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Abstract
In this paper, we study the Hankel edge ideals of graphs. We determine the minimal
prime ideals of the Hankel edge ideal of labeled Hamiltonian and semi-Hamiltonian
graphs, and we investigate radicality, being a complete intersection, almost complete
intersection and set-theoretic complete intersection for such graphs. We also consider
the Hankel edge ideal of trees with a natural labeling, called rooted labeling. We char-
acterize such trees whose Hankel edge ideal is a complete intersection, and moreover,
we determine those whose initial ideal with respect to the reverse lexicographic order
satisfies this property.
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1 Introduction

Let K be a field and let G be a finite simple graph (i.e., with no loops and multiple
edges) with the vertex set V (G) = [n] (i.e., {1, . . . , n}) and the edge set E(G). Then,
the binomial edge ideal JG ofG in the polynomial ring R = K[x1, . . . , xn, y1, . . . , yn]
is generated by the binomials fi j = xi y j − x j yi with i < j such that {i, j} ∈ E(G).
This type of ideals was introduced at about the same time by Herzog et al. in [14]
and Ohtani in [19] in 2010. The binomial edge ideal of G could be seen as the ideal
generated by a collection of 2-minors of the matrix

[
x1 x2 · · · xn
y1 y2 · · · yn

]
.

In the last decade, several algebraic and homological properties and invariants of bino-
mial edge ideals have been intensively studied, mainly in terms of the combinatorial
properties of the underlying graph, bymany authors, see for example [7, 10, 11, 15–18,
20, 22–24].

In 2015, another class of binomial ideals associated to graphs was introduced in [3].
Let S = K[x1, . . . , xn+1] be the polynomial ring over K and with the indeterminates
x1, . . . , xn+1. The Hankel edge ideal of G, denoted by IG , is the ideal of S generated
by the binomials gi j = xi x j+1 − x j xi+1 where i < j and {i, j} ∈ E(G). This ideal
is also seen as the ideal generated by a collection of 2-minors of the 2 × n Hankel
matrix

X =
[
x1 x2 · · · xn
x2 x3 · · · xn+1

]
.

In the special case that G is the complete graph with n vertices, the Hankel edge ideal
coincides exactly with the well-known ideal IX of the rational normal curve X ⊂ P

n .
For some properties of the ideal IX , see for example [2, 5, 6, 9].

Note that in [3] and [8], the ideal IG was called the binomial edge ideal of X and
also the scroll binomial edge ideal of G. But, in this paper, we chose to call IG the
Hankel edge ideal of G.

In [3], the authors determined all graphs G for which the generators gi j form a
Gröbner basis for IG with respect to the reverse lexicographic order < induced by
x1 > · · · > xn > xn+1. Indeed, the only graphs with this property are the so-called
closed graphs (also known as proper interval graphs). A graph G is said to be closed
if one could label its vertices so that the maximal cliques (i.e., complete subgraphs)
of G are labeled as intervals. Throughout this paper, when we talk about a closed
graph, we mean, as usual, a closed graph with this specific labeling. In [3], it was
also shown that for any closed graph G, the Hankel edge ideal is Cohen–Macaulay of
dimension c + 1 where c is the number of connected components of G. In the same
paper, the minimal prime ideals of IG were determined for any connected closed graph
G. Consequently being radical as well as being a set-theoretic complete intersection
could be investigated for the same class of graphs. In [3], the authors also studied
the Castelnuovo–Mumford regularity of IG . They, indeed, gave a combinatorial upper
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bound for reg(S/IG)whereG is a closed graph. Later, in [8], the authors characterized
all closed graphs for which the aforementioned upper bound is attained. In the same
paper, the graded Betti numbers of IG and in<(IG) were also considered. In [8], a
combinatorial characterization for Gorenstein Hankel edge ideals was also given. A
generalization of Hankel edge ideals was also introduced and studied in [4].

As mentioned above, the class of closed graphs has played an essential role in the
study ofHankel edge ideals of graphs so far. This is in fact because closed graphs admit
a nice distinguished vertex labeling, and in general Hankel edge ideals do depend on
the labeling of the underlying graphs. As an example for this fact, see [3, page 972].
In this paper, we study the Hankel edge ideals of some classes of graphs with certain
natural labelings, like labeled Hamiltonian and semi-Hamiltonian graphs as well as
rooted labeled trees, which are all defined precisely in the sequel.

