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Abstract
Let q(G) denote the signless Laplacian spectral radius of a graph G. In this paper,
we first give an upper bound on q(G) of a connected graph G with fixed size m ≥
3k(k ∈ Z

+) and maximum degree � ≤ m − k. For two connected graphs G1 and
G2 with size m ≥ 4, employing this upper bound, we prove that q(G1) > q(G2) if
�(G1) > �(G2) and �(G1) ≥ 2m

3 + 1. As an application, we determine the first
�d/2� graphs with the largest signless Laplacian spectral radius among all graphs with
fixed size and diameter.

Keywords Signless Laplacian spectral radius · Size · Upper bound · Ordering ·
Diameter

AMS Classification 05C50

1 Introduction

For a simple undirected graph G, let A(G) denote its adjacency matrix and D(G)

denote the diagonal matrix of its degrees. The matrices L(G) = D(G) − A(G) and
Q(G) = D(G) + A(G) are called the Laplacian matrix and the signless Laplacian
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matrix (or the Q-matrix) ofG, respectively. The largest eigenvalues of A(G), L(G) and
Q(G) are called the spectral radius (denoted by ρ(G)), the Laplacian spectral radius
(denoted by μ(G)) and the signless Laplacian spectral radius (denoted by q(G)) of
G, respectively.

The investigation on the upper or lower bounds of the spectral radius, the Laplacian
spectral radius and the signless Laplacian spectral radius of a graph is an important
topic in the theory of graph spectra. For the related results, one may refer to [1, 12, 14,
21, 23, 24, 26] and the references therein. The problem of characterizing the graphs
with maximal spectral radius among all graphs with a prescribed number of edges has
been studied extensively (see, e.g., [1, 2, 8, 18, 20, 22, 25, 26]). Recently, Zhai et al.
[27] characterized the graph with the largest signless Laplacian spectral radius among
all graphs with given size and clique number. As applications, they determined the
graph with maximal signless Laplacian spectral radius among all graphs with given
size and among all graphs with given size and chromatic number, respectively. Zhai
et al. [28] determined the largest Q-spectral radius of graphs with given size and
matching number, and characterized the corresponding extremal graphs completely.

In this paper, we further study the problem of characterizing graphs under edge-
condition restriction with maximal signless Laplacian spectral radius. For a graph G,
let � = �(G) denote the maximum degree of G. We first give an upper bound on the
signless Laplacian spectral radius of a connected graph with fixed size m.

Theorem 1.1 Let k ≥ 1, G be a connected graph with fixed size m and maximum
degree � ≤ m − k. If m ≥ 3k, then

q(G) ≤ m − k + 1 + 2k

m − k
,

and the equality holds if and only if G = K4 or K3.

Cvetković [3] proposed twelve directions for further research in the theory of graph
spectra, one of which is “classifying and ordering graphs.” From then on, ordering
graphs with various properties by their spectra, especially by their largest eigenvalues,
becomes an attractive topic. There aremany results on ordering graphs by their spectral
radii and by their signless Laplacian spectral radii. For related reference, one may see
[14, 21] and the references therein. Liu, Liu and Cheng [15] proved that for two
connected graphs G1 and G2 with n vertices and m edges, if �(G1) ≥ m − n−3

2 and
�(G1) > �(G2), then q(G1) > q(G2). Employing Theorem 1.1, we can prove the
following theorem.

Theorem 1.2 Let G1 and G2 be two connected graphs with fixed size m ≥ 4. If
�(G1) > �(G2) and �(G1) ≥ 2m

3 + 1, then q(G1) > q(G2).

Employing Theorem 1.2 , we can determine the graphs with maximal signless
Laplacian spectral radius among many classes of graphs with a prescribed number of
edges. For example, let K ∗

ω denote the connected graph of size m obtained by adding
some pendant edges to a vertex of the complete graph Kω. Clearly, K ∗

ω is the unique
graph with the largest maximum degree among all graphs with size m and clique
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number ω ≥ 2, and �(K ∗
ω) = m − 1

2 (ω − 1)(ω − 2). Let �(K ∗
ω) ≥ 2

3m + 1. By
Theorem 1.2, we have the following corollary, which is the weaker form of the main
theorem of Zhai et al. in [27].

