), x0¢ y. So x € (y)¢ = (x)¢ = ker;d. This implies x € (x)¢, which
contradicts Lemma 2.1(v).

The converse one gets using Lemma 2.6. O
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Here we provide an example in which L/8¢ = 2, but I is not prime. Consider
L ={Ll,a,b, T}, in which L and T are bottom and top element, respectively, and
L, ifx=1,b
a, ifx=a, T
is a derivation. It is clear that ker;d = {L, b} and K¢ = {a, T}. So L/6¢ = 2, but
I = {L}is not a prime ideal.

The set ¥ = {(x)”,i | x € L} by an order given by, for each x, y € L, x)¢ < (y)‘,i
if and only if (y)‘li C (x)d , is a poset. Also by the usual operations, (x)‘}l \% (y)d =
(x v y)4and ()4 A ()¢ = (x A y)¢, T is a bounded distributive lattice. The bottom
and the top elements are of the form, Ly = (x)? = L for each x € ker;d and
Ty = ()¢ = ker;d foreach x € K9. The map f : L — X defined by f(x) = (x)¢
is a lattice epimorphism, in which kerf = 9?. Thus, by the Isomorphism Theorem,
L/o¢ =%,

a, b are not comparable. The map d : L — L defined by d(x) = {

Lemma 4.7 Ifthe quotient lattice L/ 9;1 is a Boolean algebra then for each x € L, the
set {(Z)? |z € (x)?} has a maximum element.

Proof Let L /9;’ be a Boolean algebra and x € L. By Theorem 4.1, there exists y € L
such that x Ay € kerjd and x vV y € IC?. Consider z € (x)‘,i. Since x A z € kerjd,
applying Proposition 2.7, (x A y)0% (x A z). Thus y0¢[y v (x AZ)] = [(x VY) A (y V
z)]@;’(y vz).So ()¢ = (yvz)d = (y)? N (z)? and hence (y)¢ C (z)¢, which implies
that (2)¢ < (y)¢. O

Theorem 4.8 Let L be a kerjd-atomic distributive lattice. The lattice L /Q;i is a
Boolean algebra if and only if for each x € L, there exists y € L such that A‘Ii (x) and
A‘Il (y) are a partition ofA‘Il(L) and [y]e;z is a complement of [x]9;1 in L/Q;l.

Proof (<) It is clear that x A y € ker;d and, by Lemma 3.3, x V y € IC?. Hence,
Theorem 4.1 completes the proof.

(=) Consider x € L. Since L /9;’ is a Boolean algebra, by Theorem 4.1, there
exists y € L suchthatx Ay € kerjd and x VvV y € IC?. Clearly A”,i(x) N A?(y) =0.
Leta € A‘Ii(L) \ (A‘Ii(x) U A‘Ii(y)). Using Lemma 2.3(1), (x Va) Vy € IC‘Ii. Also
(xVa) Ay € kerd. So, by Corollary 4.2, y]9;1 has two different complements [x]9;1

and [x V a]e;i, which is a contradiction, because a € (x)‘li anda ¢ (x VvV a)‘Ii. O

Theorem4.9 If L/ 9;1 is a Boolean algebra, then the congruence 9;1 is the only con-
gruence relation having keryd as a whole class.

Proof Let 6 be a lattice congruence on L such that ker;d is a whole class. By Proposi-
tion2.7,60 C 9;1. For the converse, let x@}i y. Then there exists z € L such that [)c]e_d1 =
1
-1 ...
[y]e;l = [1]9;1. By Proposition 2.4, [x /\z]g;z = [x]g;j A [1]9;1 = J-L/ej’ = kerjd. Thus

x Az € keryd and also y A z € kerjd, which implies (x A 2)0(y A z). By a similar
way, (x Vz2)0(y Vz). Nowwehave x =x V (x A2)0[x V(Y AD]O[(x Vy) A (x V
2D0[x VA VI=[yV xAOyV (yAz)]=y.Thus Gld C 6 and hence
0] =0. o
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Corollary 4.10 For a congruence 0, if L/ 9;1 and L /0 are Boolean algebras such that
the congruence 0 having keryd as a whole class, then 9;1 =0.

Corollary 4.11 If L is a distributive lattice with a least element 1, ker;d = {1} and
L/Q;l is a Boolean algebra, then 8¢ = A.

Conclusion

In this final section, for an ideal I, we conclude that the lattice congruence 9}"’ is
the smallest congruence in the set of all congruences of the form 9;1 and so the best
congruence in the sense that the Boolean algebra L/ Q;d has the maximum cardinality
in the set of all Boolean algebras L/ 9;1.

(i) Consider an ideal I and a derivation d on L. By Proposition 2.8, 9;”1 C 0?. Thus
the map r : L/9§d — L/Q}i defined by n([a]e;-d) = [a]e;f is a lattice homomorphism.
Using the first isomorphism theorem, if L /9;‘1 is a Boolean algebra, then so is L /6;1.
Thus the lattice congruence 0 ;d is the best congruence in the set {9;1 | dis a derivation}.

(i) Combining Theorem 4.9 and Proposition 2.8, it is concluded that 0}"’ is the
smallest congruence in the set of all congruences having ker;d as a whole class.

(iii) Using Lemma 2.10, 0}"1 is the smallest congruence in the set {97} in which
there exists a derivation d on L such that ker;d = J.

(iv) Using Lemma 2.11, 9}"1 is the smallest congruence in the set {95’} in which
J = (a)¢ foralla € L.

(v) Using Theorem 4.9, 0}"’ is the smallest congruence in the set of all congruences
having I as a whole class.

(vi) In the case where L is a ker;d-atomic distributive lattice such that for each
x € L, there exists y € L such that A”;(x) and A”;(y) are a partition of A?(L), then
9}"’ is the smallest congruence in which L/ 9;1 is a Boolean algebra.

There is still an open question concerning 971:

Is there a necessary and sufficient condition on an ideal 7 such that 9;1 is the smallest
congruence in which L /9;1 is a Boolean algebra?
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