The organization of this paper is as follows. In Sect. 2, we focus on the Hankel edge
ideal of labeled Hamiltonian and semi-Hamiltonian graphs. By a labeled Hamiltonian
graph, we mean a graph which has a Hamiltonian cycle (i.e., a cycle containing all
the vertices of the graph) with a certain natural labeling of its vertices. By a labeled
semi-Hamiltonian graph, we mean a non-Hamiltonian graph which admits a labeled
Hamiltonian path (i.e., a path containing all the vertices of the graph)with a certain nat-
ural labeling of its vertices. Closed graphs are semi-Hamiltonian graphs, so that in this
section, we recover most of the results in [3]. However, this section deals with a much
wider class of graphs than closed graphs. In this section, we determine the minimal
prime ideals of theHankel edge ideal of connected labeled (semi-)Hamiltonian graphs,
and in particular, we show that the height of IG is n − 1 where |V (G)| = n. More-
over, we characterize all Hankel edge ideals of connected labeled (semi-)Hamiltonian
graphs, with respect to radicality, being complete intersection and almost complete
intersection. In this section, we also show that the arithmetical rank of IG is n−1, and
IG is a set-theoretic complete intersection for connected labeled (semi-)Hamiltonian
graph G with |V (G)| = n.

In the view of an observation in Sect. 2 that if the Hankel edge ideal of a connected
graph is a complete intersection, then the graph must be a tree, in Sect. 3 trees become
our main objects of interest. So, we need to fix a nice vertex labeling for trees which is
provided in this section called rooted labeling. Next, we show that under this labeling,
the only trees which could have complete intersection Hankel edge ideal are paths.
However, not all rooted labeled paths have this property. Indeed, we show that the
Hankel edge ideal of a rooted labeled tree T is a complete intersection if and only
if T is a path in which a leaf or a neighbor of a leaf is the root of T . Furthermore,
we consider the initial ideal of such trees over n vertices with respect to the reverse
lexicographic order induce by x1 > · · · > xn > xn+1. Indeed we show that there
is only one path on n vertices with a rooted labeling whose Hankel edge ideal has a
complete intersection initial ideal. Throughout the paper, we also pose some questions
accordingly.
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2 Hankel Edge Ideal of Hamiltonian and Semi-Hamiltonian Graphs

In this section, we determine the minimal prime ideals of the Hankel edge ideal of
(semi-)Hamiltonian graphs with a certain labeling. As some consequences, we also
study some of the algebraic properties of such ideals, like radicality, being a complete
intersection, almost complete intersection and set-theoretic complete intersection.

Recall that a Hamiltonian cycle in a graph G is a cycle which contains all the
vertices of G. The graph G which has a Hamiltonian cycle is called a Hamiltonian
graph. A Hamiltonian path in G is a path which contains all the vertices of G. The
graph G which has a Hamiltonian path is called traceable graph. A traceable graph
which is not Hamiltonian is called semi-Hamiltonian graph. We denote by Ln the path
with the vertex set [n] and with the edges {i, i + 1} for all i = 1, . . . , n − 1. We also
denote by Cn the cycle with the vertex set [n] and with the edges {1, n} and {i, i + 1}
for all i = 1, . . . , n − 1.

Now, let G be a labeled graph with the vertex set [n]. If Cn is a subgraph of G,
then we say that G is a labeled Hamiltonian graph. If Ln is a subgraph of G and
{1, n} /∈ E(G), then we say that G is a labeled semi-Hamiltonian graph.

As some well-known classes of graphs which are labeled Hamiltonian, one could
mention the cycles Cn , the complete graphs Kn and the complete bipartite graphs Kt,t

with n = 2t where the even labels and odd labels provide the bipartition of the graph.
The graph depicted in Fig. 1 is also an example of a labeled Hamiltonian graph on the
vertex set {1, 2, 3, 4, 5} which is not in the aforementioned classes.

As a well-known class of graphs which are labeled Hamiltonian, one can mention
non-complete closed graphs. Several properties of the Hankel edge ideal of this class
of graphs were studied in [3]. Recall that a graph G is said to be closed if one could
label its vertices so that themaximal cliques (i.e., complete subgraphs) ofG are labeled
as intervals. The graph shown in Fig. 2 is an example of a labeled semi-Hamiltonian
graph with the vertex set {1, 2, 3, 4, 5, 6} which is not a closed graph.

In [3], it was shown that for any connected graph G on n vertices, IX is a min-
imal prime ideal of IG . Therefore, since height IX = n − 1 (see for example [3,
Corollary 1.3]), we have the following:

Fig. 1 A labeled Hamiltonian
graph
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Fig. 2 A labeled
semi-Hamiltonian graph

1

3

2

4

5

6

123



Hankel Edge Ideals of Trees and (Semi-)Hamiltonian… 2497

Proposition 2.1 (See) [3, Proposition 2.1] Let G be a connected graph on n vertices.
Then, the following hold:

(a) IX is a minimal prime ideal of IG.
(b) height IG ≤ n − 1.
(c) For any minimal prime P of IG which contains no variable, one has P = IX .

