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Abstract
Given a graph G, the general position problem is to find a largest set S of vertices of
G such that no three vertices of S lie on a common geodesic. Such a set is called a
gp-set of G, and its cardinality is the gp-number , gp(G), of G. In this paper, the edge
general position problem is introduced as the edge analogue of the general position
problem.The edge general position number, gpe(G), is the size of a largest edge general
position set of G. For r -dimensional hypercube Qr , it is proved that gpe(Qr ) = 2r ,
and for arbitrary tree T , it is shown that gpe(T ) is the number of its leaves. The value
of gpe(Pr � Ps) is determined for every r , s ≥ 2. To derive these results, the theory
of partial cubes is used. Mulder’s meta-conjecture on median graphs is also discussed
along the way.
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1 Introduction

The geometric concept of points in general position, the still open Dudeney’s no-
three-in-line problem [6] from 1917 (see also [18, 22]), and the general position subset
selection problem [8, 28] from discrete geometry all motivated the introduction of a
related concept in graph theory as follows [19]. Let G = (V (G), E(G)) be a graph.
Then, the objective of the general position problem is to find a largest set of vertices
S ⊆ V (G), called a gp-set of G, such that no vertex of S lies on a geodesic between
two other vertices of S. The general position number (gp-number for short), gp(G),
of G is the cardinality of a gp-set of G. We point out that a couple of years earlier and
in different terminology, the graph theory general position problem was considered in
[32] and that in the special case of hypercubes the problem was much earlier studied
by Körner [17].

Following the above listed seminal papers, the general position problem has been
extensively investigated [1, 9, 13, 15, 16, 20, 25, 27, 29–31]. Let us emphasize some
selected results. From [19], we recall that the general position problem isNP-complete,
and that in a block graph, the set of all simplicial vertices forms a gp-set. In [1], it
is proved that S ⊆ V (G) is a general position set if and only if the components
of the subgraph induced by S are complete subgraphs, the vertices of which form
an in-transitive, distance constant partition of S. In the same paper, a formula for
the gp-number of the complement of a bipartite graph is deduced and simplified for
the complements of trees, of grids, and of hypercubes. In [16], the general position
problem has been studied on different product graphs and connected with strong
resolving graphs. It should be added that the concept of the general position set has
been recently [14] extended to d-general position sets.

The main topic of interest related to the general position problem thought was the
Cartesian product operation. Let us denote by Xn the Cartesian product of n factors
each isomorphic to X , and let P∞ be the two-way infinite path. One of the main
results from [19] asserts that gp(P2∞) = 4. In the same paper, it was also proved that
10 ≤ gp(P3∞) ≤ 16. The lower bound 10 was improved to 14 in [13]. These efforts

culminated in [15] where it is proved that if n ∈ N, then gp(Pn∞) = 22
n−1

. The general
position problem in Cartesian products has been further investigated in [13, 30, 31].
In particular, it was proved in [30] that gp(G � H) ≤ n(G) + n(H) − 2, where the
equality holds if and only ifG and H are both generalized complete graphs.Moreover,
the main result of [31] asserts that the general position number is additive on Cartesian
products of trees.

In this paper, the edge version of the graph theory general position problem is
introduced. A set S of edges of graph G is said to be an edge general position set if no
geodesic of G contains three edges of S. An edge general position set of maximum
cardinality is called a gpe-set of the graph. An edge general position problem is to
find a gpe-set. The cardinality of a maximum edge general position set is called the
edge general position number (in short gpe-number) of G, to be denoted by gpe(G).
Our results indicate that the edge general position problem is a concept that deserves
to be investigated; in particular, it is intrinsically different from the general position
problem.
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We proceed as follows. In the next section, we give further definitions needed and
prove some preliminary results. In Sect. 3, we first prove that gpe(Qr ) = 2r . This is
in contrast with the fact that determining gp(Qr ) appears to be very difficult [17]. We
also prove that the leaves of a tree form an gpe-set of it. These two results are then
used to discuss Mulder’s meta-conjecture on median graphs. In Sect. 4, we determine
gpe(Pr � Ps) for all r , s ≥ 2. Here the distinct difference between the vertex and the
edge version of the general position problem is that the edge general position number
of the n × n grid is proportional to n, whereas the general position number of the
n × n grid remains constant even when n tends to infinity. Moreover, we prove that
the gpe-set of Pr � Ps is unique as soon as r , s ≥ 5, another striking difference with
the vertex version.

