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Abstract
LetVp(λ) be the class of all functions f defined on the open unit discD of the complex
plane having simple pole at z = p, p ∈ (0, 1) and analytic in D\{p} satisfying the
normalizations f (0) = 0 = f ′(0) − 1 such that

∣
∣(z/ f (z))2 f ′(z) − 1

∣
∣ < λ for z ∈ D,

λ ∈ (0, 1]. In this article, we obtain sharp bounds of the Zalcman and the generalized
Zalcman functionals for functions in Vp(λ) for some indices of these functionals. As
consequences of the obtained results, we pose the Zalcman-like coefficient conjec-
tures for this class of functions. In addition, we estimate bound for the generalised
Fekete–Szegö functional along with bounds of the second- and the third-order Hankel
determinants for this class of functions.
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1 Introduction and Preliminaries

We shall use the following notations throughout the discussion of this article. Let C

be the whole complex plane and D := {z ∈ C : |z| < 1} be the open unit disc.
Let A be the class of all analytic functions f defined in D with the normalization
f (0) = 0 = f ′(0) − 1 and S = { f ∈ A : f is univalent}. Each f ∈ S has the
following Taylor expansion

f (z) = z +
∞
∑

n=2

anz
n, z ∈ D. (1.1)

In the last century, the field of geometric function theory providedmany interesting and
fascinating facts. One of themain problems in this fieldwas the Bieberbach conjecture,
which was proposed in the year 1916. This conjecture states that each f ∈ S with the
expansion (1.1) must satisfy the inequality |an| ≤ n for all n ≥ 2. In the year 1985, de
Branges (c.f. [9]) proved this conjecture. In order to settle the Bieberbach conjecture
prior to the effort made by de Branges, many subclasses of S were introduced that
are geometric in nature and the conjecture was being proved for these subclasses.
Some of the special subclasses of S for which this conjecture was settled were the
class of convex functions, starlike functions, and close-to-convex functions (c.f. [10]).
Recently another subclass ofS, namely the classU(λ) got attention bymany geometric
function theorists. More precisely, the class U(λ), 0 < λ ≤ 1, is defined as follows:

U(λ) := { f ∈ A : |U f (z)| < λ},

where U f (z) := (z/ f (z))2 f ′(z) − 1, z ∈ D. We refer to the articles [13, 20, 25] for
more details about the class U(λ). There are several classical conjectures about the
Taylor coefficients of functions belonging to certain classes of univalent functions;
and till date, some of them are settled while others are not. One such conjecture is the
famous Zalcman conjecture, (which we abbreviate as ZC throughout the discussion
in this article), that was posed many years ago as an approach to prove the Bieberbach
conjecture. More precisely, in the early 70’s, L. Zalcman conjectured that the coeffi-
cients of S satisfy the sharp inequality |a2n − a2n−1| ≤ (n − 1)2 for each n ≥ 2, in
which the equality holds only for the Koebe function k(z) = z/(1 − z)2, z ∈ D and
its rotations. We mention here that the ZC implies the famous Bieberbach conjecture
(see [5]). Also, the case n = 2 of the ZC, namely, |a22 − a3| ≤ 1 for the class S is a
simple consequence of the Gronwall area theorem (see for instance [10]). The ZC has
been verified by a number of authors for certain subclasses of S. For example, in 1986,
Brown and Tsao (c.f. [5]) proved affirmatively for starlike functions and typically real
functions. In [19], Ma proved for close-to-convex functions whenever n ≥ 4, while
Krushkal (c.f. [16]) proved for the case n = 3 and for n = 4, 5, 6 in [17]. We mention
here that since the Koebe function z/(1 − z)2 belongs to the class of close-to-convex
functions, the ZC has been settled by Krushkal (c.f. [16]) for n = 3 for this class.

In 1999,Ma proposed a generalized Zalcman conjecture (we abbreviate this as gZC
from here on) (c.f. [18]) for f ∈ S that for n ≥ 2,m ≥ 2,
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|aman − am+n−1| ≤ (n − 1)(m − 1),

which is still an open problem. In the same article, Ma proved the gZC for starlike
functions andunivalent functionswith real coefficients. In [11], Efraimidis andVukotić
proved that the gZC is asymptotically true for the class S. Let us denote the Zalcman
functionals and the generalized Zalcman functionals byμn andψm,n respectively, that
is,

μn := a2n − a2n−1 and ψm,n := aman − am+n−1.

We note here that ψn,n = μn and ψm,n = ψn,m .
Motivated by the interesting work on functions in U(λ), a meromorphic analog

of this class, namely Vp(λ) was introduced (see [2, 3]). We briefly demonstrate here
about this class of functions. Let A(p) be the class that is defined as the collection of
functions in D having a simple pole at z = p, where p ∈ (0, 1) and analytic in D\{p},
satisfying the normalizations f (0) = 0 = f ′(0)−1.We define�(p) := { f ∈ A(p) :
f is univalent}. In [3], Vp(λ) is defined as the class of all functions f in A(p) such
that

∣
∣U f (z)

∣
∣ < λ, λ ∈ (0, 1]. In the same article, it is showed that Vp(λ) � �(p) and

many other results are obtained for functions in Vp(λ). As f ∈ Vp(λ) is analytic in
Dp := {z ∈ C : |z| < p}, each f ∈ Vp(λ) has the following Taylor expansion

f (z) = z +
∞
∑

n=2

anz
n, z ∈ Dp. (1.2)

