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Abstract

Given a sense-preserving harmonic function f = h 4 g defined in the open unit disk,
the radius of convexity for the analytic part 4 is determined under various prescribed
conditions on the associated analytic function ¢y = h — g. Moreover, the radius of
starlikeness and convexity for the analytic part of harmonic Koebe function is also
computed. All the obtained results are sharp.
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1 Introduction

Let H denote the class of all complex-valued harmonic functions of the form f = h+g
defined in the open unit disk D := {z € C : |z| < 1} where & and g are analytic
functions in D (called analytic and co-analytic parts of f, respectively) and normalized
by the conditions 2(0) = A’ (0)—1 = g(0) = 0. Since the Jacobian of f = h+g € His
givenby J¢(z) = |h'(z) 12—1¢' ()%, by a theorem of Lewy [10], f is sense-preserving
in D if and only if |g’(z)] < |h'(z)| for all z € D, or equivalently, the dilatation
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wy : D — C defined by ws(z) = g'(z)/h’(z) is an analytic function satisfying
|lwyr(z)] < 1 forall z € D. In 1984, Clunie and Sheil-Small [5] initiated the study
of the class Sy C 'H consisting of sense-preserving univalent harmonic mappings.
Although many classical results of analytic univalent functions have been extended for
the class Sy and its geometric subclasses, there are still several conjectures regarding
the coefficient bounds and radius problems which are still unsettled. One of them is
the harmonic analogue of the Bieberbach Conjecture which was proposed by Clunie
and Sheil-Small [5] stating that the nth Taylor series coefficients of the analytic and
co-analytic part of a function f € Sy are bounded by (2n% + 1)/3. Moreover, the
exact radius of convexity of the class Sy is still unknown, the proposed radius being
3 — /8, given by Sheil-Small [19].

There has been an interplay between the sense-preserving harmonic mappings and
their analytic part. If a harmonic function f = 7 + g € Sy and f(D) is a convex
domain, then the analytic part # must be univalent in D by [5, Theorem 5.7, p. 15].
Similarly, if f = h+g € H is sense-preserving and & (D) is a convex domain, then f €
Su by [5, Theorem 5.17, p. 20]. Bshouty and Lyzzaik [3] proved that a sense-preserving
harmonic function f = h+g € H is necessarily univalent in I if the dilatation of f is
w f(z) = zand the analytic part & satisfies Re(1+zh" (z) /h'(z)) > —1/2forallz € D.
It is also worth to note that the univalence of a harmonic mapping does not imply the
univalence of its analytic part. For example, the harmonic Koebe function K = H +G
obtained by shearing of the analytic Koebe function k(z) = z/(1 — 2)% in the direction
of the real axis with dilatation z is univalent in D by [5, Theorem 5.3, p. 14], but the
analytic function H is not univalent in D as H (i~/3/v/5) = H(—i~/3/~/5), where H
and G are given by

1.2, 1.3
52"+ 52

- %zz + %13
(1-27% "

TS and G(z) =

ey

Similarly, the shearing of the analytic Koebe function & in the direction of real axis
with dilatation z> generates the univalent harmonic mapping W = U + V, where U
and V are given by

2413 1.3
=2+ 32 32

U(z) = 1_2° and V(z) = T —23

and U((\/§/2)e%) = U((«/§/2)e_%). In 1990, Sheil-Small [19] conjectured that if
a harmonic function f = h + g € Sy, then the radius of univalence for the analytic
part 4 is 1/+/3. For more details and problems in harmonic mappings, one may refer
to [2-8, 14, 15, 19].

Let 1" be a subfamily of  consisting of harmonic functions f = & + g which
are further normalized by g’(0) = 0. This paper discusses the problem of finding the
radius of convexity for the analytic part of sense-preserving harmonic functions in °.

The class 821 := Sy NHY is acompact normal family with respect to the topology of
locally uniform convergence. The classical family S of normalized analytic univalent
functions is a subfamily of 8% which includes the classes S* and C consisting of
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starlike and convex functions, respectively. The harmonic Koebe function K = H +G
given by (1) belongs to the class 821. Since it is expected to play the extremal role
for the class S%, the radius of starlikeness and convexity has been computed for the
analytic part H of the harmonic Koebe function K in Sect. 2. These radii constants
may be conjectured as the radius of starlikeness and convexity for the analytic part of
harmonic functions in the class S%.

