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Abstract
Given a sense-preserving harmonic function f = h + ḡ defined in the open unit disk,
the radius of convexity for the analytic part h is determined under various prescribed
conditions on the associated analytic function φ f = h − g. Moreover, the radius of
starlikeness and convexity for the analytic part of harmonic Koebe function is also
computed. All the obtained results are sharp.

Keywords Radius of convexity · Univalent harmonic functions · Sense-preserving ·
Dilatation · Function with positive real part · Starlikeness

Mathematics Subject Classification 30C45 · 30C55 · 31A05

1 Introduction

LetH denote the class of all complex-valued harmonic functions of the form f = h+ḡ
defined in the open unit disk D := {z ∈ C : |z| < 1} where h and g are analytic
functions inD (called analytic and co-analytic parts of f , respectively) and normalized
by the conditionsh(0) = h′(0)−1 = g(0) = 0. Since the Jacobianof f = h+ḡ ∈ H is
given by J f (z) = |h′(z)|2−|g′(z)|2, by a theorem of Lewy [10], f is sense-preserving
in D if and only if |g′(z)| < |h′(z)| for all z ∈ D, or equivalently, the dilatation
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w f : D → C defined by w f (z) = g′(z)/h′(z) is an analytic function satisfying
|w f (z)| < 1 for all z ∈ D. In 1984, Clunie and Sheil-Small [5] initiated the study
of the class SH ⊂ H consisting of sense-preserving univalent harmonic mappings.
Althoughmany classical results of analytic univalent functions have been extended for
the class SH and its geometric subclasses, there are still several conjectures regarding
the coefficient bounds and radius problems which are still unsettled. One of them is
the harmonic analogue of the Bieberbach Conjecture which was proposed by Clunie
and Sheil-Small [5] stating that the nth Taylor series coefficients of the analytic and
co-analytic part of a function f ∈ SH are bounded by (2n2 + 1)/3. Moreover, the
exact radius of convexity of the class SH is still unknown, the proposed radius being
3 − √

8, given by Sheil-Small [19].
There has been an interplay between the sense-preserving harmonic mappings and

their analytic part. If a harmonic function f = h + ḡ ∈ SH and f (D) is a convex
domain, then the analytic part h must be univalent in D by [5, Theorem 5.7, p. 15].
Similarly, if f = h+ḡ ∈ H is sense-preserving and h(D) is a convex domain, then f ∈
SH by [5,Theorem5.17, p. 20].Bshouty andLyzzaik [3] proved that a sense-preserving
harmonic function f = h+ ḡ ∈ H is necessarily univalent inD if the dilatation of f is
w f (z) = z and the analytic part h satisfies Re(1+zh′′(z)/h′(z)) > −1/2 for all z ∈ D.
It is also worth to note that the univalence of a harmonic mapping does not imply the
univalence of its analytic part. For example, the harmonic Koebe function K = H+G
obtained by shearing of the analytic Koebe function k(z) = z/(1− z)2 in the direction
of the real axis with dilatation z is univalent in D by [5, Theorem 5.3, p. 14], but the
analytic function H is not univalent in D as H(i

√
3/

√
5) = H(−i

√
3/

√
5), where H

and G are given by

H(z) = z − 1
2 z

2 + 1
6 z

3

(1 − z)3
and G(z) =

1
2 z

2 + 1
6 z

3

(1 − z)3
. (1)

Similarly, the shearing of the analytic Koebe function k in the direction of real axis
with dilatation z2 generates the univalent harmonic mapping W = U + V , where U
and V are given by

U (z) = z − z2 + 1
3 z

3

(1 − z)3
and V (z) =

1
3 z

3

(1 − z)3

and U ((
√
3/2)e

iπ
6 ) = U ((

√
3/2)e− iπ

6 ). In 1990, Sheil-Small [19] conjectured that if
a harmonic function f = h + ḡ ∈ SH , then the radius of univalence for the analytic
part h is 1/

√
3. For more details and problems in harmonic mappings, one may refer

to [2–8, 14, 15, 19].
Let H0 be a subfamily of H consisting of harmonic functions f = h + ḡ which

are further normalized by g′(0) = 0. This paper discusses the problem of finding the
radius of convexity for the analytic part of sense-preserving harmonic functions inH0.