In [3], the authors established the following representation for functions in Vp(λ), i.e.,
each f ∈ Vp(λ) can be expressed as

z

f (z)
= 1 − a2z + λz

∫ z

0
w(t)dt,

where w is analytic in D with |w(z)| ≤ 1, for z ∈ D. In the above representation, if
we take

w1(z) =
∫ z

0
w(t)dt,

then w1 is analytic in D, w1(0) = 0 and |w1(z)| ≤ |z|. Also we have |w′
1(z)| =

|w(z)| ≤ 1 for every z ∈ D. Therefore, the aforementioned representation takes the
form

z

f (z)
= 1 − a2z + λzw1(z), z ∈ D. (1.3)

In [3, Corollary 1], it is proved that |a2| ≤ (p−1 + λp) and equality occurs in this
inequality for the function kλ

p(z) = −pz
(z−p)(1−λpz) = ∑∞

n=1 Anzn , where
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An = 1 − (λp2)n

pn−1(1 − λp2)
, n ≥ 1. (1.4)

Also, in [4, Theorem 1], it is established that if f ∈ Vp(λ) for some 0 < λ ≤ 1 and
has the expansion of the form (1.2) in Dp, then

|an| ≤ An, (1.5)

for n = 3, p ∈ (0, 1/2] and n ≥ 4, p ∈ (0, 1/3]. Equality holds in the above
inequalities for the function kλ

p. It is evident from this discussion that the coefficient
problem for functions in the class Vp(λ) has not yet been settled for all n ≥ 3 and for
all p ∈ (0, 1). This serves as a motivation to study the ZC and the gZC for functions
in Vp(λ).

In [12], M. Fekete and G. Szegö proved that the inequality

|a3 − μa22 | ≤ 1 + 2e−2μ/(1−μ),

holds for f ∈ S and for 0 ≤ μ ≤ 1, and that this inequality is sharp for each μ. The
coefficient functional

�μ( f ) := a3 − μa22 = 1

6

(

f ′′′(0) − 3μ

2
( f ′′(0))2

)

,

on normalized analytic functions f in the unit discD is important in the sense that it can
represent various geometric quantities in function theory. For example, �0( f ) = a3
and�1( f ) = a3−a22 representsS f (0)/6,whereS f denotes the Schwarzian derivative
( f ′′/ f ′)′ − ( f ′′/ f ′)2/2 of f . In the literature, there exists a large number of results
on bounds for |�μ( f )| corresponding to various subclasses of S. The problem of
maximizing the absolute value of the functional �μ( f ) is known as the Fekete–
Szegö problem. Many authors have considered this problem for typical classes of
univalent functions (see, for instance [1, 7, 14] and references therein). In this article
we consider the Fekete–Szegö problem with real parameter μ for functions in Vp(λ).
We also consider the coefficient functional an − an−1

2 , n ≥ 4 for functions in Vp(λ)

which can be seen as a generalisation of the well-known Fekete–Szegö functional
�1( f ) = a3 − a22 . In this article, we obtain sharp upper bound for the modulus of this
generalised Fekete–Szegö functional when n = 4, 5.

We now move on to another interesting and well-known coefficient functional,
namely the Hankel determinant. Let f ∈ A having the Taylor series expansion of the
form (1.1) in D. The qth Hankel determinant of f is defined (see [22, 23]) for q ≥ 1,
and n ≥ 1 by

Hq(n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
...

...

an+q−1 an+q . . . an+2q−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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The Hankel determinantsHq(n) are useful in showing that a function is of bounded
characteristic in D, i.e., a function which is a ratio of two bounded analytic functions
with its Laurent series around the origin having integral coefficients, is rational ( see
[6]). Also, the Hankel determinant plays an important role, for instance, in the study
of the singularities and in the study of power series with integral coefficients (c.f. [6]).
We observe thatH2(1) = �1( f ) is the classical Fekete–Szegö functional, which has
been considered since the 1930’s and is still of great interest, especially in a modified
version:�μ( f ) = a3−μa22 , whereμ ∈ C. In recent years manymathematicians have
investigated Hankel determinants for various classes of functions which are contained
in A. These studies focus primarily on the main subclasses of S namely, the class of
convex, starlike and close-to-convex functions. In fact, the majority of papers discuss
the determinants H2(2) and H3(1). An overview of results on the upper bounds of
|H2(2)| and |H3(1)| can be found in [15, 22–24, 26] and references therein. In this
paper, we provide an estimate of the upper bound of |H2(2)| and a sharp estimate of
upper bound of |H3(1)| for functions in Vp(λ).

We organize the obtained results in this article as follows. In Sect. 2, we obtain the
sharp upper bounds of |μn| whenever n = 2, p ∈ (0, 1) and n = 3, p ∈ (0, (

√
15 −

3)/2] for functions in Vp(λ). We also determine the sharp estimates of |ψm,n| for
m = 2, n = 3 and m = 2, n = 4, which are the main content of Theorem 2. Next, in
Theorem 3, we find the sharp upper bound of |ψm,n|, when m = 2, n ≥ 5 for certain
range of values of p ∈ (0, 1). We also pose Zalcman-like conjectures for functions
in Vp(λ). Next, in Sect. 3, we obtain the generalized Fekete–Szegö inequality for
functions in Vp(λ) and estimate the generalized Fekete–Szegö functional for n = 4, 5.
Finally in Sect. 4, we find some bounds for theHankel determinants (H2(2) andH3(1))
for functions in Vp(λ), respectively.