2 Preliminaries

In this section, we first state further concepts and the notation needed. We continue
with some preliminary and auxiliary results.

Unless stated otherwise, graphs considered in this paper are connected. Let G =
(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). Its order and size
will be, respectively, denoted by n(G) andm(G). Let Pn denote the path on n vertices
and Cn the cycle on n vertices. The distance dG(u, v) between vertices u and v of
G is the number of edges on a shortest u, v-path. Shortest paths are also known as
isometric paths or geodesics. The diameter diam(G) of G is the maximum distance
between u and v ofG. A subgraph H of a graphG is isometric if dH (x, y) = dG(x, y)
holds for every pair of vertices x, y of H . A pendant vertex of a graph is a vertex of
degree one, the edge incident to it is a pendant edge.

The Cartesian product G � H of graphs G and H is defined on the vertex set
V (G � H) = V (G) × V (H); vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈
E(G) and h = h′, or g = g′ and hh′ ∈ E(H). If h ∈ V (H), then the subgraph of
G � H induced by the vertices (g, h), g ∈ V (G), is a G-layer and is denoted by Gh .
Analogously, if g ∈ V (G), then the H -layer gH is the subgraph of G � H induced
by the vertices (g, h), h ∈ V (H). G-layers and H -layers are isomorphic to G and to
H , respectively.

The r -dimensional hypercube Qr , r ≥ 1, is a graph with V (Qr ) = {0, 1}r , and
there is an edge between two vertices if and only if they differ in exactly one coordinate.
That is, if x = (x1, . . . , xr ) and y = (y1, . . . , yr ) are vertices of Qr , then xy ∈ E(Qr )

if and only if there exists j ∈ [r ] such that x j �= y j and xi = yi for every i �= j .
Note that n(Qr ) = 2r and m(Qr ) = r2r−1. Note also that Qr = Qr−1 � K2 holds
for r ≥ 2.

If diam(G) = 2, then a geodesic of G contains at most two edges. Hence, we have
the following observation.

Lemma 2.1 If diam(G) = 2, then gpe(G) = m(G).

Lemma 2.1 in particular implies that gpe(Kn) = (n
2

)
and that gpe(Cn) = n for

3 ≤ n ≤ 5. If n ≥ 6, then it is easy to observe that gpe(Cn) = 4.
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An isometric path edge cover of a graph G is a collection P of isometric paths of
G such that each edge of G lies on at least one of the paths from P . The cardinality
of a smallest isometric path edge cover is the isometric path edge number of G and
denoted by ipe(G). The following observation will turn out to be very useful; hence,
we state it as a lemma for further use.

Lemma 2.2 If G is a connected graph, then gpe(G) ≤ 2 · ipe(G).

Proof Let P be an isometric path edge cover of G, where |P| = ipe(G). Since paths
from P are isometric, each of them contains at most two edges from an arbitrary edge
general position set, hence the conclusion. 	


3 Hypercubes, Trees, andMulder’s Meta-Conjecture

A graph G is a partial cube if G is an isometric subgraph of some hypercube. Partial
cubes have application in many different areas ranging from interconnection networks
[10], media theory [7], till mathematical chemistry, the papers [2, 4] are just a selection
of many papers on the latter applications. For recent developments on the theory of
partial cubes, we refer to [3, 21, 23, 26] and references therein.

A key tool in the investigation of partial cubes is the Djoković–Winkler relation
� [5, 33] defined as follows. Edges xy and uv of a graph G are in relation � if
dG(x, u) + dG(y, v) �= dG(x, v) + dG(y, u). Winkler [33] proved that a connected
graph G is a partial cube if and only if G is bipartite and � is transitive. As � is
reflexive and symmetric and the edge set of an arbitrary graph, it partitions the edge
set of a partial cube into �-classes.

Lemma 3.1 Let G be a partial cube, and let F1 and F2 be �-classes of G. Then,
F1 ∪ F2 is an edge general position set of G.

Proof It is well known that if P is a shortest path in a graph G, then no two edges
of P are in relation �, cf. [11, Lemma 11.1]. Let e, f , g ∈ F1 ∪ F2. Suppose first
that e, f , g ∈ F1. Then, no two of these edges lie on a common geodesic. The case
e, f , g ∈ F2 is analogous. Suppose second that, without loss of generality, e, f ∈ F1
and g ∈ F2. But then e and f are not on a common geodesic. In any case, e, f , and g
are not on a common geodesic. 	