The classS0
H := SH∩H0 is a compact normal familywith respect to the topology of

locally uniform convergence. The classical family S of normalized analytic univalent
functions is a subfamily of S0

H which includes the classes S∗ and K consisting of
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starlike and convex functions, respectively. The harmonic Koebe function K = H+G
given by (1) belongs to the class S0

H . Since it is expected to play the extremal role
for the class S0

H , the radius of starlikeness and convexity has been computed for the
analytic part H of the harmonic Koebe function K in Sect. 2. These radii constants
may be conjectured as the radius of starlikeness and convexity for the analytic part of
harmonic functions in the class S0

H .
Given a sense-preserving harmonic function f = h + ḡ ∈ H0 and the dilatation

w f of f , the function p f : D → C defined by

p f (z) = 1 + w f (z)

1 − w f (z)
(z ∈ D) (2)

is analytic in D with p f (0) = 1 and Re p f (z) > 0 for all z ∈ D. Set φ f := h − g.
Then, it is easy to see that

h′(z) = 1

2
φ′
f (z)(1 + p f (z)), z ∈ D. (3)

There are several sufficient conditions on the analytic function φ f under which the
function h is univalent, starlike or convex in D. Let us consider three such instances.
Firstly, if φ f is convex in D, then (3) gives

Re

(
h′(z)
φ′
f (z)

)
= 1

2
Re(1 + p f (z)) > 0 (z ∈ D)

and therefore h is close-to-convex and hence univalent in D by [6, Theorem 2.17, p.
47]. Secondly, if φ f is of the form

φ f (z) =
∫ z

0

h(ξ)

ξ
dξ, z ∈ D

then h is starlike in D as in this case, zφ′
f (z) = h(z) and (3) yields

Re

(
zh′(z)
h(z)

)
= 1

2
Re(1 + p f (z)) > 0 (z ∈ D).

Thirdly, if φ f (z) = zh′(z), then (3) leads to

Re

(
1 + zh′′(z)

h′(z)

)
= Re

(
2

1 + p f (z)

)
> 0 (z ∈ D)

which shows that h is convex in D. Under similar conditions imposed on the analytic
function φ f , Sect. 3 investigates the radius of convexity for the analytic part of the
sense-preserving harmonic function f ∈ H0. We shall make use of the following
lemma which is a special case of [9, Theorem 3, p. 314].
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Lemma 1 [1, Lemma2.4, p. 4] Suppose that the function p is analytic inD. If p(0) = 1
and Re p(z) > 0 for all z ∈ D, then

Re

(
zp′(z)

1 + p(z)

)
≥

⎧⎪⎪⎨
⎪⎪⎩

− |z|
1 + |z| if |z| < 1/3;

− (
√
2 − √

1 − |z|2)2
1 − |z|2 if 1/3 ≤ |z| < 1.

2 Analytic Part of Harmonic Koebe Function

In this section, we will determine the radius of convexity and starlikeness for the
analytic part H of the harmonic Koebe function K given by (1). Note that

Re

(
1 + zH ′′(z)

H ′(z)

)
= Re

(
1 + 5z + 2z2

1 − z2

)

= −2 + 4Re
1

1 − z
− Re

1

1 + z

> −2 + 4

1 + |z| − 1

1 − |z|
= 1 − 5|z| + 2|z|2

1 − |z|2 > 0

for |z| < (5 − √
17)/4 ≈ 0.219224. Also, as 1 + zH ′′/H ′ vanishes at z = (−5 +√

17)/4, it follows that (5 − √
17)/4 is the radius of convexity for H .

To determine the radius of starlikeness for H , observe that

Re
zH ′(z)
H(z)

= 6Re
1 + z

(1 − z)(6 − 3z + z2)
.

If z = reiθ , then a straightforward calculation yields

1

6
|1 − z|2|6 − 3z + z2|2 Re zH ′(z)

H(z)
= p(r , u)

where u = cos θ and

p(r , u) = 6 − 13r2 + r4 − 3ru + 7r3u + 8r2u2 − 2r4u2 − 4r3u3.