Now, we determine the minimal prime ideals of IG whenever G is a (semi-) Hamil-
tonian graph and we particularly deduce that for these graphs the height attains the
exact value n − 1.

Theorem 2.2 Let G be a connected graph with V (G) = [n]. Then, the following hold:
a If G is a labeled Hamiltonian graph, then Min(IG) = {IX }.
b If G is a labeled semi-Hamiltonian graph, then Min(IG) = {IX , (x2, . . . , xn)}.

In particular, in both cases, height IG = n − 1.

Proof Let G be either a labeled Hamiltonian or a labeled semi-Hamiltonian graph,
and let P be a minimal prime ideal of IG . First, we observe that if x j ∈ P , then
x j+1 ∈ P , for any j = 1, . . . , n − 1. Indeed, since Ln is a subgraph of G, it follows
that g j j+1 = x j x j+2 − x2j+1 ∈ IG . Also, since P is a prime ideal containing IG , it
follows from x j ∈ P that x j+1 ∈ P .

a. By Theorem 2.1, it is enough to show that IG does not have any minimal prime
ideal containing variables. Suppose on contrary that P is a minimal prime ideal
of IG which contains a variable. Now let i be the smallest integer with xi ∈ P .
First, assume that i = 1. The above observation implies that x j ∈ P for all
j = 1, . . . , n. This implies that IX ⊆ (x1, x2, . . . , xn) ⊆ P . Since P and IX are
both minimal prime ideals of IG , it follows that P = IX , which is a contradiction.
Next assume that i = 2. Then, again by our above observation, we have that
x j ∈ P for all j = 2, . . . , n. On the other hand, since Cn is a subgraph of G, we
have g1n = x1xn+1 − x2xn ∈ IG . Since x1 /∈ P and P is a prime ideal containing
IG , we deduce that xn+1 ∈ P . Thus, we have IX ⊆ (x2, x3, . . . , xn, xn+1) ⊆ P .
Therefore, P = IX by minimality of P , which is a contradiction. Finally, assume
that i ≥ 3. Then, gi−2 i−1 = xi−2xi − x2i−1 ∈ IG ⊆ P . Thus, xi−1 ∈ P which is
a contradiction, since i is the smallest index such that xi ∈ P . Therefore, IX is the
only minimal prime ideal of IG .

b. By Theorem 2.1, it suffices to prove that if P is a minimal prime ideal of IG
containing a variable, then P = (x2, . . . , xn). Let i be the smallest integer with
xi ∈ P . If i = 1, then by using our above observation it follows that IX ⊆
(x1, . . . , xn) ⊆ P , and hence P = IX , a contradiction. If i = 2, then again by
our observation we have (x2, . . . , xn) ⊆ P . Since IG ⊆ (x2, . . . , xn) and P is
a minimal prime ideal of IG , it follows that P = (x2, . . . , xn). If i ≥ 3, then
using the fact that gi−2 i−1 ∈ IG , similar to the proof of part (a), we deduce
that xi−1 ∈ P , contradicting the assumption that i is the smallest desired integer.
Therefore, Min(IG) consists only of IX and (x2, . . . , xn).

��

123



2498 D. Kiani et al.

For a graph G and e ∈ E(G), we denote by G − e the subgraph of G with the same
vertex set as G obtained by removing the edge e from G.

For a homogeneous ideal I in S, we denote by μ(I ), the cardinality of a minimal
homogeneous generating set of I . We would like to remark that it is easily seen that
neither of the binomials gi j = xi x j+1 − xi+1x j for 1 ≤ i < j ≤ n could be generated
in S by the other ones. In particular, the generators gi j ’s of IG provide a minimal
generating set for this ideal. Therefore, we have μ(IG) = |E(G)|.

Using Theorem 2.2, we obtain the following characterization of radicality of IG in
the case of labeled (semi-)Hamiltonian graphs.

Corollary 2.3 Let G be a connected graph with V (G) = [n]. Then, the following hold:
a. Let G be a labeled Hamiltonian graph. Then, IG is a radical ideal if and only if

G = Kn.
b. Let G be a labeled semi-Hamiltonian graph. Then, IG is a radical ideal if and

only if G = Kn − e where e = {1, n}.
Proof a. If G = Kn , then IG = IX which is a prime ideal. Conversely, assume that

G is a labeled Hamiltonian graph and IG is radical, i.e., IG = rad(IG). Thus, by
Theorem 2.2 part (a), we have IG = IX , and hence μ(IG) = μ(IX ) which implies
that |E(G)| = |E(Kn)|. Thus, G = Kn , as desired.

b. It was shown in [3, Proposition 2.3] that if e = {1, n}, then IKn−e is a radical ideal
with

IKn−e = IX ∩ (x2, . . . , xn). (1)

Conversely, assume that G is a labeled semi-Hamiltonian graph and IG is radical.
Thus, IG = rad(IG) = IX ∩ (x2, . . . , xn), by Theorem 2.2 part (b). It follows from (1)
that IG = IKn−e, and hence G = Kn − e. ��

Let I be a homogeneous ideal in S. Recall that S/I is a complete intersection if
μ(I ) = height I . Therefore, we have S/IG is a complete intersection if and only if
height IG = |E(G)|. So, it follows from Theorem 2.2 that S/IG is never a complete
intersection if G is a labeled Hamiltonian graph, since |E(G)| ≥ n while height IG =
n − 1.