2 Zalcman-Like Conjectures for the ClassVp(�)

In the following theorem, we obtain the sharp upper bounds of |μn| whenever n =
2, p ∈ (0, 1) and n = 3, p ∈ (0, (

√
15 − 3)/2] for functions in the class Vp(λ).

Theorem 1 If f ∈ Vp(λ) and has the expansion of the form (1.2) in Dp, then

(i) |a22 − a3| ≤ λ, p ∈ (0, 1),

(ii) |a23 − a5| ≤ λ
(
1
p + λp

)2
for 0 < p ≤ (

√
15 − 3)/2.

Equalities hold in both the above inequalities for the function kλ
p.

Proof Let the Taylor series expansion of w1 in the representation formula (1.3) is
w1(z) = ∑∞

n=1 cnz
n . We have (see [21]) that if w1 satisfies

w1(0) = 0, |w1(z)| ≤ |z| and |w′
1(z)| = |w(z)| ≤ 1,

then

|c1| ≤ 1, |c2| ≤ 1

2
(1 − |c1|2) and |c3| ≤ 1

3

(

1 − |c1|2 − 4|c2|2
1 + |c1|

)

. (2.1)
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Now Eq. (1.3) together with Eq. (1.2) give us

z =
(

1 − a2z + λz{c1z + c2z
2 + c3z

3 + · · · }
) (

z + a2z
2 + a3z

3 + · · ·
)

= z + (a3 − a22 + λc1)z
3 + (a4 − a2a3 + λc1a2 + λc2)z

4

+ (a5 − a2a4 + λc1a3 + λc2a2 + λc3)z
5 + · · · . (2.2)

Next, by comparing coefficient of z3 from both sides of the above equation, we get
a3−a22+λc1 = 0,which gives |μ2| = |a22−a3| = |λc1| ≤ λ. This completes the proof
of the first part of the theorem . Next for the function kλ

p, we compute a22 − a3 = λ.
This shows that equality occurs in the inequality (i) for the function kλ

p.
We now proceed to prove the second part of this theorem. By equating coefficients

of z4 and z5 from both sides of Eq. (2.2), and by using a3 = a22 − λc1, we have

a4 = a2a3 − λc1a2 − λc2 = a32 − 2λc1a2 − λc2

and

a5 = a2a4 − λc1a3 − λc2a2 − λc3 = a42 − 3λc1a
2
2 − 2λc2a2 + λ2c21 − λc3.

Therefore,

μ3 = a23 − a5 = λ
(

c3 + 2c2a2 + c1a3 + λc21

)

. (2.3)

Now by using the triangle inequality, the bounds for |a2|, |a3| and Eq. (2.1), we have
for p ≤ 1/2,

∣
∣
∣c3 + 2c2a2 + c1a3 + λc21

∣
∣
∣

≤ |c3| + 2|c2||a2| + |c1||a3| + λ|c1|2

≤ 1

3

(

1 − |c1|2 − 4|c2|2
1 + |c1|

)

+ 2|c2|
(
1

p
+ λp

)

+
(

1

p2
+ λ + λ2 p2

)

|c1| + λ|c1|2.

Let us denote x := |c1| and y := |c2|. Then 0 ≤ x ≤ 1 and 0 ≤ y ≤ (1 − x2)/2. Let
� := {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ (1 − x2)/2}. Now let us define

f (x, y) = 1

3

(

1 − x2 − 4y2

1 + x

)

+ 2

(
1

p
+ λp

)

y

+
(

1

p2
+ λ + λ2 p2

)

x + λx2,
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for (x, y) ∈ �. Then

∂ f

∂x
= −2x

3
+ 4y2

3(1 + x)2
+ 2λx +

(
1

p2
+ λ + λ2 p2

)

,

which is always positive in � for p ≤ 1/2. This shows that the extremum of f (x, y)
cannot be attained in the interior of the domain �. Since f is continuous and � is
compact, the maximum of f will be attained at some boundary point of �. Now
on the boundary x = 0, 0 ≤ y ≤ 1/2 of �, we have f (0, y) = (

(1 − 4y2)/3
) +

2y
(

p−1 + λp
)

. Therefore, for p ≤ 1/2 and 0 ≤ y ≤ 1/2, we have

∂ f

∂ y
(0, y) = −8y

3
+ 2

(
1

p
+ λp

)

> 0.

This implies f (0, y) is an increasing function of y and hence the maximum will be
attained at y = 1/2,with themaximumvalue to be

(

p−1 + λp
)

. Next, on the boundary
y = 0, 0 ≤ x ≤ 1, we have

f (x, 0) = 1

3
(1 − x2) +

(
1

p2
+ λ + λ2 p2

)

x + λx2.

