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Abstract

Copulas are multivariate distribution functions which their margins are distributed
uniformly. Therefore, copulas are pretty useful for modeling several types of data.
As they allow different dependence patterns. A numerous number of new classes of
copulas have been suggested in the literature. Each granted different characteristics
that make it compatible with certain type of data. In this paper, we introduce a new
family of Archimedean copulas. The multiplicative Archimedean generator of this
copula is the inverse of the probability generating function of a truncated-Poisson
distribution. The properties of this copula are studied in detail. Three applications are
provided for the sake of comparison between this copula and well-known ones.

Keywords Copula - Archimedean generator - Archimedean copula -
Truncated-Poisson Copula - Probability generating function

Mathematics Subject Classification 62HO05 - 62E10 - 60E05 - 60E15

1 Introduction

Copulas are multivariate distribution functions with uniform marginal distributions.
The valuable of copulas is presented in two essential properties. First, copulas, if
we may say so, are one of the easiest ways to derive multivariate distribution func-
tions. Besides, they allow various dependence structures. The first appearance of the
word copula in statistics was in 1959 by Sklar [54]. Nevertheless, Hoeffding [26, 27]
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contributed a great deal in copulas idea. He discussed some nonparametric associ-
ation measures of the probability distributions which are invariant under monotone
transformations of the marginals. Also, he illustrated the benefits of a scale-invariant
correlation on comparing two multivariate distributions. Moreover, he obtained bounds
inequality for standardized distributions which are now known by Fréchet-Hoeffding
upper and lower bounds. As he showed that if H (xy, ..., x;) is an n-variate distri-
bution function with {G;,i = 1, ..., n} univariate marginals defined on [0,1], then
max{) 7 ;G; —n+1,0} < H (x1,...,x,) <min{G;,i = 1,...,n}. Latterly, the
work of Hoeffding was translated by Fisher and Sen [17] under the name “The Col-
lected Works of Wassily Hoeffding.” Similar results were obtained by Fréchet [19]
and Dall’ Aglio [13]. The books of Nelsen [50], Trivedi [56] and Durante [16], among
others, can be viewed as basic references for copulas. Kolev et al. [35] published a
review paper of copula works.

A definition of a bivariate copula as stated in Nelsen [50] is

Definition 1 A two-dimensional copula is a function C from 72 = [0, 1]*to I = [0, 1]
with the following properties:

1. Forevery u,vin I,
Cu,0)=0=C(0,v)
and
Cu,1)=u and C(1,v) =v.
2. For every uy, us, vy, vy in I such that u; < up and vy < v,
C(uz, v2) = Cluz, v1) — Cuy, v2) + C(uy, vy) = 0.

Accordingly, copulas are distribution functions on /> with uniform marginals. Thus,
the upper and lower bounds of Fréchet-Hoeffding are applied to copula, i.e.,

W =max{u +v—1,0} < C(u,v) <min{fu, v} =M.

Note for the bivariate case, both upper and lower bounds satisfy Definition 1, thus,
W and M are copulas. (For the proof, see Nelsen [50].)

A long existing problem and still an important topic to address is the construction
of copulas. Plackett [53] and Ali-Mikhail-Haq [3] derived their copulas by applying
some algebraic characteristics. The members of Plackett family are obtained from
joint distributions with constant global cross-ratio. Ali-Mikhail-Haq [3] focused on
bivariate distributions of which their survival odds ratios have a determined rela-
tion. Marshall and Olkin [41, 42] and Hougaard [28] used mixtures and compound
distributions to generate copulas. Hougaard [28] suggested the combined approach.
Briefly, at this approach, the marginals are modeled by standard cox models and the
dependence modeled by copulas. He used gamma frailty model to construct a copula
which is now known by Gumbel-Hougaard copula. Marshall and Olkin [41] defined

@ Springer



A New Family of Archimedean... S479

a bivariate exponential distribution with exponential marginals as Y1 = min{X, X3}
and Y> = min{X3,, X3} where {X;,i = 1,2, 3} are independent exponential ran-
dom variables. Arising from this distribution, a family called Marshall-Olkin family
of copulas. Additionally, in Marshall and Olkin [42], they used inverse Laplace
transformations to generate a special class of copulas (the so-called Archimedean
copulas). Genest and Mackay [22] introduced Archimedean copulas in the form
C(u,v) = (p((p’l (u) + go’l (v)), where ¢ is a real-valued function satisfies certain
conditions. The function ¢ is known as additive Archimedean generator. Most of the
famous copulas belong to the Archimedean class, for example but not limited to, the
Clayton family which appeared first in Clayton [12], the family of Ali, Mikhail and
Haq (AMH) [3] and Frank family that introduced by Frank [18] are all Archimedean
copulas. An exhaustive list of Archimedean copulas could be found in Hutchinson and
Lai [29]. Joe [30] presented a copula generated by the inversion method. These meth-
ods and other methods are discussed in third chapter of Joe [31]. Kim and Sungur [33]
define a method to generate new copula from an existing one, by adding a multiplier of
two real functions. The properties of these functions and some dependence measures
were obtained. Durante et al. [15] gave a generalization of the Archimedean class of
bivariate copulas generated by two functions with specific criterions. Najjari et al. [49]
introduced a new family of Archimedean copulas using hyperbolic cotangent function
as a generator. They studied its properties and gave closed forms for Kendall’s tau and
Spearman’s rho measures of correlation. A comparison with some well-known copula
is conducted using real data set. Mazo et al. [43] develop a form to obtain multivariate
copulas from a product of bivariate copulas and study its characteristics. Parameter’s
estimation was addressed using simulation study. Alhadlaq and Alzaid [2] utilized the
properties of cumulative distribution functions (cdfs) on [0, 1] to obtain additive and
multiplicative Archimedean generators. Also, by observing that the probability gen-
erating functions (pgfs) are distribution functions on [0, 1], conditions under which
these probability generating functions and their inverses can be used as Archimedean
generators were discussed.