As a small example consider the partial cube G from Fig. 1. Since the partial cube
has two �-classes each containing four edges (marked on the figure), Lemma 3.1
implies that gpe(G) ≥ 8. On the other hand, it is not difficult to find an isometric path
edge cover of G consisting of four geodesics, hence gpe(G) ≤ 8 by Lemma 2.2. We
conclude that gpe(G) = 8.

Theorem 3.2 If r ≥ 2, then gpe(Qr ) = 2r .

Proof It is well known that hypercubes are partial cubes. Moreover, a �-class of a
hypercube is formed by the edges whose endpoints differ in the same, fixed coordinate.
Hence, Qr has r �-classes, each containing 2r−1 edges. Lemma 3.1 thus implies that
gpe(Qr ) ≥ 2r .
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Fig. 1 A partial cube G

Fig. 2 Covering Q3 with four
shortest path. The paths are
further oriented such that the
endpoints of the paths form one
of the bipartition sets

To prove the reverse inequality, we claim the following: if r ≥ 2, then there exists an
isometric path edge coverPr of Qr , where the paths fromPr can be oriented such that
the endpoints of the paths form one of the bipartition sets of Qr . It is straightforward
to check that the claim holds for r = 2, see the left-hand side of Fig. 2 where the
circled Q2 is covered with two 2-paths. These two paths end in the two gray vertices
which form a bipartition set of this Q2.

Let now P ′
r be an isometric path edge cover of Qr , r ≥ 2, together with the

orientation of the paths such that the endpoints of the paths form one of the bipartition
sets of Qr . Let further P ′′

r be an isometric edge path cover of Qr , where the paths
from P ′′

r are orientated such that the endpoints of the paths form the other bipartition
set of Qr . The existence of P ′

r will be guaranteed by the induction, while P ′′
r can

be constructed from P ′
r by applying the automorphism of Qr which assigns to each

vertex u the vertex u + 00 . . . 01, where + stands for the component-wise summation
modulo 2. (See the right-hand side of Fig. 2, where P ′′

2 is shown with the endpoints of
its two shortest paths drawn gray again.) Consider now Qr+1 as the Cartesian product
Qr � K2 with layers Q1

r and Q
2
r , and respective isometric path edge coversP ′

r andP ′′
r .

Then, extend each path from P ′
r by the edge from its endpoint in Q1

r to its (unique)
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neighbor in Q2
r and orient the new edge in this direction. Note that the new path

is a shortest path of Qr+1. Similarly, extend each path from P ′′
r by the edge from its

endpoint in Q2
r to its (unique) neighbor in Q1

r and orient the new edge in this direction.
Note that the ends of the paths obtained by extending paths from P ′

r together with the
ends of the paths obtained by extending paths from P ′′

r form a bipartition set of Qr+1.
(See Fig. 2 again for these extensions and note that their ends form the bipartition set
of Q3 drawn white.) This proves the claim.

It follows from the above proved claim that Qr admits an isometric path edge cover
Pr together with an orientation which reveals that |Pr | is the size of a bipartition set
of Qr , that is, |Pr | = 2r−1. By Lemma 2.2, we conclude that gpe(Qr ) ≤ 2r . 	


Another fundamental class of partial cubes is the class of trees for which we have
the following.

Theorem 3.3 If L is the set of pendant edges of a tree T , then gpe(T ) = |L|.

Proof We first prove that gpe(T ) ≤ |L|. Let S be an edge general position set of T and
suppose that a non-pendant edge, say e, belongs to S. Let T1 and T2 be the components
of T − e. Then, E(T1) ∩ S = ∅ or E(T2) ∩ S = ∅. Indeed, if there would be edges
e′ ∈ E(T1)∩S and e′′ ∈ E(T2)∩S, then the edges e, e′, and e′′ would lie on a common
geodesic. We may thus without loss of generality assume that E(T2) ∩ S = ∅. Let f
be a pendant edge of T2 that is at largest possible distance from e. (Here an arbitrary
pendant edge of T2 would actually do the job, except maybe a pendant edge adjacent
to e.) Then, it is straightforward to see that (S \ {e}) ∪ { f } is an edge general position
set of T . Inductively continuing this process, we end up with an edge general position
set of T which contains only pendant edges and has the same cardinality as S. We
conclude that gpe(T ) ≤ |L|.

