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Abstract

Let V), (A) be the class of all functions f defined on the open unit disc ID of the complex
plane having simple pole at z = p, p € (0, 1) and analytic in D\{p} satisfying the
normalizations £(0) = 0 = f’(0) — 1 such that |(z/ f(2))* f'(z) — 1| < Aforz € D,
A € (0, 1]. In this article, we obtain sharp bounds of the Zalcman and the generalized
Zalcman functionals for functions in V), (1) for some indices of these functionals. As
consequences of the obtained results, we pose the Zalcman-like coefficient conjec-
tures for this class of functions. In addition, we estimate bound for the generalised
Fekete—Szego functional along with bounds of the second- and the third-order Hankel
determinants for this class of functions.
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1 Introduction and Preliminaries

We shall use the following notations throughout the discussion of this article. Let C
be the whole complex plane and D := {z € C : |z| < 1} be the open unit disc.
Let A be the class of all analytic functions f defined in D with the normalization
f(0) =0= f'(0)—1and S = {f € A : fisunivalent}. Each f € S has the
following Taylor expansion

f@=z+) a". zeD. (1.1)

n=2

In the last century, the field of geometric function theory provided many interesting and
fascinating facts. One of the main problems in this field was the Bieberbach conjecture,
which was proposed in the year 1916. This conjecture states that each f € S with the
expansion (1.1) must satisfy the inequality |a, | < n for alln > 2. In the year 1985, de
Branges (c.f. [9]) proved this conjecture. In order to settle the Bieberbach conjecture
prior to the effort made by de Branges, many subclasses of S were introduced that
are geometric in nature and the conjecture was being proved for these subclasses.
Some of the special subclasses of S for which this conjecture was settled were the
class of convex functions, starlike functions, and close-to-convex functions (c.f. [10]).
Recently another subclass of S, namely the class I/ (1) got attention by many geometric
function theorists. More precisely, the class U/ (1), 0 < A < 1, is defined as follows:

UG = {f € A:[Us()] < Al,

where Uy (z) := (z/f@)?f(z) — 1, z € D. We refer to the articles [13, 20, 25] for
more details about the class ¢/(1). There are several classical conjectures about the
Taylor coefficients of functions belonging to certain classes of univalent functions;
and till date, some of them are settled while others are not. One such conjecture is the
famous Zalcman conjecture, (which we abbreviate as ZC throughout the discussion
in this article), that was posed many years ago as an approach to prove the Bieberbach
conjecture. More precisely, in the early 70’s, L. Zalcman conjectured that the coeffi-
cients of S satisfy the sharp inequality |a5 — azy—1| < (n — 1)? foreach n > 2, in
which the equality holds only for the Koebe function k(z) = z/(1 — z)?,z € D and
its rotations. We mention here that the ZC implies the famous Bieberbach conjecture
(see [5]). Also, the case n = 2 of the ZC, namely, |a§ — a3| < 1 for the class S is a
simple consequence of the Gronwall area theorem (see for instance [10]). The ZC has
been verified by a number of authors for certain subclasses of S. For example, in 1986,
Brown and Tsao (c.f. [5]) proved affirmatively for starlike functions and typically real
functions. In [19], Ma proved for close-to-convex functions whenever n > 4, while
Krushkal (c.f. [16]) proved for the case n = 3 and forn = 4, 5, 6 in [17]. We mention
here that since the Koebe function z/(1 — z)? belongs to the class of close-to-convex
functions, the ZC has been settled by Krushkal (c.f. [16]) for n = 3 for this class.

In 1999, Ma proposed a generalized Zalcman conjecture (we abbreviate this as gZC
from here on) (c.f. [18]) for f € S thatforn > 2, m > 2,
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laman — aman—1] < (n — D(m — 1),

which is still an open problem. In the same article, Ma proved the gZC for starlike
functions and univalent functions with real coefficients. In [11], Efraimidis and Vukoti¢
proved that the gZC is asymptotically true for the class S. Let us denote the Zalcman
functionals and the generalized Zalcman functionals by u,, and ¥, , respectively, that
is,