One of main interests of copula inference is the estimation of the dependence
parameter(s). An ordinary method of estimation is by maximizing the full likelihood
function (ML). Yet, the computations of this approach are sometime complicated,
literally when the copula has more than one dependence parameter. Alternative meth-
ods, suggested in the literate, is to estimate the parameters in two steps. A method
called inference functions for margins (IFM), consisting of estimating the parame-
ters of the marginals first using the ordinary maximum likelihood approach. Next, the
dependence parameter is estimated in such a way using the copula after replacing the
marginal’s parameters by their estimates. For a full explanation of this technique and
more, see Joe [31], Chapter 5. Another similar approach is suggested by Genest et al.
[21]. This semiparametric method considered empirical distributions of the marginals.
So, it is only needed to estimate the dependence parameter. Bayesian approach is a
less common approach of copulas estimation. Choros et al. [11] presented a review of
parametric, semiparametric, and nonparametric methods of copulas estimation.

Due to the independence between the copula and the marginals, it is convenient to
handle several modeling issues by copulas. Applications from different fields, such as,
finance, economics, engineering applications, and survival analysis, were studied using
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copulas. Bouyé et al. [9] studied copula models with finance applications. A review of
copula applications to multivariate survival analysis can be found in Georges et al. [25].
Patton [52] discussed economic time series applications of copulas. Some applications
in engineering could be found in Kumar [37]. However, choosing the appropriate
copula has been a matter of investigation. Several researches considered the goodness-
of-fit tests for copula models. Genest and Rivest [24] and Smith [55] studied model
selection among bivariate Archimedean copulas. Klugman and Parsa [34] extended
Pearson goodness-of-fit test to the bivariate case. Panchenko [51] develops a goodness-
of-fit test for copulas based on positive definite bilinear forms. A goodness-of-fit test
based on the theoretical and sample versions of Spearman’s dependence function
is introduced by Mesfioui et al. [45]. Genest et al. [23] provide a review for some
goodness-of-fit test and presented new ones.

Alhadlaq and Alzaid [2] introduced a new approach based on cdfs and pgfs to define
Archimedean generators. Seven forms of Archimedean copulas were given using this
technique. It was shown that most of the well-known Archimedean copulas can be
generated using certain cdfs/pgfs. The technique provides a good starting point to
search for an Archimedean generator, as one could survey the cdfs and pgfs looking
for a one that meets the required conditions, then use it to construct a new Archimedean
copula. Among the new examples of Archimedean copulas produced by this technique
is the one defined based on the pgf of truncated-Poisson distribution. We will call it
the truncated-Poisson copula. In this paper, we study in detail the truncated-Poisson
copula. The dependence properties and the range of the dependence parameter are
investigated. Also, we derive the form of Kendall distribution function of the copula.
Three real-life data sets (two are continuous and one is discrete) are used to illustrate
that the new copula gives better fit than some of the well-known copulas.

The remainder of this paper proceeds as follows: In Sect. 2, the truncated-Poisson
copula is introduced. Some relative functions and properties are discussed. In Sect.
3, some dependence concepts are investigated. Real data sets are used to compare
truncated-Poisson copula with some other well-known copula models in Sect. 4. Our
conclusions are presented in Sect. 5.

2 Truncated-Poisson Copula

A truncation at zero of the Poisson probability generating function will be served
in this section as the inverse of a multiplicative Archimedean generator. Thereafter,
the acceptable range of the dependence parameter is discussed. The resulting copula
will be studied in detail. The survival copula, conditional copula, and the copula
density are presented. The product copula is obtained as a limiting case of this family.
Some dependence properties and dependence measures are investigated. In terms
of Spearman’s rho correlation coefficient, this copula covers a range of dependence
between —0.205 and 0.187.

First, we recall Theorem 8 of Alhadlaq and Alzaid [2]
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Theorem 1 If a probability generating function G satisfies G(0) = 0, then its inverse
G~V is a strict multiplicative Archimedean generator, i.e.,

Cu,v)=GG '"WG 'w);0<u,v<l

is a copula.

The probability generating function of the Poisson distribution is Gp(f) =
e*t=D 11 > 0. As G p(0) = e, we truncated this function at zero by defining

_ —u(l=t) _ ,—p ut _
Gp(t) GP(O)=€ e :e 1; 0O<t<1.p.>0.
1—-Gp(0) 1 —eH et —1

Gr(t) =

For an easier notation, set & = e”* — 1, hence, u = In[1 + 8]. Therefore, the truncated
probability generating function in terms of 6 is given by

etln[1+9] -1 _ (1 +9)l _ 1

Gr(t) = ; 0<tr<1,6>0.
7(t) 7 5 <t=<
The inverse of G (t) is
_ In[1+ 6s]
G7l(s) = =— 0<s<1,6>0.
7 (8) = VYo(s) [l 5 0] <s< >

Therefore, according to Theorem 1, G}l (s) is a strict multiplicative Archimedean
generator. However, it seems that the range of 6 could be extended without affecting
the conditions of the multiplicative Archimedean generator. As, forany § > ¢~ ! —1 =
—0.63, Yo (s) still satisfy the following:

i. ¥g,:[0,1] — [0, 1] continuou/s with ¥ (0) = 0 and Y (1) = 1.

ii. ¥y is non-decreasing, where ¥, (s) = m >0forf > —1.