Therefore, for 0 < p ≤ 1/2 and 0 ≤ x ≤ 1, we have

∂ f

∂x
(x, 0) = −2x

3
+

(
1

p2
+ λ + λ2 p2

)

+ 2λx > 0,

which implies f (x, 0) is an increasing function of x and hence the maximum will
be attained at x = 1 and the maximum value is

(

p−1 + λp
)2
. On the boundary

y = (1 − x2)/2, 0 ≤ x ≤ 1, we have

f

(

x,
1

2
(1 − x2)

)

=
(
1

p
+ λp

)

+
{
1

3
+

(
1

p2
+ λ + λ2 p2

)}

x

+
{

λ −
(
1

p
+ λp

)}

x2 − x3

3
.

Now for 0 ≤ x ≤ 1,

∂ f

∂x

(

x,
1

2
(1 − x2)

)

= 1

3
+

(
1

p2
+ λ + λ2 p2

)

+ 2

{

λ −
(
1

p
+ λp

)}

x − x2

≥ 1

3
+

(
1

p2
+ λ + λ2 p2

)

− 2

{(
1

p
+ λp

)

− λ

}

− 1

= (3 − 6p − 2p2) + 6λp2(1 − p) + 3λp2 + 3λ2 p4

3p2
,
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which is positive for 0 < p ≤ (
√
15−3)/2. Since (

√
15−3)/2 < 1/2, it follows that

f (x, (1− x2)/2) is an increasing function of x whenever 0 < p ≤ (
√
15− 3)/2 and

hence themaximumwill be attained at x = 1 and themaximum value is
(

p−1 + λp
)2
.

We thus get the maximum value of f (x, y) on � is (p−1 + λp)2 for 0 < p ≤
(
√
15 − 3)/2, and consequently, by using (2.3), we have

|a23 − a5| ≤ λ

(
1

p
+ λp

)2

,

for p ≤ (
√
15 − 3)/2. Now for the function kλ

p, we have a
2
3 − a5 = λ(p−1 + λp)2

which proves the sharpness of the inequality (ii) stated in the theorem. �	
We now observe that, for the function kλ

p, we have

A2
n − A2n−1 = λA2

n−1,

where An is given in (1.4). Also, Theorem 1 gives

|a22 − a3| ≤ λ = λA2
1, p ∈ (0, 1),

and

|a23 − a5| ≤ λ

(
1

p
+ λp

)2

= λA2
2, p ≤ (

√
15 − 3)/2.

These patterns of inequalities lead us to propose the general form of the Zalcman-like
coefficient conjecture for functions in the class Vp(λ).

Conjecture 1 Let f ∈ Vp(λ) be of the form (1.2) in Dp. Then for n ≥ 3,

|a2n − a2n−1| ≤ λA2
n−1,

for all λ ∈ (0, 1] and p ∈ (0, 1). Equality holds in the above inequalities for the
function kλ

p.

Remark We note that the conjectured bounds of |μn|, n ≥ 3 for the class Vp(λ) as
p → 1− and λ = 1 coincide with the corresponding bounds of |μn| for the class S.

The next theorem deals with the sharp estimates of |ψm,n| for the casesm = 2, n =
3 and m = 2, n = 4, whenever f ∈ Vp(λ).

Theorem 2 Let f ∈ Vp(λ) be of the form (1.2) in Dp. Then for all λ ∈ (0, 1), we have

(i) |a2a3 − a4| ≤ λ
(
1
p + λp

)

for 0 < p < 1,

(ii) |a2a4 − a5| ≤ λ
(

1
p2

+ λ + λ2 p2
)

for 0 < p ≤ 1/2.

Equalities hold in both the above inequalities for the function kλ
p.
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Proof (i) Comparing the coefficient of z4 from both sides of (2.2), we have a2a3−a4 =
λ(c1a2 + c2). Therefore, the bound for |a2| and (2.1) together imply

|a2a3 − a4| ≤ λ

{(
1

p
+ λp

)

|c1| + 1

2
(1 − |c1|2)

}

. (2.4)

Let |c1| = x and f (x) = (p−1 + λp)x + (1 − x2)/2. Then 0 ≤ x ≤ 1, and
f ′(x) = (p−1 + λp) − x which is greater than 0 for 0 < p < 1. This shows that the
maximum of f is attained at x = 1 and the maximum value is (p−1 +λp). Therefore,
from Eq. (2.4), we have |a2a3 − a4| ≤ λ(p−1 + λp) for 0 < p < 1.

(ii) From Eq. (2.2), we obtain a2a4 − a5 = λ(c1a3 + c2a2 + c3). Now by using the
triangle inequality, the bounds for |a2|, |a3| and Eq. (2.1), we have for p ≤ 1/2,

|a2a4 − a5|
≤ λ

[
1

3

(

1 − |c1|2 − 4|c2|2
1 + |c1|

)

+
(
1

p
+ λp

)

|c2| +
(

1

p2
+ λ + λ2 p2

)

|c1|
]

.

