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Abstract
The aim of this paper is to study the regular dynamics for the 3D delay Brinkman–
Forchheimer (BF) equations. We first prove the existence, uniqueness and time-
dependent property of regular tempered pullback attractors as well as the existence
of invariant measures for the 3D BF equations with non-autonomous abstract delay.
We then study the asymptotic autonomy of regular pullback attractors for the 3D BF
equations with autonomous abstract delay. Finally, we discuss the upper semicontinu-
ity of regular pullback attractors as the delay time approaches to zero for the 3D BF
equations with variable delay and distributed delay.

Keywords Delay Brinkman–Forchheimer equation · Pullback attractor · Regularity ·
Stability · Invariant measure

Mathematics Subject Classification 35B40 · 35B41 · 37L30 · 37L40

1 Introduction

The attractors play an important role in the study of long-term behaviour for evolution
equations, see [4, 6, 17, 30, 31] and the references therein. As we know, the pullback
attractor is a collection of a family of time-dependent compact sets. Hence, a natural
problem is to consider the time-dependent property of pullback attractors. Although
this topic has been studied by several authors in [7–9, 18, 19, 21–23, 38], there is no
paper on this subject in the regular space. On the other hand, the long-term behaviour
of delay PDEs has wide attention [1–3, 11, 16, 24, 34, 40] due to it being able to
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control the system by the history of solutions. In [24, 40], the authors investigated the
time-dependent property of pullback attractors in the initial space for delay PDEs. As
far as we know, this topic in the regular space for the delay BF equation has not been
studied.

The BF equation depicts the fluid flow in a saturated porous medium, see [12, 29].
Recently, the long-term behaviour of BF equations has been studied by several authors
in [13, 14, 32, 33, 36, 39, 42, 43] for the non-delay case and in [15, 20, 25, 37] for
the delay case. In [15], the authors proved the existence of uniform attractors for the
BF equation with autonomous delay. Li et al. [20] studied the existence and non-delay
stability of pullback attractors for the BF equation with autonomous delay. In [37], the
authors investigated the structure and asymptotic stability of pullback attractors for
the BF equation with non-autonomous delay. As far as we know, the existence, time-
dependent property, asymptotic autonomy and non-delay stability of regular pullback
attractors for the BF equation with delays have not been studied.

We first consider the following BF equation with non-autonomous delay:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t − νΔu + αu + ∇ p = −β|u|u − γ |u|2u + f (t, ut ) + g(t, x),

∇ · u = 0, t > t0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

u(t0 + θ, x) := φ(θ, x), θ ∈ [−�, 0],
(1)

where t0 ∈ R, Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω , u =

(u1, u2, u3) is the velocity of the fluid, and p is the pressure of the fluid. ν > 0
denotes the Brinkman effective viscosity, α > 0 denotes the Darcy coefficient, and
β > 0 and γ > 0 denote the Forchheimer coefficients. � > 0 is the delay time of
Eq. (1), g is the given non-autonomous forcing term, and the delay term f will be
specified later. For each t ≥ t0, ut (·) is a delay-shift function defined on [−�, 0] given
by ut (θ) = u(t + θ) with θ ∈ [−�, 0].

Recently, the authors in [7, 21, 23, 38] studied that the backward compactness of
pullback attractorsA = {A(t) : t ∈ R} (⋃s≤t A(s) is pre-compact with t ∈ R) when
the basin of attraction of pullback attractors be composed of all fixed bounded sets
in the initial space. However, we consider two different universes to show that the
backward compactness of pullback attractors in this paper. One universe is made up
of all tempered sets, and the other is composed of all backward tempered sets. It is
worth pointing out that the backward compactness of pullback attractors on tempered
universe is not easily proved. Fortunately, we can prove the attractors on two different
universes are identical. On the other hand, we apply the spectrum decomposition
technique to prove the backward asymptotic compactness of solutions due to the
solution of Eq. (1) has no higher regularity, and then obtain a unique backward compact
regular tempered pullback attractor for Eq. (1).

In [10], the authors show that the invariant measure plays an important role in
understanding turbulence. Hence, the invariant measure of evolution equations has
been studied by several authors in [5, 26–28, 35]. Inspire by [28], we establish the
existence of a unique family of invariant Borel probability measures for Eq. (1), which
are supported by the tempered pullback attractor.
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We then discuss the following BF equation with autonomous delay:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t − νΔu + αu + ∇ p = −β|u|u − γ |u|2u + f (ut , x) + g(t, x),

∇ · u = 0, t > t0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

u(t0 + θ, x) := φ(θ, x), θ ∈ [−�, 0].
(2)

In [8, 9, 18, 19, 22], the authors studied the forward asymptotic autonomy of pullback
attractors in the initial space for PDEs without delay, that is,

lim
t→+∞ distX (A(t),A∞) = 0,

where X is a Banach space with norm ‖ · ‖X , distX (·, ·) denotes the Hausdorff semi-
distance and A∞ is a global attractor of the autonomous equation corresponding to
(2). As far as we know, the asymptotic autonomy of pullback attractors in the regular
space (the regularity of the initial space is low) has not been considered. In this paper,
we study the backward asymptotically autonomous dynamics for Eq. (2) in the regular
space:

lim
t→−∞ distY� (A(t),A∞) = 0,

where Y is a Banach space with norm ‖ · ‖Y , X ←↩ Y and Y� = C([−�, 0]; Y ).
Finally, we study the following BF equation with variable delay and distributed

delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t − νΔu + αu + ∇ p + β|u|u + γ |u|2u

= f1(u(t − ρ�(t)), x) +
0∫

−�

f2(u(t + θ), θ)dθ + g(t, x),

∇ · u = 0, t > t0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

u(t0 + θ, x) := φ(θ, x), θ ∈ [−�, 0].

(3)

Zhao et al. [41] studied the upper semicontinuity of the global attractor in the initial
space as the delay time tends to zero for retarded lattice systems. Wang et al. [34]
proved the upper semicontinuity of pullback random attractors as the memory time
approaches zero in the initial space for stochastic reaction–diffusion equation. In this
paper, we study the upper semicontinuity of tempered pullback attractors as the delay
time tends to zero in the regular space for Eq. (3):

lim
�→0

dist(Y�,Y )(A�(t),A(t)) = 0, t ∈ R,

where

dist(Y�,Y )(A, B) = sup
a∈A

inf
b∈B

sup
θ∈[−�,0]

‖a(θ) − b‖Y = 0.
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In the next section,we establish the existence of an evolution process for the retarded
3D BF equation. Section 3 is devoted to the backward uniform estimates, continuity
with respect to initial time and backward flattening of solutions, and then obtain the
existence, regularity and backward compactness of pullback attractors as well as the
existence of invariantmeasures. In Sect. 4,we prove the backward regularly asymptotic
autonomy of pullback attractors by the convergence of systems from non-autonomous
to autonomous and the backward compactness of pullback attractors. The delay-free
stability of regular pullback attractors is established by the convergence of solutions
from delay to non-delay, the eventually compactness of pullback attractors and the
recurrence of absorbing sets in the last section.

2 Existence of an Evolution Process for the 3D BF Equation with
Delays

Suppose X is a Banach space with norm ‖ · ‖X . A family of maps {S(t, r) : t ≥ r} is
called an evolution process if

S(r , r) = idX , S(t, s) = S(t, r)S(r , s), S(t, r) : X → X is continuous,

for all t ≥ r ≥ s. In this section, we mainly establish the existence of an evolution
process for Eq. (1) and make some assumptions. Denote by

L
p(Ω) = L p(Ω) × L p(Ω) × L p(Ω),

H
p(Ω) = H p(Ω) × H p(Ω) × H p(Ω), p > 0,

and

H = {u ∈ L
2(Ω) : ∇ · u = 0, u · n|∂Ω = 0},

V = {u ∈ H
1(Ω) : ∇ · u = 0, u|∂Ω = 0},

where n is the unit outward normal vector at ∂Ω . It is easy to see that H and V are
separable Hilbert spaces with the inner products and norms given by

(u, v) =
3∑

i=1

∫

Ω

uivi dx, ‖u‖2 = (u, u), u, v ∈ H ,

and

((u, v)) =
3∑

i=1

∫

Ω

∇ui · ∇vi dx,

‖u‖2V = ((u, u)), u, v ∈ V .
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Notice that V ↪→ H ≡ H ′ ↪→ V ′ is dense and continuous. Moreover, we use ‖ · ‖p

to denote the norm in L
p(Ω) and 〈·, ·〉 represents the duality pairing between V and

V ′. Let P̃ be the Leray orthogonal projection from L
2(Ω) onto H . Applying P̃ to Eq.

(1), we obtain

{
∂u
∂t + ν Au = P̃(−αu − β|u|u − γ |u|2u) + P̃ f (t, ut ) + P̃g(t, x), t > t0,
u(t0 + θ, x) := φ(θ, x), θ ∈ [−�, 0], x ∈ Ω,

(4)

where A = −P̃Δ is defined by 〈Au, v〉 = ((u, v)). Let H� := C([−�, 0], H)

with ‖ϑ‖H� = supθ∈[−�,0] ‖ϑ(θ)‖ and V� := C([−�, 0], V ) with ‖ϑ‖V� =
supθ∈[−�,0] ‖ϑ(θ)‖V . The delay forcing f : R × H� → H satisfies

(F1) For each ϕ ∈ H�, r → f (r , ϕ) is measurable from R into H ;
(F2) f (r , 0) = 0 for all r ∈ R;
(F3) There is a positive function L f (·) such that for all ϕ,ψ ∈ H�

‖ f (r , ϕ) − f (r , ψ)‖ ≤ L f (r)‖ϕ − ψ‖H� , (5)

where L f (·) satisfies, for all t ∈ R,

t∫

−∞
L2

f (r)dr < +∞, lim
β→+∞ sup

s≤t

s∫

−∞
eβ(r−s)L2

f (r)dr = 0. (6)

By the standardGalerkinmethod as in [11, 33], one can see that thewell-posedness
of (4).

Lemma 1 Suppose that (F1)–(F3) hold and g ∈ L2
loc(R, H). Then for all t0 ∈ R and

φ ∈ H�, Eq. (4) has a unique weak solution

u ∈ C([t0 − �,+∞); H) ∩ L2
loc(t0,+∞; V ) ∩ L4

loc(t0,+∞;L4(Ω)),

such that u(t0 + θ; t0, φ) = φ(θ) for all θ ∈ [−�, 0]. Furthermore, for any ε > 0 and
T > t0 + ε

u ∈ C([t0 + ε, T ]; V ) ∩ L2(t0 + ε, T ; D(A)),

where D(A) = H1
0 (Ω) ∩ H2(Ω).