The problem now reduces to find the value of the parameter r for which the polynomial
p(r , u) is non-negative in the whole interval −1 ≤ u ≤ 1. It is easily seen that

p(r , 1) = (1 − r)(6 + 3r − 2r2 + r3) > 0

and
p(r ,−1) = (1 − r)(6 + 9r + 4r2 + r3) > 0.

123



Radius of Convexity for Analytic Part of Sense-Preserving... 2669

Also, further analysis shows that

∂

∂u
p(r , u) = r(−3 + 7r2 + 16ru − 4r3u − 12r2u2),

and hence p(r , u) has a local minimum at u0 = (4 − r2 − √
7 + 13r2 + r4)/6r and

a local maximum at u∗
0 = (4 − r2 + √

7 + 13r2 + r4)/6r . Thus, p(r , u) ≥ 0 for
−1 ≤ u ≤ 1 if and only if

p(r , u0) = 1

54
(344−519r2 +15r4 −2r6 − (14+26r2 +2r4)

√
7 + 13r2 + r4) ≥ 0.

This inequality implies that r ≤ r0 ≈ 0.691985, where r0 is the smallest positive root
of the equation 8r8 + 41r6 + 1280r4 − 2131r2 + 722 = 0. Therefore, H is starlike
for |z| < r0.

3 Radius of Convexity

Let f = h+ ḡ ∈ H0 be a sense-preserving harmonic function and φ f = h− g. Using
the condition (3), it is easy to see that

1 + zh′′(z)
h′(z)

= 1 + zφ′′
f (z)

φ′
f (z)

+ zp′
f (z)

1 + p f (z)
, (4)

where p f is defined by (2). The inequality (4) will be used to determine the radius of
convexity of the analytic function h throughout this section. Thefirst theoremdiscusses
the case when φ f is univalent in D. Let us recall the concept of subordination. Given
two analytic functions f and g in D, we say that f is subordinate to g, written as
f ≺ g, if there exists a Schwartz function τ that is analytic in D with τ(0) = 0 and
|τ(z)| < 1 satisfying f (z) = g(τ (z)) for all z ∈ D.

Theorem 2 Let f = h + ḡ ∈ H0 be sense-preserving in D and φ f = h − g.

(a) If φ f ∈ S, then h is convex for |z| < (5 − √
17)/4 ≈ 0.219224.

(b) If φ f ∈ S and the analytic function p f given by (2) satisfies p f (z) ≺ 1 + z in D,
then h is convex for |z| < (5 − √

13)/6 ≈ 0.232408.
(c) If Re φ′

f (z) > 0 in D, then h is convex for |z| < 1/3.

All the bounds are sharp.

Proof (a) If |z| < 1/3, then by making use of Lemma 1 in (4), it follows that

Re

(
1 + zh′′(z)

h′(z)

)
≥ Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
− |z|

1 + |z| . (5)
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Since φ f ∈ S, therefore [6, Theorem 4.2, p. 32] gives

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ |z|2 − 4|z| + 1

1 − |z|2 . (6)

so that (5) becomes

Re

(
1 + zh′′(z)

h′(z)

)
≥ |z|2 − 4|z| + 1

1 − |z|2 − |z|
1 + |z| = 2|z|2 − 5|z| + 1

1 − |z|2 > 0

provided |z| < (5 − √
17)/4 < 1/3. The result is sharp for the harmonic Koebe

function defined by (1).
(b) As p f (z) ≺ 1 + z, there exists an analytic function τ : D → D with τ(0) = 0

such that p f (z) = 1 + τ(z) for all z ∈ D. Thus, (4) simplifies to

1 + zh′′(z)
h′(z)

= 1 + zφ′′
f (z)

φ′
f (z)

+ zτ ′(z)
2 + τ(z)

.

