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Abstract
In this note, we find a class of unitary operators, denoted by U , on a complex separable
infinite-dimensional Hilbert spaceH such that for anyU ∈ U , there exists an operator
R of rank 1 on H such that U + R is hypercyclic and the hypercyclic vectors are
of full measure. Then, these results are applied to the controllability of discrete-time
linear control systems, where the rank one perturbation is used as a one-dimensional
feedback control law.
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1 Introduction

Let T : X −→ X be a bounded linear operator on an infinite dimensional separable
Banach space X , write T ∈ B(X). T is said to be hypercyclic if there exists a point
x ∈ X such that the corresponding orbit {x, T (x), T 2(x), . . .} is dense in X . Such a
point x is a hypercyclic point for T .
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Hypercyclicity is one of central notions in both operator theory and dynamical
systems. Rolewicz [18] gave the first example of hypercyclic operator by showing that
the operator λB on l p (1 ≤ p < ∞) (or c0) is hypercyclic for any complex number λ

with |λ| > 1. Here, B is the backward shift, defined by B(xi )i∈N = (xi+1)i∈N. Since
then more and more examples of hypercyclic operators on different kinds of spaces
have been found. See monographs [6, 15]. Among others, an important theoretical
result was from Ansari [1] and Bernal-Gonzalez [7] who showed that any separable
infinite-dimensionalBanach space X supports a hypercyclic operator. Such an operator
has the form T = I +N , where I is the identity map and N is a nuclear operator on X .
This shows that the identity can be perturbed to be hypercyclic by nuclear operators.
Motivated by this fact and the work of Salas [19] on supercyclicity of weighted shifts,
Shkarin [21] proposed the following question:

Question 1 Can a finite rank perturbation of a unitary operator on a complex sepa-
rable infinite-dimensional Hilbert space be hypercyclic?

Shkarin gave in [21] an affirmative answer on this question and proved the following
proposition:

Proposition 1.1 [21, Theorem 1] There exist a unitary operator V and a bounded
linear operator R of rank at most 2 acting on a Hilbert space H such that T = V + R
is hypercyclic.

The idea to construct such operator T in [21] is as follows. LetU be the multiplica-
tion operator by z on L2(T), that is, (U f )(z) = z f (z), and S be a rank 1 operator on
L2(T) defined by S f = 〈 f , g〉h for some g, h ∈ L2(T). Then, the key is to construct
g, h ∈ L2(T) and a closed linear subspace K of L2(T) which is invariant for U + S
such that the restriction T ∈ B(K) of the operator U + S to K is hypercyclic and T
can be decomposed as T = V + R, where V ∈ B(K) and R ∈ B(K) has rank at most
2. As a by-product, this also provides an example of a contraction A and an operator
R of rank 1 on H such that A + R is hypercyclic. A further question remained is:
can a unitary operator be perturbed to be hypercyclic by an operator of rank 1. Thus,
Grivaux [14] proposed the following question:

Question 2 Does there exist a rank 1 perturbation of a unitary operator on a Hilbert
space which is hypercyclic?

Grivaux answered in [14] this question in the affirmative and proved the following
result.

Proposition 1.2 [14, Theorem 1.2] There exist a unitary operator U and a rank 1
operator R on the complex Hilbert space l2 such that the operator T = U + R is
hypercyclic on l2.

The approach to construct the operator T in [14] with the properties in Propo-
sition 1.2 is much more elementary than that in [21]. In the construction scheme,
the unitary operator U can be chosen to be a diagonal operator D on l2 defined by
Den = λnen, n ≥ 1, where λn ∈ T and (en)n≥1 is the canonical basis on the space
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l2. And the rank one operator has the form Rx = 〈x, b〉a for any x ∈ l2, where
a = ∑

n≥1 anen and b = ∑
n≥1 bnen are two elements of l2. The key technical point

is to construct the coefficients λn , an and bn (n ≥ 1) by induction such that T = U+R
satisfies the hypercyclic criterion Lemma 2.1 in next section.

Though the proofs of Propositions 1.1 and 1.2 are constructive, the operators V
and U in the propositions have not explicitly been given. This is not sufficient in
application. For example, from the viewpoint of control theory, one may concern
the following question: Given an operator U on some Hilbert space can we find a
perturbation operator R of rank one such that U + R is hypercyclic?

In this note, we find a class of unitary operators, denoted by U , on a complex
separable infinite-dimensional Hilbert space H such that for any U ∈ U , there exists
an operator R of rank one onH so that U + R is hypercyclic. The main result in this
paper is as follows.