We define a mapping S(t, t0) : H� → H� by

S(t, t0)φ = ut (·; t0, φ), t ≥ t0, φ ∈ H�, (7)

where u is the solution of (4). Based on Lemma 1, we obtain S(·, ·) is an evolution
process. In addition, we also need the following assumptions:

123



2964 Q. Zhang

(G1) g ∈ L2
loc(R, H) is backward limitable:

lim
β→+∞ sup

s≤t

s∫

−∞
eβ(r−s)‖g(r)‖2dr = 0, ∀t ∈ R, (8)

which implies g ∈ L2
loc(R, H) is backward tempered:

sup
s≤t

s∫

−∞
eβ(r−s)‖g(r)‖2dr < +∞, ∀t ∈ R, β > 0. (9)

On the other hand, we will frequently use the following inequalities:

(|x |p−2x − |y|p−2y)(x − y) ≥ 22−p|x − y|p, (10)

where x, y ∈ R
n and p ≥ 2.

Gagliardo–Nirenberg inequality: assume Ω ⊂ R
n , if 0 ≤ j < l, 1 ≤ q, r ≤

+∞, p ∈ R,
j
l < η ≤ 1 and

1

p
− j

n
= η

(
1

r
− l

n

)

+ (1 − η)
1

q
.

Then,

‖D j u(t)‖p ≤ c‖u(t)‖1−η
q ‖Dlu(t)‖η

r , ∀u ∈ W l,r (Rn) ∩ Lq(Rn). (11)

where j, l be any integers and c depending only on n, l, j, q, r , η.
Let P(H�) denotes the collection of all nonempty subsets in H�. We provide two

different universes of attraction. One is D given by, for all β > 0

D = {D = {D(t) : t ∈ R} ⊂ P(H�) : lim
τ→+∞ e−βτ‖D(t − τ)‖2H�

= 0}. (12)

Observe that D is inclusion-closed. Another isB defined by, for all β > 0

B = {B = {B(t) : t ∈ R} ⊂ P(H�) : lim
τ→+∞ e−βτ sup

s≤t
‖B(s − τ)‖2H�

= 0}. (13)

Then, B is backward-closed: B̃ ∈ B whenever B ∈ B and B̃(τ, ω) = ∪s≤tB(s, ω).
Notice that B ⊂ D and B is also inclusion-closed.

3 Dynamics of the 3D Non-Autonomous BF Equations with Delays

Throughout this paper, we denote by c a positive constant, which may change from
line to line or even in the same line.
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3.1 Backward Uniform Estimates of Solutions

Lemma 2 Suppose that (F1)–(F3) and (G1) hold. Let t ∈ R, then we have the following
conclusions:

(i) For each D ∈ D, there exists a τd := τd(t,D) > 0 such that

sup
σ∈[t−�−4,t]

‖uσ (·; t − τ, φ)‖2H�
≤ e2α(�+2)

(

1 + 2

α
Gd(t)

)

e
2
α

eα� L(t), (14)

for all τ ≥ τd and φ ∈ D(t − τ), where

Gd(t) =
t∫

−∞
eα(r−t)‖g(r)‖2dr , L(t) :=

t∫

−∞
L2

f (r)dr . (15)

(ii) For each B ∈ B, there exists a τb := τb(t,B) > 0 such that

sup
s≤t

sup
σ∈[s−�−4,s]

‖uσ (·; s − τ, φ)‖2H�
≤ e2α(�+2)

(

1 + 2

α
Gb(t)

)

e
2
α

eα� L(t), (16)

for all τ ≥ τd and φ ∈ B(s − τ) with s ≤ t , where

Gb(t) = sup
s≤t

Gd(s). (17)

Proof Taking the inner product of (4)with u(r; s−τ, φ) in H , by theYoung inequality,
we have

d

dr
‖u(r)‖2 + 2ν‖A

1
2 u(r)‖2 + α‖u(r)‖2 + 2β‖u(r)‖33 + 2γ ‖u(r)‖44

≤ 2

α
‖ f (r , ur )‖2 + 2

α
‖g(r)‖2, (18)

which implies

d

dr
eαr‖u(r)‖2 ≤ 2

α
eαr‖ f (r , ur )‖2 + 2

α
eαr‖g(r)‖2. (19)

Integrating (19) on [s − τ, σ + θ ] with θ ∈ [−�, 0] and τ > s − σ + �, by (5) we
obtain

eασ ‖uσ (·; s − τ, φ)‖2

≤ eα�eα(s−τ)‖φ‖2H�
+ 2

α
eα�

σ∫

s−τ

eαr (L2
f (r)‖ur‖2H�

+ ‖g(r)‖2)dr . (20)
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Using the Gronwall inequality (see [4, p. 167]) to (20), we obtain

eασ ‖uσ (·; s − τ, φ)‖2

≤ (eα�eα(s−τ)‖φ‖2H�
+ 2

α
eα�

σ∫

s−τ

eαr‖g(r)‖2dr)e
2
α

eα�
σ∫

s−τ

L2
f (r)dr

.

Hence we obtain, for all τ ≥ 2� + 4,

sup
σ∈[s−�−4,s]

‖uσ (·; s − τ, φ)‖2

≤ sup
σ∈[s−�−4,s]

e−ασ (eα�eα(s−τ)‖φ‖2H�
+ 2

α
eα�

σ∫

s−τ

eαr‖g(r)‖2dr)e
2
α

eα�
σ∫

s−τ

L2
f (r)dr

≤ eα(2�+4)(e−ατ‖φ‖2H�
+ 2

α

s∫

s−τ

eα(r−s)‖g(r)‖2dr)e
2
α

eα�
s∫

s−τ

L2
f (r)dr

. (21)

(i) Let s = t in (21). If φ ∈ D(t − τ), by (12), there exists a τd := τd(t,D) ≥ 2� + 4
such that for all τ ≥ τd ,

e−ατ‖φ‖2H�
≤ e−ατ‖D(t − τ)‖2H�

≤ 1.

Hence, we obtain (14) holds.
(ii) If φ ∈ B(s − τ) with s ≤ t , by (13), there is a τb := τb(t,B) ≥ 2� + 4 such that

for all τ ≥ τb,

e−ατ sup
s≤t

‖φ‖2H�
≤ e−ατ sup

s≤t
‖B(s − τ)‖2H�

≤ 1.

Taking the supremum of (21) over the past time s ≤ t yields (16) holds.

��
Corollary 1 Under the assumptions in Lemma 2, we have the following auxiliary esti-
mate:

sup
s≤t

s∫

s−�−3

(‖A
1
2 u(r)‖2 + ‖u(r)‖33 + ‖u(r)‖44)dr ≤ c(1 + L(t))(1 + Gb(t))e

cL(t).

(22)

Proof Integrating (18) on [s − � − 3, s], by (5), we obtain

s∫

s−�−3
2ν‖A

1
2 u(r)‖2 + 2β‖u‖33 + 2γ ‖u‖44dr
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≤ ‖u(s − � − 3)‖2 + 2
α

s∫

s−�−3
L2

f (r)‖ur‖2H�
dr

+ 2
α

eα(�+3)
s∫

s−�−3
eα(r−s)‖g(r)‖2dr .

By (16), we have

sup
s≤t

‖u(s − � − 3)‖2 + 2

α
sup
s≤t

s∫

s−�−3

L2
f (r)‖ur‖2H�

dr

≤ sup
s≤t

sup
σ∈[s−3,s]

‖uσ (·)‖2H�
+ sup

s≤t
sup

σ∈[s−�−3,s]
‖uσ (·)‖2H�

s∫

s−�−3

L2
f (r)dr

≤ c(1 + L(t))(1 + Gb(t))e
cL(t). (23)

Then, we obtain

sup
s≤t

s∫

s−�−3

(‖A
1
2 u(r)‖2 + ‖u(r)‖33 + ‖u(r)‖44)dr ≤ c(1 + L(t))(1 + Gb(t))e

cL(t).

The proof is complete. ��
Lemma 3 Suppose that (F1)–(F3) and (G1) hold. For each t ∈ R and B ∈ B, we
have, for all τ ≥ τb (τb is given in Lemma 2) and φ ∈ B(s − τ) with s ≤ t ,

sup
s≤t

sup
θ∈[−�−2,0]

‖A
1
2 u(s + θ; s − τ, φ)‖2 + sup

s≤t

s∫

s−�

∥
∥
∥
∥
∂u

∂r

∥
∥
∥
∥

2

dr

≤ c(1 + L(t))(1 + Gb(t))e
cL(t). (24)

Proof Multiplying (4) by ∂
∂r u(r; s − τ, φ), by (9) and the Young inequality, we have

∥
∥
∥
∥
∂u(r)

∂r

∥
∥
∥
∥

2

+ d

dr
(ν

∥
∥
∥A

1
2 u(r)

∥
∥
∥
2 + α‖u(r)‖2 + β‖u(r)‖33 + γ ‖u(r)‖44)

≤ cL2
f (r)‖ur‖2H�

+ c‖g(r)‖2. (25)

Integrating (25) on [ζ, s +θ ]with ζ ∈ [s +θ −1, s +θ ] and θ ∈ [−�−2, 0], and then
integrating the result on [s + θ − 1, s + θ ] w.r.t. ζ we obtain, for all θ ∈ [−� − 2, 0],

‖A
1
2 u(s + θ; s − τ, φ)‖2 + ‖u(s + θ)‖33 + ‖u(s + θ)‖44
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≤ c

s∫

s−�−3

(‖A
1
2 u(r)‖2 + ‖u(r)‖2 + ‖u(r)‖33 + ‖u(r)‖44)dr

+ c

s∫

s−�−3

(L2
f (r)‖ur‖2H�

+ ‖g(r)‖2)dr . (26)

By (16) and (22), we have, for all τ ≥ τb,

sup
s≤t

s∫

s−�−3

(‖A
1
2 u(r)‖2 + ‖u(r)‖33 + ‖u(r)‖44)dr ≤ c(1 + L(t))(1 + Gb(t))e

cL(t),

(27)

sup
s≤t

s∫

s−�−3

‖u(r)‖2dr ≤ (� + 3) sup
s≤t

sup
σ∈[s−3,s]