By Dieudonne’s Lemma [6, p. 198], the function τ satisfies |τ ′(z)| ≤ 1 for |z| ≤√
2 − 1. Also, |τ(z)| ≤ |z| for all z ∈ D. These observations together with (6) lead to

Re

(
1 + zh′′(z)

h′(z)

)
≥ |z|2 − 4|z| + 1

1 − |z|2 − |z||τ ′(z)|
|2 + τ(z)|

≥ |z|2 − 4|z| + 1

1 − |z|2 − |z|
2 − |z|

= 2(1 − 5|z| + 3|z|2)
(2 − |z|)(1 − |z|2) > 0

if |z| < (5− √
13)/6 <

√
2 − 1. This shows that h is convex for |z| < (5− √

13)/6.
In order to show that the bound is sharp, consider the function f0 = h0 + ḡ0 where

h0(z) =
1
2 z + z2

(1 − z)2
− 1

2
log(1 − z) and g0(z) = − 1

2 z + z2

(1 − z)2
− 1

2
log(1 − z).

The dilatation of f0 is w f0(z) = z/(2+ z) which satisfies |w f0(z)| < 1 for all z ∈ D.
Therefore, f0 is sense-preserving in D. Also, h0(z) − g0(z) = z/(1 − z)2 ∈ S and
p f0(z) = 1 + z. Since the quantity

1 + zh′′
0(z)

h′
0(z)

= 2 + 10z + 6z2

2 + z − 2z2 − z3

vanishes at z = (−5 + √
13)/6, therefore the radius is sharp.
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(c) As Re φ′
f (z) > 0 for all z ∈ D, therefore [11, Theorem 2, p. 533] gives

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 2|z| − |z|2

1 − |z|2 . (7)

Using this estimate in (5), we have

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 2|z| − |z|2

1 − |z|2 − |z|
1 + |z| = 1 − 3|z|

1 − |z|2 > 0

as |z| < 1/3. For sharpness, we consider the harmonic function f0 = h0 + ḡ0 where
h0 and g0 are given by

h0(z) = 2z

1 − z
+ log(1 − z) and g0(z) = 3z − z2

1 − z
+ 3 log(1 − z). (8)

Clearly f0 is sense-preserving in D as w f0(z) = z and φ f0(z) = h0(z) − g0(z) =
−z − 2 log(1 − z) satisfies Re φ′

f0
(z) > 0 for all z ∈ D. Also

1 + zh′′
0(z)

h′
0(z)

= 1 + 3z

1 − z2
= 0

at z = −1/3. �
Let us give an application of Theorem 2. If f = h + ḡ ∈ H0 is sense-preserving,

φ f = h − g and ψ ∈ K such that

∣∣∣∣∣
zφ′

f (z)

ψ(z)
− 1

∣∣∣∣∣ < 1

for all z ∈ D, then φ f satisfies the inequality (7) by [13, Theorem 4, p. 524]. Conse-
quently, the proof of Theorem 2(c) shows that h is convex for |z| < 1/3. This bound
is sharp for the function f0 = h0 + ḡ0 given by (8), as |zφ′

f0
(z)/ψ(z) − 1| = |z| < 1

for all z ∈ D, where ψ(z) = z/(1 − z) ∈ K.
The next theorem computes the radius of convexity for the analytic part when φ f

satisfies Re(φ′
f /ψ

′) > 0 in D for some function ψ ∈ S satisfying certain conditions.
The class K(α), 0 ≤ α < 1, consisting of analytic functions f satisfying Re(1 +
z f ′′(z)/ f ′(z)) > α for z ∈ D, is a subclass of K.

Theorem 3 Let f = h + ḡ ∈ H0 be sense-preserving in D and φ f = h − g. Further
suppose that ψ(z) = z + a2z2 + · · · is analytic in D and satisfies

Re
φ′
f (z)

ψ ′(z)
> 0

for all z ∈ D.
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(a) If ψ ∈ S, then h is convex for |z| < (7 − √
41)/4 ≈ 0.149219.

(b) If Reψ ′(z) > 0 for all z ∈ D, then h is convex for |z| < 1/5.
(c) If ψ ∈ K(α) (0 ≤ α < 1), then h is convex for |z| < rα , where

rα = 5 − 2α − √
4α2 − 12α + 17

4(1 − α)
.

All the radii are sharp.