Corollary 1.3 Let G be a connected graph with size m ≥ max{ 32 (ω−1)(ω−2)+3, 4}
and clique number ω ≥ 2. If G is a graph without isolated vertices, then q(G) ≤
q(K ∗

ω) with equality if and only if G = K ∗
ω.

In particular, let ω = 2, we have the following corollary, which is also a result of
Zhai et al. in [27].

Corollary 1.4 Let G be a connected graph with m ≥ 4 edges. Then q(G) ≤ q(K1,m),
and the equality holds if and only if G = K1,m.

The diameter of a graphG is the maximum distance between any two vertices ofG.
Letm, d, p be integers with 2 ≤ p ≤ d ≤ m−1, and Tm,d,p denote the graph (shown
in Fig. 1) obtained from a path Pd+1 = v1v2 . . . vd+1 by addingm−d pendant edges to
the vertex vp. Clearly, Tm,d,p is the graphs with the largest maximum degree among all
graphs of sizem and diameter d, and�(Tm,d,p) = m−d+2. Let�(Tm,d,p) ≥ 2

3m+1.
By Theorem 1.2 and Lemma 2.7, we have the following corollary.

Corollary 1.5 Let G be a connected graph with fixed size m and diameter d ≥ 3. If
m ≥ 3(d − 1) and G �= Tm,d,p, then

q(G) < q(Tm,d,2) < q(Tm,d,3) < · · · < q(Tm,d,� d
2 �+1).

Furthermore, we weak the condition m ≥ 3(d − 1) in Corollary 1.5 by proving the
following theorem.

Theorem 1.6 LetG bea connected graphwith fixed sizem anddiameter d. Ifm ≥ d+3
and G �= Tm,d,p, then

q(G) < q(Tm,d,2) < q(Tm,d,3) < · · · < q(Tm,d,� d
2 �+1).

Finally, we show that the above results also hold for the Laplacian spectral radius
of a graph with a prescribed number of edges.

The rest of this paper is organized as follows. In Sect. 2, we recall some useful
notions and Lemmas used further. In Sect. 3, we give the proofs of Theorems 1.1
and 1.2, respectively. In Sect. 4, we give the proof of Theorem 1.6. In Sect. 5, we give
similar results on the Laplacian spectral radius of a graph with a prescribed number
of edges.

2 Preliminary Lemmas

Denote by Cn and Pn the cycle and the path of order n, respectively. For v ∈ V (G),

NG(v) denotes the set of all neighbors of vertex v in G, and d(v) = |NG(v)| denotes
the degree of vertex v in G. The average degree of the neighbors of vi is m(vi ) =
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1
d(vi )

∑
viv j∈E(G) d(v j ). Let G− xy denote the graph obtained from G by deleting the

edge xy ∈ E(G). Similarly, G + xy is the graph obtained from G by adding an edge
xy /∈ E(G), where x, y ∈ V (G). A pendant vertex of G is a vertex of degree 1, and
a pendant edge of G is an edge incident with a pendant vertex.

In order to complete the proofs of our main results, we need the following lemmas.

Lemma 2.1 ([4]) Let G be a connected graph with n ≥ 2 vertices. Then q(G) ≥ �+1
with equality if and only if G is the star K1, n−1.

Lemma 2.2 ([5]) Let G be a graph on n vertices. Then

q(G) ≤ max{ d(u) + d(v) | uv ∈ E(G) }.

If G is connected, then the equality holds if and only if G is regular or semi-regular
bipartite.

Lemma 2.3 ([7, 9]) Let G be a graph on n vertices. Then

q(G) ≤ max{ d(u) + m(u) | u ∈ V (G) },

and the equality holds if and only if G is either a regular graph or a semi-regular
bipartite graph.