To see that gpe(T ) ≥ |L| holds, observe that the set of pendant edges of a tree form
an edge general position set because a geodesic of T can pass through at most two
pendant edges. 	


Trees andhypercubes are fundamental buildingblocks of the class ofmediangraphs,
cf. [12], which is in turn (probably) the most important subclass of partial cubes. In
1990, Mulder proposed the following meta-conjecture: Any (sensible) property that is
shared by trees and hypercubes is shared by all median graphs, see [24]. Theorems 3.2
and 3.3 do not share some obvious common property, that is, for hypercubes gpe-sets
constructed are the union of two �-classes, while for trees their gpe-sets are the sets
of their leaves. Hence, it is yet to be seen whether Mulder’s meta-conjecture applies
to the edge general position number of median graphs. We will further comment on
this at the end of the next section.

4 Grid Networks

In this section, we determine the gpe-number of Cartesian products of two paths,
known also as grid networks. We will always assume that V (Pr ) = [r ] = {1, . . . , r}.
The Pr -layers of Pr � Ps are thus denoted by Pi

r , i ∈ [s], and the Ps-layers by jPs ,
j ∈ [r ]. An edge e = uv of Pr � Ps is called a boundary edge if {d(u), d(v)} = {2, 3}
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Fig. 3 Part of an isometric path
edge cover of P10 � P7

or {d(u), d(v)} = {3}, it is a semi-boundary edge if {d(u), d(v)} = {3, 4}, otherwise
e is an internal edge; that is, e is internal if {d(u), d(v)} = {4}.

The main result of this section reads as follows. By the commutativity of the Carte-
sian product operation, the result covers all non-trivial grid networks, that is, we may
without loss of generality assume that r ≥ s.

Theorem 4.1 If r ≥ s ≥ 2, then

gpe(Pr � Ps) =

⎧
⎪⎨

⎪⎩

r + 2; s = 2,

2r; s = 3,

2r + 2s − 8; s ≥ 4 .

Proof Suppose first that s ≥ 6. Construct an isometric path edge cover of Pr � Ps
as follows. Select first four paths that cover all the edges from the Ps-layers 2Ps , 3Ps ,
r−2Ps , r−1Ps , as well as all the edges from the Pr -layers P1

r and Ps
r . See Fig. 3 where

such four paths are drawn for the case r = 10 and s = 7.

By symmetry, select additional four paths that cover all the edges from the Pr -layers
P2
r , P

3
r , P

s−2
r , Ps−1

r , as well as all the edges from the Ps-layers 1Ps and r Ps . Note
that the eight paths selected so far cover all the edges from six Pr -layers and all the
edges from six Ps-layers. Hence, we may easily complete the path edge cover by
adding r − 6 paths that cover the edges not yet covered in the Ps-layers and s − 6
paths that cover the edges not yet covered in the Pr -layers. The constructed path edge
cover contains 8 + (r − 6) + (s − 6) = r + s − 4 paths. Lemma 2.2 implies that
gpe(Pr � Ps) ≤ 2r + 2s − 8. On the other hand, the set of the semi-boundary edges
of Pr � Ps is an edge general position set of cardinality 2r +2s−8. We conclude that
it is a gpe-set, that is, gpe(Pr � Ps) = 2r + 2s − 8 when r ≥ s ≥ 6.

Suppose next that s = 5. Let F be an arbitrary edge general position set of Pr � P5
and distinguish two cases.

Case 1. |F ∩ E(i P5)| ≤ 1 for each i ∈ [r ].
Suppose first that |F ∩ E(

⋃
i
i P5)| = r − x , where x ≥ 3. This means that there

are exactly x Ps-layers with no edges from F and r − x Ps-layers with exactly one
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edge from F . Since every of the five Pr -layers contains at most two edges from F , it
follows that |F | ≤ (r − x) + 10. We wish to show that (r − x) + 10 ≤ 2r + 2 which
is equivalent that r + x ≥ 8 holds. Since r ≥ 5 and x ≥ 3, this is indeed the case.