Given a sense-preserving harmonic function f = h + g € H° and the dilatation
wy of f, the function ps : D — C defined by

I+wyr(z)

g GED @)

pr(2) =

is analytic in D with p;(0) = 1 and Re ps(z) > O forall z € D. Set ¢y := h — g.
Then, it is easy to see that

1
W(z) = 545}(2)(1 +pr(z)), zeD. (3)

There are several sufficient conditions on the analytic function ¢y under which the
function 4 is univalent, starlike or convex in ID. Let us consider three such instances.
Firstly, if ¢y is convex in ID, then (3) gives

Re @ —lRe(1+ () >0 (zeb)
¢ )] 2 Priz '

and therefore £ is close-to-convex and hence univalent in D by [6, Theorem 2.17, p.
47]. Secondly, if ¢ ¢ is of the form

¢;~(z)=/1@ds, LeD
o &

then £ is starlike in ID as in this case, z¢’f (z) = h(z) and (3) yields

() 1 |
Re( h(z) > - QRe(l +pr(@) >0 (zeh).

Thirdly, if ¢ r(z) = zh'(2), then (3) leads to

h’ 2
Re<1+Z (Z)> =Re<—> >0 (zeD)
h'(z) I+ pr@@)
which shows that % is convex in D. Under similar conditions imposed on the analytic
function ¢ ¢, Sect. 3 investigates the radius of convexity for the analytic part of the

sense-preserving harmonic function f € H°. We shall make use of the following
lemma which is a special case of [9, Theorem 3, p. 314].
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Lemma 1 [1, Lemma?2.4,p.4] Suppose that the function p is analyticinD. If p(0) = 1
and Re p(z) > O forall z € D, then

|z] . )
e( Zp/(Z) >> _1+|Z| l.f'ZI < 1/3’
+p@) | V2-Vi-[z»)?

g if1/3 <z < 1.

2 Analytic Part of Harmonic Koebe Function

In this section, we will determine the radius of convexity and starlikeness for the
analytic part H of the harmonic Koebe function K given by (1). Note that

H" 145z + 272
Re (14 @Y _pe (L3427
H'(z) 1—2z2

1

=—2+4Re —Re
1—z2 1+z
2 4 1
- _ _
I+1z] 11—z
1 —5|z] +2Jz?
= >0
1 —|z)?

for |z| < (5 — +/17)/4 ~ 0.219224. Also, as 1 + zH"”/H’ vanishes at z = (=5 +
/' 17)/4, it follows that (5 — +/17)/4 is the radius of convexity for H.
To determine the radius of starlikeness for H, observe that

H' 1
LI +z

R = e .
H(2) (1 —2)(6 =37+ z22)

If z = re'?, then a straightforward calculation yields

H'(z)
H(z)

1
8|1—z|2|6—3>z+z2|2Re p(r,u)

where u = cos 6 and
p(r,u) =6— 1372 + r* = 3ru + 7r3u + 8r2u? — 2r*u® — 4r3u3.

The problem now reduces to find the value of the parameter r for which the polynomial
p(r, u) is non-negative in the whole interval —1 < u < 1. It is easily seen that

por, 1) =1 =r)6+3r =27 +77) >0

and
pr,—1) = (1 =r)(6+9r +4r> +7r3) > 0.
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Also, further analysis shows that

3
S ) =r(=3+ 7r? + 16ru — 4r3u — 12r2u?),
u

and hence p(r, u) has a local minimum at ug = (4 — r2 — /7 + 13r2 + r#)/6r and
a local maximum at uf; = (4 — r> + /7 + 13r2 +r%)/6r. Thus, p(r,u) > 0 for
—1 <u < 1if and only if

1
p(r,ugp) = i(344—519r2+ 15r% =278 — (144267 +2r*)V/7 + 13r2 +14) > 0.

This inequality implies that r < r¢p ~ 0.691985, where ry is the smallest positive root
of the equation 8r8 + 41r° + 1280r* — 213172 + 722 = 0. Therefore, H is starlike
for |z| < ro.