‖uσ ‖2H�
≤ c(1 + Gb(t))e

cL(t). (28)

Substituting (23), (27) and (28) into (26) yields

sup
s≤t

sup
θ∈[−�−2,0]

‖A
1
2 u(s + θ; s − τ, φ)‖2 + sup

s≤t
sup

θ∈[−�−2,0]
‖u(s + θ)‖33

+ sup
s≤t

sup
θ∈[−�−2,0]

‖u(s + θ)‖44 ≤ c(1 + L(t))(1 + Gb(t))e
cL(t). (29)

On the other hand, integrating (25) on [s − �, s] yields

s∫

s−�

∥
∥
∥
∥
∂u

∂r

∥
∥
∥
∥

2

dr ≤ c
(
‖A

1
2 u(s − �)‖2 + ‖u(s − �)‖2 + ‖u(s − �)‖33 + ‖u(s − �)‖44

)

+ c

s∫

s−�

(L2
f (r)‖ur‖2H�

+ ‖g(r)‖2)dr . (30)

It follows from (16), (23) and (29) that

sup
s≤t

s∫

s−�

∥
∥
∥
∥
∂u

∂r

∥
∥
∥
∥

2

dr ≤ c(1 + L(t))(1 + Gb(t))e
cL(t). (31)

We infer from (29) and (31) that (24) as desired. ��
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3.2 Existence and Backward Compactness of Pullback Attractors in the Initial
Space

We first establish the existence of pullback absorbing sets for the evolution process
S(·, ·) in (7).

Lemma 4 Suppose that (F1)–(F3) and (G1) hold. Then, we have

(i) S(·, ·) has a pullback D-absorbing set Kd = {Kd(t) : t ∈ R} ∈ D, defined by

Kd(t) = {ϑ ∈ H� : ‖ϑ‖2H�
≤ e2α(�+2)

(

1 + 2

α
Gd(t)

)

e
2
α

eα� L(t)}. (32)

(ii) S(·, ·) has a pullback B-absorbing set Kb = {Kb(t) : t ∈ R} ∈ B, defined by

Kb(t) = {ϑ ∈ H� : ‖ϑ‖2H�
≤ e2α(�+2)

(

1 + 2

α
Gb(t)

)

e
2
α

eα� L(t)} = ∪s≤tKd(s),

(33)

where Gd(t), L(t) and Gb(t) are given in (15) and (17).

Proof By (14) and (16), it is easy to know that Kd and Kb are pullback D-absorbing
set and pullback B-absorbing set for S(·, ·), respectively. Moreover, by Gb(t) =
sups≤t Gd(t), we obtain Kb(t) = ⋃

s≤t Kd(s).
We now prove that Kd ∈ D and Kb ∈ B. Notice that Kb(t1) ⊆ Kb(t2) if t1 ≤ t2.

Then, by t →, Gb(t) and t → L(t) are increasing, we obtain

e−βτ sup
s≤t

‖Kb(s − τ)‖2H�
= e−βτ‖Kb(t − τ)‖2H�

= e−βτ e2α(�+2)
(

1 + 2

α
Gb(t − τ)

)

e
2
α

eα� L(t−τ)

≤ e−βτ e2α(�+2)
(

1 + 2

α
Gb(t)

)

e
2
α

eα� L(t) → 0, as τ → +∞. (34)

Hence, we have Kb ∈ B. Since Gd(t) ≤ Gb(t) for all t ∈ R, we have Kd ∈ D. The
proof is complete. ��

Next, we prove the pullback asymptotically compactness of the evolution process
S(·, ·) in (7).

Lemma 5 Suppose that (F1)–(F3) and (G1) hold. Then, we have S(·, ·) is backward
pullback B-asymptotically compact in H�, more precisely, for each t ∈ R and B ∈ B,
the sequence {S(sn, sn − τn)φn} is relatively compact in H� whenever sn ≤ t , τn →
+∞ and φn ∈ B(sn − τn).

Proof Based on the Ascoli–Arzelà theorem, we divide the proof into two steps.
Step 1. {S(sn, sn − τn)φn}n∈N in H� is equi-continuous from [−�, 0] to H .
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Since τn → +∞, we assume τn ≥ τb (τb is given in Lemma 2) for all n ∈ N. Let
θ1, θ2 ∈ [−�, 0] with θ1 < θ2. Due to sn ≤ t for all n ∈ N, by (24), we obtain

‖(S(sn, sn − τn)φn)(θ1) − (S(sn, sn − τn)φn)(θ2)‖
= ‖u(sn + θ1; sn − τn, φn) − u(sn + θ2; sn − τn, φn)‖

≤
sn+θ2∫

sn+θ1

∥
∥
∥
∥
∂u(r)

∂r

∥
∥
∥
∥ dr ≤

⎛

⎜
⎝

sn∫

sn−�

∥
∥
∥
∥
∂u(r)

∂r

∥
∥
∥
∥

2

dr

⎞

⎟
⎠

1
2

|θ1 − θ2| 12

≤ c(1 + L(t))(1 + Gb(t))e
cL(t)|θ1 − θ2| 12 .

Then for any ε > 0, there exists a δ := δ(t, ε) such that ‖S(sn, sn − τn)φn(θ1) −
S(sn, sn − τn)φn(θ2)‖ < ε when |θ1 − θ2| < δ. The proof of the Step 1 is complete.

Step 2. For each θ ∈ [−�, 0], {(S(sn, sn − τn)φn)(θ)}n∈N has a convergent subse-
quence in H .

By (24), we have {(S(sn, sn − τn)φn)(θ)}n∈N is bounded in V . Then by the embed-
ding V ↪→ H is compact, we complete the proof of the Step 2.

Now, all conditions of Ascoli–Arzelà theorem are satisfied. Hence, we obtain the
sequence {S(sn, sn − τn)φn} is relatively compact in H�. The proof is complete. ��

Finally, we state the main result of this subsection:

Theorem 1 Suppose that (F1)–(F3) and (G1) hold. Then, we obtain the following
conclusions:

(i) S(·, ·) in (7) has a unique pullback D-attractor Ad = {Ad(t) : t ∈ R} ∈ D,
defined by

Ad(t) =
⋂

T ≥0

⋃

τ≥T

S(t, t − τ)Kd(t − τ)
H�

. (35)

(ii) S(·, ·) in (7) has a unique pullback B-attractor Ab = {Ab(t) : t ∈ R} ∈ B,
defined by

Ab(t) =
⋂

T ≥0

⋃

τ≥T

S(t, t − τ)Kb(t − τ)
H�

. (36)

Moreover, Ab is backward compact in H�, that is,
⋃

s≤t Ab(s) is pre-compact.
(iii) Ad = Ab and so Ad is backward compact in H�.

Proof (i) By the same method as in Lemma 5, we obtain S(·, ·) is pullback D-
asymptotically compact, which along with (i) of Lemma 4 implies all conditions
of Carvalho et al. [4, Theorem 2.50] are fulfilled. Hence, we have S(·, ·) has
unique pullbackD-attractorAd , defined by (35). SinceD is inclusion-closed and
the pullback D-absorbing set Kd is closed, we get Ad is unique and Ad ∈ D.
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(ii) Similarly to (i), we only need to prove Ab is backward compact in H�. Let
{un}n∈N ⊂ ⋃

s≤t Ab(s). Then, for each un , there is a sn ≤ t such that un ∈
Ab(sn). By the invariance ofAb, there exists a vn ∈ Ab(sn −τn)with τn → +∞
such that S(sn, sn −τn)vn = un . SinceAb ∈ B, by Lemma 5, we obtain {un}n∈N
has a convergent subsequence and so ∪s≤tAb(s) is pre-compact.

(iii) Since Kb(t) = ⋃
s≤t Kd(s), we have Kb(t) ⊃ Kd(t) for all t ∈ R. Then by

(35) and (36), we have Ab(t) ⊃ Ad(t) for all t ∈ R and thus Ab ⊃ Ad . On the
other hand, notice that Ab ∈ D because of B ⊂ D. Since Ab is a D-pullback
attracting set, by the invariance of Ab we find, for all t ∈ R,

distH� (Ab(t),Ad(t)) = distH� (S(t, t − τ)Ab(t − τ),Ad(t)) → 0, as τ → +∞,

which implies Ab(t) ⊂ Ad(t) for all t ∈ R and so Ab ⊂ Ad . Then, we obtain
Ab = Ad and Ad is backward compact in H�.

��

3.3 Existence of Invariant Measures

In the subsection, we consider the existence of invariant measures {μt : t ∈ R} on
the pullback D-attractor Ad . To this end, we also need prove the evolution process
S(·, ·) in (7) is t0-continuous in H�, where S(·, ·) is known as t0-continuity if for every
φ ∈ H� and t ∈ R, the function t0 → S(t, t0)φ with values in H� is continuous and
bounded on (−∞, t]. We first prove the following auxiliary lemma.

Lemma 6 Suppose that (F1)–(F3) and (G1) hold. For any initial data φ̂ and φ̃ in H�,
we have

‖S(t, t0)φ̂ − S(t, t0)φ̃‖2H�
= ‖û(t; t0, φ̂) − ũ(t; t0, φ̃)‖2H�

≤ ‖φ̂ − φ̃‖2H�
e

c
t∫

t0

L2
f (r)dr

. (37)

Proof Let ū = û − ũ. Then, ū satisfies

∂ ū

∂t
+ ν Aū + αū

= P̃(−β|û|û − γ |û|2û) − P̃(−β|ũ|ũ − γ |ũ|2ũ) + P̃ f (t, ût ) − P̃ f (t, ũt ).

(38)

Taking the inner product of (38) with ū in H yields

d

dr
‖ū(r)‖2 + ν‖A

1
2 ū(r)‖2 + 2α‖ū(r)‖2

= −((β|û|û + γ |û|2û) − (β|ũ|ũ + γ |ũ|2ũ), ū) + ( f (t, ût ) − f (t, ũt ), ū).
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By (5) and (10), we obtain

−((β|û|û + γ |û|2û) − (β|ũ|ũ + γ |ũ|2ũ), ū) ≤ −β

2
‖ū(r)‖33 − γ

4
‖ū(r)‖44 ≤ 0

and

( f (t, ût ) − f (t, ũt ), ū) ≤ α‖ū(r)‖2 + cL2
f (t)‖ût − ũt‖2H�

.