. 82 In[ya(s)] _ —62(1+In[146s])

iii. ¥y is log-concave, as 552 = 13052 I [1465] <0,when, 1 +In[l +6s] >
0,ie, 6 = max [ =] = el - 12 —0.6321.

Figure 1 exhibited the shape of the truncated-Poisson Archimedean generator for
several values of the dependence parameter.
Thus, the corresponding copula to ¥ is given by

1 In[140u] In[14-6v]
Cr(u,v;0) = g [e In[T+6] — 1] ; 0<u,v<1,0>-0.63.

The Kendall distribution function of C7 (U, V; 0) is

w.e(t) In [w@(t)] L (1+06t)In[1+6¢]1ln [1{:][[11-:961]]] .

Yy (1) 0 ’
0<t<1,6>-0.63.

Kc, (t;0) =t —

@ Springer



5482 A. A. Alzaid, W. M. Alhadlaq
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Fig. 1 Multiplicative Archimedean generator for the truncated-Poisson copula

The survival copula, the conditional copula, and the copula density are, respectively,
given by

Cru,v:0) =u+v—1+Cr(l —u,1—v:0)

1 In[14+0(1—u)] In[1+6 (1—v)]
I:e In[1+0]

0

- +9(u+v—l)—1];
O0<u,v<l1,6>-0.63,

In[14+6u] _ ¢

(14 6v) =0 ~Mn 1 + Qu]
C 0)=P(U <ul|V=0v)= :
(| v;0) U =<ul v) ST

O0<u,v=<l1,6>-0.63,
and
667‘“[”&‘;}?&“’” [1 n 1n[1+0u]1n[1+0u]]

In[1+6] .
(I +6u)(1+6v)In[l+ 6] ’

cr(u,v;0) = O0<wu,v<1,0>-0.63.

Figures 2 and 3, respectively, present the plot of the density of the truncated-Poisson
copula with its contours plot and the copula with its contours plot for different levels of
correlation in terms of Kendall’s tau (t) correlation coefficient, which will be discussed
later in Theorem 5. From Fig. 2, it seems that as the dependence parameter increases,
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the density gets steady and increases faster near (0,0). From the copula graphs, it
seems that the copula increases faster for smaller values of the parameter than the
larger values. However, the copula is not stochastically ordered in 0, as it is shown in
the following example.

Example] leta = 1 < =10 < n = 30and u = v = 0.5, then we have
Cr (u,v;a) =0.268 < 0.281 = Cr (u, v; B), but, Cr(u, v; B) = 0.281 > 0.279 =
Cr(u,v;n).

Theorem 2 The truncated-Poisson copula at® — 0 or o0 tends to the product copula,
ie.,

lim Cr (u,v;0) = lim Cr (u,v;60) =uv;0 <u,v <1.
6—0 60— 00
Proof For the proof, see Appendix A.

3 Dependence

Here, we will present some dependence properties and drive three correlation measures
for the truncated-Poisson copula. Also, we will calculate its upper and lower tail
dependency indices. The Spearman’s rtho and Kendall’s tau correlation coefficients
were obtained in integrals through which they can be calculated numerically.

Theorem 3 The density copula ct is totally positive of order two (T Py) for 6 > 0.

Proof For the proof see Appendix A.

The total positivity of cr is considered a very strong positive dependence property
and it implies some other dependence properties. Some of these properties are listed
in the following corollary.

Corollary 1 Let X and Y be continuous random variables with the truncated-Poisson
copula Cr with@ > 0. Let p(x vy, T(x,y), and B(x y) denote the Spearman’s, Kendall’s,
and Blomqvist’s correlation coefficients, respectively. Then,

i X and Y are positively quadrant-dependent P QD (X, Y).
it CrisTP,and Cr is T P».
iii. px,v) = 7(x,y) = 0and Bxy) = 0.
iv Ct > Cy; = uv (the product copula).

(see Joe [31], pages 366-367). Obviously, due to the symmetry of the Archimedean
copulas, X and Y in the previous properties are exchangeable.
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Fig.2 Plot and contours plot for the density of the truncated-Poisson copula
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'0'#'-0.206

Fig.4 Spearman’s Rho correlation coefficient for the truncated-Poisson copula

Theorem 4 Spearman’s rho correlation coefficient for the truncated-Poisson copula
is given by

12In[1 + 6] [Ei (4In[1 +6]) — 2Ei 2In[1+6]) +1i (1 + 6)] 12 3
=——— —[Ei(4ln — skt (zIn ! e 7
Par =31 +0) ’
0 > —0.63,
where Ei(x) = — ffi et;ldt is the exponential integral function, and li (x) = f(;c lrtli[tl‘

denotes the logarithmic integral function.
Proof For the proof see Appendix A.

Figure 4 displays Spearman’s rho correlation coefficient for the truncated-Poisson
copula. pc,, approximately, takes a range between —0.205 and 0.187 at 6 = —0.63
and 6 = 14, respectively.

Theorem 5 The Kendall’s tau correlation coefficient for the truncated-Poisson copula
is given by

1 — 0(2+6)— Et(2ln[1+9])+ln[ln[1+9]]+)/+1n[2] 60 >0

Ter =\ _ 0eto)- Et(21n[1+9]>+1“[ In{1+6]}+y + 1“[2] 063 <6 <0
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Fig.5 Kendall’s tau correlation coefficient for the truncated-Poisson copula

where Ei(x) is the exponential integral function and y is the Euler’s gamma con-
stant, with approximate numerical value 0.5772.
Proof For the proof, see Appendix A.
Figure 5 exhibits Kendall’s tau correlation coefficient for the truncated-Poisson copula.
Notice that the admissible range for t¢, is approximately between —0.137 and 0.125

atf = —0.63 and 6 = 14, respectively.