. 2 .
Mn = ay, —apu—1 and Yy = auan — mn—1-

We note here that ¥, , = w, and ¥, 0 = Y m-

Motivated by the interesting work on functions in /(1), a meromorphic analog
of this class, namely V), (X) was introduced (see [2, 3]). We briefly demonstrate here
about this class of functions. Let A(p) be the class that is defined as the collection of
functions in D having a simple pole at z = p, where p € (0, 1) and analytic in D\ {p},
satisfying the normalizations f(0) = 0 = f/(0) — 1. We define Z(p) := {f € A(p) :
fis univalent}. In [3], V), (1) is defined as the class of all functions f in A(p) such
that |Uf(z)| < A, A € (0, 1]. In the same article, it is showed that V, (1) C X (p) and
many other results are obtained for functions in V,(A). As f € V() is analytic in
D, :={z e C:|z|] < p},each f € V,(1) has the following Taylor expansion

f(Z)=Z+Zanz", zeDp. (1.2)
n=2

In 3], the authors established the following representation for functions in V,, (), i.e.,
each f € V() can be expressed as

z Zz
@ 1 —a2z+k2/0 w(t)dz,

where w is analytic in D with |w(z)|] < 1, for z € D. In the above representation, if
we take

Z
wi(2) = / w(dr,
0

then wy is analytic in D, w;(0) = 0 and |w;(z)| < |z|. Also we have |w](z)| =
lw(z)] < 1 for every z € D. Therefore, the aforementioned representation takes the
form

Z

= —1- D. 1.3
7@ az+ rzwi(z), z € (1.3)

In [3, Corollary 1], it is proved that |az| < (p~! + Ap) and equality occurs in this

inequality for the function k% (z) = m =Y 2, Apz", where
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1-GpY)"

Ay=——""" n>1
o= ap?)

(1.4)

Also, in [4, Theorem 1], it is established that if f € V(1) for some 0 < A < 1 and
has the expansion of the form (1.2) in D, then

lan| < An, (1.5)

forn =3, p € (0,1/2Jand n > 4, p € (0, 1/3]. Equality holds in the above
inequalities for the function k;. It is evident from this discussion that the coefficient
problem for functions in the class V), (1) has not yet been settled for all n > 3 and for
all p € (0, 1). This serves as a motivation to study the ZC and the gZC for functions
inV,().

In [12], M. Fekete and G. Szeg6 proved that the inequality

laz — pa3| < 1+ 2e7 24/ 0=

holds for f € S and for 0 < pu < 1, and that this inequality is sharp for each . The
coefficient functional

1 3
Au(f) = a3 — pa3 = = (f”/(O) - 7’“‘(f”<0>)2> ,

on normalized analytic functions f in the unit disc D is important in the sense that it can
represent various geometric quantities in function theory. For example, Ao(f) = a3
and A(f) = a3 —a% represents Sy (0)/6, where Sy denotes the Schwarzian derivative
(f"]fY = (f"]f)?/2 of f.In the literature, there exists a large number of results
on bounds for |[A,(f)| corresponding to various subclasses of &. The problem of
maximizing the absolute value of the functional A, (f) is known as the Fekete—
Szegd problem. Many authors have considered this problem for typical classes of
univalent functions (see, for instance [1, 7, 14] and references therein). In this article
we consider the Fekete—Szegd problem with real parameter p for functions in V, ().
We also consider the coefficient functional a,, — ag’fl, n > 4 for functions in V, (1)
which can be seen as a generalisation of the well-known Fekete—Szeg6 functional
Ai1(f) =a3— a%. In this article, we obtain sharp upper bound for the modulus of this
generalised Fekete—Szeg6 functional when n = 4, 5.

We now move on to another interesting and well-known coefficient functional,
namely the Hankel determinant. Let f € A having the Taylor series expansion of the
form (1.1) in D. The gth Hankel determinant of f is defined (see [22, 23]) forg > 1,
andn > 1 by

Aan an+1 ... dnpyg-—1
an+1 an+2 . G,H_q
Hy(n) =
An+g—1 An+q --- Adn42g-2
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The Hankel determinants H,, (n) are useful in showing that a function is of bounded
characteristic in ID, i.e., a function which is a ratio of two bounded analytic functions
with its Laurent series around the origin having integral coefficients, is rational ( see
[6]). Also, the Hankel determinant plays an important role, for instance, in the study
of the singularities and in the study of power series with integral coefficients (c.f. [6]).
We observe that H>(1) = A1 (f) is the classical Fekete—Szego functional, which has
been considered since the 1930’s and is still of great interest, especially in a modified
version: A, (f) = a3 — ua%, where u € C. Inrecent years many mathematicians have
investigated Hankel determinants for various classes of functions which are contained
in A. These studies focus primarily on the main subclasses of S namely, the class of
convex, starlike and close-to-convex functions. In fact, the majority of papers discuss
the determinants H>(2) and H3(1). An overview of results on the upper bounds of
|H2(2)| and |H3(1)| can be found in [15, 22-24, 26] and references therein. In this
paper, we provide an estimate of the upper bound of |H>(2)| and a sharp estimate of
upper bound of |H3(1)] for functions in V, (3).