Next, we determine those semi-Hamiltonian graphsG for which S/IG is a complete
intersection. First, we have the following general observation:

Proposition 2.4 Let G be a connected graph such that S/IG is a complete intersection.
Then, G is a tree and height IG = n − 1.

Proof Let |V (G)| = n. Since S/IG is a complete intersection, we have height IG =
|E(G)|. Proposition 2.1 implies that |E(G)| ≤ n − 1. Since G is a connected graph
with n vertices, it follows that |E(G)| = n − 1. This then implies that G is a tree and
height IG = n − 1, as desired. ��
Corollary 2.5 LetG bea connected labeled semi-Hamiltoniangraphwith V (G) = [n].
Then, S/IG is a complete intersection if and only if G = Ln.
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Proof It is clear that ILn is a complete intersection, since height IG = |E(Ln)| = n−1.
Conversely, assume that S/IG is a complete intersection. Thus, by Proposition 2.4, G
is a tree. But, the only tree with n vertices for which Ln is a subgraph, is the path Ln .
Thus, G = Ln , as desired. ��

Let I be a homogeneous ideal in S. Recall that I is said to be an almost complete
intersection if μ(I ) = height I + 1. Therefore, we have IG is an almost complete
intersection if and only if height IG = |E(G)| − 1.

Also, recall that a graph is called unicyclic if it contains exactly one cycle. A
connected unicyclic graph is obtained from a tree by adding an edge between two
non-adjacent vertices of the tree.

Proposition 2.6 Let G be a connected graph with V (G) = [n]. Then, the following
hold:

a. Let G be a labeledHamiltonian graph. Then, IG is an almost complete intersection
if and only if G = Cn.

b. Let G be a labeled semi-Hamiltonian graph. Then, IG is an almost complete
intersection if and only if G is a unicyclic graph obtained from Ln by adding the
edge {t, t + s} for some t, s with 1 ≤ t ≤ n − 2 and s ≥ 2.

Proof By Theorem 2.2, if G is either a labeled Hamiltonian graph or a labeled semi-
Hamiltonian graph, then the ideal IG is an almost complete intersection if and only
if |E(G)| = n. The latter equivalently means that G is a unicyclic graph, since G is
connected.

a. Let G be a labeled Hamiltonian graph. Then, the only unicyclic graph with n
vertices which has Cn as a subgraph is the cycle Cn itself. Hence, the statement
follows.

b. Let G be a labeled semi-Hamiltonian graph. Then, the only unicyclic graphs with
Ln as a subgraph are those ones obtained from Ln by connecting two non-adjacent
vertices of Ln by an edge. This implies the desired result.

��
Since closed graphs are chordal, it follows immediately from Proposition 2.6 that:

Corollary 2.7 Let G be a closed graph on the vertex set [n]. Then, S/IG is almost
complete intersection if and only if G is a unicyclic graph obtained from Ln by adding
the edge {t, t + 2} for some t = 1, . . . , n − 2.

Let I be an ideal of S. The arithmetical rank of I , denoted by ara(I ), is the least
integer r such that rad(I ) = rad( f1, . . . , fr ) for some f1, . . . , fr ∈ S. It is well known
that height I ≤ ara(I ). The ideal I is called a set-theoretic complete intersection if
height I = ara(I ).

In [3,Corollary 2.4], itwas shown that theHankel edge ideals of all connected closed
graphs are set-theoretic complete intersection. In the next proposition, we generalize
this result to all connected labeled Hamiltonian and semi-Hamiltonian graphs.
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Fig. 3 A labeled
semi-Hamiltonian graph with
non-Cohen–Macaulay Hankel
edge ideal
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Proposition 2.8 Let G be a connected labeled Hamiltonian or semi-Hamiltonian
graph with V (G) = [n]. Then, ara(IG) = n − 1. In particular, IG is a set-theoretic
complete intersection.