Hence, we have

d

dr
‖ū(r)‖2 ≤ cL2

f (t)‖ût − ũt‖2H�
.

Integrating the above inequality on [t0, t] with t > t0 yields

‖ū(t)‖2 ≤ ‖φ̂ − φ̃‖2H�
+ c

t∫

t0

L2
f (r)‖ûr − ũr‖2H�

dr . (39)

Notice that ‖ū(t)‖2 ≤ ‖φ̂ − φ̃‖2H�
for t ∈ [t0 − h, t0]. Then, we have

‖ūt‖2H�
≤ ‖φ̂ − φ̃‖2H�

+ c

t∫

t0

L2
f (r)‖ûr − ũr‖2H�

dr .

Using the Gronwall inequality, we obtain

‖ūt‖2H�
≤ ‖φ̂ − φ̃‖2H�

e
c

t∫

t0

L2
f (r)dr

.

The proof is complete. ��
Next, we prove the t0-continuity of S(·, ·) in (7).

Lemma 7 Suppose that (F1)–(F3) and (G1) hold. Then, the evolution process S(·, ·)
in (7) is t0-continuous in H�.

Proof Based on the definition of t0-continuous, we divide the proof into two steps.
Step 1. For all φ ∈ H� and t ∈ R, t0 →, S(t, t0)φ is continuous on (−∞, t].
Let t̃0 ∈ (−∞, t] and t̃0 ≥ t0. By (37), we obtain, for all φ ∈ H�,

‖S(t, t̃0)φ − S(t, t0)φ‖2H�
= ‖S(t, t̃0)S(t0, t0)φ − S(t, t̃0)S(t̃0, t0)φ‖2H�

≤ ‖S(t0, t0)φ − S(t̃0, t0)φ‖2H�
e

c
t∫

t̃0

L2
f (r)dr
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≤ ‖ut0(·; t0, φ) − ut̃0(·; t0, φ)‖2H�
e

c
t∫

−∞
L2

f (r)dr
.

Notice that u : [t0 −�, t0 + 1] → H is uniform continuous. Then for any ε > 0, there
exists a positive constant δ := δ(ε) < 1 with |t0− t̃0| < δ such that for all θ ∈ [−�, 0],

‖u(t0 + θ; t0, φ) − u(t̃0 + θ; t0, φ)‖2 < ε,

which implies

‖ut0(·; t0, φ) − ut̃0(·; t0, φ)‖2H�
< ε.

Since e
c

t∫

−∞
L2

f (r)dr
is finite, we obtain t0 → S(t, t0)φ is right continuous on (−∞, t].

Similarly, we have t0 → S(t, t0)φ is left continuous on (−∞, t]. Then, the proof of
Step 1 is complete.

Step 2 For all φ ∈ H� and t ∈ R, t0 → S(t, t0)φ is bounded on (−∞, t].
By the same method as Lemma 2, we have

‖S(t, t0)φ‖2H�
= ‖ut (·; t0, φ)‖2H�

≤ eα�(e−α(t−t0)‖φ‖2H�
+ 2

α

t∫

t0

eα(r−t)‖g(r)‖2dr)e

2
α

eα�
t∫

t0

L2
f (r)dr

≤ eα�(‖φ‖2H�
+ 2

α

t∫

−∞
eα(r−t)‖g(r)‖2dr)e

2
α

eα�
t∫

−∞
L2

f (r)dr
.

Observe that the last line of the above inequality is a constant independent of t0. Then,
we obtain

lim
t0→−∞ ‖S(t, t0)φ‖2H�

≤ eα�

⎛

⎝ lim
t0→−∞ e−α(t−t0)‖φ‖2H�

+ 2

α

t∫

−∞
eα(r−t)‖g(r)‖2dr

⎞

⎠ e
2
α

eα�
t∫

−∞
L2

f (r)dr

= eα�

⎛

⎝
2

α

t∫

−∞
eα(r−t)‖g(r)‖2dr

⎞

⎠ e
2
α

eα�
t∫

−∞
L2

f (r)dr
< +∞.

By Step 1, we know that t ∈ R, t0 → S(t, t0)φ is continuous on (−∞, t], and hence
the proof of Step 2 is complete. ��

Now, we obtain all conditions of Łukaszewicz and Robinson [28, Theorem 3.1]
are fulfilled by (i) of Theorem 1 and Lemma 7. Hence, we have the following result:
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Theorem 2 Suppose that (F1)–(F3) and (G1) hold. Fix a generalized Banach limit
L I MT →+∞ and let v : R → H� be a continuous map such that v(·) ∈ D. Then, there
exists a unique family of Borel probability measures {μt : t ∈ R} in H� such that the
support of the measure μt ⊂ Ad(t) and

L I M
t0→−∞

1

t − t0

t∫

t0

ϕ(S(t, r)v(r))dr =
∫

Ad (t)

ϕ(w)dμt (w),

for any real-valued continuous functional ϕ on H�. In addition, μt is invariant in the
following sense:

∫

Ad (t)

ϕ(w)dμt (w) =
∫

Ad (t0)

ϕ(S(t, t0)w)dμt0(w), t ≥ t0,

where a generalized Banach limit L I MT →+∞ is any linear functional, which defined
on the space of all bounded real-valued functions on [0,+∞) that satisfies

(1) L I MT →+∞h(T ) ≥ 0 for nonnegative functions h;
(2) L I MT →+∞h(T ) = limT →+∞ h(T ) if the limit limT →+∞ h(T ) exists.

3.4 Backward Flattening of Solutions

Lemma 8 Suppose that (F1)–(F3) and (G1) hold. For each t ∈ R and B ∈ B, we
have, for all τ ≥ τb and φ ∈ B,

sup
s≤t

s∫

s−�−1

‖Au(r)‖2dr ≤ c(1 + L(t))3(1 + Gb(t))
3ecL(t). (40)

Proof Multiplying (4) by Au(r; s − τ, φ), by (5) and the Young inequality, we have

d

dr
‖A

1
2 u(r)‖2 + ν‖Au‖2 + 2α‖A

1
2 u‖2 + 2β(|u|u, Au) + 2γ (|u|2u, Au)

≤ cL2
f (r)‖ur‖2 + c‖g(r)‖2.

By the Young inequality, we obtain

−2β(|u|u, Au) − 2γ (|u|2u, Au) ≤ ν

2
‖Au‖2 + c(‖u‖44 + ‖u‖66).

Hence, by V ↪→ L p(Ω)(2 ≤ p ≤ 6), we obtain

d

dr
‖A

1
2 u(r)‖2 + ν

2
‖Au‖2 ≤ cL2

f (r)‖ur‖2 + c‖g(r)‖2 + c(‖u‖4V + ‖u‖6V ).
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Integrating the above inequality on [s − � − 1, s] yields
s∫

s−�−1

‖Au(r)‖2dr ≤ c

s∫

s−�−1

(1 + L2
f (r)‖ur‖2 + ‖g(r)‖2 + ‖u(r)‖6V )dr

+ ‖A
1
2 u(s − � − 1)‖2. (41)

By (16), we have

s∫

s−�−1

‖u(r)‖6V dr ≤ (� + 1) sup
r∈[s−�−1,s]

‖u(r)‖6V ≤ c(1 + L(t))3(1 + Gb(t))
3ecL(t).

(42)

Inserting (23), (24) and (42) into (41) yields

sup
s≤t

s∫

s−�−1

‖Au(r)‖2dr ≤ c(1 + L(t))3(1 + Gb(t))
3ecL(t).

The proof is complete. ��
Note that the Stokes operator A has a family of eigenfunctions {ek}∞k=1 ⊂ V with the

corresponding eigenvalues: λ1 ≤ λ2 ≤ · · · ≤ λk → +∞ as k → +∞. In addition,
{ek}∞k=1 be the orthonormal basis of H . Let Pk : H �→ Hk = span{e1, e2, · · · , ek},
then Pk is an orthogonal projection. For each u ∈ V , which has the following orthog-
onal decomposition:

u = Pku ⊕ (I − Pk)u = uk,1 + uk,2, k ∈ N.

Lemma 9 Suppose that (F1)–(F3) and (G1) hold. For each t ∈ R, B ∈ B and any
ε > 0, there exists a δ := δ(t, k, ε) > 0 with |θ1 − θ2| < δ and θ1, θ2 ∈ [−�, 0] such
that

sup
s≤t

‖Pku(s + θ1; s − τ, φ) − Pku(s + θ2; s − τ, φ)‖V < ε, (43)

for all τ ≥ τb and φ ∈ B.

Proof Notice that ‖A
1
2 uk,1‖2 ≤ λk‖uk,1‖2 and suppose that θ1 ≤ θ2. Hence, by (24),

we have

sups≤t ‖A
1
2 uk,1(s + θ1; s − τ, φ) − A

1
2 uk,1(s + θ2; s − τ, φ)‖

≤ λ
1
2
k sups≤t ‖uk,1(s + θ1) − uk,1(s + θ2)‖
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≤ λ
1
2
k sups≤t

s+θ2∫

s+θ1

∥
∥ ∂

∂r uk,1(r; s − τ, φ)
∥
∥ dr

≤ λ
1
2
k sups≤t

(
s∫

s−�

∥
∥ ∂

∂r u(r; s − τ, φ)
∥
∥2 dr

) 1
2

|θ1 − θ2| 12

≤ cλ
1
2
k (1 + L(t))(1 + Gb(t))ecL(t)|θ1 − θ2| 12 .

Then, for any ε > 0, there exists a δ := δ(t, k, ε) > 0 with |θ1 − θ2| < δ such that

sup
s≤t

‖A
1
2 uk,1(s + θ1; s − τ, φ) − A

1
2 uk,1(s + θ2; s − τ, φ)‖ < ε,

which implies (43) holds. ��
Lemma 10 Suppose that (F1)–(F3) and (G1) hold. For each t ∈ R, B ∈ B and any
ε > 0, there exists a K = K (ε, t) ∈ N such that

sup
s≤t

sup
θ∈[−�,0]

‖A
1
2 uk,2(s + θ; s − τ, φ)‖2 < ε. (44)

for all k ≥ K , τ ≥ τb and φ ∈ B.