3 Radius of Convexity

Let f = h+ g € H° be a sense-preserving harmonic function and ¢ s =h—g.Using
the condition (3), it is easy to see that

() @) (D)

1 + —_— / ’
h'(z) Pp@  1+pr@

“)

where p is defined by (2). The inequality (4) will be used to determine the radius of
convexity of the analytic function 4 throughout this section. The first theorem discusses
the case when ¢ ¢ is univalent in ID. Let us recall the concept of subordination. Given
two analytic functions f and g in D, we say that f is subordinate to g, written as
f < g, if there exists a Schwartz function 7 that is analytic in D with t(0) = 0 and
|T(z)] < 1 satisfying f(z) = g(t(z)) forall z € D.

Theorem 2 Let f = h + g € H° be sense-preserving in D and ¢or=h—g

@) If s € S, then h is convex for |z] < (5 — +/17)/4 ~ 0.219224.

(b) If ¢y € S and the analytic function p y given by (2) satisfies pr(z) < 1 +z in D,
then h is convex for |z| < (5 — v/13)/6 ~ 0.232408.

(c) IfRe ¢} (z) > 0in D, then h is convex for |z| < 1/3.

All the bounds are sharp.

Proof (a) If |z| < 1/3, then by making use of Lemma 1 in (4), it follows that

20" (2) @@\
Re (1—}— @) > > Re (1—|— ¢}-(Z) et 5)
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Since ¢y € S, therefore [6, Theorem 4.2, p. 32] gives

29’4 (2) 2_4 1
Re[1+ L") > 2 |Z|2+ . (6)
¢ (2) 1 —z]
so that (5) becomes
n" 2_4 1 2z|? =5 1
Re (1 i (z)> . Il |z|2+ N Izyr -0
h(z) 1 — |z 1+ |z 1 —|z]

provided |z| < (5 — +/17)/4 < 1/3. The result is sharp for the harmonic Koebe
function defined by (1).

(b) As pr(z) < 1+ z, there exists an analytic function 7 : D — ID with 7(0) =0
such that pr(z) = 1+ t(z) for all z € D. Thus, (4) simplifies to

(@) W@ (o)
W@ o @ 2+T@

By Dieudonne’s Lemma [6, p. 198], the function t satisfies |t'(z)| < 1 for |z] <
V2 — 1. Also, |1(2)| < |z] for all z € ID. These observations together with (6) lead to

" 2_4 1 !
Re (1 L (Z)) LAl 41 2if@)

" (z2) 1—|z)2 2+ 7(2)|
2|2 — 4]z + 1 |zl
> —
1—1zI? 2 —|z|

_ 20051z + 31
@ = lzh@ =1z

if |z] < (5 —+/13)/6 < +/2 — 1. This shows that & is convex for |z| < (5 — v/13)/6.
In order to show that the bound is sharp, consider the function fy = ho 4+ go where

32+ 1 a2

ho(z) = e ~5 log(1 —z) and go(z) = a-27 Elog(l —2).

The dilatation of fy is w s, (z) = z/(2 + z) which satisfies |w 7, (z)| < 1 for all z € D.
Therefore, fp is sense-preserving in ID. Also, ho(z) — go(z) = z/(1 —z)*> € S and
Pfy(2) = 1+ z. Since the quantity

thi(z) 2+ 10z + 627
hy(z) — 24z-222-273

vanishes at z = (—5 + +/13)/6, therefore the radius is sharp.

@ Springer



Radius of Convexity for Analytic Part of Sense-Preserving... 2671

(c) AsRe ¢>}- (z) > O for all z € D, therefore [11, Theorem 2, p. 533] gives

29’4 (2) 1 -2z — |22
Re (14 o025 L= 2= el )
¢f(Z) 1 — |z
Using this estimate in (5), we have
n" 1 —2|z] — |z)? 1-3
Re <1+ Z (z)> . K 2IZI B Izzl -
h'(z) 1 —z| L+1z[ 11—z

as |z] < 1/3. For sharpness, we consider the harmonic function fo = hg + go where
ho and go are given by

37 — 22
e + 3log(l — z). )

2
ho(z) = l—zz+log(1 —2) and g(z) =

Clearly fj is sense-preserving in D as wg,(z) = z and ¢ £, (z) = ho(2) — go(z) =
—z — 2log(1 — z) satisfies Re d)}o (z) > Oforall z € D. Also

tho(z) 143z
hy(z) — 1—22

atz = —1/3. O

Let us give an application of Theorem 2. If f = h + g € H" is sense-preserving,
¢s =h—gand ¢ € K such that

29’4 (2) B
Y (2)

1l <1

for all z € ID, then ¢ ¢ satisfies the inequality (7) by [13, Theorem 4, p. 524]. Conse-
quently, the proof of Theorem 2(c) shows that & is convex for |z| < 1/3. This bound
is sharp for the function fy = hg + go given by (8), as |z¢}o @/v@)—-1=lzl <1
for all z € D, where ¥ (z) = z/(1 — z) € K.