Corollary 2 The medial correlation coefficient, Blomqvist’s 8, for the truncated-
Poisson copula Cr is defined as

11 a4 [ wfrs]
ﬁCT = 4CT (E, 5) —1= 5 e W+ — 1 | — 1, 6 > —0.63
which approximately covers the interval (—0.149, 0.125).

Theorem 6 The upper and lower tail dependencies for the truncated-Poisson copula
are both zeros, i.e., this copula has no tail dependencies.

Proof For the proof, see Appendix A.
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Theorem 7 The truncated-Poisson family could be generalized to a family of n-
copulas, i.e., with n-variate, for 6 > 0 and for alln > 2, as

In[14+6uy ]-+In[14+6up ]+ +In[14+6up]
Cn (ulyMZ, e un) 5 [ (n[1-+))" ! - 1] 5
ZO = li ’.21527"'7’1'

Proof For the proof, see Appendix A.

4 Applications

When modeling with copulas, the marginal distributions are estimated separately using
either the empirical distributions or suitable parametric distributions. After that, one
seeks for a copula which meets the dependence structure of the data. In this sec-
tion, we will study the fitting of the truncated-Poisson copula to three datasets. We
choose datasets which were previously studied in the literature using other bivariate
distributions (some of which are copulas). Some well-known copulas (such as, Frank,
Gumbel-Hougaard, Clayton and Farlie-Gumbel-Morgenstern (FGM)) will be also
fitted for the sake of comparison.

Kendall plot, which is introduced in [20], is used here as a tool to detect the dependence.
At this plot, the independence case confirmed when the dots lies on the diagonal line.
While when the points lie far above (beneath) the diagonal line, one concludes that the
data have a positive (negative) correlation. For more explanation, we refer to Genest
and Boies [20]. Genest and Rivest [24] proposed a graphical tool to determine the
best candidate model among a set of suggested Archimedean copulas. This plot is
based on a function called lambda function which is given by Ag = t — K¢ (¢; 0),
where K¢ (¢; 0) is the Kendall distribution function of a copula C (u, v; 6). The lambda
function for the empirical distribution is plotted with the parametric suggested models
and the closer one is the better. The maximum likelihood estimates for the parameter(s)
will be obtained. Among many researches which have addressed the goodness-of-fit
test, we will consider the two goodness-of-fit tests that based on Cramér-Von Mises
S, and Kolmogorov—Smirnov 7, as they focused on the Archimedean class. These
tests were introduced by Genest et al. [23] as follows:

IX <X <
Let F, = Z’”’—l”’”) r=1,2,---,n,be the empirical cumulative distribution
function, where I is the indicator functlon Hence, the empirical Kendall distribution

is defined by K, (t) = M Then, the two statistics S,, and 7}, are given by

1 ~
Su= [ 16, @) Phe (1:0) .
0
and

Ty = sup |K, ()],

0<t<l1
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Fig.6 Scatter plot for the kidney infection data
A A dKc¢ (I :é) .

where K,, = ﬁ(Kn (t) — K¢ (t; 9)) and k¢ (t; 0) = —— is the Kendall

density of the copula.

Large values of S, and T,, leads to reject the hypothesis that a parametric family of
copulas is suitable to represent the data. Through a power study, Genest et al. [23]
indicated that in general, S,, is more reliable than 7,,. We will apply these two tests
using both the maximum likelihood estimator and the Kendall’s tau estimator.

4.1 Kidney infection data

This data set is from McGilchrist and Aisbett [44], which represents the recurrence
times to infection at point of insertion of the catheter for 30 kidney patients. For
each patient, two recurrence times were recorded. The first variable X refers to the
first recurrence time and Y refers to the second recurrence time. The Spearman’s
correlation is 0.153, and Kendall’s tau correlation is 0.111. The data are shown in
Table 7 at Appendix B.
A plot of the data is presented in Fig. 6.

Mirhosseini et al. [47] modeled this data with bivariate generalized exponential dis-
tribution (BGE), where its probability function is given by

fBGE = OA hge” Mi¥ A2 [1 — 96_0‘”“”‘”)] [1 — e_()‘”H‘”)]e_z

where A;, Ay > 0,0 < 6 < 1. Two other models were applied for the purpose of
comparison. The first is the bivariate exponential model suggested by Block and Basu
[8] with probability function

ATA(A2+A3) —)\|x (A2+A3)y LX<y

_ +As
f(u’v)_'!A2A01+Aﬂ M+ A3 Aoy

INEDY) X =y
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0.2 0.4 0.6 0.8 1.0
Fig.7 K-Plot for the kidney infection data

where A1, A2, A3 > 0 and A = A| + A2 + A3. The second model is the Kundu and
Gupta [39] which based on Clayton copula with generalized exponential margins. The
distribution function of Kundu and Gupta model is given by

o o —0
F(x,y) = [(1 — e*M) g (1 - e*m) g 1] Ly, a2, AL AL 6 > 0.