Remark 2.4 In 1998, Merris [17] first obtained this type inequality for the Laplacian
spectral radius of a graph.

Lemma 2.5 ([13, 19]) Let G be a connected graph. Then

q(G) ≤ max
uv∈E(G)

{
d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))

d(u) + d(v)

}

.

Lemma 2.6 ([11]) Let G be a connected graph, u and v be two vertices of G. Suppose
that vi ∈ NG(v) \ NG(u) (1 ≤ i ≤ s) and x = (x1, x2, . . . , xn)T is the Perron vector
of Q(G), where xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ be the graph
obtained from G by deleting the edges vvi and adding the edges uvi (1 ≤ i ≤ s). If
xu ≥ xv then q(G) < q(G∗).

Lemma 2.7 ([6]) Let G(k, l) (k, l ≥ 0) be the graph obtained from a nontrivial con-
nected graph G by attaching pendant paths of lengths k and l at some vertex v. If
k ≥ l ≥ 1, then

q(G(k, l)) > q(G(k + 1, l − 1)).

Lemma 2.8 ([10]) Let d ≥ 3, m ≥ d + 2, and Tm,d be the set of all trees with m edges
and diameter d. If T ∈ Tm,d \ {Tm,d,� d

2 �+1, Tm,d,� d
2 �, . . . , Tm,d,3, Tm,d,2}, then

μ(T ) < μ(Tm,d,2) < μ(Tm,d,3) < · · · < μ(Tm,d,� d
2 �) < μ(Tm,d,� d

2 �+1).

123



Ordering Graphs with Given Size by Their Signless... 2169

3 The Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 Suppose that G is a connected graph of size m with � =
�(G) ≤ m − k. If m = 3 or 4, noting that m ≥ 3k, we know that k = 1. If m = 3,
then G = K3 or P4. It is easy to see that q(G) ≤ 4 with the equality if and only if
G = K3. If m = 4, by computation with computer, we can verify that q(G) < 14

3 .
Namely, in the above two cases, Theorem 1.1 holds.

Next we always assume that m ≥ 5. Let w be a vertex of G such that

max
u∈V (G)

{d(u) + m(u)} = d(w) + m(w) = d(w) + 1

d(w)

∑

wv∈E(G)

d(v).

Then 1 ≤ d(w) ≤ �. By Lemma 2.3, we have

q(G) ≤ max
u∈V (G)

{d(u) + m(u)} = d(w) + 1

d(w)

∑

wv∈E(G)

d(v). (1)

If d(w) = 1, by (1), we have

q(G) ≤ 1 + d(v) ≤ 1 + � ≤ m − k + 1 < m − k + 1 + 2k

m − k
.

If d(w) = 2, by (1), we have

q(G) ≤ 2 + m + 1

2
≤ m − k + 1 + 2k

m − k

for m ≥ 3k. If the equality holds, then m = 3k and k = 1. This contradicts m ≥ 5.
Therefore, the equality cannot hold.

If 3 ≤ d(w) ≤ � ≤ m − k, noting that

∑

wv∈E(G)

d(v) ≤ d(w) + 2(m − d(w)) = 2m − d(w), (2)

by (1), we have

q(G) ≤ d(w) + 2m

d(w)
− 1.

Let f (x) = x + 2m
x . By mathematical analysis, it is easy to see that the function

f (x) is strictly decreasing for 0 < x ≤ √
2m and strictly increasing for x ≥ √

2m. It
follows that its maximum in any closed interval is attained at one of the ends of this
interval. Then we have

q(G) ≤ d(w) + 2m

d(w)
− 1 ≤ max

{

3 + 2m

3
, � + 2m

�

}

− 1. (3)
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Case 1 � ≥ 2m
3 . Noting that

√
2m < 2m

3 ≤ � ≤ m − k, we have that � and m − k
are in the same monotonic interval of f (x). By (3), we have

q(G) ≤ � + 2m

�
− 1 ≤ m − k + 1 + 2k

m − k
.