We organize the obtained results in this article as follows. In Sect. 2, we obtain the
sharp upper bounds of || whenevern =2, p € (0,1) andn =3, p € (0, (V15 —
3)/2] for functions in V), (X). We also determine the sharp estimates of |/, ,| for
m=2,n=3andm = 2, n = 4, which are the main content of Theorem 2. Next, in
Theorem 3, we find the sharp upper bound of |, ,|, when m = 2, n > 5 for certain
range of values of p € (0, 1). We also pose Zalcman-like conjectures for functions
in V, (). Next, in Sect. 3, we obtain the generalized Fekete-Szeg0 inequality for
functions in V,, (1) and estimate the generalized Fekete—Szegd functional forn = 4, 5.
Finally in Sect. 4, we find some bounds for the Hankel determinants (> (2) and H3 (1))
for functions in V), (1), respectively.

2 Zalcman-Like Conjectures for the Class V(1)

In the following theorem, we obtain the sharp upper bounds of |u,| whenever n =
2, pe(0,1)andn =3, p € (0, (v15 — 3)/2] for functions in the class V, ().
Theorem 1 If f € V, (1) and has the expansion of the form (1.2) in D, then
(i) la3 —asl < pe (1),
2
(ii) |a§ —as| <A (% +Ap) for0 < p < (V15 =3)/2.
Equalities hold in both the above inequalities for the function k;.
Proof Let the Taylor series expansion of w; in the representation formula (1.3) is
wi(z) = Y 0| ca2". We have (see [21]) that if w; satisfies

wi(0) = 0, [wi(2)] < |z and [w}(2)| = lw(2)| < 1,

then

1 1 4co|?
<1, < —(1—lc? d <— (1= - —=—). (1
leil <1, |ea| < 2( lci]”) and |c3| < 3< et T+ o] 2.1
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Now Eq. (1.3) together with Eq. (1.2) give us

7= (1—azz+lz{c1z+czzz+cgz3+-~-}) (z+a222+a313+~~)

=z+4 (a3 — a% + )\Cl)Z3 + (a4 — araz + Acray + )»62)14

+ (as — apaq + Acraz + Acrar + AC3)ZS + .- 2.2)

Next, by comparing coefficient of z3 from both sides of the above equation, we get

a3—a%+)»c1 = 0, which gives |ua| = |a%—a3| = |xc1| < A. This completes the proof

of the first part of the theorem . Next for the function k. we compute a% —az = A.

This shows that equality occurs in the inequality (i) for the function k;‘,.
We now proceed to prove the second part of this theorem. By equating coefficients
of z* and z° from both sides of Eq. (2.2), and by using a3 = a% — Acy, we have

a4 = araz — Aciap — Acy = ag —2Aci1az — Aep
and
as = aras — Aciaz — Acrdy — ey = a§ — 3Ac1a% — 2 cpa + )ch% — Ac3.
Therefore,
n3 = a% —as =\ <C3 + 2crar + craz + Ac%) . 2.3)

Now by using the triangle inequality, the bounds for |as|, |a3| and Eq. (2.1), we have
for p <1/2,

‘03 + 2coanr + cra3z + Ac%‘

lesl + 2leallaz] + letllas| + Aler|?

1<1||2 4|”'2>+2||<1+x>
3 T T el My

1
+(;5+x+x%ﬂ)m|+ﬂqﬁ

IA

IA

Letus denote x := |c1|and y := |c3]. Then0) <x < land 0 <y < (1 —xz)/2. Let
Q:i={(x,y):0<x<land 0 <y <(1 —xz)/2}. Now let us define

( y= L (1-x2 4" Y
By =3 YT p Py

1
+(—2 +)»+)»2p2>x4r)»x2,
P
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for (x, y) € Q. Then

af 2x 4y? 1 -
=0t = +2+ 5 +2r+2 ;
ax 3 T30 402 T2 P

which is always positive in €2 for p < 1/2. This shows that the extremum of f(x, y)
cannot be attained in the interior of the domain Q. Since f is continuous and €2 is
compact, the maximum of f will be attained at some boundary point of 2. Now
on the boundary x = 0, 0 < y < 1/2 of ©, we have f(0,y) = ((1 —4y%)/3) +
2y (p_l + Ap). Therefore, for p < 1/2and 0 < y < 1/2, we have

—f(o )——8%4-2( +)\p> > 0.