It resulted that among the three models, Kundu and Gupta give the best fit followed
by BGE. Abd Elaal and Jarwan [1] discussed the same data with two copula-based
models. They used generalized exponential margins with the FGM copula and the
Plackett copula, respectively. They concluded that the Plackett copula slightly gives
a better fit than the FGM copula. Almetwally et al. [4] suggested the FGM bivariate
Weibull (FGMBW) for the data, then compared it with three models which are: FGM
bivariate Gamma (FGMBG) proposed by Kotz et al. [36], FGM bivariate generalized
exponential (FGMBGE) by Abd Elaal and Jarwan [1] and bivariate Marshall-Olkin
Weibull (BMOW) by Kundu and Dey [38]. They showed that FGMBW model gives
the best fit for the data.

It is noticed that these data have weak correlation considering the values of Kendall’s
and Spearman’s coefficients. Figure 7 exhibits K-plot for the kidney infection data.
The dots lie directly above the diagonal line which indicates positive weak correlation.

To fit these data, we considered truncated-Poisson, Frank and Gumbel-Hougaard
copulas using both Gamma and Weibull margins. Next, we draw the lambda function
for the empirical data against the four copulas in Fig. 8. From the graph, it appears that
truncated-Poisson copula gives the closest fit to the data. However, other suggested
copulas also seem acceptable. The goodness-of-fit statistics S,, and 7, were obtained
using both Kendall’s estimator and maximum likelihood estimator (MLE) where the
empirical distributions are considered for the marginals. Our results using ten thousand
samples are reported in Table 1. Both tests show that all the suggested copulas are
acceptable to fit the data. However, the truncated-Poisson copula outperforms other
copulas. The independence hypothesis is rejected by the statistic 7;, but not S,,. Yet,
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t=K(1)
1 1 1 1 /l
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Fig.8 Lambda function for truncated-Poisson, half-logistic, Frank, Gumbel-Hougaard and product copulas
for kidney infection data

Table 1 Goodness-of-fit test statistics with corresponding p values for kidney infection data

Copula Kendall’s estimator MLE

Sn(p-value) Ty (p-value) Sn(p-value) T (p value)
Truncated-Poisson 0.1080 (0.64) 0.6773 (0.67) 0.0921 (0.85) 0.6463 (0.61)
Frank 0.1351 (0.33) 0.7314 (0.53) 0.1346 (0.37) 0.7311 (0.53)
Gumbel-Hougaard 0.1560 (0.22) 0.7346 (0.52) 0.1617 (0.28) 0.7387 (0.53)
Product 0.2835 (0.15) 0.8035 (0.04)

we will carry on with modeling for the sake of comparison with the previously fitted
models.

To compare our model with the FGMBW model, we obtained the estimates of the
parameters using the maximum likelihood method with Gamma and Weibull margins,
respectively. The results are listed in Table 2. For both cases, among FGM, Frank,
Gumbel-Hougaard and truncated-Poisson copulas, the last one gives the smallest
AIC value. However, the difference between AIC values, which is less than 2, may
considered not significant (see Burnham and Anderson [10]).

4.2 Pima Indians diabetes data

These data were collected by the US National Institute of Diabetes and Digestive
and Kidney Diseases. A sample of 332 diabetic women aged 21 years or more of Pima
Indian heritage and living near Phoenix, Arizona. These data are easily accessible
from R’s package MASS. A plot for these data is shown in Fig. 9. Li and Fang [40]
studied the relationship between the body mass index (BMI) and the diabetes pedigree
function (PED). They modeled these two variables using their proposed copula which
they called the sine copula. Under the assumption that the marginal’s distributions are
Gamma distributions, they obtained the estimates of the parameters using maximum
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Table 2 Parameters estimates using FML method for kidney infection data

Copula AIC BIC o] ) A A2

>

Gamma Marginals
Truncated-Poisson 688.218 695.224 0.6741 0.9266 179.99 107.24 43.08

Frank 688.957 695.963 0.6717 0.9262 179.55 107.83 0.7935
Gumbel-Hougaard 689.161 696.167 0.6690 0.9277 180.28 107.48 0.0637
FGM 688.978 695.984 0.6697 0.9234 179.87 107.76 0.3805
Weibull Marginals
Truncated-Poisson 687.146 694.152 0.7530 0.9301 100.76 95.49 42.27
Frank 687.857 694.863 0.7526 0.9313 100.23 96.05 0.8196
Gumbel-Hougaard 688.043 695.049 0.7503 0.9325 100.13 96.44 0.0708
FGM 687.87 694.876 0.7510 0.9244 100.12 98.25 0.3480
Pima Indians Diabetes Data
PED
15k

o
P
=]

Fig.9 Scatter plot for the Pima Indians Diabetes data

likelihood method as (a1, B1) = (21.82, 1.52) and (a2, B2) = (2.58, 0.20), respec-
tively. After a comparison with Clayton and Frank copulas, they concluded that the
sine copula gives the best fit for the data (smallest AIC). Bekrizadeh [7] applied a
new technique to obtain a generalization of the FGM copula. The resulting copula was
used to model the Pima Indian data. Yet, the sine copula gives a better fit in terms of
AlC.

Spearman’s and Kendall’s coefficients between BMI and PED are 0.097 and 0.0642,
respectively, which indicates that these data have weak positive dependence. Also, this
is apparent from the K-Plot in Fig. 10, where we can see most of the points are near
the independence line. We fitted these data with truncated-Poisson copula. As these
data, up to our knowledge, have only studied through FGM copula, we also considered
Frank and Gumbel-Hougaard copulas.
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Fig
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Fig. 10 K-Plot for the Pima Indians Diabetes data
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Fig. 11 Lambda function for truncated-Poisson, half-logistic, Frank, Gumbel-Hougaard and product cop-
ulas for Pima Indians Diabetes data

The lambda function of these copulas with the product copula versus the empirical
copula is shown in Fig. 11. It seems that the truncated-Poisson and the Frank copulas
are more suitable to fit the data.