Main Theorem Let U be a bounded linear operator on an infinite-dimensional com-
plex separable Hilbert space H. Assume U satisfies the following conditions:

(1) U has distinct eigenvalues λi ∈ T, (i ≥ 1) and the set {λi |i ≥ 1} contains at
most finite number of isolated points;

(2) The eigenvectors {ei }i≥1 of U form an orthogonal basis of H, where ei is the
eigenvector corresponding to the eigenvalue λi .

Then, there exist p, q ∈ H and an operator R(·) = 〈p, ·〉q such that the operator
T = U + R is weak-mixing with respect to a nondegenerate Gaussian measure.

The demonstration strategy is similar to the one employed in [14], in which the
coefficients of a unitary operator U on l2 as well as the two vectors p and q in
l2 which define R(·) = 〈p, ·〉q are alternatively constructed by induction such that
T = U + R has a perfectly spanning set of eigenvectors associated to unimodular
eigenvalues. In our situation, since the unitary operator U is specified in advance, we
have to choose two vectors p and q in l2 such that T = U + R has the same properties
as in [14]. This is more challenging and so the construction of p and q is a rather
sophisticated procedure.

We also note that Baranov et al. [2] gave another proof of Proposition 1.2 using
function theory method. In [3], they further show that any countable union of perfect
Carleson sets on the unit circle can be the spectrum of a hypercyclic operator which is a
rank one perturbation of some unitary operatorU , and got some information about the
spectral measure ofU . But they did not propose a characterization of unitary operators
which have a hypercyclic rank one perturbation.

The proof of the main theorem is presented in Sect. 2. As an application, in Sect. 3
we discuss feedback controllability for a class of linear discrete-time control systems
on Hilbert spaces by hypercyclicity.
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2 Rank One Perturbation of Non-hypercyclic Operators

2.1 Criteria for Hypercyclicity

The earliest forms of criteria for hypercyclicity were established independently by
Kitai [17] and by Gethner and Shapiro [12], which are called Kitai’s criterion and
Gethner and Shapiro’s criterion, respectively. Since then, various necessary or suffi-
cient conditions for hypercyclicity have been stated in terms of different characteristics
of the operators. See, for example [6, 15]. Here, the criterion we will use to prove our
main theorem is characterized in terms of eigenvectors associated to eigenvalues of
modulus 1 of the operator.

Let X be a complex separable infinite-dimensional Banach space. Recall that a
bounded linear operator T ∈ B(X) is called having a perfectly spanning set of eigen-
vectors associated to unimodular eigenvalues if there exists a continuous probability
measure σ on the unit circle T such that for any σ -measurable subset B ⊂ T with
σ(B) = 1, the set span{ker(T − λ) : λ ∈ B} is dense in X [4].

The following lemma gives a sufficient condition for an operator having a perfectly
spanning set of eigenvectors.

Lemma 2.1 [13] Let X be a complex separable infinite-dimensional Banach space
and T be a bounded linear operator on X. Suppose that there exists a sequence (ui )i≥1
of vectors of X with the following conditions:

(i) for each i ≥ 1, ui is an eigenvector of T associated to an eigenvalue μi with
μi ∈ T and the μ

′
i s all distinct;

(ii) span{ui : i ≥ 1} is dense in X;
(iii) for any i ≥ 1 and any ε > 0, there exists an n �= i such that ‖un − ui‖ < ε.

Then, T has a perfectly spanning set of eigenvectors associated to unimodular eigen-
values. Therefore, T is hypercyclic.

In case of Hilbert spaces, Lemma 2.1 also implies that T is weak-mixing with respect
to an invariant measure m on X . Recall the definition of weak-mixing:

(i) m is an invariant measure for T , i.e. m(T−1A) = m(A) for any measurable
subset A ⊂ X ;

(ii)

lim
N→∞

1

N

N−1∑

k=0

|m(T−k A ∩ B) − m(A)m(B)| = 0,

for any two measurable subsets A, B ⊂ X .

Lemma 2.2 [5, Theorem 3.22] Let H be a complex separable infinite-dimensional
Hilbert space and T a bounded linear operator on H. If T has a perfectly spanning
set of eigenvectors associated to unimodular eigenvalues. There exists a nondegenerate
Gaussian invariant measure m on H such that T is weak-mixing.
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Remark 2.3 A Gaussian measure is a Borel measure, and the nondegenerate Gaussian
measure m has full support, i.e. any open set on H has positive measure. When T is
weak-mixing with respect to m, the set of all hypercyclic points has full measure.