Proof First, note that ara(IG) ≥ n − 1, since height IG = n − 1, by Theorem 2.2.
If G is a labeled Hamiltonian graph, then it follows from [1, Proposition 1] that

ara(IG) ≤ n − 1, (see also [21, Sect. 1] and [25]).
IfG is a labeled semi-Hamiltonian graph, then by Theorem 2.2 we haveMin(IG) =

Min(ILn ) = {IX , (x2, . . . , xn)}, and hence rad(IG) = rad(ILn ). This implies that
ara(IG) ≤ n − 1.

Therefore, in both cases, we get the equality ara(IG) = n − 1, as desired. The “in
particular” part is then immediate by definition. ��

We would like to remark that in [3, Proposition 1.2] it was shown that if G is a
closed graph, then S/IG is Cohen–Macaulay. However, this is not always the case
in the more general case of labeled semi-Hamiltonian graphs. For example, let G be
the graph depicted in Fig. 3 which is a labeled semi-Hamiltonian non-closed graph.
Our computations with Macaulay 2 show that projdim(S/IG) = 5 while by The-
orem 2.2 we have height IG = 4. So, it would be interesting to ask which labeled
semi-Hamiltonian graphs admit Cohen–Macaulay Hankel edge ideal.

3 Complete Intersection Hankel Edge Ideals

In the view of Proposition 2.4, now in this section we are interested in trees and in
investigating about those trees T for which S/IT is a complete intersection.

Note that Proposition 2.4 is independent of the labeling of G. However, as we
mentioned in Sect. 1, in general the ideal IG strongly depends on the labeling of G.
Therefore, now for trees we fix a natural labeling which we call rooted labeling. First,
recall that NG(i) is the set of the neighbors of i , i.e., vertices adjacent to the vertex i ,
and the degree of the vertex i , denoted by deg(i) is equal to |NG(i)|. We also set
NG [i] = NG(i) ∪ {i}.

Let T be a tree with n vertices. Roughly speaking, to give a rooted labeling to T , we
give the labels 1, . . . , n to the vertices “consecutively” as follows: we pick a vertex as
the root with the label 1, and then we label its neighbors in any order. Then, we label
the neighbors of these new labeled vertices in the increasing order, and we continue
this process to get all the vertices labeled.

More precisely, pick a vertex as the root and give the label 1 to it. If |NT (1)| = t1,
then give the labels 2, . . . , t1 + 1 to the neighbors of 1 in an arbitrary order. Next, if
|NT (2)| = t2+1, then label the t2 unlabeled vertices in NT (2) by t1+2, . . . , t1+t2+1
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Fig. 4 A tree with a rooted
labeling
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in an arbitrary order. Similarly, for any i with 3 ≤ i ≤ t1 +1, if |NT (i)| = ti +1, then
label the ti unlabeled vertices in NT (i) by t1+t2+· · ·+ti−1+2, . . . , t1+t2+· · ·+ti+1
in an arbitrary order. Then, repeat the same procedure for the neighbors of the vertices
i = t1 + 2, . . . , t1 + t2 + · · · + tt1+1 + 1. Then, by continuing this process, all the
vertices of T are labeled. Figure 4 depicts an example of a tree with a rooted labeling.

In a rooted labeled tree, we call those neighbors of a vertex i whose labels are
greater than i , the children of i . For example, the children of the vertex 2 in the graph
of Fig. 4 are the vertices 5 and 6.

Theorem 3.1 Let T be a tree on n vertices with a rooted labeling. If T is not a path,
then height IT ≤ n − 2. In particular, S/IT is not a complete intersection.

Proof Since T is not a path, it has a vertex of degree ≥ 3. First, assume that the root 1
has degree at least 3. Thus, according to the labeling of T , we have that the vertices
with the labels 2, 3 and 4 are the neighbors of 1.

If n /∈ NT [3]∪NT [4], then P = (x1, x2, x5, x6, . . . , xn) is a prime ideal containing
IT which implies that height IT ≤ n − 2.

If n ∈ NT [3] ∪ NT [4], then we distinguish the following cases:

(1) If n = 4, then P = (x1, x2) is a prime ideal containing IT , and hence height IT ≤
2 = n − 2.

(2) Ifn = 5 ∈ NT [3], then P = (x1, x2, g35) is a prime ideal containing IT , since (g35)
is a prime ideal (of height 1) in K[x3, x4, x5, x6]. Thus, height IT ≤ 3 = n − 2.

(3) If n = 5 ∈ NT [4], then P = (x1, x2, g45) is a prime ideal containing IT , and
hence height IT ≤ 3 = n − 2.

(4) If n = 6 ∈ NT [3], then T is one of the trees T1, T2, T3 in Fig. 5. It is easily seen
that in each case, P = (x1, x2, x3, x4) is a prime ideal containing IT , and hence
height IT ≤ 4 = n − 2.