Suppose second that |F∩E(
⋃

i
i P5)| = r−x , where x ∈ {0, 1, 2}. If each Pr -layer

contains at most one edge from F , then |F | ≤ (r − x) + 5. We wish to show that
r − x + 5 ≤ 2r + 2, which is equivalent to r + x ≥ 3, the latter being clearly true.
Hence, suppose that at least one Pr -layer shares two edges with F . In this case, we
claim that there are at least two P5-layers that have no edge in F . To demonstrate this
claim, suppose that the edges e = (i, j)(i + 1, j) and e′ = (i ′, j)(i ′ + 1, j) lie in F
for some j ∈ [5]. We may without loss of generality assume that i < i ′. Then, no
edge f from the layer i P5 lies in F because f lies on a common shortest path with e
and e′. From the same reason, no edge from the layer i

′+1P5 lies in F . It follows that
|F | ≤ (r −2)+10 and we wish that (r −2)+10 ≤ 2r +2, that is, r ≥ 6. This settles
Case 1 in all possibilities except when r = 5.

It remains to consider P5 � P5. The theorem asserts that gpe(P5 � P5) = 12. The
12 semi-boundary edges imply that gpe(P5 � P5) ≥ 12. Here it remains to prove that
gpe(P5 � P5) ≤ 12 under the assumption of Case 1. This is clearly the case if each
Pr = P5-layer contains at most one edge from F . Hence, assume that some Pr = P5-
layer contains two edges from F . Then, we see similarly as above that the Ps-layers
(s = 5 of course) contain at most 3 edges from F . Hence, the only possibility to get
more than 13 edges in F is that each Pr = P5-layer contains exactly two edges from
F . In this case, we claim that these 10 edges must project to exactly two edges of the
Pr = P5 factor. Suppose on the contrary that there exist edges e = (i, j)(i + 1, j),
e′ = (i ′, j ′)(i ′ + 1, j ′), and e′′ = (i ′′, j ′′)(i ′′ + 1, j ′′) from F such that i < i ′ < i ′′,
that is, such that they project to three edges of Pr = P5. If j ≤ j ′ ≤ j ′′ or j ≥ j ′ ≥ j ′′,
then e, e′, e′′ lie on a common geodesic, which is not possible. So assume without loss
of generality that j < j ′′ < j ′. Consider now the second edge from the layer in which
e′ lies, let it be f = (k, j ′)(k + 1, j ′). If k < i ′, then f , e′, and e′′ lie on a common
geodesic. And if k > i ′, then f , e′ and e lie on a common geodesic. In any case, we
have a contradiction which proves that the 10 edges project to exactly two edges of
the Pr = P5 factor. But then it is clear that there are no more edges in F .

Case 2. There exists an i ∈ [r ] such that |F ∩ E(i P5)| = 2.
Suppose first that this i is unique. Since this P5-layer has two edges from F , we see
that at least two of the Pr -layers have no edges in F . Since the other have at most two
such edges, we conclude that |F | ≤ 2+ (r − 1)+ 3 · 2 holds in this subcase. We wish
to show that 2 + (r − 1) + 6 ≤ 2r + 2, which is equivalent to r ≥ 5. So we are done
in this subcase.

Suppose second that there are at least two P5-layers with exactly two edges from F .
Then, we infer again that the projection of these edges on the factor P5 contain exactly
two edges. But then we easily obtain that in each case |F | ≤ 2r + 2. For instance,
if each of the P5 layers contains exactly two edges from F , then actually none of the
edges from the Pr -layers lie in F . This settles Case 2, and hence, the theorem is proved
for the case s = 5.

Suppose next that s = 4, that is, Ps = P4. Let F be an arbitrary edge general
position set of Pr � P4.
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Case 1. |F ∩ E(i P4)| ≤ 1 for each i ∈ [r ].
Suppose first that |F ∩ E(

⋃
i
i P4)| = r − x where x ≥ 4. This means that there are

exactly x Ps-layers with no edges from F . Since each of the four Pr -layers contains
at most two edges from F , it follows that |F | ≤ (r − x) + 8. We wish to show that
(r − x) + 8 ≤ 2r which is equivalent to r + x ≥ 8. Since r ≥ 4 and x ≥ 4, this is
indeed the case.

Suppose second that |F ∩ E(
⋃

i
i P4)| = r − x where x ∈ {0, 1, 2, 3}. If each

Pr -layer contains at most one edge from F , then |F | ≤ (r − x) + 4. We wish to
show that r − x + 4 ≤ 2r which is equivalent to r + x ≥ 4, the latter being clearly
true. Hence, suppose that at least one Pr -layer shares two edges with F . In this case,
we infer that there are at least two P4-layers that have no edge in F . It follows that
|F | ≤ (r − 2) + 8. Since we would like to see that (r − 2) + 8 ≤ 2r , that is r ≥ 6,
this settles Case 1 in all possibilities except when r ∈ {4, 5}.