The next theorem computes the radius of convexity for the analytic part when ¢
satisfies Re(¢} /¥’ > 0in D for some function ¢ € S satisfying certain conditions.
The class («), 0 < o < 1, consisting of analytic functions f satisfying Re(1 +
2f"(2)/ f'(z)) > « for z € D, is a subclass of K.

Theorem 3 Let f = h + g € H° be sense-preserving in D and ¢r =h — g. Further
suppose that ¥ (z) = z + arz*> + - - - is analytic in D and satisfies

P (2)
V'(2)

Re >0

forall z € D.
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(@) If ¥ € S, then h is convex for |z] < (T — +/41)/4 ~ 0.149219.
(b) IfRe’(z) > O forall z € D, then h is convex for |z| < 1/5.
©) Ify € K(a) (0 < < 1), then h is convex for |z| < ry, where

5 2a— 402 — 12 + 17
fo = 41 — ) '

All the radii are sharp.
Proof (a) Since ¥ € S and Re(¢/f/1/f’) > 0 in D, by [16, Theorem 1, p. 32], ¢¢

satisfies
29’ (2) 1-6 2
Re |1+ ,f > 12l +2|Z| .
@) [— [

In view of the above inequality, (5) takes the form:

>0

n’ 1—-6 2 1-7 2|z[?
Re (1+z (z)) . |z|+2|z| Il _ |Z|+2|Z|
1 (z) 1—|z| 1+ |z 1 —z|

provided |z| < (7 — +/41)/4 < 1/3. The harmonic function f; = h| + g1, where h;
and g are given by

12,23_1.4 1.2, 13,14
2= 327 +32 — g2 5327+ 327+ 52

ne=—+"0 and g1 = 2

shows that the result is best possible. In fact, the dilatation of f7 is wy, (z) = z and

1.3
2+ 3z

¢f1 (@) =hi(2) — g1 = m

satisfies Re(qﬁ}l /¥") > 0in D, where ¥ (z) = z/(1 — 2)* € S. Moreover,

thi(@)  1+7z+222

1+ =
) (z) 1 —z?

=0

atz = (=7 4+ +41)/4.
(b) Under the given hypothesis, [16, Theorem 2, p. 32] gives

Re 1+Z¢,;£(Z) 21_4|Z|_|Z|2
¢’ (2) 1 —|z]?

and hence from (5), it follows that if |z| < 1/3, then

zh”(z)>>1—4|z|—|z|2 sl 1=l

Re( 1+ — = >
( h'(2) 1—|z)? I+z]  1—]z|?
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for |z] < 1/5. For sharpness, note that the function f> = hs + g» defined as:

272 —57 487273
hy(z) = ——— —log(l —z) and g (z) = -2

— S1oo(] —
i 5log(1 —z)

is sense-preserving in I as w , (z) = z. The function

57 — 22
+ 4log(1 —z)
-z

b5 () =ha(2) — g2(2) =

satisfiesRe(¢;, /¥') > 0inD, where ¥/ (z) = —z—2log(1—z) € SwithRe ¥/'(z) > 0
for all z € D. For z = —1/5, the expression 1 + zh5(z)/h5(z) = (1 + 52)/(1 — 22)
equals 0.