Proof Taking the inner product of (4) with Auk,2(r; s − τ, φ) in H , we have

1

2

d

dr
‖A

1
2 uk,2(r)‖2 + ν‖Auk,2(r)‖2 + α‖A

1
2 uk,2(r)‖2

= −β(|u|u, Auk,2) − γ (|u|2u, Auk,2) + ( f (r , ur ), Auk,2) + (g(r , ·), Auk,2)

≤ ν

2
‖Auk,2‖2 + c(‖u(r)‖44 + ‖u(r)‖66 + L2

f (r)‖ur‖2H�
+ ‖g(r)‖2).

Therefore, by ‖Auk,2‖2 ≥ λk‖A
1
2 uk,2‖2 we get

d

dr
eνλkr‖A

1
2 u2(r)‖2 ≤ ceνλkr (‖u(r)‖44 + ‖u(r)‖66 + L2

f (r)‖ur‖2H�
+ ‖g(r)‖2).

Let p = 4, j = 0, q = 3, r = 2, l = 2 in (11), we have

‖u(r)‖44 ≤ c‖u(r)‖
10
3
3 ‖Au(r)‖ 2

3 .

Again, let p = 6, j = 0, q = 4, r = 2, l = 2,

‖u(r)‖66 ≤ c‖u(r)‖
24
5
4 ‖Au(r)‖ 6

5 .

Hence, we have

d

dr
eνλkr‖A

1
2 uk,2(r)‖2
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≤ ceνλkr (‖u‖
10
3
3 ‖Au‖ 2

3 + ‖u‖
24
5
4 ‖Au‖ 6

5 + L2
f (r)‖ur‖2H�

+ ‖g(r)‖2). (45)

Integrating (45) on [ζ, s + θ ] with ζ ∈ [s + θ − 1, s + θ ] and θ ∈ [−�, 0], and then
integrating this resulting on [s + θ − 1, s + θ ] w.r.t. ζ yields

eλk (s+θ)‖A
1
2 uk,2(s + θ; s − τ, φ)‖2

≤ c

s+θ∫

s+θ−1

eλkr (‖A
1
2 uk,2(r)‖2 + ‖u‖

10
3
3 ‖Au‖ 2

3 + ‖u‖
24
5
4 ‖Au‖ 6

5 )dr

+ c

s+θ∫

s+θ−1

eλkr (L2
f (r)‖ur‖2H�

+ ‖g(r)‖2)dr

= c

s∫

s−1

eλk (r+θ)(‖A
1
2 uk,2(r + θ)‖2 + ‖u(r + θ)‖

10
3
3 ‖Au(r + θ)‖ 2

3

+ ‖g(r + θ)‖2)dr

+ c

s∫

s−1

eλk (r+θ)(‖u(r + θ)‖
24
5
4 ‖Au(r + θ)‖ 6

5 + L2
f (r + θ)‖ur+θ‖2H�

)dr ,

which implies

‖A
1
2 uk,2(s + θ; s − τ, φ)‖2 ≤ c

s∫

s−1

eλk (r−s)(‖A
1
2 uk,2(r + θ)‖2

+ ‖u(r + θ)‖
10
3
3 ‖Au(r + θ)‖ 2

3 + ‖g(r + θ)‖2)dr

+ c

s∫

s−1

eλk (r−s)(‖u(r + θ)‖
24
5
4 ‖Au(r + θ)‖ 6

5 + L2
f (r + θ)‖ur+θ‖2H�

)dr . (46)

We now treat each term on the right-hand term of (46). For the first term, by (24), we
have

sup
s≤t

sup
θ∈[−�,0]

s∫

s−1

eλk (r−s)‖A
1
2 uk,2(r + θ)‖2dr

≤ sup
s≤t

sup
r∈[s−�−1,s]

‖A
1
2 u(r)‖2

s∫

s−�−1

eλk (r−s)dr

≤ c

λk
(1 + L(t))(1 + Gb(t))e

cL(t) → 0 as k → +∞. (47)
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For the second and third term, by (29) and (40), we get

sup
s≤t

sup
θ∈[−�,0]

s∫

s−1

eλk (r−s)(‖u(r + θ)‖
10
3
3 ‖Au(r + θ)‖ 2

3 +‖u(r+θ)‖
24
5
4 ‖Au(r + θ)‖ 6

5 )dr

≤ sup
s≤t

sup
r∈[s−�−1,s]

‖u(r)‖
10
3
3 sup

θ∈[−�,0]

s∫

s−1

eλk (r−s)‖Au(r + θ)‖ 2
3 dr

+ sup
s≤t

sup
r∈[s−�−1,s]

‖u(r)‖
24
5
4 sup

θ∈[−�,0]

s∫

s−1

eλk (r−s)‖Au(r + θ)‖ 6
5 dr

≤ sup
s≤t

sup
r∈[s−�−1,s]

‖u(r)‖
10
3
3

⎛

⎝

s∫

s−1

e
3
2λk (r−s)dr

⎞

⎠

2
3
⎛

⎜
⎝

s∫

s−�−1

‖Au(r)‖2dr

⎞

⎟
⎠

1
3

+ sup
s≤t

sup
r∈[s−�−1,s]

‖u(r)‖
24
5
4

⎛

⎝

s∫

s−1

e
5
2λk (r−s)dr

⎞

⎠

2
5
⎛

⎜
⎝

s∫

s−�−1

‖Au(r)‖2dr

⎞

⎟
⎠

3
5

≤ c

(
2

3λk

) 2
3

((1 + L(t))(1 + Gb(t))e
cL(t))

19
9

+ c

(
2

5λk

) 2
5

((1 + L(t))(1 + Gb(t))e
cL(t))3 → 0 as k → +∞. (48)

For the delay term, by (6) and (16), we find

sup
s≤t

sup
θ∈[−�,0]

s∫

s−1

eλk (r−s)L2
f (r + θ)‖ur+θ‖2H�

dr

≤ sup
s≤t

sup
σ∈[s−�−1,s]

‖uσ ‖2H�
sup

θ∈[−�,0]

s∫

s−1

eλk (r−s)L2
f (r + θ)dr

≤ c(1 + Gb(t))e
cL(t) sup

s≤t
sup

θ∈[−�,0]

s+θ∫

s+θ−1

eλk (r−(s+θ))L2
f (r)dr

≤ c(1 + Gb(t))e
cL(t) sup

s≤t

s∫

−∞
eλk (r−s)L2

f (r)dr → 0 as k → +∞. (49)
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For the forcing term, by (8), we have

sup
s≤t

sup
θ∈[−�,0]

s∫

s−1

eλk (r−s)‖g(r + θ)‖2dr

≤ sup
s≤t

sup
θ∈[−�,0]

s+θ∫

−∞
eλk (r−(s+θ))‖g(r)‖2dr

≤ sup
s≤t

s∫

−∞
eλk (r−s)‖g(r)‖2dr → 0 as k → +∞. (50)

It follows from (46) to (50) that we obtain (44) as desired. ��

3.5 Existence and Backward Compactness of Pullback Attractors in the Regular
Space

We review some basic concepts and theorem related to bi-spatial pullback attractors.
Suppose that (X , ‖·‖X ) and (Y , ‖·‖Y ) be Banach spaces. An evolution process S(·, ·)
on X is said to take its values into Y if

S(t, r)X ⊂ Y , for all t ≥ r .

We claim that the combination (X , Y ) is limit-identical if X ∩ Y �= ∅ and

xn ∈ X ∩ Y , lim
n→+∞ ‖xn − x0‖X + ‖xn − y0‖Y = 0 ⇒ x0 = y0 ∈ X ∩ Y .

Let D̃ be a inclusion-closed universe of some sets D̃ = {D̃(t) �= ∅ : t ∈ R} ⊂ X .

Definition 1 A family of sets A = {A(t) : t ∈ R} is called a pullback D̃-(X , Y )-
attractor for S(·, ·) if
(i) A(·) is compact in X ∩ Y ;
(ii) A(·) is invariant, that is, S(t, s)A(s) = A(t) for all t ≥ s;
(iii) A(·) attracts every D̃ ∈ D̃ under the topology of Y , more precisely, for each

D̃ ∈ D̃, we have

lim
τ→+∞ distX∩Y (S(t, t − τ)D̃(t − τ),A(t)) = 0,

where distX∩Y (·, ·) denotes the Hausdorff semi-distance.

Theorem 3 Assume that S(·, ·) be an evolution process on X taking its values in Y
and (X , Y ) is limit-identical. Then, S(·, ·) has a pullback D̃-(X , Y )-attractor A(·) if

(i) S(·, ·) has a closed pullback D̃-absorbing set K := {K(t) : t ∈ R} ∈ D̃;
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(ii) S(·, ·) is pullback D̃-asymptotically compact in X;
(iii) S(·, ·) is pullback D̃-(X , Y )-asymptotically compact.

Theorem 4 Suppose that (F1)–(F3) and (G1) hold. Then, we have the following con-
clusions:

(i) The backward compact pullbackB-attractorAb as given in (36) is also a pullback
B-(H�, V�) attractor, which is backward compact in V�.

(ii) The pullback D-attractor Ad as given in (35) is also a pullback D-(H�, V�)-
attractor, which is backward compact in V�.

Proof (i) We first show that Ab is a pullback B-(H�, V�)-attractor. Since V� ↪→ H�,
(H�, V�) is limit-identical. By Theorem 3 we also need to prove S(·, ·) is backward
pullback B-(H�, V�)-asymptotically compact, that is, for each t ∈ R, {S(sn, sn −
τn)φn}n∈N has a convergent subsequence in V� whenever sn ≤ t, τn → +∞ and
φn ∈ B(sn −τn). To this end, we split the proof into two steps based on Ascoli–Arzelà
theorem.

Step 1. {S(sn, sn − τn)φn}n∈N in V� is equi-continuous from [−�, 0] to V .
Notice that there exists a N ∈ N such that τn ≥ τb (τb is given in Lemma 2) for all

n ∈ N due to τn → +∞. By (43) and (44), we have for all k0 ≥ K

‖(S(sn, sn − τn)φn)(θ1) − (S(sn, sn − τn)φn)(θ2)‖V

= ‖u(sn + θ1; sn − τn, φn) − u(sn + θ2; sn − τn, φn)‖V

≤ ‖Pk0u(sn + θ1; sn − τn, φn) − Pk0u(sn + θ2; sn − τn, φn)‖V

+ ‖(I − Pk0)u(sn + θ1; sn − τn, φn)‖V + ‖(I − Pk0)u(sn + θ2; sn − τn, φn)‖V

< 3ε.