(2.5)

Let us denote |c1| =: x, |c2| =: y. Then (2.1) implies 0 ≤ x ≤ 1,0 ≤ y ≤ (1−x2)/2.
We consider � := {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ (1 − x2)/2} and we define

f (x, y) = 1

3

(

1 − x2 − 4y2

1 + x

)

+
(
1

p
+ λp

)

y +
(

1

p2
+ λ + λ2 p2

)

x,

for (x, y) ∈ �. We then get

∂ f

∂x
= −2x

3
+ 4y2

3(1 + x)2
+

(
1

p2
+ λ + λ2 p2

)

,

which is always positive in � for p ≤ 1/2. This shows that the extremum of f (x, y)
cannot be attained at some interior point of the domain �. As f is continuous and �

is compact, the maximum of f will be attained at some boundary point of �. Now
on the boundary x = 0, 0 ≤ y ≤ 1/2 of �, we have f (0, y) = (

(1 − 4y2)/3
) +

(

p−1 + λp
)

y. Therefore for p ≤ 1/2 and 0 ≤ y ≤ 1/2, we have

∂ f

∂ y
(0, y) = −8y

3
+

(
1

p
+ λp

)

> 0.

This implies f (0, y) is an increasing function of y and hence the maximum is attained
at y = 1/2 and the maximum value is

(

p−1 + λp
)

/2. Next on the boundary y =
0, 0 ≤ x ≤ 1, f (x, 0) = (

(1 − x2)/3
) + (

p−2 + λ + λ2 p2
)

x . For 0 < p ≤ 1/2 and
0 ≤ x ≤ 1, we have

∂ f

∂x
(x, 0) = −2x

3
+

(
1

p2
+ λ + λ2 p2

)

> 0.
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Thus f (x, 0) is an increasing function of x and hence themaximum value is f (1, 0) =
(

p−2 + λ + λ2 p2
)

. On the boundary y = (1 − x2)/2, 0 ≤ x ≤ 1, we have

f

(

x,
1

2
(1 − x2)

)

= 1

2

(
1

p
+ λp

)

+
{
1

3
+

(
1

p2
+ λ + λ2 p2

)}

x

−1

2

(
1

p
+ λp

)

x2 − x3

3
.

Now, for 0 ≤ x ≤ 1, 0 < p ≤ 1/2,

∂ f

∂x

(

x,
1

2
(1 − x2)

)

= 1

3
+

(
1

p2
+ λ + λ2 p2

)

−
(
1

p
+ λp

)

x − x2

≥ 1

3
+

(
1

p2
+ λ + λ2 p2

)

−
(
1

p
+ λp

)

− 1

= (3 − 3p − 2p2) + 3λp2(1 − p) + 3λ2 p4

3p2

> 0,

which implies that f (x, (1−x2)/2) is an increasing function of x and hence the maxi-
mumwill be attained at x = 1 and themaximumvalue is

(

p−2 + λ + λ2 p2
)

. Therefore
from the above, we get the maximum value of f (x, y) on � is

(

p−2 + λ + λ2 p2
)

and
hence from Eq. (2.5), we get for p ≤ 1/2, |a2a4 − a5| ≤ λ

(

p−2 + λ + λ2 p2
)

.
Now a little calculation shows that a2a3 − a4 = λ(p−1 + λp) and a2a4 − a5 =
λ

(

p−2 + λ + λ2 p2
)

for the function kλ
p defined in (1.4). This proves the sharpness of

both inequalities stated in the theorem. �	
We now determine the upper bounds for |ψm,n|whenm = 2, n ≥ 5 for some range

of values of p.

Theorem 3 Let f ∈ Vp(λ) be of the form (1.2). Then for n ≥ 5, we have

|a2an − an+1| ≤ λAn−1,

whenever p ≤ 1/3. Equalities hold in the above inequalities for the function kλ
p.

Proof Inserting the Taylor expansion for functions f andw1 in (1.3) and then equating
coefficients of zn+1 from both sides, we have

an+1 = a2an − λ(c1an−1 + c2an−2 + · · · + cn−2a2 + cn−1a1).

Therefore, a2an − an+1 = λ
∑n−1

k=1 cn−kak , which gives

|a2an − an+1| ≤ λ

(
n−1
∑

k=1

|cn−k ||ak |
)

. (2.6)
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Being the Taylor coefficients of the unimodular analytic function w1, it is known that
cn, n ≥ 1 satisfy the following inequalities (see [8, Lemma 2.1]):

|c1| ≤ 1 and |cn| ≤ 1 − |c1|2 for n ≥ 2.

Now for p ≤ 1/3, the above inequality and (1.5) together yield

n−1
∑

k=1

|cn−k ||ak | =
n−2
∑

k=1

|cn−k ||ak | + |c1||an−1|

≤
n−2
∑

k=1

(1 − |c1|2)Ak + |c1|An−1

≤ 2(1 − |c1|)
n−2
∑

k=1

Ak + |c1|An−1, (2.7)

as we know that 1 − |c1|2 ≤ 2(1 − |c1|) for 0 ≤ |c1| ≤ 1. Now

2
n−2
∑

k=1

Ak = 2

(1 − λp2)

[
n−2
∑

k=1

1

pk−1 −
n−2
∑

k=1

λk pk+1

]

= 2

(1 − λp2)

[
1 − pn−2

pn−3(1 − p)
− λp2

1 − (λp)n−2

1 − λp

]

.