2.2 Rank One Perturbation of Non-hypercyclic Operators

Now we consider rank one perturbation of operators on Hilbert spaces. Let H be a
complex separable infinite-dimensionalHilbert space, andU a bounded linear operator
onH. We always assume that the operatorU has eigenvalues (λi )i≥1 and eigenvectors
(ei )i≥1 with the following properties:

(A1) λi (i ≥ 1) are distinct points on T and the set {λi |i ≥ 1} contains at most finite
number of isolated points;

(A2) Uei = λi ei and (ei )i≥1 is an orthonormal basis ofH.

Denote by U the set of all bounded linear operators onH which satisfies the assump-
tions (A1) and (A2).

Remark 2.4 The following two facts are obvious for U ∈ U :
(a) U is a unitary operator;
(b) Denote by K the closure of {λi |i ≥ 1}. For anynon-isolated pointλ j in {λi |i ≥ 1}

and any ε > 0, there exists aμ ∈ O(λ j , ε)∩(K\{λi |i ≥ 1}) such that O(μ, δ)∩
{λi |i ≥ 1} �= ∅ for any δ > 0. Here, O(μ, δ) denotes the δ neighbourhood of μ

in T.

The rank one operator R has the form,

R : H −→ H, R(x) = 〈p, x〉q,

for some q, p ∈ H.
For a given U ∈ U with eigenvalues (λi )i≥1 and eigenvectors (ei )i≥1, we expand

q and p by the orthonormal basis (ei )i≥1 as

q =
∑

j≥1

q j e j , p =
∑

j≥1

p j e j . (2.1)

In order to make the operator T = U + R to be hypercyclic, it suffices to construct
vectors q and p such that T satisfies all the conditions in Lemma 2.1. To do this end,
we need the following proposition about the eigenvalues and eigenvectors of T .

Proposition 2.5 [14, Lemma 2.3] Let μ ∈ T\{λ j | j ≥ 1}. Then, μ is an eigenvalue of
T = U + R if and only if

∑

j≥1

∣
∣
∣
∣

q j

μ − λ j

∣
∣
∣
∣

2

< ∞ and
∑

j≥1

q j p̄ j

μ − λ j
= 1.
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In this case, the corresponding eigenvector is given by

u =
∑

j≥1

q j

μ − λ j
e j .

Theorem 2.6 LetU be a bounded linear operator on an infinite-dimensional separable
complex Hilbert space H. Assume that

(A1) λi (i ≥ 1) are distinct eigenvalues of U with λi ∈ T, and {λi |i ≥ 1} contains
at most finite number of isolated points;

(A2) Uei = λi ei (i ≥ 1), and {ei |i ≥ 1} is an orthonormal basis ofH.

Then, there exists p, q ∈ H and R(·) = 〈p, ·〉q such that T = U + R satisfies the
following conditions:

(i) μ j ( j ≥ 1) are distinct points on T;
(ii) Tu j = μ j u j , and span{u j : j ≥ 1} = H;
(iii) for each um and any ε > 0, there exists a un (n > m) s.t. ‖un − um‖ < ε.

Therefore, T is weak-mixing with respect to a nondegenerate Gaussian measure by
Lemmas 2.1 and 2.2.

Remark 2.7 By Proposition 2.5, we need to solve equations to get p and q. At first,
we select values of μ j and q j ( j ≥ 1), then get p by solving a system of linear
equations. The inverse of the coefficient matrix of these equations has good properties
if each eigenvalue μ j is in the closure of {λ j | j ≥ 1}. In order to make the set of
eigenvectors self-dense, these eigenvalues {μ j | j ≥ 1} also need to be self-dense.
During the construction process, odd items have much freedom and even items are
difficult to select to satisfy many constraints. For odd items, we let qn � |μn − λn|
such that each eigenvector um can be approximated by some un(n �= m). But for even
items, we let qn � |μn − λn| in order to make pn → 0.

To prove Theorem 2.6, we need some preliminaries. Assume that all the isolated
points in {λi |i ≥ 1} are λ1, λ2, . . . , λn0 .