Consider P4 � P4. The theorem asserts that gpe(P4 � P4) = 8 and the eight
semi-boundary edges imply that gpe(P4 � P4) ≥ 8. Hence, it remains to prove that
gpe(P4 � P4) ≤ 8 (under the assumption of Case 1). This is clearly the case if each
Pr = P4-layer contains at most one edge from F . Hence, assume that some Pr = P4-
layer contains two edges from F . Then, there exist at least two Ps = P4-layers that
have no edge in F . Hence, under the assumption of Case 1, the Ps-layers together
contain at most two edges from F . Hence, the only possibility to get more than eight
edges in F is that at least three among the Pr = P4-layers must contain exactly two
edges from F . But then the Ps-layers can contain at most one edge from F and we
easily conclude that |F | ≤ 8.

Consider P5 � P4. The theorem asserts that gpe(P5 � P4) = 10. The ten
semi-boundary edges imply that gpe(P5 � P4) ≥ 10. It remains to prove that
gpe(P5 � P4) ≤ 10 under the assumption of Case 1. If each Pr = P5-layer con-
tains at most one edge from F , then there is nothing to prove. Hence, assume that
some Pr = P5-layer contains two edges from F . Then, we claim that the Ps = P4-
layers together contain at most three edges from F . Assume, hence, that (i, j)(i+1, j)
and (i ′, j)(i ′ + 1, j) are two edges from E(P j

5 ) ∩ F . Then, E(k P4) ∩ F = ∅ for each
k ≤ i and for each k ≥ i ′ + 1. Hence, at most three P4-layers can have edges from
F , and thus, the case assumption implies that the Ps = P4-layers together contain at
most three edges from F . Hence, the only possibility to get more than ten edges in
F is that at all four P5-layers contain exactly two edges from F . But in that case, no
P4-layer can share an edge with F .

Case 2. There exists an i ∈ [r ] such that |F ∩ E(i P4)| = 2.
Suppose first that this i is unique. Since this P4-layer has two edges from F , we

see that at least two of the Pr -layers have no edges in F . Since the other Pr -layers
have at most two such edges, we conclude that |F | ≤ 2 + (r − 1) + 2 · 2 holds in the
subcase. We wish to show that 2 + (r − 1) + 4 ≤ 2r which is equivalent to r ≥ 5.
This settles Case 2 in all possibilities except when r = 4. For P4 � P4, we can use a
parallel argument as we gave in Case 1.

Suppose second that there are at least two P4-layers with exactly two edges from
F . Then, we infer that the projection of these edges on the factor P4 contains exactly
two edges. But then we can verify easily that in each case, |F | ≤ 2r . For instance, if
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each of the Ps = P4-layers contains exactly two edges from F , then actually none of
the edges from the Pr -layers lie in F . This settles Case 2 and hence the theorem for
s = 4.

Next, let s = 3. Note that the theorem asserts that gpe(Pr � P4) = gpe(Pr � P3) =
2r . As we have already proved that gpe(Pr � P4) = 2r and Pr � P3 is an isometric
subgraph of Pr � P4, it follows that gpe(Pr � P3) ≤ gpe(Pr � P4). On the other hand,
a set of 2r edges that is a gpe-set of Pr � P4 can also be used as an edge general position
set of Pr � P3, that is, a gpe-set of Pr � P3.

Finally, let s = 2. If each of the two Pr -layers intersects F in at most one edge,
then clearly |F | ≤ r + 2. On the other hand, if one of the two Pr -layers contains
two edges from F , then at least two edges of the P2-layers are not in F . Hence, again
|F | ≤ 2+2+(r−2) = r+2. On the other hand, the union of two�-classes, one with
r edges, and the other with 2 edges, is an edge general position set by Lemma 3.1. 	


We next supplement Theorem 4.1 by the following information.

Theorem 4.2 If r , s ≥ 5, then the gpe-set of Pr � Ps is unique.

Proof By Theorem 4.1, we know that the set S of semi-boundary edges of Pr � Ps
form a gpe-set of Pr � Ps . We need to prove that there is no other gpe-set. For this
sake, assume that T is an arbitrary edge general position set different from S. Our goal
is to show that |T | < 2r + 2s − 8. Since T �= S, we see that T contains a boundary
or an internal edge and distinguish our considerations accordingly.