So the inequality 2
∑n−2

k=1 Ak ≤ An−1 is equivalent to

2

(1 − λp2)

[
1 − pn−2

pn−3(1 − p)
− λp2

1 − (λp)n−2

1 − λp

]

≤ 1 − (λp2)n−1

pn−2(1 − λp2)
,

which yields

1 − 3p + 2pn−1

pn−2(1 − p)
+ 2λp2 − 3λn−1 pn + λn pn+1

1 − λp
≥ 0.

We observe that (1 − 3p + 2pn−1) ≥ 0 for p ≤ 1/3 and we see

2λp2 − 3λn−1 pn + λn pn+1

= (1 − λp){2λp2(1 + λp + λ2 p2 + · · · + λn−3 pn−3) − λn−1 pn}
≥ 0,

for n ≥ 5, p ∈ (0, 1). Therefore from (2.6) and (2.7), it is clear that for p ≤ 1/3,

|a2an − an+1| ≤ λ {(1 − |c1|)An−1 + |c1|An−1}
= λAn−1.
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Next, for the function kλ
p, it is a simple exercise to check that

A2An − An+1 = λAn−1.

Equality holds in the inequality stated in the theorem for the function kλ
p. This com-

pletes the proof of the theorem. �	
We notice here that for the function kλ

p, we have

ψm,n = aman − am+n−1 = λAm−1An−1.

In Theorem 2, we have obtained the sharp estimates of |ψm,n| for the cases m =
2, n = 3 in 0 < p < 1 and m = 2, n = 4 for p ≤ 1/2. Also in Theorem 3, we
have determined the upper bounds of |ψm,n| when m = 2, n ≥ 5 and p ≤ 1/3. These
results lead us to the following conjecture.

Conjecture 2 Let f ∈ Vp(λ) be of the form (1.2) in Dp. Then for all m ≥ 2, n ≥ 3,
we have

|aman − am+n−1| ≤ λAm−1An−1

for all λ ∈ (0, 1] and p ∈ (0, 1). The above inequality is sharp for the function kλ
p.

Remark When p → 1− and λ = 1, the above inequality becomes

|aman − am+n−1| ≤ (m − 1)(n − 1).

We see that this is the same as the gZC for the class S provided by Ma (c.f. [18]).

3 Generalized Fekete–Szegö Inequality for the ClassVp(�)

The following theoremdealswith the upper bound of |�μ( f )| := |a3−μa22 |whenever
f ∈ Vp(λ) and μ is a real number.

Theorem 4 Let f ∈ Vp(λ) be of the form (1.2) in Dp. Then

|�μ( f )| ≤
{ 1

p2
(1 − μ) + (1 − 2μ)λ + (1 − μ)λ2 p2 for μ ≤ 0, and 0 < p ≤ 1/2

1
p2

(μ − 1) + (2μ − 1)λ + (μ − 1)λ2 p2 for μ ≥ 1, and 0 < p < 1.

Equalities hold in the above inequalities for the function kλ
p.

Proof We follow some initial lines of proofs of the Theorem 1. Next by comparing
the coefficients of z3 and z4 from both sides of Eq. (2.2), we get

a3 = a22 − λc1 and a4 = a2a3 − λc1a2 − λc2. (3.1)
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From the above equations, we have a3 − μa22 = (1 − μ)a3 − λμc1. Now from (1.5)
and (2.1), we have

|a3 − μa22 | ≤ |1 − μ|
(

1

p2
+ λ + λ2 p2

)

+ λ|μ|, for 0 < p ≤ 1/2. (3.2)

Case 1: Let μ ≤ 0, p ∈ (0, 1/2]. We first note that |1 − μ| = 1 − μ, |μ| = −μ and
from (3.2) we have

|a3 − μa22 | ≤ (1 − μ)

(
1

p2
+ λ + λ2 p2

)

− λμ = 1

p2
(1 − μ)

+ (1 − 2μ)λ + (1 − μ)λ2 p2.

Next, for the function kλ
p, we compute

a3 − μa22 = (1 − μ)(p−2 + λ + λ2 p2) − λμ = (1 − μ)p−2

+ (1 − 2μ)λ + (1 − μ)λ2 p2.

This shows the equality in the first inequality stated in the theorem.
Case 2: Let μ ≥ 1, p ∈ (0, 1). Therefore |1 − μ| = μ − 1. We see that as |a2| ≤
p−1 + λp for all p ∈ (0, 1),

|a3 − μa22 | = |(1 − μ)a22 − λc1|
≤ (μ − 1)|a22 | + λ|c1|
≤ (μ − 1)

(
1

p2
+ 2λ + λ2 p2

)

+ λ

= 1

p2
(μ − 1) + (2μ − 1)λ + (μ − 1)λ2 p2.

It is a simple exercise to check that for the function kλ
p, we have

a3 − μa22 = −
[
1

p2
(μ − 1) + (2μ − 1)λ + (μ − 1)λ2 p2

]

.

This shows the sharpness of the second inequality stated in the theorem, hence the
proof of the theorem is complete. �	
Remark (i) We mention here that for 0 < μ < 1 and 0 < p ≤ 1/2, we get an upper

bound of the Fekete–Szegö functional from (3.2) as below:

|a3 − μa22 | ≤ (1 − μ)

(
1

p2
+ λ + λ2 p2

)

+ λμ

= 1

p2
(1 − μ) + λ + (1 − μ)λ2 p2.
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We are not able to establish whether the above estimate is sharp or not. Also for the
case when p ∈ (1/2, 1) and μ ≤ 0, the problem of estimating the Fekete–Szegö
functional �μ( f ) for functions in Vp(λ) remains open.