1. Rearrange the sequence (λ j ) j>n0 by a bijective map

σ : N −→ { j ∈ N| j > n0},

such that we can choose a series of points (μ j ) j≥1 on T corresponding to the
rearranged sequence (λσ( j)) j≥1 as follows, by the fact (b) in Remark 2.4. For
1 ≤ n ≤ n0, let σ(n) = n0 + n, take a μn ∈ K\({λ j | j ≥ 1} ∪ {μ j | j < n})
which is close to λn0+n . If n0 = 0, let σ(1) = 1 and σ(2) = 2, take a
μ1 ∈ K\{λ j | j ≥ 1} which is close to λ1, then a μ2 ∈ K\({λ j | j ≥ 1} ∪ {μ1})
which is close to λ2;
Inductively, for n = 2k − 1 ≥ max{n0 + 1, 3}, take a λσ(2k−1) in a small neigh-
bourhood of someμm(m < 2k−1), and takeμ2k−1 ∈ K\({λ j | j ≥ 1}∪{μ j | j <

2k − 1}) in a small neighbourhood of λσ(2k−1). For n = 2k ≥ max{n0 + 1, 3},
define σ(2k) by the least number in {n0 +1, n0 +2, . . . , 2k}\σ({1, 2, . . . , 2k−
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1}) (This assures that the map σ : N −→ { j ∈ N| j > n0} is bijective), and take
a μ2k ∈ K\({λ j | j ≥ 1} ∪ {μ j | j < 2k}) in a small neighbourhood of λσ(2k).
These two sequences λσ(n) and μn can be further modified so that the following
conditions are satisfied.

2. Take μn sufficiently close to λσ(n), such that

|μn − λσ(n)| <
1

n7
|μ j − λσ(n)|, ∀ j < n.

3. Let

qn =
⎧
⎨

⎩

1, 1 ≤ n ≤ n0,
n−1(μn − λσ(n)), n > n0 and n is odd,
n3(μn − λσ(n)), n > n0 and n is even.

And let μn sufficiently close to λσ(n) such that |qn| ≤ n−3|qn−1|, n > n0.
4. For each odd number n > n0, we can choose λσ(n) sufficiently close toμm(some

m < n) such that

∑

1≤ j<n

∣
∣
∣
∣

q j

λσ(n) − λσ( j)
− q j

μm − λσ( j)

∣
∣
∣
∣ <

1

2n5
,

and μn sufficiently close to λσ(n) such that

∑

1≤ j<n

∣
∣
∣
∣

q j

μn − λσ( j)
− q j

μm − λσ( j)

∣
∣
∣
∣ <

1

n5
.

5. For each odd number n > n0, as described in item 1, λσ(n) is sufficiently close
to μm(some m < n). Denote this correspondence between n and m by a map

τ : {n ∈ N|n is odd and n > n0} −→ N.

Furthermore, this map can be constructed so that the set τ−1(m) is infinite for
eachm ∈ N. For instance,map {2k−1|n0 < k ≤ n0+11} onto {m|1 ≤ m ≤ 10},
map {2k − 1|n0 + 11 < k ≤ n0 + 111} onto {m|1 ≤ m ≤ 100}, . . .. This
guarantees that each μm can be approximated arbitrarily close by some point in
{μn|n > m}.

Let

λ̂n =
{

λn, n ≤ n0;
λσ(n−n0), n > n0.
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Without loss of generality, we assume that the eigenvector of λ̂n is en . To solve the
vector p in Eq. (2.1), for a given n ∈ N we consider the linear equations below.

CnΛn

⎛

⎜
⎜
⎜
⎜
⎝

p̄(n)
1

p̄(n)
2
...

p̄(n)
n

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

, (2.2)

where

Cn =

⎛

⎜
⎜
⎝

1
μ1−λ̂1

· · · 1
μ1−λ̂n

...
...

1
μn−λ̂1

· · · 1
μn−λ̂n

⎞

⎟
⎟
⎠ ,

and

Λn = diag(q1, q2, . . . , qn).

Here, for a complex number λ, λ denotes the conjugacy of λ. Since Cn0 is a Cauchy
matrix and μ j , λ̂ j (1 ≤ j ≤ n0) are distinct numbers, it is invertible by [20]. The
following Lemma gives a condition for Eq. (2.2) having a unique solution.

Proposition 2.8 Let M (n) = Λ−1
n C−1

n , n ≥ 1. If the sequence (|μn−λ̂n|)n≥1 decreases
to 0 sufficiently fast, then for any n ≥ n0 it holds that:

(i)

|(M (n))n−1 − M (n−1)|∞ ≤ 1

n3
,

where (·)n−1 represents the left upper n − 1× n − 1 submatrix, and | · |∞ is the
maximum absolute value of the elements in a matrix.

(ii) when n is even, |M (n)
i j | ≤ 2

n3
, if i or j equals n.