This implies f (0, y) is an increasing function of y and hence the maximum will be
attained at y = 1/2, with the maximum value tobe (p~! + A p). Next, on the boundary
y=0,0<x <1, wehave

1 1
F(x,0) = 30 -+ (? +x+/\2p2>x + Ax2.

Therefore, for0 < p < 1/2and 0 < x < 1, we have

of 2x 1 2 2
—x,0)=——+ +)\+)L +2Ax > 0,
ax 3 p?

which implies f(x, 0) is an increasing function of x and hence the maximum will
be attained at x = 1 and the maximum value is (p_l + A p)z. On the boundary
y=(1—-x%/2,0<x <1, wehave

1 ) 1 1 1 ) 2
f<x,—(l—x )) = <—+Ap>+{—+<—+k+k p )}x
2 P 3 p?

1 5 x3
FIA = —FAp ) x"— —.
p 3
Now for0 < x <1,

%<x,l(l—x2)> _1+<1 +A+22 2>+2{,\—(1+Ap)}x—x2
ax 2 3 p
1

>+ | +r+27p7 ) =20 =+arp)—rp—1
3 p? P

_ (B=6p—2p?) +61p>(1 — p) +3rp? + 322 p*

- 3 .
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which is positive for 0 < p < (+/15 —3)/2. Since (/15 —3)/2 < 1/2, it follows that

f(x, (1 —x?)/2) is an increasing function of x whenever 0 < p < (+/15 —3)/2 and
hence the maximum will be attained at x = 1 and the maximum valueis (p~! + 4 p)z.

We thus get the maximum value of f(x,y) on Qis (p~! + Ap)2 for 0 < p <
(/15 — 3)/2, and consequently, by using (2.3), we have

| 2
2
laz — as| S/\<; +)»P) ,

for p < (v/15 — 3)/2. Now for the function ki;, we have a% —as = )L(p_1 + kp)2
which proves the sharpness of the inequality (ii) stated in the theorem. O

We now observe that, for the function k;;, we have
A% — Agpo1 = 2A] ),
where A, is given in (1.4). Also, Theorem 1 gives
la3 —a3] <2 =1A2, pe(0,1),

and
1 2
Iag—a5|§k<—+kp> =143, p<(/15-3))2.
p

These patterns of inequalities lead us to propose the general form of the Zalcman-like
coefficient conjecture for functions in the class V) (A).

Conjecture 1 Let f € V), (1) be of the form (1.2) in D,. Then for n > 3,
laZ — azn—1| < 1A%,

forall » € (0,1] and p € (0, 1). Equality holds in the above inequalities for the
function k;\,.

Remark We note that the conjectured bounds of |u,|, n > 3 for the class V,(X) as
p — 17 and A = 1 coincide with the corresponding bounds of |u,| for the class S.

The next theorem deals with the sharp estimates of |, ,| forthe casesm =2, n =
3andm =2, n =4, whenever f € V,(}).

Theorem 2 Let f € V() be of the form (1.2) inID,. Then for all A € (0, 1), we have

(1) laxaz — a4 < A(% —|—)Lp>for0 <p<l,
(ii) |azas — as| < A(# ~|—A+X2p2)for0 <p<1)2

Equalities hold in both the above inequalities for the function kl);.
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Proof (i) Comparing the coefficient of z* from both sides of (2.2), we have ayaz —ay =
A(craz 4 c2). Therefore, the bound for |a>| and (2.1) together imply

1 1
lazas — aq| Sk{<; +)»p> el +5d —I61|2)}. 2.4

Let [ci] = x and f(x) = (p~' + Ap)x + (1 —x2)/2. Then 0 < x < 1, and
f'(x) = (p~ ' + Ap) — x which is greater than O for 0 < p < 1. This shows that the
maximum of £ is attained at x = 1 and the maximum value is (p~! + A p). Therefore,
from Eq. (2.4), we have |aya3 — as| < )L(p_l +Ap)forO < p < 1.