Suppose first that T contains a boundary edge e. By the commutativity of Pr � Ps
and by the symmetry between the layers 1Ps and rPs , wemaywithout loss of generality
assume that e ∈ E(1Ps).

Case 1. T ∩ E(P1
r ) �= ∅ or T ∩ E(Ps

r ) �= ∅.
In this case, we infer that |T ∩ E(Pi

r )| ≤ 1 for i ∈ [s] and that |T ∩ E( jPs)| ≤ 1
for j ∈ [r ]. Then, clearly, |T | ≤ r + s and we wish to show that r + s < 2r + 2s − 8.
We are done because r + s > 8 holds.

In the rest of the argument, we may hence assume that T ∩ E(P1
r ) = ∅ and

T ∩ E(Ps
r ) = ∅.

Case 2. |T∩E(1Ps)| = 1 and |T∩E(rPs)| ∈ {0, 1}. In this case, |T∩E(Pi
r )| ≤ 1 holds

for every 2 ≤ i ≤ s−1. This in turn implies that |T | ≤ 2(r−2)+2+s−2 = 2r+s−4.
We wish to show that 2r + s − 4 < 2r + 2s − 8, and this indeed holds since s > 4.

Case 3. |T ∩ E(1Ps)| = 2 and T ∩ E(rPs) = ∅.
Then clearly T ∩ E(P1

r ) = T ∩ E(Ps
r ) = ∅ which implies |T | ≤ 2(r − 1)+ s − 2.

We wish that 2(r − 1) + s − 2 < 2r + 2s − 8 which implies s > 4 which is indeed
the case.

Case 4. |T ∩ E(1Ps)| = 2 and |T ∩ E(rPs)| ∈ {1, 2}.
In this case, there exists at least three Pr -layers that contribute no edges to T . Hence,

|T | ≤ 2(r − 1) + 1 + s − 3 = 2r + s − 4. Now 2r + s − 4 < 2r + 2s − 8 implies
s > 4 which is indeed true.

Suppose second that T contains an internal edge. We may further assume that T
contains no boundary edge as we have already dealt with this situation. Without loss
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of generality, suppose there exists a Ps-layer, say kPs , such that T ∩E(kPs) = {e1, e2},
where at least one of e1 and e2 is an internal edge. Now observe that at least three
Pr -layers (including two layers P1

r and Ps
r ) contribute no edges to T . Hence, |T | ≤

2(r − 2) + 2(s − 3) < |S|. 	


Note that Theorem 4.2 does not hold for the grids P4 � P4 and P5 � P4. Indeed,
the sets of semi-boundary edges of them contain 8 and 10 edges, respectively. On
the other hand, each �-class of P4 � P4 has four edges, so the union of arbitrary two
�-classes is also a gpe-set of P4 � P4. In P5 � P4, there are three �-classes with five
edges each; hence, also the union of any two of them is a gpe-set of P5 � P4.

Let us return to theMulder’s meta-conjecture. In the previous section, we found out
that unions of two �-classes are gpe-sets of hypercubes and that the unique gpe-set of
a tree is the set of its pendant edges. Since each edge of a tree forms a �-class, one
could say that a (weak) common property of hypercubes and trees is that gpe-sets are
unions of�-classes. But this does not extend to all median graphs. Since the Cartesian
product of two median graphs is again median, we see that Pr � Ps is a median graph.
However, we have just seen that in Pr � Ps , where r ≥ s ≥ 5, the set of its semi-
boundary edges forms a unique gpe-set. Clearly, this set is not a union of �-classes of
Pr � Ps .

5 Conclusions

In this paper, the edge general position problem is completely solved for hypercubes
and two-dimensional grids. A notable contribution of this paper is the discussion of
Mulder’s meta-conjecture on median graphs from the perspectives of the edge general
position problem. This problem may be studied for other classes of graphs such as
Cayley graphs, perfect graphs, bipartite graphs, etc.

It would also be pertinent to view this problem in generalized perspectives. For
instance, for a given integer k ≥ 3, one may call a set S of edges of a graph G an
edge k-general position set if no k edges of S lie on a common geodesic. An edge k-
general position set S of maximum cardinality is an k-gpe-set of G, and its cardinality
is the edge k-general position number (in short, k-gpe-number) of G and is denoted
by k-gpe(G). When k = 3, this problem becomes an edge general position problem.
The complexity status of edge k-general position problems is not known. Enthusiastic
graph theory students will find the “edge k-general position problem" an interesting
topic for further research.
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