(ii) The case μ = 1 of Theorem 4 has been obtained for all p ∈ (0, 1) in Theorem 1.

In the following theorem, we further obtain the sharp estimates of the generalized
Fekete–Szegö functional an − an−1

2 for n = 4 and n = 5.

Theorem 5 If f ∈ Vp(λ) and has the expansion of the form (1.2) in Dp, then

(i) |a4 − a32 | ≤ 2λ
(
1
p + λp

)

for 0 < p < 1;
(ii) |a5 − a42 | ≤ λ

(

2λ + 3
(

1
p2

+ λ + λ2 p2
))

for 0 < p ≤ 1/2.

Equalities hold in both the above inequalities for the function kλ
p.

Proof (i) From (3.1), after a little computation, we get a4 − a32 = −2λc1a2 − λc2.
Then, by using (2.1) and the bound of |a2|, we have

|a4 − a32 | ≤ λ(2|c1||a2| + |c2|) ≤ λ

(

2|c1|
(
1

p
+ λp

)

+ 1

2
(1 − |c1|2)

)

. (3.3)

Let x = |c1| and f (x) = 2(p−1 + λp)x + (1 − x2)/2. Then x ∈ [0, 1] and f ′(x) =
2(p−1 +λp)− x > 0, which implies that f is an increasing function of x . Therefore,
max
x∈[0,1] f (x) = f (1) = 2(p−1 + λp) and hence from (3.3), we get

|a4 − a32 | ≤ 2λ

(
1

p
+ λp

)

.

Next, for the function kλ
p, we compute a4 − a32 = −2λ(p−1 + λp), which proves the

sharpness of the first inequality stated in the theorem.
We now proceed to prove the second part of this theorem. Equating coefficients of

z5 from both sides of (2.2), and by using (3.1), we have

a5 − a42 = −3λc1a
2
2 − 2λc2a2 + λ2c21 − λc3

= −3λc1(a
2
2 − λc1) − 2λ2c21 − 2λc2a2 − λc3

= −3λc1a3 − 2λ2c21 − 2λc2a2 − λc3.

Now, by using the triangle inequality, the bounds for |a2|, |a3| and (2.1), we have for
p ≤ 1/2,

|a5 − a42 | ≤ λ

[
1

3

(

1 − |c1|2 − 4|c2|2
1 + |c1|

)

+ 2

(
1

p
+ λp

)

|c2|

+3

(
1

p2
+ λ + λ2 p2

)

|c1| + 2λ|c1|2
]

. (3.4)
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Let us denote x := |c1| and y := |c2|. Then 0 ≤ x ≤ 1 and 0 ≤ y ≤ (1 − x2)/2. Let
� := {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ (1 − x2)/2}. Now let us define

f (x, y) = 1

3

(

1 − x2 − 4y2

1 + x

)

+ 2

(
1

p
+ λp

)

y

+ 3

(
1

p2
+ λ + λ2 p2

)

x + 2λx2,

for (x, y) ∈ �. Then

∂ f

∂x
= −2x

3
+ 4y2

3(1 + x)2
+ 3

(
1

p2
+ λ + λ2 p2

)

+ 4λx,

which is always positive in � for p ≤ 1/2. This shows that the extremum of f (x, y)
cannot be attained in the interior of the domain �. Since f is continuous and � is
compact, the maximum of f will be attained at some boundary point of �. Now
on the boundary x = 0, 0 ≤ y ≤ 1/2 of �, we have f (0, y) = (

(1 − 4y2)/3
) +

2y
(

p−1 + λp
)

. Therefore for p ≤ 1/2 and 0 ≤ y ≤ 1/2, we have

∂ f

∂ y
(0, y) = −8y

3
+ 2

(
1

p
+ λp

)

> 0.

This implies f (0, y) is an increasing function of y and hence

max
0≤y≤1/2

f (0, y) = f

(

0,
1

2

)

=
(
1

p
+ λp

)

.

Next, on the boundary y = 0, 0 ≤ x ≤ 1, we have

f (x, 0) = 1

3
(1 − x2) + 3

(
1

p2
+ λ + λ2 p2

)

x + 2λx2.

Therefore, for 0 < p ≤ 1/2 and 0 ≤ x ≤ 1, we have

∂ f

∂x
(x, 0) = −2x

3
+ 3

(
1

p2
+ λ + λ2 p2

)

+ 4λx > 0,

which implies f (x, 0) is an increasing function of x and hence

max
0≤x≤1

f (x, 0) = f (1, 0) = 3

(
1

p2
+ λ + λ2 p2

)

+ 2λ.
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On the boundary y = (1 − x2)/2, 0 ≤ x ≤ 1, we have

f (x, (1 − x2)/2) =
(
1

p
+ λp

)

+
{
1

3
+ 3

(
1

p2
+ λ + λ2 p2

)}

x

+
{

2λ −
(
1

p
+ λp

)}

x2 − x3

3
.