(5) If n = 6 ∈ NT [4], then T is one of the trees T ′
1, T

′
2, T

′
3, T

′
4 in Fig. 6. It is easily

seen that if T = T ′
1, T

′
2, T

′
4, then P = (x1, x2, x4, x5) is a prime ideal containing

IT , and if T = T ′
3, then P ′ = (x1, x2, x4, x6) is a prime ideal containing IT .

Therefore, we have height IT ≤ 4 = n − 2.
(6) If n ≥ 7, then any vertex i with i ≥ 5 is a leaf. Thus, it is seen that P =

(x1, x2, x3, x4, x5) is a prime ideal containing IT , and hence height IT ≤ 5 ≤ n−2.

Next, suppose that the degree of 1 is at most 2. Let t ≥ 2 be the smallest label in T
with deg(t) ≥ 3, and let t1, . . . , tq be q consecutive integers which are the labels of
the children of t . First, assume that there exists an s = 1, . . . , q with ts > t + 1 such
that n /∈ NT (ts). Let s be the maximum integer with this property.
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Fig. 5 The graphs T1, T2 and T3

Fig. 6 The graphs T ′
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If ts − 1 is not adjacent to 1, then we set P = (x2, x3, . . . , xts−1, xts+1, . . . , xn).
Since in this case, 1 is not adjacent to ts − 1 and n, and also ts is not adjacent to n,
then it follows that IT ⊆ P , and hence height IT ≤ n − 2.

If ts −1 is adjacent to 1, then it follows that ts = 4 and t = 2. Therefore, 4 and 5 are
the only neighbors of 2, and n ≥ 6 is adjacent to 5. Thus, we set P = (x2, x3, x4, g56)
in the case n = 6, and P = (x2, . . . , xn−1) in the case n ≥ 7. Thus, it follows in both
cases that IT ⊆ P , and hence height IT ≤ n − 2.

If such an s does not exist, then it follows that deg(t) = 3 and the only children of
t are t + 1 and t + 2, and n ∈ NT (t + 2). Now, we consider the following cases:

(1) Suppose that deg(t + 1) ≥ 2. Then, t + 3 /∈ NT (t + 2). We set P =
(x2, x3, . . . , xt+2, xt+4, . . . , xn). Since 1 is not adjacent to t + 2 and since n is a
leaf with the neighbor t + 2, it follows that IT ⊆ P .

(2) Suppose that deg(t +1) = 1 and n ≥ t +4. Then, we set P = (x2, x3, . . . , xn−1).
Then, we have IT ⊆ P .

(3) Suppose that deg(t + 1) = 1 and n = t + 3. Then, we set P =
(x2, x3, . . . , xt+1, gt+2,t+3). Then, we have IT ⊆ P .

In all the above cases, P is a prime ideal in S of height n − 2, which implies that
height IT ≤ n − 2, and hence in neither of the cases S/IT is a complete intersection.
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The “in particular” part is now immediate by Proposition 2.4. ��
Now, by Theorem 3.1, it remains to look at paths which have a rooted labeling. In

the following, we characterize all such paths with the complete intersection property.

Theorem 3.2 Let T be a path on n vertices with a rooted labeling. Then, S/IT is a
complete intersection if and only if the root of T is either a leaf or the neighbor of a
leaf.

Proof Suppose that S/IT is a complete intersection. Assume on contrary that the
root of T is neither a leaf nor the neighbor of a leaf. Thus, we have n ≥ 5 and
NT (1) = {2, 3}, NT (2) = {1, 4} and NT (3) = {1, 5}. If n �= 6, then it follows that
the prime ideal P = (x2, x3, x5, x6, . . . , xn) contains IT . If n = 6, then the prime
ideal P = (x2, x3, x4, x6) contains IT . Therefore, in any case, height IT ≤ n− 2, and
hence S/IT is not a complete intersection, a contradiction.

Conversely, first suppose that the root 1 is a leaf of T . Then, T = Ln , and hence
S/IT is a complete intersection, by Corollary 2.5.

Next, suppose that the root 1 is the neighbor of a leaf. Note that NT (1) = {2, 3}.
Then, we distinguish two cases:

Case 1. Assume that 2 is a leaf. If n = 3, then it is clear that height IT = 2,
and the result is clear. Next, assume that n ≥ 4. Let P1 = (x1, x2, x4, . . . , xn),
P2 = (x2, x3, . . . , xn) and P3 = (x1, x2, gi j : 3 ≤ i < j ≤ n). It is clear that IT is
contained in Pi for all i = 1, 2, 3. We claim that

Min(IT ) = {IX , P1, P2, P3}.

Let Q ∈ Min(IT ). If Q contains no variables, then by Proposition 2.1, Q = IX .
Suppose that Q contains a variable.