Hence, we have {S�(sn, sn − τn)φn}n∈N is equi-continuous.
Step 2. For each fixed θ ∈ [−�, 0], the sequence (S(sn, sn − τn)φn)(θ) = u(sn +

θ; sn − τn, φn) is pre-compact in V .
By (24), we obtain that {Pk0u(sn + θ; sn − τn, φn)}n∈N is bounded in V and thus

pre-compact in the k0-dimensional subspace Vk0 . Then, there is an index subsequence
n∗ of n such that {Pk0u(sn∗ + θ; sn∗ − τn∗ , φn∗)}n∗∈N is a Cauchy sequence in Vk0 . On
the other hand, let n∗, m∗ large enough, we have

‖u(sn∗ + θ; sn∗ − τn∗ , φn∗) − u(sn∗ + θ; sm∗ − τm∗ , φm∗)‖V

≤ ‖Pk0u(sn∗ + θ; sn∗ − τn∗ , φn∗) − Pk0u(sm∗ + θ; sm∗ − τm∗ , φm∗)‖V

+ ‖(I − Pk0)u(sn∗ + θ; sn∗ − τn∗ , φn∗)‖V

+ ‖(I − Pk0)u(sm∗ + θ; sm∗ − τm∗ , φm∗)‖V < 3ε.

Hence, {u(sn∗ + θ; sn∗ − τn∗ , φn∗)}n∗∈N is a Cauchy sequence in V and then the proof
of Step 2 is complete.

Then, we obtain that S(·, ·) is backward pullbackB-(H�, V�)-asymptotically com-
pact, which implies S(·, ·) is pullback B-(H�, V�)-asymptotically compact. Hence,
we have Ab is a pullback B-(H�, V�)-attractor.
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Next, we show that Ab is backward compact in V�. Indeed, it is easy to verify that
the result by the same method as in (ii) of Theorem 1.

(ii) Similarly to (i), we have Ad as given in (35) is also a pullback D-(H�, V�)-
attractor. Since Ad = Ab, we get Ad is backward compact in V�. ��

4 Asymptotically Autonomous Dynamics for the 3D BF Equation with
Autonomous Delays

In this section, we consider the following non-autonomous equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t − νΔu + αu + ∇ p = −β|u|u − γ |u|2u + f (ut , x) + g(t, x),

∇ · u = 0, t > t0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

u(t0 + θ, x) = ut0(θ, x), θ ∈ [−�, 0].
(51)

Similarly to (4), Eq. (51) can be rewritten as

{
∂u
∂t + ν Au = P̃(−αu − β|u|u − γ |u|2u) + P̃ f (ut , x) + P̃g(t, x),

u(t0 + θ, x) = ut0(θ, x), θ ∈ [−�, 0], x ∈ Ω.
(52)

Since we consider the delay term is autonomous, the assumption conditions (F1)–(F3)
will be changed, more precisely,

(F1) For each ϕ ∈ CH , x → f (ϕ, x) is measurable from Ω into H ;
(F2) f (0, x) = 0 for all x ∈ Ω;
(F3) There is a positive constant L f such that for all ϕ,ψ ∈ H�,

‖ f (ϕ, ·) − f (ψ, ·)‖ ≤ L f ‖ϕ − ψ‖H� . (53)

(F4) There exist two positive constants c f and m f such that for all u, v ∈ C([t0 −
�, t], H) with t0 ≤ t ,

t∫

t0

em f r‖ f (ϕ, ·) − f (ψ, ·)‖2dr ≤ c2f

t∫

t0−�

em f r‖ϕ − ψ‖2dr .

Hence, we can define an evolution process S̃(t, t0) : H� → H� associated with
(52), by

S̃(t, t0)φ = ut (·; t0, φ), t ≥ t0, φ ∈ H�.

Notice that we add a condition (F4), which will be used to establish the existence of
pullback absorbing sets. Similarly to Lemma 2, we can obtain the evolution process
S̃ has a pullback D-absorbing set K̃d and a pullback B-absorbing set K̃b. Moreover,
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other results of Sect. 3 are hold for Eq. (52) due to L f is a positive constant. Then,
S̃(·, ·) has a pullback D-(H�, V�)-attractor Ãd = {Ãd(t) : t ∈ R} ∈ D, which is
backward compact in V�.

In order to study the upper semi-convergence of the pullback attractor Ãd from
non-autonomous to autonomous, we give a further assumption for g:

(G2) There exists a function g∞ ∈ H such that

lim
t0→−∞

t0∫

−∞
‖g(r) − g∞‖2dr = 0. (54)

In addition, we need to introduce the following autonomous equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t − νΔv + αv + ∇ p = −β|v|v − γ |v|2v + f (vt , x) + g∞(x),

∇ · v = 0, t > 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,

v(0 + θ, x) = v0(θ, x), θ ∈ [−�, 0].
(55)

Meanwhile, using the Leray orthogonal projection P̃ to (55), we obtain

{
∂v
∂t + ν Av = P̃(−αv − β|v|v − γ |v|2v) + P̃ f (vt , x) + P̃g∞(x),

v(0 + θ, x) = v0(θ, x), θ ∈ [−�, 0]. (56)

By the standard Galerkin method, we obtain the well-posedness of (56). Then, we
obtain a semigroup T (t) : H� → H� generated by (56), given by

T (t)φ = vt (·, φ̄), t ≥ 0, φ ∈ H�.

It follows from the same method as in Sect. 3 that T (t) has a (H�, V�)-global attractor
A∞.

4.1 Convergence of Solutions fromNon-Autonomous to Autonomous

Lemma 11 Suppose (F1)–(F3), (G1)–(G2) hold. If ut0 , v0 ∈ H� satisfy

lim
t0→−∞ ‖ut0 − v0‖2H�

= 0, (57)

then we have, for all r̃ ≥ 0,

lim
t0→−∞ ‖S̃(t0 + r̃ , t0)ut0 − T (r̃)v0‖2H�

= lim
t0→−∞ ‖ut0+r̃ (·; t0, ut0) − vr̃ (·; v0)‖2H�

= 0. (58)
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Proof For each t0 ∈ R, we define a function wt0 by

wt0(r) = u(t0 + r; t0, ut0) − v(r; v0), r ≥ −�.

If follows from (52) and (56) that

∂wt0(r)

∂t
+ ν Awt0(r) + α P̃wt0(r)

= P̃(−β|u(t0 + r)|u(t0 + r) − γ |u(t0 + r)|2u(t0 + r))

− P̃(−β|v(r)|v(r) − γ |v(r)|2v(r))

+ P̃ f (ut0+r , x) − P̃ f (vr , x) + P̃g(t0 + r , x) − P̃g∞(x).

Multiplying the above equality by wt0(r) yields

1

2

d

dr
‖wt0(r)‖2 + ν‖A

1
2 wt0(r)‖2 + α‖wt0(r)‖2

= ((−β|u(t0 + r)|u(t0 + r) − γ |u(t0 + r)|2u(t0 + r)), wt0(r))

− ((−β|v(r)|v(r) − γ |v(r)|2v(r)), wt0(r))

+ ( f (ut0+r , ·) − f (vr , ·), wt0(r)) + (g(t0 + r , ·) − g∞(·), wt0(r)). (59)

By (10), we have

((−β|u(t0 + r)|u(t0 + r) − γ |u(t0 + r)|2u(t0 + r)), wt0(r))

− ((−β|v(r)|v(r) − γ |v(r)|2v(r)), wt0(r))

≤ −β

2
‖wt0(r)‖33 − γ

4
‖wt0(r)‖44 ≤ 0. (60)

By (53) and the Young inequality, we have

(( f (ut0+r , ·) − f (vr , ·), wt0(r)) ≤ α

2
‖wt0(r)‖2 + L f

2α
‖wt0

r ‖2H�
, (61)

(g(t0 + r , ·) − g∞(·), wt0(r)) ≤ α

2
‖wt0(r)‖2 + 1

2α
‖g(t0 + r) − g∞‖2. (62)

Inserting (60)–(62) into (59) yields

d

dr
‖wt0(r)‖2 ≤ c‖wt0

r ‖2H�
+ c‖g(t0 + r) − g∞‖2.

Integrating the above inequality on [0, r̃ ] with r̃ ∈ [0, R] and R > 0 yields

‖wt0(r̃)‖2 ≤ ‖ut0 − v0‖2H�
+ c

r̃∫

0

‖wt0
r ‖2H�

dr + c

R∫

0

‖g(t0 + r) − g∞‖2dr .
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It is easy to see that ‖wt0(r̃)‖2 ≤ ‖ut0 − v0‖2H�
when r̃ ∈ [−�, 0]. Then, we have

‖wt0
r̃ ‖2H�

≤ ‖ut0 − v0‖2H�
+

r̃∫

0

‖wt0
r ‖2H�

dr +
t0+R∫

−∞
‖g(r) − g∞‖2dr . (63)

Applying the Gronwall inequality to (63), by (54) and (57), we get

‖wt0
r̃ ‖2H�

≤ (‖ut0 − v0‖2H�
+

t0+R∫

−∞
‖g(r) − g∞‖2dr)eR → 0,

as t0 → −∞. The proof is complete. ��

4.2 Upper Semi-Convergence of Regular Attractors fromNon-Autonomous to
Autonomous

Theorem 5 Suppose (F1)–(F4) and (G1)–(G3) hold. Then, we have

lim
t→−∞ distV� (Ãd(t),A∞) = 0. (64)

Proof If (64) is false, then there are δ > 0 and tn → −∞ such that

distV� (Ãd(tn),A∞) ≥ 4δ,

which implies for each n ∈ N, there exists a an ∈ Ãd(tn) such that

distV� (an,A∞) ≥ 3δ. (65)

We assume that tn ≤ 0 for all n ∈ N due to tn → −∞. Then, we have {an}n∈N ⊂
⋃

s≤0 Ãd(s) := B. Since Ãd is backward compact in V�,
⋃

s≤0 Ãd(s) is compact
and so B is bounded in V�. It follows from A∞ is a (H�, V�)-global attractor and
V� ↪→ H� that there is a r := r(B) > 0 such that

distV� (T (r)B,A∞) ≤ δ. (66)