(c) Under the hypothesis of the theorem, by [16, Theorem 6, p. 35], the function
¢ s satisfies

R 1+z¢/}(z) 21—(4—2oc)|z|—2(205—1)|2|2.
9@ (=il

Consequently, for |z| < 1/3, (5) gives

Re (1 N zh”(z)) 1= @20z~ Qo — Dz |z]

W) )~ 1 — |z C1+7]
1—(5=2a)z]+2(1 —a)lz|?
= > 0
1—|z|2

for |z] < rg := (5 —2a — V4a? — 120 + 17)/(4(1 — )). Note that r, < 1/3. The
sharpness of the result is achieved by taking the harmonic function f, = hy + go
where h, and g, are given by

Qo —1)—(1-2%3(Qax— 1)+ 2 — 3)z)
hy(z) = . 2(1 —a)(3 — 2a)

(1-2?%

s #E1/2
a=1/2

and

—(142a) + (1 — 2)?73((1 + 20) + 3 — 20)(2(1 — &)z — (1 4 2a)2)) 21/
20— a)(3 — 2a)(1 — 2a) e ’
— log(1 — 2), a=1/2.

ga(z) = Z(ZZ _ 1)
(1—-2)?
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The dilatation of f is w s, (z) = z and the function

(1= -a)yz—a)+a

o #1/2;
070 =ha@) = ga@) =1 ,, (=@ =20
1—_Z+10g(1_Z), Ol:1/2
satisfies Re(qb}a /¥’ > 0in D where
1—(1—z)%*! ,
V(z) = —ZOl—l aa#1/27
—log(1 — z), a=1/2
belongs to the class [C(a). Also
- zh!(2) _ 1+ (- 2mz 4201 - o)z?
hl,(2) 1—z2
vanishes at the point z = —ry. O

The following theorem discusses the case when ¢ ¢ satisfies either Re(¢ r(z)/z) > 0
or |2¢(2)/¢f(z) — 1| < 1inD.

Theorem4 Let f = h + g € HO be sense-preserving in D and ¢or=h-—g
(a) If the function ¢y satisfies

Re <—¢f(z)> > 0,
Z

forall z € D, then h is convex for |z] < /10 — 3 ~ 0.162278.
(b) If the function ¢ s satisfies

29’4 (2) B
o7 (2)

1‘<1,

then h is convex for |z| < rog where ro =~ 0.311108 is the smallest positive root of
the equation P —r2—3r4+1=0in(0,1).

Both the radii are sharp.

Proof For part (a), [18, Theorem, p. 2] gives

294 (2) 1 =5z = 3]z — |z
Re | 1 : V2-1.
e( BRE) ) S Ar RN -2 - S
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For |z| < 1/3, the above inequality and (5) holds so that

h" 1—5|z] —3[z> — |z 2 +6[z]— 1
Re<1+z (Z)>> lz| —3]z]” — |z| lz| |zl +6lz|

= — = >
h(z) I+ 1zDA =2zl = [z T+lzl 2P +3)z2 + 2] = 1

if |z] < +/10 — 3. For sharpness, let us take the harmonic function fo = hg+ go where
ho and g are given by
27 — 72 -2+ 72
h = — +log(l — d = ———— +1log(l —2).
0(2) T og(l —2z) and go(z) 22 T og(l —2)

Note that fj is sense-preserving as the dilatation w 7, (z) = z and the function ¢ 7, (z) =
ho(z) — go(z) = z(1 + 2)/(1 — z) satisfies Re(¢ s, (z)/z) > 0 for all z € D. Also, at
z=3-410,

thi(z)  —z2+6z+1
hy(z) 23 —322+z+1

For part (b), by invoking the result of [20, Theorem, p. 230], we have

Re L+¢%D o L3kl 1P
¢ (2) 1=z

By using (5), it follows that

>0

h" 1-3 2 1 -3z — |z* + Iz
Re<1~|—z (z))> |z + |z] lz| |z| — |z]° + Iz

Wz )T 11—zl 141z 1—|z|?

provided |z| < ro where r( is the smallest positive root 9f the equation 1 —3r 243 =
0. If we consider the harmonic function Fy = Hy + G with

Hy(z) — Go(z) = ¢r,(z) = z¢* and Gg(z) = zH)(2),

then ¢, satisfies |z¢%0 (2)/9Fy(z) — 1] < 1forall z € Dand

tHY(z)  1+3z—22—2°

1+ =
Hy(2) 1—2z?

vanishes at 7 = —ry. O
In the last theorem of this section, the radius of convexity of the analytic part

of the harmonic function f is determined when the associated function ¢ satisfies
|¢} /¥’ — 1] < 1 in D for a function ¥ belonging to the class S or its subclasses.
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Theorem 5 Let f = h+ g € H be sense-preserving in D. Suppose that ¢or=h—g
and ¥ (z) =z + arz> +--- is analytic in D and satisfies

P4 (2)
v'(2)

-1 <1

forall z € D.