Table 3 presents the results of the goodness-of-fit tests using both statistics S,, and
T,. In general, all of the suggested copulas are appropriate to model the data. This
test rejects the hypothesis of independence. The truncated-Poisson copula gives better
results than others. Table 4 lists the estimates of the dependence parameter using IFM
method with estimated marginals as Gamma distributions with parameters (o1, f1) =
(21.82,1.52) and (a2, f2) = (2.58,0.20), respectively. Gumbel-Hougaard copula
returned the smallest AIC value. However, as the differences between other AIC values
and the smallest one are less than four, thus, these models are also acceptable to fit the
data (see Burnham and Anderson [10]).

@ Springer



S494 A. A. Alzaid, W. M. Alhadlaq

Table 3 Goodness-of-fit test statistics with corresponding p values for Pima Indians Diabetes data

Copula Kendall’s estimator MLE

Sn(p value) T (p value) Sn(p value) Ty (p value)
Truncated-Poisson 0.0565 (0.57) 0.3762 (0.70) 0.0457 (0.70) 0.4244 (0.51)
Frank 0.0751 (0.32) 0.4345 (0.60) 0.0733 (0.36) 0.3967 (0.68)
Gumbel-Hougaard 0.1073 (0.15) 0.6122 (0.25) 0.1162 (0.23) 0.4831 (0.51)
Product 0.3285 (0.00) 0.8615 (0.04)

Table 4 Parameter estimate

using IFM method with Gamma Copula AlC BIC 0
marginals for Pima Indians Truncated-Poisson 2342.43 2346.23 1.29
Diabetes data
Frank 2342.81 2346.62 0.60
Gumbel-Hougaard 2339.65 2343.45 0.04
Sine 2342.13 2345.94 0.34

4.3 Aircrafts Data

The data consist of flight aborts for 109 aircrafts at one year. The first variable rep-
resents the flight aborts for the first 6 months and the second variable represents the
flight aborts for the last 6 months. The data are shown in Table 8 at Appendix B. A plot
for these data is shown in Fig. 12. The data have a correlation coefficient of —0.16.
The sample mean and variance of the first and second variables are, respectively,
X =0.62,5 =1.03and y =0.72, §7 = 1.07.

These data were first studied by Mitchell and Paulson [48]. They fitted the data with
a bivariate negative binomial distribution (BNB). Zamani et al. [57] used a bivariate
Poisson—Lindley distribution (BPL) to fit the data and compared the results with the
bivariate Poisson (BP) and BNB. Using AIC criterion, they found that BPL outper-
formed the other two models. Barbiero [5] modeled these data with a bivariate discrete
Weibull based on the FGM copula. He estimated the parameters using four estimation
methods (two of them are FML and IFM). In terms of AIC, his model gives a better fit
than the BPL. The Frank and the Gaussian copulas with geometric, discrete Weibull,
and discrete Lindley marginals were considered to model the data in Barbiero [6].
The later results showed that the smallest AIC is the one calculated form the Gaussian
copula model with geometric marginals.

We fitted these data by the truncated-Poisson copula using discrete Weibull
marginals with parameters (g1, 1) and (g2, ®2), and geometric marginals with
parameters pj and py, respectively. For the case of the discrete Weibull marginals,
we obtained the parameters estimates using IFM method as §; = 0.3788,&; =
0.9774, g» = 0.4496,a, = 1.1202 and 6 = —0.63, whereas for the geometric
margins, the parameter estimates are p; = 0.6190, p» = 0.5734 and 6 = —0.63.
Also, we fitted the data by the FGM copula with geometric marginals and gets
p1 = 0.6190, p = 0.5734 and 0 = —0.63. A comparison between our model
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Aircrafts Data

4

Fig. 12 Empirical probabilities for the aircrafts data

Table 5 AIC and BIC values for

aircrafts data using IFM method Model AlC BIc
BNB 498.54 511.997
BP 515.99 524.054
BPL 495.24 503.314
Discrete Weibull marginals
Gaussian 497.431 510.888
FGM 497.988 511.445
Frank 498.284 511.741
Truncated-Poisson 497.277 510.734
Geometric marginals
Gaussian 494.857 502.931
FGM 495.28 503.354
Frank 495.524 503.598
Truncated-Poisson 494.69 502.764

and some of those which previously studied in the literature is performed using AIC
and BIC values. The results are summarized in Table 5.

In general, geometric margins gives better fits. The smallest AIC and BIC values
correspond to the truncated-Poisson copula with geometric marginals. However, it
seems that there is no significant difference between the AIC and BIC values of the
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Aircrafts Data Aircrafts Data
—T

Truncated Poisson

(a) Low-angle view (b) High-angle view

Fig. 13 Empirical, truncated-Poisson, and Frank cumulative distribution functions for the aircrafts data

Table6 Mean absolute and mean squared distance of the Aircrafts data for the case of geometric marginals

Model Absolute Distance Square Distance
Frank 0.946 0.020
Truncated-Poisson 0.928 0.020

suggested copulas. Figure 13 exhibits the empirical, truncated-Poisson and Frank
cumulative distributions (with geometric marginals). In most of the area of the graph,
the Frank copula lies beneath the truncated-Poisson copula. This relation is reversed
only in a small area near the point (0, 0). The truncated-Poisson copula intersect in
several curves with the empirical surface, whereas the Frank copula meets the empirical
distribution on a small area near the point (0, 0). It seems that even though the range
of the correlation for the truncated-Poisson copula does not cover the correlation of
these data, it stills give the better fit. The mean absolute and mean squared distance,
multiplied by a hundred, between the observed probabilities and the fitted probabilities
obtained by the truncated-Poisson and the Frank copulas with geometric margins are
given in Table 6.