First, assume that x2 /∈ Q. Since g12 ∈ IT ⊆ Q, it follows that x1, x3 /∈ Q. On the
other hand, if x4 ∈ Q, then x2x3 ∈ Q, because g13 ∈ Q, which is a contradiction. So,
we assume that i ≥ 5 is the smallest integer such that xi ∈ Q. Now, it follows from
gi−2 i−1 = xi−2xi − x2i−1 ∈ IT ⊆ Q that xi−1 ∈ Q, a contradiction.

Therefore, we assume that x2 ∈ Q. Then, x1x3 ∈ Q, since g12 = x1x3 − x22 ∈
IT ⊆ Q. Thus, x1 ∈ Q or x3 ∈ Q. Thus, we consider the following cases:

(i) Suppose that x1 ∈ Q. Let T ′ be the induced subgraph of T on the vertex set
[n] \ {1, 2}. Then, the Hankel edge ideal IT ′ is generated in S′ = K[x3, . . . , xn+1].
Thus, it follows from Theorem 2.2 (by a relabeling) that

MinS′(IT ′) = {Q1 = (gi j : 3 ≤ i < j ≤ n), Q2 = (x4, x5, . . . , xn)}. (2)

Since Q ∈ Min(IT ), we have Q/(x1, x2) ∈ Min(IT + (x1, x2)/(x1, x2)). This
implies that

Q = Q′ + (x1, x2), (3)

where Q′ is generated in S′. Since IT ′ + (x1, x2) ⊆ Q′ + (x1, x2) and since x1
and x2 do not appear in the generators of Q′, it follows that IT ′ ⊆ Q′ as ideals of
S′, and moreover, we have Q′ ∈ MinS′(IT ′). Therefore, by (2) we have Q′ = Q1
or Q′ = Q2, and hence (3) implies that Q = P1 or Q = P3.
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(ii) Suppose that x3 ∈ Q and x1 /∈ Q. Since gii+1 ∈ IT ⊆ Q for all i = 3, . . . , n − 1,
it follows that xi ∈ Q for all i = 3, . . . , n. Therefore, Q = P2.

Finally, since neither of IX , P1, P2 and P3 is contained in the others, the claim is
proved.

Case 2. Assume that 2 is not a leaf and 3 is. Therefore, we have n ≥ 4. Let
P1 = (x1, x2, x4, . . . , xn), P2 = (x2, x3, . . . , xn), P3 = (x1, x2, x3, gi j : 4 ≤ i <

j ≤ n) and P4 = (x1, x2, x3, x5, . . . , xn). It is clear that IT is contained in Pi for all
i = 1, 2, 3, 4. We claim that if n �= 5, then

Min(IT ) = {IX , P1, P2, P3, P4},

and if n = 5, then

Min(IT ) = {IX , P1, P2, P3}.

Note that if n = 4, then P3 = P4. Let Q ∈ Min(IT ).
First, suppose that x2 /∈ Q. Since g12 ∈ IT ⊆ Q, it follows that x1 /∈ Q and

x3 /∈ Q. We also have x4 /∈ Q. Indeed, if x4 ∈ Q, then we have x2x3 ∈ Q, since
g13 ∈ IT ⊆ Q, which is a contradiction. Now, let i be the smallest integer such that
xi ∈ Q. Assume that i = 5. Then, since g24 ∈ Q and x3 /∈ Q, it follows that x4 ∈ Q,
a contradiction to the choice of i . Now, assume that i ≥ 6. Then, since gi−2 i−1 ∈ Q,
we deduce that xi−1 ∈ Q, a contradiction to the choice of i . Therefore, if x2 /∈ Q,
then no other variable belongs to Q. Thus, by Proposition 2.1, Q = IX .

Next, suppose that x2 ∈ Q. Since g12 ∈ Q, it follows that x1x3 ∈ Q. Now, we
consider the following cases:

(i) Suppose that x1 ∈ Q and x3 /∈ Q. Since x2 and g24 belong to Q, we have x3x4 ∈
Q, and hence x4 ∈ Q. Therefore, since gii+1 ∈ Q for any i = 4, . . . , n − 1, we
have xi ∈ Q for any i = 4, . . . , n. Hence, in this case, we deduce that Q = P1.

(ii) Suppose that x1 /∈ Q and x3 ∈ Q. Since x2 and g13 belong to Q, we have
x1x4 ∈ Q, and hence x4 ∈ Q. Therefore, similar to the previous case, we have
xi ∈ Q for any i = 4, . . . , n. Hence, in this case, we deduce that Q = P2.