(ii) From Eq. (2.2), we obtain aras — as = A(c1a3 + czaz + c¢3). Now by using the
triangle inequality, the bounds for |a;|, |a3| and Eq. (2.1), we have for p < 1/2,

lazay — as|

<A|:l<l le1)? 4|c2|2>+<1+/\)| |+<1 + 2+ 22 2)I I}
|\ 1=l — — c — call.
<3 = , Hp)le 2 p~|lei

(2.5)

Letusdenote [c1| =: x, |c2| =: y.Then(2.1)implies0) <x < 1,0 <y < (1—x2)/2.
We consider Q :={(x,y):0<x<1land 0 <y <(l-— xz)/Z} and we define

1 42 1 1
fer =5 (1=x = 2 ) (= +ap) v+ (o5 +2 4227 x,

for (x, y) € Q2. We then get

af 2x 4y? 1 2 9
=4 Y 4 A4+a ,
ox 3 + 3(1 + x)2 + p? tAtAp

which is always positive in 2 for p < 1/2. This shows that the extremum of f(x, y)
cannot be attained at some interior point of the domain 2. As f is continuous and €2
is compact, the maximum of f will be attained at some boundary point of 2. Now
on the boundary x = 0, 0 < y < 1/2 of ©, we have £(0,y) = ((1 —4y%)/3) +
(p_1 + Ap) y. Therefore for p < 1/2and 0 < y < 1/2, we have

o) 8 1
o ny=-24(Liip) >0
dy 3 P

This implies f (0, y) is an increasing function of y and hence the maximum is attained
at y = 1/2 and the maximum value is (p~! + Ap) /2. Next on the boundary y =

0,0<x=<1f(x,00=((1-x»/3)+(p2+1+22p?)x.For0 < p < 1/2and
0 <x <1, we have

0 2 1
a—f(x,O) = _?x + <—2 +A+k2p2) > 0.
X p
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Thus f (x, 0) is an increasing function of x and hence the maximum value is f(1,0) =
(p~%+ A+ 22p?). On the boundary y = (1 — x?)/2, 0 < x < 1, we have

Now, for0 <x <1,0 < p <1/2,

df 1 5 1 1 - 1 5
—x, =1 - =-—+|—=+r+1r —(—+x -
8x<x2( x)) 3+(p2+ +ATp p-l—px X
1 1 5 5 1
25 —+A+2pT ) -\ —+Arp) -1
p p
_ (3=3p—2pH) +3rp>(1 — p) + 327 p*
— 3
> 0,

which implies that f(x, (1 — x2) /2) is an increasing function of x and hence the maxi-
mum will be attained atx = 1and the maximum valueis (p~2 + A + A% p?). Therefore
from the above, we get the maximum value of f(x, y) on Q2 is (p_2 + A+ Azpz) and
hence from Eq. (2.5), we get for p < 1/2, |acas — as| < A (p’2 + A+ Azpz).
Now a little calculation shows that axaz — aq4 = )L(p_1 + Ap) and azas — as =
A ( P2+ A4 22 pz) for the function k;\, defined in (1.4). This proves the sharpness of
both inequalities stated in the theorem. O

We now determine the upper bounds for |, ,| when m = 2, n > 5 for some range
of values of p.

Theorem 3 Let f € V,(A) be of the form (1.2). Then for n > 5, we have
laran — ant1l < AAn—1,

whenever p < 1/3. Equalities hold in the above inequalities for the function k;.

Proof Inserting the Taylor expansion for functions f and wy in (1.3) and then equating
coefficients of z"*! from both sides, we have

apy1 = azay — A(C1ap—1 +c2ap2 + -+ - + cp2a2 + cp_1a1).
n—1 . .
Therefore, aza, — ap+1 = 2 Zk:l Cn—kay, which gives
n—1
|azan — any1] < A (Z |cn_k||ak|) : (2.6)
k=1
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Being the Taylor coefficients of the unimodular analytic function wy, it is known that
cn, n > 1 satisfy the following inequalities (see [8, Lemma 2.1]):

lei] <1 and |cp| <1 —|cy)* for n > 2.