(@) If ¥ €S, then h is convex for |z] < 3 — 242 ~ 0.171573.
(b) If Y € K, then h is convex for |z| <2 — V3 2 0.267949.
(©) IfRey'(z) > O for all z € D, then h is convex for |z| < V5 — 22 0.236068.

All the bounds are best possible.

Proof (a) By [17, Theorem 1, p. 484], we have

Re1+zﬁﬁa > 1=k
$@ ) T 1-1zP

so that (5) gives

>0

n 1-5 1-6 2
Re(1+z (z)>> |z lzZ] |z + Izl

W@ )= 1=1z22 1+l 1—zP
for |z| < 3 — 2+/2 < 1/3. The harmonic function f; = h| + | given by

1.3 2,1.3
2+ 32 7—272°4 %z

L and i) = S
(I—-2) 1-2)

hi(z) = +log(1 —2)

verifies that the bound is best possible. The dilatation of f} is wy (z) = z and the
function

2

¢5 () = 5 —log(l —2)

2z
(1—-2)
satisfies the hypothesis of the theorem, with ¥ (z) = z/(1 — 2)? € S. Also, 1 +
h(2)/h(2) = (1 +62+2%)/(1 —z%) =0atz = —3 + 2V2.

(b) Under the given hypothesis, the function ¢ ; satisfies

294 (2) 1-3
Re(1+ 202 5 123K ©)
¢ (2) 1 -z
by [17, Theorem 3, p. 486]. The result now follows by making use of (5) which yields
n’ 1-3 1—4 2
Re (1 42 (z)) > |Z2| = 4 +2|Z| -0
W (2) 1—|z| 1+ |z 1—|z|
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for |z] <2 — /3. If we consider the harmonic function f>» = hy + g> where hy and
g» are given by

—z+27°
and g2(z) = e log(1 — z) (10)

hy(z) =
2@ (1—2)?

%
(1—2)?

then f> is sense-preserving in ID with dilatation w f, (z) = z and

2z
05 (2) =ha(2) — g2(2) = T—2 +log(1l — z).
Also, |¢}2(z)/1ﬂ/(z) — 1] = |z] < 1 where ¥ (z) = z/(1 — z) € K and the analytic
part of f, satisfies
thy(z)  1+4z+ 2
hy(z) 11—z

which assumes the value Q at z = —2 + \/5
(c) Under the given hypothesis, ¢ 7 satisfies the inequality

27\ 1 -3z — 2|z
Re<1+ / )> 2l = 2lz]

$,@ )= 1P

by [17, Theorem 4, p. 486]. Hence, by (5), we have

n 1—3Jz] — 2|z 1—4)z] — |z)?
Re<l+z (z))> |z| — 2]z lzZ| 2l —Lz”

e )T 1—1z2 1+1z 11—z

for |z| < +/5 —2 < 1/3. To verify the sharpness, consider the harmonic function
f3 = h3 + g3 given by

1.3

2 z
2~ 4+ 8log(l — 2).

z
+4log(l —z) and g3(z) =
-z 1—-z

7.2
SZ—QZ -

h3(z) =

As wp(z) = z, f3 is sense-preserving in ID and the function

2
$(2) = h3(2) — g3(z) = =3z — % — 4log(l — 2)

satisfies |<1)}3 (2)/¥'(z) — 1] < 1 with ¥ (z) = —z — 2log(l — z). Also, Re ¢y’ > 0 in
D and

zZh5(z 1+4z 22
14950 _ Lk 0.
h3(2) |,_ 5,5 l—z =—24++/5
This completes the proof of the theorem. O
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As an application, if f = h+ g € H" is sense-preserving with ¢ r=h—g ek
and
9 (2)
¥ (z)

>

for all z € D, then ¢ satisfies the condition (9) by [12, Theorem 4, p. 518] so that
h is convex for |z| < 2 — /3 (see the proof of Theorem 5(b)). The bound 2 — V3is
sharp for the function f; = 4 + g; defined by (10) with ¥ (z) = z/(1 — z) € K.
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