(iii) Suppose that x1 ∈ Q and x3 ∈ Q. Let T ′ be the induced subgraph of T on
the vertex set [n] \ {1, 2, 3}. Then, the Hankel edge ideal IT ′ is generated in
S′ = K[x4, . . . , xn+1]. Therefore, we have Q = Q′ + (x1, x2, x3), where Q′ is
a prime ideal generated in S′, and similar to Case 1, we have Q′ ∈ MinS′(IT ′).
If n = 4, then Q′ = (0), and hence Q = P3 = P4. If n = 5, then Q′ = (g45),
and hence Q = P3. If n ≥ 6, then by Theorem 2.2, we have

Q′ ∈ {(x5, . . . , xn), (gi j : 4 ≤ i < j ≤ n)},

and hence Q = P3 or Q = P4, which completes the proof. ��
Combining Theorems 3.1 and 3.2, we get the following characterization of rooted

labeled trees with complete intersection Hankel edge ideal.
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Corollary 3.3 Let T be a tree with a rooted labeling. Then, S/IT is a complete inter-
section if and only if T is a path whose root is either a leaf or the neighbor of a
leaf.

Let I be a monomial ideal in S. Recall that S/I is a complete intersection if the
monomial generators in the uniqueminimalmonomial generating set of I are relatively
prime.

Let < be the reverse lexicographic order on S induced by x1 > · · · > xn > xn+1.
By [3, Theorem 1], we know that, not only S/ILn , but also S/ in<(ILn ) is a complete
intersection, since in<(ILn ) = (x2i+1 : 1 ≤ i ≤ n − 1).

Let T1 and T2 be the rooted labeled paths on [n], different from Ln , considered in
Corollary 3.3. Indeed, let T1 be the rooted labeled path on n ≥ 3 vertices with the
root 1 in which the vertex 2 is a leaf, and let T2 be the rooted labeled path on n ≥ 4
vertices with the root 1 in which the vertex 3 is a leaf. Now, according to Corollary 3.3,
it is natural to ask the same question about S/ in<(IT1) and S/ in<(IT2). First, in the
following proposition, we determine the initial ideals of IT1 and IT2 .

Proposition 3.4 Let T1 and T2 be as above. Then,

in<(IT1) = (x2x3, x1x
2
3 , x

2
2 , x

2
i+1 : 3 ≤ i ≤ n − 1),

and

in<(IT2) = (x2x3, x3x4, x1x
2
3 , x1x

2
4 , x

2
2 , x

2
i+1 : 4 ≤ i ≤ n − 1).

Proof We prove the statement by applying Buchberger’s criterion, see for example
[13, Theorem 2.3.2]. Let f = x1x2x4 − x1x23 . We first consider T1. We claim that the
set of binomials

G1 = { f , g12, g13, gii+1 : i = 3, . . . , n − 1}

is a Gröbner basis for IT1 with respect to <. We have that in<( f ) = x1x23 ,
in<(g12) = x22 , in<(g13) = x2x3 and in<(gii+1) = x2i+1 for i = 3, . . . , n−1. By [13,
Lemma2.3.1], we only need to compute S(g12, g13) and S(g13, f ). It is easily seen that
S(g12, g13) = f and S(g13, f ) = −(x1x4)g12 which both reduce to zero with respect
to G1. Therefore, the claim follows, and hence in<(IT1) = (x2x3, x1x23 , x

2
2 , x

2
i+1 : 3 ≤

i ≤ n − 1), as desired.
Next, we consider T2. Let h = x1x3x5 − x1x24 . We claim that the set of binomials

G2 = { f , h, g12, g13, g24, gii+1 : i = 4, . . . , n − 1}

is aGröbner basis for IT2 with respect to<. Note that in<(h) = x1x24 , in<(g24) = x3x4.
Using [13, Lemma 2.3.1] and according to our computations for T1, we just need to
compute the following four S-polynomials:

S( f , h) = (x3x5) f + (x2x4)h, S(g13, g24) = −x5g12 + h,
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S(g24, f ) = −x2h, S(g24, h) = −x5 f .

All the above S-polynomials clearly reduce to zero with respect to G2. Thus, the claim
follows, and hence in<(IT2) = (x2x3, x3x4, x1x23 , x1x

2
4 , x

2
2 , x

2
i+1 : 4 ≤ i ≤ n − 1)

which completes the proof. ��
The following corollary is now immediate.

Corollary 3.5 Let T1 and T2 be as above. Then, S/ in<(IT1) and S/ in<(IT2) are not
complete intersection.

Wewould like to close this section by posing some natural questions. In this section,
we studied the trees T with rooted labeling for which S/JT is a complete intersection.
It is natural to ask if there is another vertex labeling for a tree T for which S/JT is
a complete intersection. On the other hand, a characterization of trees with rooted
labeling whose Hankel edge ideal is almost complete intersection or set-theoretic
complete intersection would be of interest.
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