Now for p < 1/3, the above inequality and (1.5) together yield

n—1 n—2
D lenllarl =) len—kllax| + leillan—1]
k=1 k=1

n—2
<Y A —leiP) Ak +lerlAp-i
k=1
n—2
<201 —leih) ) Ak +leilAn-i, @7
k=1

as we know that 1 — |c1|2 <2(1 —|cq|) for 0 < |cq| < 1. Now

n—2 2 n—2 1 n—2
ZZA" = 2 |:Z = Z)‘kpk+l:|
k=1 (1 —ap%) =1 P k=1
2 1—pn? N 51— (p)—2
(=) Lp3a—-p P10 |

So the inequality 2 ZZ;% Ap < A,_1 is equivalent to

2 1— pn72 L 21 _ ()\‘p)n72 - 1— ()\’p2)n7]
A—ap) Lp3a—p P 7150 T r2a—apyy

which yields

L=3p+2p"t  2ap? =3 ipt+arpttt 0
p"2(1—p) 1—ap T

We observe that (1 —3p 4+ 2p"~1) > 0 for p < 1/3 and we see

2ap? = 3a" T p" 4 A p
= (L= 2p)2Ap* (L4 2p +27p 4o+ 2" ") =27y
>0,

forn > 5, p € (0, 1). Therefore from (2.6) and (2.7), it is clear that for p < 1/3,

lazan — ans1l < A{(1 = |c1)Ap—1 + lc1|An—1}
= AA, 1.
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Next, for the function k;‘,, it is a simple exercise to check that
ArA, — Apy1 = AMp_1.

Equality holds in the inequality stated in the theorem for the function kﬁ. This com-
pletes the proof of the theorem. O

We notice here that for the function ki;, we have
1/fm,n = aman — Amin—1 = AMm_1An_1.

In Theorem 2, we have obtained the sharp estimates of |, ,| for the cases m =
2,n =3in0 < p <landm = 2,n = 4 for p < 1/2. Also in Theorem 3, we
have determined the upper bounds of [, ,| whenm =2,n > 5and p < 1/3. These
results lead us to the following conjecture.

Conjecture 2 Let f € V), (A) be of the form (1.2) in D). Then for allm > 2, n > 3,
we have

laman — amin—11 < AAp_1An—1

A

forall . € (0, 1] and p € (0, 1). The above inequality is sharp for the function kp.

Remark When p — 1~ and A = 1, the above inequality becomes
laman — aman—1] < (m —1(n —1).

We see that this is the same as the gZC for the class S provided by Ma (c.f. [18]).

3 Generalized Fekete-Szegd Inequality for the Class V(1)

The following theorem deals with the upper bound of |A , (f)] := |a3— Ma% | whenever
f € Vp(X) and  is a real number.

Theorem 4 Let f € V,(A) be of the form (1.2) in D,,. Then

(=) + (1 =2+ (1= wa2p® foru <0, and 0 < p < 1/2

A <
AulHl = {#(,u—l)—i—(Z,u,— DA+ (u—DA2p2 forp > 1, and0 < p < 1.

Equalities hold in the above inequalities for the function kg;.

Proof We follow some initial lines of proofs of the Theorem 1. Next by comparing
the coefficients of z* and z* from both sides of Eq. (2.2), we get

az = a% —Ac1 and a4 = araz — Aciap — Aco. 3.1
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From the above equations, we have az — ua% = (1 — w)az — Aucy. Now from (1.5)
and (2.1), we have

1
jas — paz| < 1= pl (—2 +A+x2p2) +Alul, for0 < p<1/2. (32
p

Case 1: Letu <0, p € (0,1/2]. We first note that |1 — | =1 — u, || = —pn and
from (3.2) we have
2 1 2.2 1
laz — pas| < (1 —p) ?+)~+k P —An= ?(1—/0
+ (1 =2mr 4 (1 — wa2p’.
Next, for the function k,k,, we compute
az—pa3 = (1—w)(p 2+ r+217p) —ap=(1—pp?
+ (1 =2mr 4+ (1 — wa2p’.

This shows the equality in the first inequality stated in the theorem.
Case 2: Let u > 1, p € (0, 1). Therefore |1 — u| = u — 1. We see that as |ap| <
p~ L4+ apforall p e (0, 1),
laz — paz| = |(1 — wyaz — el
< (= Dlaz| + ey

1 2.2
<(u—1 ?+2A+Ap + 1

A

1
(=D @ = DA (e = D22,
It is a simple exercise to check that for the function ki, we have

2 _ 1 2.2
as—lwz——[?(u—1)+(2u—1)k+(u—1)kp]

This shows the sharpness of the second inequality stated in the theorem, hence the
proof of the theorem is complete. O

Remark (i) We mention here that for 0 < u < 1 and 0 < p < 1/2, we get an upper
bound of the Fekete—Szego functional from (3.2) as below:

IA

2 1 2.2
laz — pay| < (1 — ) ?+k+kp +Aau

1 2.2
?(l—u)+k+(1—u))\ P
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We are not able to establish whether the above estimate is sharp or not. Also for the
case when p € (1/2,1) and i < 0, the problem of estimating the Fekete—Szego
functional A, (f) for functions in V), (1) remains open.