Proof (a) Since ψ ∈ S and Re(φ′
f /ψ

′) > 0 in D, by [16, Theorem 1, p. 32], φ f

satisfies

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 6|z| + |z|2

1 − |z|2 .

In view of the above inequality, (5) takes the form:

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 6|z| + |z|2

1 − |z|2 − |z|
1 + |z| = 1 − 7|z| + 2|z|2

1 − |z|2 > 0

provided |z| < (7 − √
41)/4 < 1/3. The harmonic function f1 = h1 + ḡ1, where h1

and g1 are given by

h1(z) = z − 1
2 z

2 + 2
3 z

3 − 1
6 z

4

(1 − z)4
and g1(z) =

1
2 z

2 + 1
3 z

3 + 1
6 z

4

(1 − z)4

shows that the result is best possible. In fact, the dilatation of f1 is w f1(z) = z and

φ f1(z) = h1(z) − g1(z) = z + 1
3 z

3

(1 − z)3

satisfies Re(φ′
f1
/ψ ′) > 0 in D, where ψ(z) = z/(1 − z)2 ∈ S. Moreover,

1 + zh′′
1(z)

h′
1(z)

= 1 + 7z + 2z2

1 − z2
= 0

at z = (−7 + √
41)/4.

(b) Under the given hypothesis, [16, Theorem 2, p. 32] gives

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 4|z| − |z|2

1 − |z|2

and hence from (5), it follows that if |z| < 1/3, then

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 4|z| − |z|2

1 − |z|2 − |z|
1 + |z| = 1 − 5|z|

1 − |z|2 > 0
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for |z| < 1/5. For sharpness, note that the function f2 = h2 + ḡ2 defined as:

h2(z) = 2z2

(1 − z)2
− log(1 − z) and g2(z) = −5z + 8z2 − z3

(1 − z)2
− 5 log(1 − z)

is sense-preserving in D as w f2(z) = z. The function

φ f2(z) = h2(z) − g2(z) = 5z − z2

1 − z
+ 4 log(1 − z)

satisfiesRe(φ′
f2
/ψ ′) > 0 inD, whereψ(z) = −z−2 log(1−z) ∈ S withReψ ′(z) > 0

for all z ∈ D. For z = −1/5, the expression 1 + zh′′
2(z)/h

′
2(z) = (1 + 5z)/(1 − z2)

equals 0.
(c) Under the hypothesis of the theorem, by [16, Theorem 6, p. 35], the function

φ f satisfies

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − (4 − 2α)|z| − (2α − 1)|z|2

1 − |z|2 .

Consequently, for |z| < 1/3, (5) gives

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − (4 − 2α)|z| − (2α − 1)|z|2

1 − |z|2 − |z|
1 + |z|

= 1 − (5 − 2α)|z| + 2(1 − α)|z|2
1 − |z|2 > 0

for |z| < rα := (5 − 2α − √
4α2 − 12α + 17)/(4(1 − α)). Note that rα < 1/3. The

sharpness of the result is achieved by taking the harmonic function fα = hα + ḡα

where hα and gα are given by

hα(z) =

⎧⎪⎨
⎪⎩

(2α − 1) − (1 − z)2α−3((2α − 1) + (2α − 3)z)

2(1 − α)(3 − 2α)
, α �= 1/2;

z

(1 − z)2
, α = 1/2

and

gα(z) =

⎧⎪⎪⎨
⎪⎪⎩

−(1 + 2α) + (1 − z)2α−3((1 + 2α) + (3 − 2α)(2(1 − α)z2 − (1 + 2α)z))

2(1 − α)(3 − 2α)(1 − 2α)
, α �= 1/2;

z(2z − 1)

(1 − z)2
− log(1 − z), α = 1/2.
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The dilatation of fα is w fα (z) = z and the function

φ fα (z) = hα(z) − gα(z) =

⎧⎪⎨
⎪⎩

(1 − z)2(α−1)((1 − α)z − α) + α

(1 − α)(1 − 2α)
, α �= 1/2;

2z

1 − z
+ log(1 − z), α = 1/2

satisfies Re(φ′
fα

/ψ ′) > 0 in D where

ψ(z) =
⎧⎨
⎩

1 − (1 − z)2α−1

2α − 1
, α �= 1/2;

− log(1 − z), α = 1/2

belongs to the class K(α). Also

1 + zh′′
α(z)

h′
α(z)

= 1 + (5 − 2α)z + 2(1 − α)z2

1 − z2

vanishes at the point z = −rα . �
The following theoremdiscusses the casewhenφ f satisfies either Re(φ f (z)/z) > 0

or |zφ′
f (z)/φ f (z) − 1| < 1 in D.