Moreover, there is a a∞ ∈ B such that

‖an − a∞‖V� → 0, as n → +∞. (67)

By the invariance of Ãd , we find a bn ∈ Ãd(tn − r) ⊂ B such that

S̃(tn, tn − r)bn = an . (68)
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By the backward compactness of Ãd in H�, there exists a b∞ ∈ B such that

‖bn − b∞‖H� → 0, as n → +∞.

which together with (58) implies

‖S̃(tn − r + r , tn − r)bn − T (r)b∞‖H� → 0, as n → +∞,

which along with (67) and (68) implies a∞ = T (r)b∞. Then by (66) and (67), there
exists N := N (δ) ∈ N such that for all n ≥ N ,

distV� (an,A∞) ≤ ‖an − a∞‖V� + distV� (T (r)B,A∞) ≤ 2δ,

which contradicts (65). The proof is complete. ��

5 Upper Semicontinuity of Regular Pullback Attractors as the Delay
time Tends to Zero

In this section, we assume that � ∈ (0, �0] for some �0 > 0. Let f (t, ut ) = f1(u(t −
ρ�(t)), x) +

0∫

−�

f2(u(t + θ), θ)dθ in (1), and then applying the Leray orthogonal

projection P̃ to this result, we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t + ν Au + P̃(αu + β|u|u + γ |u|2u)

= P̃( f1(u(t − ρ�(t)), x) +
0∫

−�

f2(u(t + θ), θ)dθ) + P̃g(t, x)

u(t0 + θ, x) = ut0(θ, x) := φ�(x), θ ∈ [−�, 0], t > t0, x ∈ Ω,

(69)

where ρ�(·) is a positive function such that ρ�(·) ∈ C1(R) and

� := sup
t∈R

ρ�(t) < +∞, ρ∗ := sup
�∈(0,�0]

sup
t∈R

d

dt
ρ�(t) < 1. (70)

The
t variable delay f1 : R × Ω → R satisfies

f1(0, ·) = 0, | f1(s1, x) − f1(s2, x)| ≤ L f1 |s1 − s2|, s1, s2 ∈ R, x ∈ Ω. (71)

where L f1 is a positive constant satisfies L2
f1

< α2e−α�

24 (1 − ρ∗).
The distributed delay f2 : [−�, 0] × R → R satisfies

f2(0, ·) = 0, | f2(θ, s1) − f2(θ, s2)| ≤ L f2(θ)|s1 − s2|, s1, s2 ∈ R, θ ∈ [−�, 0],
(72)
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where L f2(·) ∈ L2(−�, 0) is a positive function satisfies ‖L f2(·)‖2L2(−�,0)
< α2e−α�

24� .
By the same method as in Sect. 3, we can obtain an evolution process S�(·, ·)

induced by (69) for each � ∈ (0, �0], which has a pullback D-(H�, V�)-attractor
A�

d = {A�

d(t) : t ∈ R} ∈ D.
In this section, we consider the robustness of A�

d as � → 0. For this purpose, let
� = 0 in (69), we have

{
∂u0
∂t + ν Au0 = P̃(−αu0 − β|u0|u0 − γ |u0|2u0) + P̃( f1(u0(t), x) + g(t, x)),

u(t0, x) := φ0(x).

(73)

Similarly, we get an evolution process S0(·, ·) corresponding to (73), which has a
pullback D0-(H�, V�)-attractor A0

d = {A0
d(t) : t ∈ R} ∈ D0, where

D0 = {D0 = {D0(t) : t ∈ R} ⊂ P(H) : lim
τ→+∞ e−βτ‖D0(t − τ)‖2 = 0, β > 0}.

5.1 Convergence of Evolution Processes from Delay to Non-Delay

Lemma 12 Suppose φ� ∈ H� and φ0 ∈ H such that

d�(φ�, φ0) := sup
θ∈[−�,0]

‖φ�(θ) − φ0‖ → 0 as � → 0. (74)

Then, the solution u� of Eq. (69) converges to the solution u0 of Eq. (73) in the following
sense:

lim
�→0

sup
θ∈[−�,0]

‖(S�(t, t0)φ
�)(θ) − S0(t, t0)φ

0‖2

= lim
�→0

sup
θ∈[−�,0]

‖u�(t + θ; t0, φ
�) − u0(t; t0, φ

0)‖2 = 0, (75)

for all t ≥ t0 and t0 ∈ R.

Proof Let

ũ�
θ (r) = u�(r + θ; t0, φ

�) − u0(r; t0, φ
0), ∀t0 ∈ R, r ≥ t0.

Subtracting (73) from (69), and then multiplying this result by ũ�
θ (r + θ) in H , we

have

1
2

d
dr ‖ũ�

θ (r)‖2 + ν‖A
1
2 ũ�

θ (r)‖2 + α‖ũ�
θ (r)‖2

+(β(|u�(r + θ)|u�(r + θ) − |u0(r)|u0(r)), ũ�
θ (r))

+ (γ (|u�(r + θ)|2u�(r + θ) − |u0(r)|u0(r)), ũ�
θ (r))

= ( f (u�(r + θ − ρ�(r + θ)), ·) − f (u0(r), ·), ũ�
θ (r))
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+
(

0∫

−�

f2(u�(r + θ + θ̃ ), θ̃ )d θ̃ , ũ�
θ (r)

)

+ (g(r + θ, ·) − g(r , ·), ũ�
θ (r)).

By (10), we have

(β(|u�(r + θ)|u�(r + θ) − |u0(r)|u0(r)), ũ�
θ (r))

+ (γ (|u�(r + θ)|2u�(r + θ) − |u0(r)|u0(r)), ũ�
θ (r))

≥ β

2
‖u�(r + θ) − u0(r)‖33 + γ

4
‖u�(r + θ) − u0(r)‖44 ≥ 0.

Hence, by (71), (72) and the Young inequality, we have

d

dr
‖ũ�

θ (r)‖2 ≤ cL2
f1‖u�(r + θ − ρ�(r + θ)) − u0(r)‖2

+ c‖L f2(·)‖2L2(−�,0)

0∫

−�

‖u�(r + θ + θ̃ )‖2d θ̃ + c‖g(r + θ) − g(r)‖2. (76)

For each T > �, integrating (76) on [t0 − θ, t] with t ∈ [t0 − θ, t0 + T ] yields

‖ũ�
θ (t)‖2 ≤ ‖ũ�

θ (t0 − θ)‖2 + c

t∫

t0−θ

‖u�(r + θ − ρ�(r + θ)) − u0(r)‖2dr

+ c‖L f2(·)‖2L2(−�,0)

t∫

t0−θ

0∫

−�

‖u�(r + θ + θ̃ )‖2d θ̃dr

+ c

t∫

t0−θ

‖g(r + θ) − g(r)‖2dr . (77)

We now estimate each term on the right-hand side of (77). For the first term, we have

‖ũ�
θ (t0 − θ)‖2 ≤ 2‖φ�(0) − φ0‖2 + 2‖φ0 − u0(t0 − θ)‖2

≤ 2d2
�(φ�, φ0) + 2‖φ0 − u0(t0 − θ)‖2.

For the second term, let s = h(r) = r + θ − ρ�(r + θ) for any r ∈ R and fixed
θ ∈ [−�, 0]. Since h′(r) ≥ 1−ρ∗ > 0, it has an inverse function such that r = h−1(s)
for any s ∈ R. Then, we obtain

t∫

t0−θ

‖u�(r + θ − ρ�(r + θ)) − u0(r)‖2dr
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=
⎛

⎜
⎝

h−1(t0)∫

t0−θ

+
t∫

h−1(t0)

⎞

⎟
⎠ ‖u�(r + θ − ρ�(r + θ)) − u0(r)‖2dr

=
h−1(t0)∫

t0−θ

‖u�(r + θ − ρ�(r + θ)) − u0(r)‖2dr

+
t−ρ�(t+θ)∫

t0−θ

‖u�(r + θ) − u0(h−1(r + θ))‖2
1 − d

dr ρ�(h−1(r + θ) + θ)
dr =: I1(�) + I2(t, �).

Note that

I1(�) ≤ 2

h−1(t0)∫

t0−θ

‖u�(r + θ − ρ�(r + θ)) − φ0‖2dr + 2

h−1(t0)∫

t0−θ

‖u0(r) − φ0‖2dr

≤ 2

1 − ρ∗

t0∫

t0−ρ�(t0)

‖u�(r) − φ0‖2dr + 2

h−1(t0)∫

t0−θ

‖u0(r) − φ0‖2dr

≤ cd2
�(φ�, φ0) + c

h−1(t0)∫

t0−θ

‖u0(r) − φ0‖2dr ,

and

I2(t, �) ≤ 1

1 − ρ∗

t∫

t0−θ

‖u�(r + θ) − u0(h−1(r + θ))‖2dr

≤ 2

1 − ρ∗

t∫

t0−θ

‖u�(r + θ) − u0(r)‖2dr

+ 2

1 − ρ∗

t∫

t0−θ

‖u0(h−1(r + θ)) − u0(r)‖2dr

≤ c

t∫

t0−θ

‖ũ�
θ (r)‖2dr + c

t∫

t0−θ

‖u0(h−1(r + θ)) − u0(r)‖2dr .
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Hence, we obtain

t∫

t0−θ

‖u�(r + θ − ρ�(r + θ)) − u0(r)‖2dr

≤ cd2
�(φ�, φ0) + c

h−1(t0)∫

t0−θ

‖u0(r) − φ0‖2dr + c

t∫

t0−θ

‖ũ�
θ (r)‖2dr

+ c

t∫

t0−θ

‖u0(h−1(r + θ)) − u0(r)‖2dr .

For the third term, we obtain

t∫

t0−θ

0∫

−�

‖u�(r + θ + θ̃ )‖2d θ̃dr ≤
0∫

−�

t∫

t0−θ+θ̃

‖u�(r + θ)‖2d θ̃dr

≤ �

t0−θ∫

t0−θ−�

‖u�(r + θ)‖2dr + �

t∫

t0−θ

‖u�(r + θ)‖2dr

≤ �2‖φ�‖2H�
+ 2�

t∫

t0−θ

‖ũ�
θ (r)‖2dr + 2�

t∫

t0−θ

‖u0(r)‖2dr

≤ 2�2d2
�(φ�, φ0) + 2�2‖φ0‖2 + 2�

t∫

t0−θ

‖ũ�
θ (r)‖2dr + 2�

t0+T∫

t0

‖u0(r)‖2dr .