(iii) when n is odd, |M (n)
i,n | ≤ 2

n2
for 1 ≤ i < n, and |M (n)

n, j | ≤ 2n for 1 ≤ j ≤ n.

Hence, for any n > n0,

|M (n)|∞ ≤ 2n + c0,

where c0 = |Λ−1
n0 C

−1
n0 |∞.

Proof For n ≥ n0 + 1, rewrite Cn as the block form

Cn =
(
A β

γ c

)

.
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where c = 1/(μn − λ̂n).
Since Cn0 is invertible, it follows by induction Cn is invertible and

C−1
n =

⎛

⎝

(
I + A−1βγ

c−γ A−1β

)
A−1 − A−1β

c−γ A−1β

− γ A−1

c−γ A−1β
1

c−γ A−1β

⎞

⎠ ,

provided that the sequence (|μn − λ̂n|)n≥1 decreases to 0 sufficiently fast.
Since A−1, β, γ are bounded as μn approaches λ̂n , we can modify μn sufficiently

close to λ̂n such that C−1
n satisfies

– |(C−1
n )n−1 − C−1

n−1|∞ ≤ |qn−1|
n3

;

– The absolute value of each element in the n-th column and n-th row of C−1
n is less

than 2|μn − λ̂n|.
On the other hand, since the sequence (|qn |)n≥1 is decreasing, we can further choose

μn sufficiently close to λ̂n such that

|(Λ−1
n C−1

n )n−1 − Λ−1
n−1C

−1
n−1|∞ ≤ 1

n3
.

Since

qn =
{
n−1(μn − λ̂n), n > n0 and n is odd,
n3(μn − λ̂n), n > n0 and n is even.

If n is even, then the absolute values of elements in the n-th row and n-th column
of Λ−1

n C−1
n are not greater than 2

n3
.

If n is odd, then the absolute values of elements in the n-th row of Λ−1
n C−1

n are
not greater than 2n. Since |q j | ≥ n3|qn| for j < n (by item 3), the absolute values of

elements in the n-th column of Λ−1
n C−1

n (except M (n)
nn ) are not greater than

2
n2
.

Finally, note that the elements in Λ−1
n0 C

−1
n0 is bounded, by induction on n, it leads

to

|Λ−1
n C−1

n |∞ ≤ 2n + c0, ∀n ≥ n0,

where c0 = |Λ−1
n0 C

−1
n0 |∞. ��

Proposition 2.9 If the sequence (μn)n≥1 satisfies the conditions described in Propo-
sition 2.8, then

(p(n)
1 , p(n)

2 , . . . , p(n)
n , 0, 0, . . .)

converges to some point p ∈ l2 as n → ∞.
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Proof We can estimate p̄(n) = ( p̄(n)
1 , p̄(n)

2 , . . . , p̄(n)
n )T by the following equation,

p̄(n) = Λ−1
n C−1

n

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ ,

and view the vector p̄(n) as an element in l2 with infinite zeros on the tail. For n >

max{n0, c0}, we consider the following two cases.
Case 1 n is even. According to Proposition 2.8,

‖ p̄(n) − p̄(n−1)‖∞ ≤ 4

n2
.

Case 2 n is odd(n ≥ 3). By item 4, there exists m < n such that μn is sufficiently
close to μm , and

∑

1≤ j<n

∣
∣
∣
∣
∣

q j

μn − λ̂ j
− q j

μm − λ̂ j

∣
∣
∣
∣
∣
≤ 1

n5
,

then

∣
∣
∣
∣
∣

p̄(n)
n qn

μn − λ̂n
− p̄(n)

n qn

μm − λ̂n

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

⎛

⎝1 −
∑

1≤ j<n

p̄(n)
j q j

μn − λ̂ j

⎞

⎠ −
⎛

⎝1 −
∑

1≤ j<n

p̄(n)
j q j

μm − λ̂ j

⎞

⎠

∣
∣
∣
∣
∣
∣

≤
∑

1≤ j<n

∣
∣
∣
∣
∣

p̄(n)
j q j

μn − λ̂ j
− p̄(n)

j q j

μm − λ̂ j

∣
∣
∣
∣
∣

≤ ‖p(n)‖∞
∑

1≤ j<n

∣
∣
∣
∣
∣

q j

μn − λ̂ j
− q j

μm − λ̂ j

∣
∣
∣
∣
∣

≤ n · (2n + c0)
1

n5
(by Proposition 2.8)

≤ 3

n3
(for n > max{n0, c0}),

and

∣
∣
∣
∣
∣

p̄(n)
n qn

μn − λ̂n
− p̄(n)

n qn

μm − λ̂n

∣
∣
∣
∣
∣
= | p̄(n)

n |
∣
∣
∣
∣

qn

μn − λ̂n
− qn

μm − λ̂n

∣
∣
∣
∣

≥ | p̄(n)
n | 1

2n
(by item 2 and item 3).