Theorem 4 Let f = h + ḡ ∈ H0 be sense-preserving in D and φ f = h − g.

(a) If the function φ f satisfies

Re

(
φ f (z)

z

)
> 0,

for all z ∈ D, then h is convex for |z| <
√
10 − 3 ≈ 0.162278.

(b) If the function φ f satisfies

∣∣∣∣∣
zφ′

f (z)

φ f (z)
− 1

∣∣∣∣∣ < 1,

then h is convex for |z| < r0 where r0 ≈ 0.311108 is the smallest positive root of
the equation r3 − r2 − 3r + 1 = 0 in (0, 1).

Both the radii are sharp.

Proof For part (a), [18, Theorem, p. 2] gives

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 5|z| − 3|z|2 − |z|3

(1 + |z|)(1 − 2|z| − |z|2) , |z| <
√
2 − 1.
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For |z| < 1/3, the above inequality and (5) holds so that

Re

(
1 + zh′′(z)

h(z)

)
≥ 1 − 5|z| − 3|z|2 − |z|3

(1 + |z|)(1 − 2|z| − |z|2) − |z|
1 + |z| = |z|2 + 6|z| − 1

|z|3 + 3|z|2 + |z| − 1
> 0

if |z| <
√
10−3. For sharpness, let us take the harmonic function f0 = h0+ ḡ0 where

h0 and g0 are given by

h0(z) = 2z − z2

(1 − z)2
+ log(1 − z) and g0(z) = z − z2 + z3

(1 − z)2
+ log(1 − z).

Note that f0 is sense-preserving as the dilatationw f0(z) = z and the functionφ f0(z) =
h0(z) − g0(z) = z(1 + z)/(1 − z) satisfies Re(φ f0(z)/z) > 0 for all z ∈ D. Also, at
z = 3 − √

10,

1 + zh′′
0(z)

h′
0(z)

= −z2 + 6z + 1

z3 − 3z2 + z + 1
= 0.

For part (b), by invoking the result of [20, Theorem, p. 230], we have

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 3|z| + |z|2

1 − |z| .

By using (5), it follows that

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 3|z| + |z|2

1 − |z| − |z|
1 + |z| = 1 − 3|z| − |z|2 + |z|3

1 − |z|2 > 0

provided |z| < r0 where r0 is the smallest positive root of the equation 1−3r−r2+r3 =
0. If we consider the harmonic function F0 = H0 + Ḡ0 with

H0(z) − G0(z) = φF0(z) = zez and G ′
0(z) = zH ′

0(z),

then φF0 satisfies |zφ′
F0

(z)/φF0(z) − 1| < 1 for all z ∈ D and

1 + zH ′′
0 (z)

H ′
0(z)

= 1 + 3z − z2 − z3

1 − z2

vanishes at z = −r0. �
In the last theorem of this section, the radius of convexity of the analytic part

of the harmonic function f is determined when the associated function φ f satisfies
|φ′

f /ψ
′ − 1| < 1 in D for a function ψ belonging to the class S or its subclasses.
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Theorem 5 Let f = h + ḡ ∈ H0 be sense-preserving in D. Suppose that φ f = h − g
and ψ(z) = z + a2z2 + · · · is analytic in D and satisfies∣∣∣∣∣

φ′
f (z)

ψ ′(z)
− 1

∣∣∣∣∣ < 1

for all z ∈ D.

(a) If ψ ∈ S, then h is convex for |z| < 3 − 2
√
2 ≈ 0.171573.

(b) If ψ ∈ K, then h is convex for |z| < 2 − √
3 ≈ 0.267949.