Now for 0 ≤ x ≤ 1, we compute

∂ f

∂x

(

x,
1

2
(1 − x2)

)

= 1

3
+ 3

(
1

p2
+ λ + λ2 p2

)

+ 2

{

2λ −
(
1

p
+ λp

)}

x − x2

≥ 1

3
+ 3

(
1

p2
+ λ + λ2 p2

)

− 2

{(
1

p
+ λp

)

− 2λ

}

− 1

= (9 − 6p − 2p2) + 6λp2(1 − p) + 3λp2 + 9λ2 p4 + 12λp2

3p2
,

which is positive for 0 < p ≤ 1/2. Therefore, f (x, (1 − x2)/2) is an increasing
function of x whenever 0 < p ≤ 1/2 and hence,

max
0≤x≤1

f

(

x,
1

2
(1 − x2)

)

= f (1, 0) = 3

(
1

p2
+ λ + λ2 p2

)

+ 2λ.

Hence, themaximumvalue of f (x, y)on� is 3(p−2+λ+λ2 p2)+2λ for 0 < p ≤ 1/2,
and consequently, by using (3.4), we get

|a5 − a42 | ≤ λ

[

3

(
1

p2
+ λ + λ2 p2

)

+ 2λ

]

,

for p ≤ 1/2. Now for the function kλ
p, it is a simple exercise to check that

a5 − a42 = −λ[3(p−2 + λ + λ2 p2) + 2λ],

which proves the sharpness of the inequality (ii) stated in the theorem. This completes
the proof of the theorem. �	

4 Hankel Determinant for the ClassVp(�)

In the following theorem, we establish the upper bounds for the Hankel determinants
|H2(2)| and |H3(1)| for the functions f belonging to the class Vp(λ).

Theorem 6 Let f ∈ Vp(λ) be of the form (1.2) in Dp. Then for all p ∈ (0, 1) and
λ ∈ (0, 1], we have
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(i) |H2(2)| ≤ λ
2

(
1
p + λp

)

;
(ii) |H3(1)| ≤ λ2

4 .

Equality holds in (i i) for the function

lλp(z) = z

1 −
(
1
p + λp2

2

)

z + λ
2 z

3
, z ∈ D.

Proof From the definition of theHankel determinant,we know that H2(2) = a2a4−a23 .
Now by using (3.1), we get

H2(2) = a2a4 − a23 = −λ(a2c2 + λc21). (4.1)

Note that

|a2c2 + λc21| ≤ 1

2
|a2|(1 − |c1|2) + λ|c1|2

≤ 1

2

(
1

p
+ λp

)

(1 − |c1|2) + λ|c1|2.

Let us denote x := |c1|, so 0 ≤ x ≤ 1. We now consider r(x) := 1
2

(
1
p + λp

)

(1 −
x2) + λx2, x ∈ [0, 1]. Then

r ′(x) = −
(
1

p
+ λp

)

x + 2λx, r ′′(x) = −
(
1

p
+ λp

)

+ 2λ.

Now it is a simple exercise to check that r ′(x) = 0 at x = 0 and r ′′(0) < 0 as

(
1

p
+ λp

)

− 2λ = 1

p

(

1 − 2λp + λp2
)

= 1

p

(

(1 − λp)2 + λp2(1 − λ)
)

> 0,

for all p ∈ (0, 1) and λ ∈ (0, 1]. This implies that the function r(x) has maximum at
x = 0 and the maximum value is (p−1 + λp)/2. Hence, from the above estimate and
(4.1), we get

|H2(2)| ≤ λ

2

(
1

p
+ λp

)

,

which proves first part of the theorem. Now we proceed to prove the second part of
the theorem. From the definition of the Hankel determinant, we get

H3(1) = a3(a2a4 − a23) − a4(a4 − a2a3) + a5(a3 − a22).

Now from the above equality combined with (2.2) and (3.1),

H3(1) = λ2(c1c3 − c22).
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Next, by using the triangle inequality and (2.1), we get

|c1c3 − c22| ≤ |c1||c3| + |c2|2

≤ 1

3
|c1|

[

1 − |c1|2 − 4|c2|2
1 + |c1|

]

+ |c2|2

= 1

3

[

|c1| − |c1|3 + 3 − |c1|
1 + |c1| |c2|

2
]

≤ 1

3

[

|c1| − |c1|3 + 3 − |c1|
4(1 + |c1|) (1 − |c1|2)2

]

= 1

12

[

3 − 2|c1|2 − |c1|4
]

≤ 1

4
.

Consequently, |H3(1)| = λ2|c1c3 − c22| ≤ λ2/4. Now the function lλp(z) is in Vp(λ),
because lλp(p) = ∞ and Ulλp

(z) = −λz3. For this function, we have

a2 =
(
1

p
+ λp2

2

)

, a3 =
(
1

p
+ λp2

2

)2

, a4 = −λ

2
+

(
1

p
+ λp2

2

)3

,

and

a5 = −λ

(
1

p
+ λp2

2

)

+
(
1

p
+ λp2

2

)4

,

which after a little calculation yields

H3(1) = a3(a2a4 − a23) − a4(a4 − a2a3) + a5(a3 − a22) = −λ2/4.

Hence, the equality in the second inequality stated in the theorem holds for the function
lλp. This completes the proof of the theorem. �	
Remark We do not know at present whether inequality (i) of Theorem 6 is sharp or
not.
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