Then, | p̄(n)
n | ≤ 6

n2
.
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According to Proposition 2.8,

‖ p̄(n) − p̄(n−1)‖∞ ≤ 6

n2
.

Combining these two cases, for any n ≥ 2, we have

‖p(n) − p(n−1)‖22 =
∑

1≤ j≤n

|p(n)
j − p(n−1)

j |2

≤ n‖p(n) − p(n−1)‖2∞
≤ n

(
6

n2

)2

≤ 36

n3
,

and for any m > 0, it holds that

‖p(n+m) − p(n)‖22 ≤
∑

1≤ j≤m

‖p(n+ j) − p(n+ j−1)‖22

≤
∑

1≤ j≤m

36

(n + j)3

≤ 36

n
.

Hence, p(n) is a Cauchy sequence in l2 and converges to some p. ��
For each n ≥ 1, denote the eigenvector of μn by

un =
∑

j≥1

q j

μn − λ̂ j
e j . (2.3)

Proposition 2.10 If the sequence (μn)n≥1 satisfies the conditions in Proposition 2.8,
then un defined by (2.3) is the eigenvector of T = U+R corresponding toμn (∀n ≥ 1).
Furthermore, {un|n ≥ 1} is a basis inH.

Proof We divide the proof of Proposition 2.10 into three steps.

Step 1. We have constructed (μn)n≥1 and q in the items 1–5 above, and

p̄(n) = Λ−1
n C−1

n

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ .

By Proposition 2.9, p(n) converges to some point p ∈ l2.
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Step 2. For any j > n, by items 2 and 3, we have |q j | ≤ j3|μ j − λ̂ j | and

|μ j − λ̂ j | ≤ j−7|μn − λ̂ j |.

Thus, the series

∞∑

j=1

q j

μn − λ̂ j
e j

converges to un inH for each n. It is easy to verify that 〈p, un〉 = 1,∀n ≥ 1.
By Proposition 2.5, un is the eigenvector corresponding to μn,∀n ≥ 1.

Step 3. For n > n0 and any x ∈ span{e1, e2, . . . , en} where ‖x‖ = 1, we rewrite x
as

x =
∑

1≤ j≤n

x j e j =
∑

1≤ j≤n

y j ū j ,

where

ūk =
∑

1≤ j≤n

q j

μk − λ̂ j
e j ,

and

(ū1, ū2, . . . , ūn) = (e1, e2, . . . , en)ΛnC
T
n .

So
⎛

⎜
⎜
⎜
⎝

y1
y2
...

yn

⎞

⎟
⎟
⎟
⎠

= (CT
n )−1(Λn)

−1

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xn

⎞

⎟
⎟
⎟
⎠

.

Then by Proposition 2.8,

‖(y1, y2, . . . , yn)‖1 ≤
∥
∥
∥(CT

n )−1(Λn)
−1

∥
∥
∥
1

≤ n · (2n + c0).

So
∥
∥
∥
∥
∥
∥
x −

n∑

j=1

y j u j

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

n∑

j=1

y j ū j −
n∑

j=1

y j u j

∥
∥
∥
∥
∥
∥

≤ ‖(y1, y2, . . . , yn)‖1 max
1≤ j≤n

‖u j − ū j‖
≤ (2n2 + nc0) max

1≤ j≤n
‖u j − ū j‖.

123



Rank One Perturbation of Unitary Operators with Full… 2487

By item 2 and 3, |qk | ≤ k3|μk − λ̂k | and |μk − λ̂k | < k−7|μ j − λ̂k |, ( j < k)
it follows

‖u j − ū j‖ =
∥
∥
∥
∥
∥

∑

k>n

qk

μ j − λ̂k
ek

∥
∥
∥
∥
∥

≤
∑

k>n

∣
∣
∣
∣
∣

qk

μ j − λ̂k

∣
∣
∣
∣
∣

≤
∑

k>n

1

k4
.