(c) If Reψ ′(z) > 0 for all z ∈ D, then h is convex for |z| <
√
5 − 2 ≈ 0.236068.

All the bounds are best possible.

Proof (a) By [17, Theorem 1, p. 484], we have

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 5|z|

1 − |z|2

so that (5) gives

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 5|z|

1 − |z|2 − |z|
1 + |z| = 1 − 6|z| + |z|2

1 − |z|2 > 0

for |z| < 3 − 2
√
2 < 1/3. The harmonic function f1 = h1 + ḡ1 given by

h1(z) = z + 1
3 z

3

(1 − z)3
and g1(z) = z − 2z2 + 7

3 z
3

(1 − z)3
+ log(1 − z)

verifies that the bound is best possible. The dilatation of f1 is w f1(z) = z and the
function

φ f1(z) = 2z2

(1 − z)2
− log(1 − z)

satisfies the hypothesis of the theorem, with ψ(z) = z/(1 − z)2 ∈ S. Also, 1 +
zh′′

1(z)/h
′
1(z) = (1 + 6z + z2)/(1 − z2) = 0 at z = −3 + 2

√
2.

(b) Under the given hypothesis, the function φ f satisfies

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 3|z|

1 − |z|2 (9)

by [17, Theorem 3, p. 486]. The result now follows by making use of (5) which yields

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 3|z|

1 − |z|2 − |z|
1 + |z| = 1 − 4|z| + |z|2

1 − |z|2 > 0
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for |z| < 2 − √
3. If we consider the harmonic function f2 = h2 + ḡ2 where h2 and

g2 are given by

h2(z) = z

(1 − z)2
and g2(z) = −z + 2z2

(1 − z)2
− log(1 − z) (10)

then f2 is sense-preserving in D with dilatation w f2(z) = z and

φ f2(z) = h2(z) − g2(z) = 2z

1 − z
+ log(1 − z).

Also, |φ′
f2
(z)/ψ ′(z) − 1| = |z| < 1 where ψ(z) = z/(1 − z) ∈ K and the analytic

part of f2 satisfies

1 + zh′′
2(z)

h′
2(z)

= 1 + 4z + z2

1 − z2

which assumes the value 0 at z = −2 + √
3.

(c) Under the given hypothesis, φ f satisfies the inequality

Re

(
1 + zφ′′

f (z)

φ′
f (z)

)
≥ 1 − 3|z| − 2|z|2

1 − |z|2

by [17, Theorem 4, p. 486]. Hence, by (5), we have

Re

(
1 + zh′′(z)

h′(z)

)
≥ 1 − 3|z| − 2|z|2

1 − |z|2 − |z|
1 + |z| = 1 − 4|z| − |z|2

1 − |z|2 > 0

for |z| <
√
5 − 2 < 1/3. To verify the sharpness, consider the harmonic function

f3 = h3 + ḡ3 given by

h3(z) = 5z − z2

1 − z
+ 4 log(1 − z) and g3(z) = 8z − 7

2 z
2 − 1

2 z
3

1 − z
+ 8 log(1 − z).

As w f3(z) = z, f3 is sense-preserving in D and the function

φ f3(z) = h3(z) − g3(z) = −3z − z2

2
− 4 log(1 − z)

satisfies |φ′
f3
(z)/ψ ′(z) − 1| < 1 with ψ(z) = −z − 2 log(1 − z). Also, Reψ ′ > 0 in

D and

1 + zh′′
3(z)

h′
3(z)

∣∣∣∣
z=−2+√

5

= 1 + 4z − z2

1 − z2

∣∣∣∣
z=−2+√

5
= 0.

This completes the proof of the theorem. �
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As an application, if f = h+ ḡ ∈ H0 is sense-preserving with φ f = h− g,ψ ∈ K
and

Re

(
zφ′

f (z)

ψ(z)

)
> 0

for all z ∈ D, then φ f satisfies the condition (9) by [12, Theorem 4, p. 518] so that
h is convex for |z| < 2 − √

3 (see the proof of Theorem 5(b)). The bound 2 − √
3 is

sharp for the function f1 = h1 + ḡ1 defined by (10) with ψ(z) = z/(1 − z) ∈ K.
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