Hence, we obtain

‖ũ�
θ (t)‖2 ≤ c(1 + �‖L f2(·)‖2L2(−�,0))

t∫

t0−θ

‖ũ�
θ (r)‖2dr

+ c(1 + �2‖L f2(·)‖2L2(−�,0))d
2
�(φ�, φ0) + c�2‖L f2(·)‖2L2(−�,0)‖φ0‖2

+ c

t0+2�∫

t0

‖u0(r) − φ0‖2dr + c

t0+T∫

t0

‖u0(h−1(r + θ)) − u0(r)‖2dr

+ c‖φ0 − u0(t0 − θ)‖2 + c�‖L f2(·)‖2L2(−�,0)

t0+T∫

t0

‖u0(r)‖2dr
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+ c

t0+T∫

t0

‖g(r + θ) − g(r)‖2dr , (78)

where we use h−1(t0) ≤ t0 + 2�. Applying the Gronwall inequality to (78) yields

‖ũ�
θ (t + θ)‖2 ≤ I3(�)((1 + �2‖L f2(·)‖2L2(−�,0))d

2
�(φ�, φ0) + �2‖φ0‖2)

+ I3(�)

⎛

⎜
⎝

t0+2�∫

t0

‖u0(r) − φ0‖2dr +
t0+T∫

t0

‖u0(h−1(r + θ)) − u0(r)‖2dr

⎞

⎟
⎠

+ I3(�)(‖φ0 − u0(t0 − θ)‖2 + �‖L f2(·)‖2L2(−�,0)

t0+T∫

t0

‖u0(r)‖2dr)

+ I3(�)

⎛

⎝

t0+T∫

t0

‖g(r + θ) − g(r)‖2dr

⎞

⎠ , (79)

where I3(�) = ce
c(1+�‖L f2 (·)‖2

L2(−�,0)
)(T +�)

. We now treat the limit of each term on the
right-hand side of (79) as � → 0. For the first term and third term, by (74), we have

I3(�)((1 + �2)d2
�(φ�, φ0) + �2‖φ0‖2) → 0, as � → 0. (80)

For the second term and forth term, it follows from the continuity of u0(·) at t0 that

I3(�)

⎛

⎜
⎝

t0+2�∫

t0

‖u0(r) − φ0‖2dr + ‖φ0 − u0(t0 − θ)‖2
⎞

⎟
⎠ → 0, as � → 0. (81)

For the fifth term, by u0 : [t0, t0 + T + �] is uniform continuity, we obtain

I3(�)

t0+T∫

t0

‖u0(h−1(r + θ)) − u0(r)‖2dr → 0, as � → 0, (82)

where we use h−1(r + θ) = r + ρ�(h−1(r + θ) + θ). For the sixth term, by the same

method as in Lemma 2, we obtain
t0+T∫

t0
‖u0(r)‖2dr is finite and so

I3(�)�‖L f2(·)‖2L2(−�,0)

t0+T∫

t0

‖u0(r)‖2dr → 0, as � → 0. (83)
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For the last term, we infer from g ∈ L2
loc(R, H) and θ ∈ [−�, 0] that

lim
�→0

I3(�)

t0+T∫

t0

‖g(r + θ) − g(r)‖2dr = 0. (84)

Substituting (80)–(84) into (79), we find

‖ũ�
θ (t)‖2 → 0, as � → 0, for all θ ∈ [−�, 0] and t ∈ [t0 − θ, t0 + T ]. (85)

We now consider the case of t ∈ [t0, t0 − θ ].

‖ũ�
θ (t)‖2 = ‖u�(t + θ) − u0(t)‖2 ≤ 2d2

�(φ�, φ0) + 2‖u0(t) − φ0‖2.

By the continuity of u0(·) at t0 again, we have

‖ũ�
θ (t)‖2 → 0, as � → 0. (86)

It follows from (85) and (86) that

lim
�→0

sup
θ∈[−�,0]

‖u�(t + θ; t0, φ
�) − u0(t; t0, φ

0)‖2 = 0, ∀t ∈ [t0, t0 + T ].

The proof is complete. ��

5.2 Upper Semi-Convergence of Regular Pullback Attractors fromDelay to
Non-Delay

We first prove the eventually compactness of pullback attractors.

Lemma 13 Let ϑn ∈ A�n
d (t) with �n → 0 and t ∈ R, then there are ϑ ∈ V and an

index subsequence of {n∗} of {n} such that

d�n∗ (ϑn∗ , ϑ) := sup
θ∈[−�n∗ ,0]

‖ϑn∗(θ) − ϑ‖V → 0 as n∗ → ∞. (87)

Proof By the invariance of A�n
d (·), there exists a ϑ̃n ∈ A�n

d (t − τn) with τn → +∞
such that

ϑn = S�n (t, t − τn)ϑ̃n . (88)

Since A�n
d ∈ D, by the same method as in Step 1 of Theorem 4, there exists δ > 0

with |θ1 − θ2| ≤ δ such that for any ε > 0,

‖(S�n∗ (t, t − τn∗)ϑ̃n∗)(θ1) − (S�n∗ (t, t − τn∗)ϑ̃n∗)(θ2)‖V < ε.
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Since �n∗ → 0 as n∗ → +∞, there exists a N1 ∈ N such that �n∗ < δ for all n∗ ≥ N1.
Then, we have

‖(S�n∗ (t, t − τn∗)ϑ̃n∗)(θ) − (S�n∗ (t, t − τn∗)ϑ̃n∗)(0)‖V < ε, (89)

for all n∗ ≥ N1 and θ ∈ [−�n∗ , 0]. On the other hand, by the same method as in Step
2 of Theorem 4, we obtain that {(S�n (t, t − τn)φ̃n)(0)}n∈N is pre-compact in V . Then,
there exist a ϑ ∈ V and an index subsequence of {n∗} of {n} such that

‖(S�n∗ (t, t − τn∗)ϑ̃n∗)(0) − ϑ‖V → 0, as n∗ → +∞. (90)

It follows from (88) to (90) that there exists a N2 ≥ N1 such that

‖ϑn∗(θ) − ϑ‖V = ‖(S�n∗ (t, t − τn∗)ϑ̃n∗)(θ) − ϑ‖V

≤ ‖(S�n∗ (t, t − τn∗)ϑ̃n∗)(θ) − (S�n∗ (t, t − τn∗)ϑ̃n∗)(0)‖V

+ ‖(S�n∗ (t, t − τn∗)ϑ̃n∗)(0) − ϑ‖V < 2ε,

for all n∗ ≥ N2 and θ ∈ [−�n∗ , 0], which proves (87) as desired. ��
Next, we show the recurrence of absorbing sets. Similar to Lemma 4, for each

� ∈ (0, �0], we obtain that the evolution process S�(·, ·) associated with (69) has a
pullback D-absorbing set Kd = {Kd(t) : t ∈ R} ∈ D, defined by

K�

d (t) = {ϑ ∈ H� : ‖ϑ‖2H�
≤ ce2α(�+2)(1 + Gd(t))}.

Define a new non-autonomous set K0 = {K0(t) : t ∈ R} by

K0(t) = {ϑ ∈ H : ‖ϑ‖2 ≤ ce2α(�0+2)(1 + Gd(t))}.

Similar to (34), we get K0 ∈ D0. Observe that

lim sup
�→0

‖K�

d (t)‖2H�
≤ ‖K0(t)‖2. (91)

Now, we state the main result of this section.

Theorem 6 Suppose that (71), (72) and (G1) hold. Then, we have, for each t ∈ R,

dist(V�,V )

(
A�

d(t),A0
d(t)

)

= sup
a∈A�

d (t)

inf
b∈A0

d (t)
sup

θ∈[−�,0]
‖a(θ) − b‖V → 0 as � → 0. (92)

Proof Suppose that (92) is not true, then there exist δ > 0 and �n → 0 such that

dist(V�n ,V )(A�n
d (t),A0

d(t)) ≥ 4δ, ∀n ∈ N,
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which implies for each n ∈ N, there is a an ∈ A�n
d (t) such that

dist(V�n ,V )(an,A0
d(t)) ≥ 4δ, ∀n ∈ N. (93)

By (87) in Lemma 13, there exist a subsequence (still denoted by an) and an element
a0 ∈ V such that

lim
n→+∞ sup

θ∈[−�n ,0]
‖an(θ) − a0‖V = 0. (94)

We claim a0 ∈ A0
d(t). Indeed, by the invariance ofA�n

d , there exists a ak
n ∈ A�n

d (t −τk)

such that

an = S�n (t, t − τk)a
k
n, ∀n, k ∈ N, (95)

where τk → +∞ as k → +∞. Similar to (94), there exist a subsequence (denote by
itself) of ak

n and an element ak
0 ∈ V such that d�n (a

k
n, ak

0) → 0 as n → ∞, that is,

lim
n→+∞ sup

θ∈[−�n ,0]
‖ak

n(θ) − ak
0‖V = 0, ∀k ∈ N, (96)

which combine with (75) implies

lim
n→+∞ sup

θ∈[−�n ,0]
‖(S�n (t, t − τk)a

k
n)(θ) − S0(t, t − τk)a

k
0‖ = 0.

Hence, by (94) and (95), we obtain

a0 = S0(t, t − τk)a
k
0, ∀k ∈ N. (97)

By the invariance of A�n
d again, when t0 small enough, we obtain for all t ∈ R

A�n
d (t) = S�(t, t0)A�n

d (t0) ⊂ K�n
d (t).

Then, we have ak
n ∈ A�n

d (t − τk) ⊂ K�n
d (t − τk). It follows from (91) and (96) that

ak
0 ∈ K0(t − τk) ∈ D0. Since A0

d is a pullback D0-attracting set, we obtain

distV (a0,A0
d(t)) ≤ distV (S0(t, t − τk)a

k
0,A0

d(t))

≤ distV (S0(t, t − τk)K0(t − τk),A0
d(t)) → 0, as k → +∞,

which implies a0 ∈ A0
d(t). By (94), we have

dist(V�n ,V )(an,A0
d(t)) ≤ sup

θ∈[−�n ,0]
‖an(θ) − a0‖V + distV (a0,A0(t)) → 0,

as n → +∞, which contradicts with (93). The proof is complete. ��
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