So ‖x − ∑n
j=1 y j u j‖ ≤ (2n2 + nc0)

∑
k>n

1
k4

→ 0 as n → ∞.
Then, the set of eigenvectors {u j | j ≥ 1} of T is a basis inH. ��

Proof of Theorem 2.6 Weconstruct the sequence (μn)n≥1 which satisfies the conditions
described in Proposition 2.8. By Proposition 2.10, (μn)n≥1 are all eigenvalues of T ,
and the corresponding set of eigenvectors {u j | j ≥ 1} is a basis inH.

We just need to check that the set {u j | j ≥ 1} contains no isolate point. According
to item 4, for each μm , there exists μn(n is odd, sufficiently large) such that

∑

1≤ j<n

∣
∣
∣
∣
∣

q j

μm − λ̂ j
− q j

μn − λ̂ j

∣
∣
∣
∣
∣
≤ 1

n5
.

By item 2 and item 3, |qn| ≤ n−1|μn − λ̂n| and |μn − λ̂n| < n−7|μm − λ̂n|, (m < n)

then
∣
∣
∣
∣

qn

μn − λ̂n

∣
∣
∣
∣ ≤ 1

n
,

and
∣
∣
∣
∣

qn

μm − λ̂n

∣
∣
∣
∣ ≤ 1

n8
.

Similarly, since |q j | ≤ j3|μ j − λ̂ j | < j−4|μn − λ̂ j |, ( j > n > m) the following
inequalities hold:

∑

j>n

∣
∣
∣
∣
∣

q j

μn − λ̂ j

∣
∣
∣
∣
∣
≤

∑

j>n

1

j4
≤ 1

n
,

and

∑

j>n

∣
∣
∣
∣
∣

q j

μm − λ̂ j

∣
∣
∣
∣
∣
≤ 1

n
.
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We have

‖um − un‖ ≤ 5

n
.

Note that n can be chosen to be sufficiently large, so um is not an isolate point.
Finally, T satisfies all the conditions in Lemma 2.1. By Lemma 2.2, T is weak-

mixing with respect to a nondegenerate Gaussian measure. ��

3 Applications to Controllability for Linear Control Systems

Controllability is one fundamental concept in mathematical control theory. Con-
trollability for distributed parameter systems, which belong in the category of
infinite-dimensional control systems, was first studied by Fattorini in the 1960s in
[10, 11]. Then, the theory of controllability for infinite-dimensional linear control sys-
temswas systematically established in [8, 9]. In this section, we consider the following
discrete time linear control system on a complex separable Hilbert spaceH,

xk+1 = Axk + Buk, k = 0, 1, 2, . . . (3.1)

where A is a bounded linear operator on H, xk ∈ H is the state of the system, U is a
Hilbert space, called input or control space, and B is a bounded linear operator from
U intoH.

For the linear system (3.1) and its continuous-time version, there exist many dif-
ferent concepts on controllability, such as global controllability, null controllability,
approximate controllability and near-controllability. Roughly speaking, controllabil-
ity characterizes the ability of a system that the system can be steered from an arbitrary
initial state to an arbitrary terminal state under the action of admissible controls. There
are different kinds of criteria for different sense of controllability.

It is well known that the system (3.1) is not controllable in any existed sense of
controllability when B = 0. So a natural question is what can we say about controlla-
bility of the system (3.1) with B = 0. In the following, we will consider the discrete
time system (without controls)

xk+1 = T xk, k = 0, 1, 2, . . . , (3.2)

where T is a bounded linear operator on a complex separable infinite-dimensional
Hilbert space H.

Definition 3.1 Let μ be a Borel measure on H with full support. The system (3.2) is
called approximately-nearly controllable (ANC) for the measure μ if there exists a
μ−full measure set Γ ⊂ H such that for any pair of points (x, y) ∈ Γ × H and any
ε > 0, there exists k ∈ N such that the solution (xn)n≥0 of (3.2) with x0 = x satisfies

‖xk − y‖ < ε,
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where ‖ · ‖ is the norm on H.

This concept of ANC is a modification of Definition 1 in [16].

Remark 3.2 TheANC for somemeasure isweaker than the approximate controllability
which says that any state can be steered to any neighbourhood of any another state
in finite time by some controls. An ANC system is approximately controllable in
almost sense without controls, which is very closely related to the hypercyclicity.
More precisely, ANC for any measure implies hypercyclicity, and the converse is not
true.

In this section, for the system (3.1), we are going to find out some conditions under
which there exists a feedback uk = Fxk such that the close loop system

xk+1 = (A + BF)xk, k = 0, 1, 2, . . . (3.3)

is ANC for some measure, where F is a bounded linear operator fromH into U .
A negative result about control systems on finite-dimensional Hilbert spaces is

given below.