(i) The case u = 1 of Theorem 4 has been obtained for all p € (0, 1) in Theorem 1.

In the following theorem, we further obtain the sharp estimates of the generalized
Fekete—Szeg6 functional a, — ag’_l forn =4andn = 5.

Theorem 5 If f € V, (1) and has the expansion of the form (1.2) in D, then

() las —d3| < 2x (%—i—kp)forO <p<l;
(i) Jas —al| < A(2k+3(# +)L+)»2p2))for0 <p<1)2.

Equalities hold in both the above inequalities for the function kl);.

Proof (i) From (3.1), after a little computation, we get ag — ag = —2Aciay — Aca.

Then, by using (2.1) and the bound of |az|, we have
3 ! ! 2
las — a3 < AQ2|cillaz| + |e2]) < A | 2]t ;+)»p +§(1—|61| )] (33

Letx = |c|and f(x) =2(p~' + Ap)x + (1 — x?)/2. Then x € [0, 1] and f'(x) =
2(p~' 4 Ap) —x > 0, which implies that f is an increasing function of x. Therefore,
m[(a)lxl]f(x) =f() = 2(p*1 + A p) and hence from (3.3), we get

xe|l,

1
|a4—a§’| <2A <—+Ap>.
p

Next, for the function k;, we compute a4 — ag = =2A( p_1 + A p), which proves the
sharpness of the first inequality stated in the theorem.

We now proceed to prove the second part of this theorem. Equating coefficients of
z> from both sides of (2.2), and by using (3.1), we have

as — ag = —3Acla% —2Acpar + kzc% —Ac3
—3Ac1(a§ —Acy) — 2)»20% — 2Acrar — Ac3
= —3Aciaz — 2%2012 — 2Acrar — Acs.

Now, by using the triangle inequality, the bounds for |a>|, |a3| and (2.1), we have for

p <1/2,
1 4|cQ|2> (1 )
4 2
as—ay| <Az (1—lal"——— ) +2(—+2Ap])lc
las — ay| < [3< et T+ o] » p | leal
1 2.2 2
+3 R le1] + 2A]er? | G4
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Let us denote x := |ci| and y := |c2]. Then 0 < x < I and 0 < y < (1 — x?)/2. Let
Q:={(x,y):0<x<1and 0 <y < (l—x?)/2}. Now let us define

Foyy = (1-x2 4 Py
x,y==(1-x"— -
Y 3 I+x p p)Y

1
+3 (—2 + A +A2p2)x + 2ax2,
P
for (x, y) € Q. Then

af 2x 4y? 1 ) 5
R AT A S ¥ (NS 4ax,
x T A U A R

which is always positive in 2 for p < 1/2. This shows that the extremum of f(x, y)
cannot be attained in the interior of the domain 2. Since f is continuous and €2 is
compact, the maximum of f will be attained at some boundary point of 2. Now
on the boundary x = 0, 0 < y < 1/2 of @, we have f(0,y) = ((1 - 4y2)/3) +
2y (p_1 + Ap). Therefore for p < 1/2and 0 < y < 1/2, we have

0 8 1
—f(o,)’)=——y+2 —+ip)>0.
dy 3 p

This implies f (0, y) is an increasing function of y and hence
ro.y=r(0.5) =+
max ,y) = = )=1- .
oy’ Y 2 p P
Next, on the boundary y =0, 0 < x < 1, we have
1 2 1 2.2 2
f(x,0) = g(l—x )+3 — +A+27p X+ 2xx”°.
4

Therefore, for0 < p < 1/2and 0 < x < 1, we have

0 2 1
a—ﬁ(x,O) :_?x+3<? +)\+)\2p2> +4xrx > 0,

which implies f(x, 0) is an increasing function of x and hence

1
max f(x,0) = f(1,0) =3 (—2 +A+x2p2) + 2.
0<x<l1 p

@ Springer



2760 B. Bhowmik, F. Parveen

On the boundary y = (1 — xz)/2, 0 <x <1, we have
2 1 1 1 ) 2
Je, (1=x7)/2) = =+Aip |+ 13 +3(=+A+Ap7)x
P 3 p