5 Conclusions

In this paper, we proposed a new family of copulas and discussed some of its properties.
The dependence structure of this copula was studied from different aspects. Spearman’s
and Kendall’s correlation coefficients with the upper and lower tails of dependence
were investigated. Three applications, where the truncated-Poisson copula compatible
with the data, were discussed.

From the illustrative applications, we notice that the truncated-Poisson copula may
give better performance than other copulas for datasets with small correlations. Also,
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the truncated-Poisson copula is sensitive toward independence, i.e., it is more appropri-
ate to fit two dependent variables with weak correlation with it. Moreover, for discrete
datasets, the truncated-Poisson copula is capable to give a good fit even though the
correlation of the data is out the range (—0.137, 0.125). This is due to the fact that
discrete correlation measures are not marginal free (see Denuit and Lambert [14] and
Mesfioui and Tajar [46]). That is, the truncated-Poisson copula could be considered as
a tool to distinguish between independence and weakly dependence. This new copula
is not suitable for datasets with lower or upper tail dependencies, as it have no tail
dependencies. As shown in Theorem 7, this copula could be used to model multivariate
datasets.
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versity for funding and supporting this research through the initiative of DSR Graduate Students Research
Support (GSR).

A Proofs
Proof of Theorem 2

i To prove that limg_, o C7 (4, v; 6) = uv, we only need to prove that

Vo () In[Yg(s)]

lim - =tIn[s],
6—0 VA

(see Nelsen [50], Pages 139—140). Therefore,

Vo) In[Yp(s)] tim (1+61)In[l +61] In In[1 + 6s]
9—0 VAG) T >0 0 In[1+ 6]
(1460 In[l +61] [ . In[l +9s]:|
= lim 1 — .
6—0 0

1m
6—0 In[1 + 6]

Using L’Hbpital’s rule for both limits, we get

Yo (1) In [ (5)]

im ; =tlIn[s].
6—0 VA

146
—1im [t In[1 + 6¢] + ¢]In |:1im u}
0—0 0—0

1+06s

Thus, limg_,¢ C7 (1, v) = uv.
ii For & — oo, we have* !

Yo In[Ye()] _ (1+66)In[1 + 61] 1n[1&[[11+$~]1]
6— 00 V(1) S 0

! The authors thanks Prof. Wissem Jedidi for supplying this part of the proof of this theorem.
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(14+6s)
In [ 1+0) ]

In[1+ 0]

60— 00

1
= lim <—+t> lim In[1 4+ 6¢]1n
0 0— 00

Note that for small x, we have In [1 + x] ~ x. Also, for large 6, In [%] tends
In [ (<11J3-9(9A§) ] In [ ((lltr%}) ]
to In[s] and hence RTIEGR becomes small. Therefore, In TnriTer +1( ~
1 .. .
ln[Ii[j-]Q]' This implies
(146s)
(1 . In [ 5]
Iim [=+¢) lim In[1+4+6¢f]In| —————
6—oc0 \ O 6—00 In[1+ 6]
In[1+6t]1
=1t lim M =tInl[s].
6—oo In[l + 6]
Hence, limg_, o C7 (1, v; 0) = uv. |

Proof of Theorem 3

The density of the truncated-Poisson copula is given by

In[1+0u] In[146v]
Qe T+6] [1 + ln[1+liL[t%:r_10[}+0v]]

; O0<u,v<1,0=>0.
(1 4+60u)(1 +6v)In[l + 0]

cr(u,v) =

This function is a product of the two non-negative functions

In[14+6u]In[14+6v]
fl (u7 U) =¢e In[1+6]

and

In[1+4+60]+In[1+6u]ln[l+ 6v]

.y
fa (u.v) (1 +6u) (1 + 6v) In2[1 + 6]

2
Second derivatives for the natural logarithms of f; and f> are % =

0* > 0 and UnlA@w] _ 01In[1+6v] _ 0
(+0u)(T+6v) In[1+6] = u ~ ((F0w I [1+0T+n [[+6ulIn[1+6v]] ~ T+6u>

respectively. Hence, In f] and In f> are both supermodulars. Thus, f1 and f> are T P>
functions. Therefore, the multiple of the two functions cr = f1 f is also T P> (see
Karlin [32]). O
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Proof of Theorem 4

In terms of copulas, Spearman’s Rho correlation is given by

1l
CT=12/ / Cr (u,v;0) x dudv — 3
0o Jo
R W e
= 12/ f — [e Tn[1+6] — 1] dudv — 3
0o Jo 0
Lopely In[1+6v]
= 12/ / = [(1 + Qu) WAl — 1] dudv —3
0o Jo 0

In[1+6v]
L1 | 1+ @) mmser ! 1
:12/ 5 (Thigl — —1|dv-3
n v n v
0 0 [ In[1+0] + 1] 0 [ Tn[140] + 1:|
1| In[1+06] [(1 +9)m+1 _ 1] |
- 12/ 2 ——|dv-3
0 04 [In[1 4+ 0v]+1In[1 4 6]] )

lnD+9][l (1+6)(1+06v) ! 1
=12 3 / dv—f dv
0 o In[(14+6)(1+6v)] o In[(1+6)(+0v)]

- =3
0

For 6 > 0, take + = 2In[(1+46) (1 +60v)] for the first integral, and s =
(1 4+ 60) (1 4 9v) for the second one. Hence,