Proposition 3.3 If the system (3.1) is finite dimensional, that is, the state spaceH is a
finite-dimensional linear space, then for any feedback F, the close loop system (3.3)
can never be ANC for any measure.

Proof In this case, the close loop operator T = A + BF is a linear operator on the
finite-dimensional space. So T can never be hypercyclic by Proposition 2.57 in [15].
Thus, T is not ANC for any measure. ��

Next theorem shows that for a class of operators A in (3.1), we can derive a linear
feedback operator of rank one, such that the associated close loop system is ANC.

Theorem 3.4 Given a discrete-time linear control system

xk+1 = Axk + uk, k = 0, 1, 2, . . . ,

where A is a bounded linear operator on a complex separable infinite-dimensional
Hilbert space H, and xk, uk ∈ H. Assume that the operator A satisfies

(A1) λi (i ≥ 1) are distinct points on T and the set {λi |i ≥ 1} contains at most finite
number of isolated points;

(A2) Ae j = λ j e j and (e j ) j≥1 is an orthonormal basis ofH.

Then, there exists a one-dimensional feedback map F : H −→ H defined as uk =
F(xk) = 〈xk, p〉q where p, q ∈ H, such that the system

xk+1 = (A + F)xk

is ANC for some Borel measure m with full support onH.
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Proof According to Theorem 2.6, we can construct a map F on H, F(x) = 〈x, p〉q,
such that T � A + F has a perfectly spanning set of eigenvectors associated to uni-
modular eigenvalues. Then, there exists a nondegenerate invariant Gaussian measure
m on H. Denote by Γ the set of all hypercyclic points of T . By Remark 2.3, Γ has
full measure and satisfies the condition in the definition of ANC. ��

Finally, we give two examples which satisfy the conditions of Theorem 3.4.

Example 1 (With multiple eigenvalue 1) Denote by (p j ) j≥1 the sequence of all prime
numbers 2, 3, 5, . . .. Let sn = ∑n

j=1 p j , (n ≥ 1) and s0 = 0. We define a bijective
map τ : N+ −→ N+ as follows,

τ |[sn−1+1,sn ](k) = k + 1, if sn−1 + 1 ≤ k < sn;
τ |[sn−1+1,sn ](sn) = sn−1 + 1.

Actually, τ is a cyclic permutation on each subinterval [sn−1 + 1, sn].
We can define a unitary operator,

A : l2 −→ l2

(x1, x2, . . .) −→ (xτ(1), xτ(2), . . .).

For each n, it is easy to check that ei2πk/pn (1 ≤ k < pn) is an eigenvalue of A and
the corresponding eigenvector is

(0, . . . , 0, 1, ei2πk/pn , . . . , ei2π(pn−1)k/pn , 0, . . .).

nonzero coordinates between sn−1 + 1 and sn

Denote the eigenspace of the eigenvalue 1 by W , and l2 = W ⊕ W⊥. Then, the set of
eigenvalues {ei2πk/pn |1 ≤ k < pn, n ≥ 1} is dense in T, and the corresponding set of
eigenvectors is an orthogonal basis of W⊥.

Consider the following control system

xk+1 = Axk + uk, k = 0, 1, 2, . . . .

where xk, uk ∈ W⊥, k = 0, 1, 2, . . .. According to Theorem 3.4, there exists a one-
dimensional feedback F such that the system

xk+1 = (A + F)xk, k = 0, 1, 2, . . . .

is ANC for some measure on W⊥.

Example 2 Given an irrational number α, let φ : T −→ T, φ(eiθ ) = ei(θ+α), ∀θ ∈
[0, 2π). We define a unitary operator

Tφ : L2(T) −→ L2(T),

f −→ f ◦ φ.
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For each k ∈ Z, the power function fk(eiθ ) = eikθ is an eigenvector of Tφ , and the
corresponding eigenvalue is eikα . The set of eigenvalues {eikα|k ∈ Z} is dense in T,
and the corresponding set of eigenvectors { fk |k ∈ Z} is an orthogonal basis of L2(T).

Consider the control system

xk+1 = Tφxk + uk,

where xk, uk ∈ L2(T), k = 0, 1, 2, . . .. According to Theorem 3.4, there exists a
one-dimensional feedback F such that the system

xk+1 = (Tφ + F)xk, k = 0, 1, 2, . . . .

is ANC for some measure on L2(T).
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