ERFEEDIEE
+{oa—(=4rp)ta®—=.
P 3

Now for 0 < x < 1, we compute

1 1 2 2 1 5
=z+3 5 +A+2p7 | +2020 - | —+Ap)px—x

3 p p

1

1 2 9 1
— +A+ApT ) =23 —+Ap ) =217 — 1
3 p? p

_(9—6p —2pH) +6ip>(1 — p) +3xp> + 922 p* + 122p?
— 3 ,

%
|
+
W

which is positive for 0 < p < 1/2. Therefore, f(x, (1 — x%)/2) is an increasing
function of x whenever 0 < p < 1/2 and hence,

0<x<l

! 2 1 2.2
maXf<x,—(1—x ))zf(1,0)=3<—2+x+/\ p )+2x.
2 p

Hence, the maximum value of £ (x, y) on Qis 3(p~24+A+A2p?)+21for0 < p < 1/2,
and consequently, by using (3.4), we get

L RS 2,2
las —a;| <A |3 +A+A"p" ) +24|,
D
for p < 1/2. Now for the function k;;, it is a simple exercise to check that

as — a3 = —AB(p72 + 1+ 12p?) + 221,

which proves the sharpness of the inequality (ii) stated in the theorem. This completes
the proof of the theorem. O

4 Hankel Determinant for the Class V(1)

In the following theorem, we establish the upper bounds for the Hankel determinants
|'H2(2)| and |H3(1)| for the functions f belonging to the class V,(A).

Theorem 6 Let [ € V,(A) be of the form (1.2) in D,. Then for all p € (0, 1) and
X € (0, 1], we have
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W 1| <5 (L+ip):

.. 2

(i) |Hs(D| < 4.
Equality holds in (ii) for the function
Z

2
1—(%+%>z+%z3

, z€D.

l?,(z) =

Proof From the definition of the Hankel determinant, we know that H> (2) = a»raq4 —a%.

Now by using (3.1), we get

Hy(2) = axay — a3 = —A(azcy + Ac?). 4.1
Note that
1
laxer + Acf| < Slaal (= le1 %) + Aler 2
1/1 5 5
<= ;-H»P (I = ler1l?) + Aler|”.

2

Let us denote x := |c1], s0 0 < x < 1. We now consider r(x) := % (% + Ap) (1 -
x2) + 2x2, x € [0, 1]. Then

1 1
r’(x):—(——i—)»p)x—i—ZAx, r”(x):—(——i—)»p)—i—Zk.
p p
Now it is a simple exercise to check that '(x) = 0 atx = 0 and ”(0) < 0 as

(% +)\p> o= % (1 —2/\p+xp2) - % ((1 —ap)?+apid —,\)) >0,

for all p € (0, 1) and A € (0, 1]. This implies that the function r(x) has maximum at
x = 0 and the maximum value is (p~! + A p)/2. Hence, from the above estimate and
(4.1), we get

Al
|H2(2)| < ) <; —i—)»P),

which proves first part of the theorem. Now we proceed to prove the second part of
the theorem. From the definition of the Hankel determinant, we get

Hi(1) = a3(apas — a3) — as(as — aza) + as(as — a3).
Now from the above equality combined with (2.2) and (3.1),

H3(1) = AZ(C]Cg — c%).
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Next, by using the triangle inequality and (2.1), we get

2 2
lcics — 5| < letlles] + ez

1 4les?
< el [1 — 1l = ——— | +le2l?

L+ el
1 3 3—=lal, 5
=3 [|Cl| le1]” + T |Cl||62|
<=\lel=lall’+ ————0A—|c
3 [I 1l = el 4(1+|61|)( le1]”)
1 1
= —[3-21c2 = 4] <=
= [3-2el -] <
Consequently, |H3(1)| = )L2|61C3 — c%l < A2/4. Now the function l;‘) (z) isin Vp(A),
because l?, (p) = oo and UZ,A; (z) = —Az>. For this function, we have
2 3

1 ap? 1 ap? A 1 ap?
“2—(;+7>’ “3—(;+7 =t )

which after a little calculation yields
Hy(1) = a3(aras — a3) — as(as — ara3) + as(az — a3) = —2 /4.

Hence, the equality in the second inequality stated in the theorem holds for the function
l IA,. This completes the proof of the theorem. O

Remark We do not know at present whether inequality (i) of Theorem 6 is sharp or
not.
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