_121n [14+6] 1 41n[1+0] [et]dt 1 /(1+9)2 ds
Per 02 |00+0) hupse L1 0(0+0) Jare) Inls]

— 23
0

Inf1 41n[1+6] [ ot 21In[1+6] [t 1+0)* 4,
:m:ﬂ;tﬂ{/ [i}d,_/ [i}d,_/ ds
031 +60)|J-co t oo t 0 In[s]

+8)  gs 12
+/ 2
0 In[s] 6

o oIn[1+60] . . o T 2 .
=125 gy [Ef @Il +6D) = Ei Il +6) i (1 +6)?) +1i (1 +0) ]

-3
0

_pp 4ol o s 5
—1293(1+9)[El(41n[1+0]) Ei 2In[l +0]) — Ei <ln[(1+0) ])

_ 12
+11(1+9)]—?—3

In[1+ 6]

m [Ei(4In[14+6]) — Ei QIn[140]) — Ei 2In[1 +06]) +1i (1 +6)]
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_2y
%
M[E'(Mn[l+0])—2E'(21n[1+9])+l'(1+9)]—E—3
3110 i i i 2 .

Proof of Theorem 5

As our copula belongs to the Archimedean class, we will use the following formula
to derive Kendall’s tau correlation coefficient

1
_1+4/ we(s)ln[t/fg(s)]d :l—|—4/ (14+6s)In[1+6s] In |:1n[1+9s]:|ds
Yy (s) 0 In[1+ 0]

In[1+65]
In[1+6] *

By setting t = we get

1 62 1n[]+9]tt In[]
——dt

c, =l—|—4ln2[1+9]/ pE

41 146 2"1 1+6]"
- n[+]/ n[+]tln[t]dt
A2 [1+6] < 2" In" [1+6] [!
1420 [2+ ]Z 1+ 0] " n (1] dt
4 n=0 0
4121 +6] 2t [1+6] | M2 1 gntl
=14+ [2 ]Z L ! l[t]|0 f dt
0 b n! n+2 0o n+2
3 +4ln2[1+9]§:2"1n”[1+9] M2 .
B 02 = n! (n+2)2°
A1 40] §N 2" In" [1+6]
N 62 = (n +2)2n!

_y A1+ 6] in-{-l?’ln"[l-{—@]
B 62 —n+2  (n+2)

2 0 nnn
:1_4ln [1—{—9]2[1_ 1 ]Zln [1+46]

62 = n+2 (n+2)!
_ 41n%[1 + 6] iZ"ln”[l—f—Q] i 2" " [1 + 6]
N 62 = (n+2)! ¢ (n+2)(n+2)!
_y Al (1 +0] i 2m=2 "2 [1 + 0] Z 2m=2 "2 [1 + 0]
B 62 m! mm!
m=2 m=2
! iZ’”ln’"[l—l—Q] izmlnm[ue]
62 m! mm!
m=2 m=2
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1 X MM ] + 0
=1-— e21n[1+9]—21n[1+9]—1—27n [1+6]

62 mm!
L m=1

- . ;
- L laver- Z(21n[1+9]) }

+21n[1+9]:|

62 mm!

Y 0(2+0)_Z(1n[1+9]) }

L m=1
1——[9 Q2+6) - Y52, Zhnllto)” 1+9])"1];9 >0
i-hlee+o+x5, & Dihale 20" ] 0,63 < 6 < 0

mm!

1= 510 2+6)—Ei @In[1+6D]+y +In[2In[1 +6]];6 > 0
1— 25 [02+60)—Ei @In[1+6]) +y +In[-2In[1 +61]]; —0.63 <0 <0
1= 5[0 @+6)— Ei @In[1+6]) +InfIn[l +6]]+y +n[2]:6 = 0

= ]—0%[9(2+9)—Ei(2]n[1+9])+ln[—1n[]+0]]+y+]n[2]];

—-0.63<0<0
i
Proof of Theorem 6
The upper tail dependence is given by
In2[1+01]
1_c¢ In[1+0] —1
Ag=2— lim ——— %
t—1- 11—t
Using L’Hopital’s rule, we get
2In[l + 61 In?[1+61]
Ay =2— lim nll+6r] W 5 0o,
t—1- (1 4+6t)In[1 + 0]
Also, the lower tail dependence is given by
1?2[11+gt] 1
n[1+6] —
AL = lim S
=0t ot
Using L’Hbpital’s rule, we get
n2 1
AL = lim 00w
=0+ (1 4+61t)In[l + 0]
O
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Proof of Theorem 7

An Archimedean copula could be generalized to the multivariate case if the inverse of
its Archimedean additive generator is completely monotone (see Nelsen [50], Theorem

4.6.2). The inverse of the additive generator of the truncated-Poisson copula takes the
e !ln

form ¢, ' (1) = ;! (€_t)l? ;15#. As the function f (f) = e~ is completely
tIn[1+ .

monotone and f> (t) = % is absolutely monotone for & > 0. Then, we have

fofi=¢, ! (t) is completely monotone, which completes the proof.

B Applications’ Datasets

Table 7 Kidney Infection Data

X X2 X X2
8 16 23 13
22 28 447 318
30 12 24 245
7 9 511 30
53 196 15 154
7 333 141 8
96 38 149 70
536 25 17 4
185 117 292 114
22 159 15 108
152 362 402 24
13 66 39 46
12 40 113 201
132 156 34 30
2 25 130 26
Table 8 Aircrafts Data X\ Y 0 1 5 3 4
0 34 20 4 6 4
1 17 7 0 0 0
2 6 4 1 0 0
3 0 4 0 0 0
4 0 0 0 0 0
5 2 0 0 0 0
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