If the equality holds, then � = m − k and the equality in (2) holds. And by
Lemma 2.3, we have G is a regular graph and d(w) = m − k. This implies that
(m − k)(m − k + 1) = 2m. Namely m2 − (2k + 1)m + k2 − k = 0. This contradicts
m ≥ 5 and m ≥ 3k. Therefore, the equality cannot hold.

Case 2 3 ≤ � < 2m
3 . In this case, we have 3 <

√
2m < 2m

3 ≤ m − k. It
follows that 2m

3 and m − k are in the same monotonic interval of f (x). Noting that
f (3) = f ( 2m3 ) = 2m

3 + 3, we have f (�) ≤ f (3) = f
( 2m

3

)
. By (3), we have

q(G) ≤ f (3) − 1 = f

(
2m

3

)

− 1 ≤ f (m − k) − 1 = m − k + 1 + 2k

m − k
.

If the equality holds, then m = 3k and � = 3. And by Lemma 2.3, we have G is
a regular graph and d(w) = 3. It follows that G = K4. If G = K4, then the equality
holds clearly.

Combining the above arguments, we complete the proof. 
�
The proof of Theorem 1.2. Let�(G1) = m−k1 and�(G2) = m−k2. Since�(G1) >

�(G2) and �(G1) ≥ 2m
3 + 1, it follows that k1 < k2 and k1 ≤ 1

3m − 1. Let l =
min{k2, [ 13m]}. Then l ≥ k1 + 1.

If k1 = 0, then k2 ≥ 1,G1 = K1,m andq(G1) = m+1.Noting that�(G2) ≤ m−1,
by Theorem 1.1, we have

q(G2) ≤ m + 2

m − 1
≤ m + 2

3
< m + 1 = q(G1)

for m ≥ 4.
If k1 ≥ 1, noting that �(G2) = m − k2 ≤ m − l and l ≤ 1

3m, by Theorem 1.1 and
Lemma 2.1, we have

q(G2) ≤ m − l + 2 ≤ m − k1 + 1 < q(G1).

This completes the proof. 
�

4 The Proof of Theorem 1.6

Proof LetG(m, d)denote the set of all connected graphswith fixed sizem anddiameter
d. Clearly, Tm, d, p ∈ G(m, d) for 2 ≤ p ≤ d ≤ n − 1. It is easy to check that
Theorem 1.6 holds for d = 2. Next we always assume that d ≥ 3.
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Fig. 1 Tm, d, p

· · · · · ·
· · ·

v1 v2 v3 vp vd vd+1

vd+2 vm+1

Fig. 2 Gm (r , k, l) ... r

· · · · · ·
· · · · · ·
k l

v1 v2

Fig. 3 Gm (r , k + l, 0)

... r

· · · · · ·
· · ·
k + l

v1 v2

v3

vr+2

vr+3 vr+4

vn

By Lemma 2.7, we have

q(Tm,d,2) < q(Tm,d,3) < · · · < q(Tm,d,� d
2 �+1).

For G ∈ G(m, d) \ {Tm, d, p | 2 ≤ p ≤ �d/2�+1 } and viv j ∈ E(G), we claim that
at least d − 3 edges of G are neither adjacent to vi nor adjacent to v j . Therefore

di + d j ≤ m − (d − 3) + 1 = m − d + 4.

If di + d j ≤ m − d + 3 for any edge viv j ∈ E(G), by Lemma 2.2, we have

q(G) ≤ max{di + d j | viv j ∈ E(G)} ≤ m − d + 3.

By Lemma 2.1, we have q(Tm, d, 2) > m − d + 3. Therefore q(G) < q(Tm, d, 2).

If there exists an edge viv j ∈ E(G), without loss of generality, we may assume
that i = 1 and j = 2 such that d1 + d2 = m − d + 4, then G must be one of
the graphs Gm(r , k, l) (see Fig. 2), where all k, l, r are nonnegative integers, and
d1 = k + r + 2, d2 = l + r + 2, 2r + k + l = m − d.
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Case 1 r = 0. In this case, G is a tree. Noting that L(G) and Q(G) are unitarily
similar for a bipartite graph, by Lemma 2.8 , we have q(G) < q(Tm, d, 2).

Case 2 r ≥ 1. Applying Lemma 2.6 to v1 and v2, we have

q(G) = q(Gm(r , k, l)) ≤ q(Gm(r , k + l, 0)),

where Gm(r , k + l, 0) is shown in Fig. 3.
For Gm(r , k + l, 0), we have

d1 = m − d − r + 2, d2 = r + 2, d1m1 ≤ m − d + r + 4, d2m2 ≤ m − d + r + 4.

Direct computation shows that

d1(d1 + m1) + d2(d2 + m2)

d1 + d2
≤ m − d + 3 + 2r2 − 2(m − d − 1)r + 4 + d − m

m − d + 4
≤ m − d + 3

for m ≥ d + 3 and 1 ≤ r ≤ m−d
2 . It is easy to verify that

du(du + mu) + dv(dv + mv)

du + dv

≤ m − d + 3

for any other edge uv ∈ E(Gm(r , k + l, 0)). It follows from Lemma 2.5 that

q(G) ≤ q(Gm(r , k + l, 0)) ≤ m − d + 3 < q(Tm, d, 2).

Combining the above arguments, we complete the proof. 
�

5 The Similar Results on the Laplacian Spectral Radius of a Graphwith
Fixed Size

For a connected graph G of order n ≥ 2, it is well known that μ(G) ≤ q(G) with
equality if and only if G is bipartite and μ(G) ≥ � + 1 with equality if and only if
�(G) = n − 1. By a similar reasoning as the proofs of Theorems 1.1 and 1.2, we
can obtain the following theorems and corollaries on the Laplacian spectral radius of
a graph with fixed size.

Theorem 5.1 Let k ≥ 1, G be a connected graph with fixed size m and maximum
degree � ≤ m − k. If m ≥ 3k, then

μ(G) < m − k + 1 + 2k

m − k
.

Theorem 5.2 Let G1 and G2 be two connected graphs with size m ≥ 4. If �(G1) >

�(G2) and �(G1) ≥ 2m
3 + 1, then μ(G1) > μ(G2).
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Corollary 5.3 Let G be a graph with clique numberω ≥ 2 and size m ≥ 3
2 (ω−1)(ω−

2) + 3. If G is a graph without isolated vertices, then μ(G) ≤ μ(K ∗
ω), with equality

if and only if G = K ∗
ω.

Corollary 5.4 Let G be a graph of size m ≥ 3. If G is a graph without isolated vertices,
then μ(G) ≤ μ(K1,m), with equality if and only if G = K1,m.

By a similar reasoning as the proof of Theorem 1.6, we can prove the following
theorem.

Theorem 5.5 LetG bea connected graphwith fixed sizem anddiameter d. Ifm ≥ d+3
and G �= Tm,d,p, then

μ(G) < μ(Tm,d,2) < μ(Tm,d,3) < · · · < μ(Tm,d,� d
2 �+1).

Remark 5.6 While this paper was under review, we realized that Lou, Guo, and Wang
[16] independently proved themain conclusions of Theorems 1.6 and 5.5with different
methods.

Acknowledgements The authors are grateful to the anonymous referees for valuable suggestions and
corrections which result in an improvement of the original manuscript.

References

1. Bollobás, B., Lee, J., Letzter, S.: Eigenvalues of subgraphs of the cube. Eur. J. Combin. 70, 125–148
(2018)

2. Brualdi, R.A., Hoffman, A.J.: On the spectral radius of (0, 1)−matrices. Linear Algebra Appl. 65,
133–146 (1985)
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